51
|
Loughman JA, Caparon M. Regulation of SpeB in Streptococcus pyogenes by pH and NaCl: a model for in vivo gene expression. J Bacteriol 2006; 188:399-408. [PMID: 16385029 PMCID: PMC1347310 DOI: 10.1128/jb.188.2.399-408.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For a pathogen such as Streptococcus pyogenes, ecological success is determined by its ability to sense the environment and mount an appropriate adaptive transcriptional response. Thus, determining conditions for analyses of gene expression in vitro that are representative of the in vivo environment is critical for understanding the contributions of transcriptional response pathways to pathogenesis. In this study, we determined that the gene encoding the SpeB cysteine protease is up-regulated over the course of infection in a murine soft-tissue model. Conditions were identified, including growth phase, acidic pH, and an NaCl concentration of <0.1 M, that were required for expression of speB in vitro. Analysis of global expression profiles in response to these conditions in vitro identified a set of coregulated genes whose expression patterns showed a significant correlation with that of speB when examined during infection of murine soft tissues. This analysis revealed that a culture medium that promotes high levels of SpeB expression in vitro produced an expression profile that showed significant correlation to the profile observed in vivo. Taken together, these studies establish culture conditions that mimic in vivo expression patterns; that growth phase, pH, and NaCl may mimic relevant cues sensed by S. pyogenes during infection; and that identification of other environmental cues that alter expression of speB in vitro may provide insight into the signals that direct global patterns of gene expression in vivo.
Collapse
Affiliation(s)
- Jennifer A Loughman
- Department of Molecular Microbiology, Washington University School of Medicine, Box 8230, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
52
|
Sumby P, Whitney AR, Graviss EA, DeLeo FR, Musser JM. Genome-wide analysis of group a streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog 2006; 2:e5. [PMID: 16446783 PMCID: PMC1354197 DOI: 10.1371/journal.ppat.0020005] [Citation(s) in RCA: 375] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 12/20/2005] [Indexed: 11/19/2022] Open
Abstract
Many human pathogens produce phenotypic variants as a means to circumvent the host immune system and enhance survival and, as a potential consequence, exhibit increased virulence. For example, it has been known for almost 90 y that clinical isolates of the human bacterial pathogen group A streptococci (GAS) have extensive phenotypic heterogeneity linked to variation in virulence. However, the complete underlying molecular mechanism(s) have not been defined. Expression microarray analysis of nine clinical isolates identified two fundamentally different transcriptomes, designated pharyngeal transcriptome profile (PTP) and invasive transcriptome profile (ITP). PTP and ITP GAS differed in approximately 10% of the transcriptome, including at least 23 proven or putative virulence factor genes. ITP organisms were recovered from skin lesions of mice infected subcutaneously with PTP GAS and were significantly more able to survive phagocytosis and killing by human polymorphonuclear leukocytes. Complete genome resequencing of a mouse-derived ITP GAS revealed that the organism differed from its precursor by only a 7-bp frameshift mutation in the gene (covS) encoding the sensor kinase component of a two-component signal transduction system implicated in virulence. Genetic complementation, and sequence analysis of covR/S in 42 GAS isolates confirmed the central role of covR/S in transcriptome, exoproteome, and virulence modulation. Genome-wide analysis provides a heretofore unattained understanding of phenotypic variation and disease specificity in microbial pathogens, resulting in new avenues for vaccine and therapeutics research. Phenotypic heterogeneity within an infecting population is a strategy commonly used by bacterial pathogens to evade the host immune system and enhance survival. Such phenotypic variation has been observed for the human pathogen group A streptococci (GAS), which can cause a wide range of diseases with differing severity. However, the underlying mechanisms that control this variation, and the survival- and virulence-associated effects of this variation, have not been fully elucidated. By assaying total gene expression the authors found that clinical GAS isolates from invasive and pharyngeal diseases had distinct gene expression patterns during growth in standard laboratory media. These two gene expression patterns conferred distinct virulence-associated attributes on the expressing GAS strain, as assessed using bacteremia and soft-tissue infection models of disease. Likewise, the ability to survive the bactericidal activity of human neutrophils was significantly different between GAS strains with the two distinct expression patterns. Transition from one gene expression pattern to the other required the mutation of the two-component signal transduction system CovRS (control of virulence R/S). The authors conclude that the ability of GAS to remodel its transcriptome plays a major contribution in its ability to colonize distinct niches of the human body and cause disease.
Collapse
Affiliation(s)
- Paul Sumby
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- Center for Human Bacterial Pathogenesis Research, Department of Pathology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Adeline R Whitney
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Edward A Graviss
- Center for Human Bacterial Pathogenesis Research, Department of Pathology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Frank R DeLeo
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- Center for Human Bacterial Pathogenesis Research, Department of Pathology, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
53
|
Johansson BP, Levander F, von Pawel-Rammingen U, Berggård T, Björck L, James P. The Protein Expression of Streptococcus pyogenes Is Significantly Influenced by Human Plasma. J Proteome Res 2005; 4:2302-11. [PMID: 16335979 DOI: 10.1021/pr050217y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the course of infection, the common human pathogen Streptococcus pyogenes encounters plasma. We show that plasma causes S. pyogenes to rapidly remodel its cellular metabolism and virulence pathways. We also identified a variant of the major virulence factor, M1 protein, lacking 13 amino acids at the NH(2)-terminus in bacteria grown with plasma. The pronounced effect of plasma on protein expression, suggests this is an important adaptive mechanism with implications for S. pyogenes pathogenicity.
Collapse
|
54
|
Nakata M, Podbielski A, Kreikemeyer B. MsmR, a specific positive regulator of the Streptococcus pyogenes FCT pathogenicity region and cytolysin-mediated translocation system genes. Mol Microbiol 2005; 57:786-803. [PMID: 16045622 DOI: 10.1111/j.1365-2958.2005.04730.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a prerequisite for colonization or causing local infections, Streptococcus pyogenes (group A streptococci, GAS) need to specifically adhere to eukaryotic cell surfaces. Predominantly responsible adhesin genes are contained in a genotype-specific pattern within the FCT region of the GAS genome. In this study, MsmR, belonging to AraC/XylS type transcriptional regulators, was identified in the FCT region as a positive regulator of the major fibronectin-binding adhesin protein F2 in a serotype M49 strain. Compared with the wild-type strain, the msmR mutant showed reduced binding to immobilized fibronectin and decreased adherence to and internalization into human pharyngeal epithelial cells. These results suggested that altered levels of fibronectin-binding proteins in the mutant affect eukaryotic cell attachment and internalization. Complete transcriptome and reporter fusion assay data revealed that MsmR positively regulates FCT region genes including Nra and cytolysin-mediated translocation system genes. Consistent with the genetic data, the mutant showed attenuated streptolysin O activity and eukaryotic cell cytotoxity. Direct binding of recombinant MsmR to nga, nra/cpa and prtF2 promoter regions was confirmed by EMSA assays. As prior analysis demonstrated the Nra regulator negatively affects gene expression from the FCT region, MsmR and Nra appear to adversely control crucial virulence factor expression in GAS and thus contribute to a fine-tuned balance between local destructive process and metastatic spreading of the bacteria.
Collapse
Affiliation(s)
- Masanobu Nakata
- Department of Medical Microbiology and Hospital Hygiene, Hospital of the Rostock University, Schillingallee 70, 18057 Rostock, Germany
| | | | | |
Collapse
|
55
|
Wang CH, Lin CY, Luo YH, Tsai PJ, Lin YS, Lin MT, Chuang WJ, Liu CC, Wu JJ. Effects of oligopeptide permease in group a streptococcal infection. Infect Immun 2005; 73:2881-90. [PMID: 15845494 PMCID: PMC1087318 DOI: 10.1128/iai.73.5.2881-2890.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oligopeptide permease (Opp) of group A streptococci (GAS) is a membrane-associated protein and belongs to the ATP-binding cassette transporter family. It is encoded by a polycistronic operon containing oppA, oppB, oppC, oppD, and oppF. The biological function of these genes in GAS is poorly understood. In order to understand more about the effects of Opp on GAS virulence factors, an oppA isogenic mutant was constructed by using an integrative plasmid to disrupt the opp operon and confirmed by Southern blot hybridization. No transcript was detected in the oppA isogenic mutant by Northern blot analysis and reverse transcriptase PCR. The growth curve for the oppA isogenic mutant was similar to that for wild-type strain A-20. The oppA isogenic mutant not only decreased the transcription of speB, speX, and rofA but also increased the transcription of speF, sagA (streptolysin S-associated gene A), slo (streptolysin O), pel (pleotrophic effect locus), and dppA (dipeptide permease). No effects on the transcription of emm, sda, speJ, speG, rgg, and csrR were found. The phenotypes of the oppA mutant were restored by the oppA revertant and by the complementation strain. The oppA mutant caused less mortality and tissue damage than the wild-type strain when inoculated into BALB/c mice via an air pouch. Based on these data, we suggest that the opp operon plays an important role in the pathogenesis of GAS infection.
Collapse
Affiliation(s)
- Chih-Hung Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng-Kung University, No. 1 University Rd., Tainan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Herbert MA, Beveridge CJE, McCormick D, Aten E, Jones N, Snyder LAS, Saunders NJ. Genetic islands of Streptococcus agalactiae strains NEM316 and 2603VR and their presence in other Group B streptococcal strains. BMC Microbiol 2005; 5:31. [PMID: 15913462 PMCID: PMC1175089 DOI: 10.1186/1471-2180-5-31] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 05/24/2005] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Streptococcus agalactiae (Group B Streptococcus; GBS) is a major contributor to obstetric and neonatal bacterial sepsis. Serotype III strains cause the majority of late-onset sepsis and meningitis in babies, and thus appear to have an enhanced invasive capacity compared with the other serotypes that cause disease predominantly in immunocompromised pregnant women. We compared the serotype III and V whole genome sequences, strains NEM316 and 2603VR respectively, in an attempt to identify genetic attributes of strain NEM316 that might explain the propensity of strain NEM316 to cause late-onset disease in babies. Fourteen putative pathogenicity islands were described in the strain NEM316 whole genome sequence. Using PCR- and targeted microarray- strategies, the presence of these islands were assessed in a diverse strain collection including 18 colonizing isolates from healthy pregnant women, and 13 and 8 invasive isolates from infants with early- and late-onset sepsis, respectively. RESULTS Side-by-side comparison of the strain NEM316 and strain 2603VR genomes revealed that they are extremely similar, with the only major difference being the capsulation loci and mobile genetic elements. PCR and Comparative Genome Hybridization (CGH) were used to define the presence of each island in 39 GBS isolates. Only islands I, VI, XII, and possibly X, met criteria of a true pathogenicity island, but no significant correlation was found between the presence of any of the fourteen islands and whether the strains were invasive or colonizing. Possible associations were seen between the presence of island VI and late-onset sepsis, and island X and early-onset sepsis, which warrant further investigation. CONCLUSION The NEM316 and 2603VR strains are remarkable in that their whole genome sequences are so similar, suggesting that the capsulation loci or other genetic differences, such as pathogenicity islands, are the main determinants of the propensity of serotype III strains to cause late-onset disease. This study supports the notion that GBS strain NEM316 has four putative pathogenicity islands, but none is absolutely necessary for disease causation, whether early- or late-onset sepsis. Mobile genetic elements are a common feature of GBS isolates, with each strain having its own peculiar burden of transposons, phages, integrases and integrated plasmids. The majority of these are unlikely to influence the disease capacity of an isolate. Serotype associated disease phenotypes may thus be solely related to differences in the capsulation loci.
Collapse
Affiliation(s)
- Mark A Herbert
- University Departments of Paediatrics, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Catriona JE Beveridge
- University Departments of Paediatrics, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - David McCormick
- University Departments of Paediatrics, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Emmelien Aten
- University Departments of Paediatrics, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Nicola Jones
- Department of Microbiology, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Lori AS Snyder
- Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford, OX1 3RE, UK
| | - Nigel J Saunders
- Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford, OX1 3RE, UK
| |
Collapse
|
57
|
Rawlinson ELA, Nes IF, Skaugen M. Identification of the DNA-binding site of the Rgg-like regulator LasX within the lactocin S promoter region. Microbiology (Reading) 2005; 151:813-823. [PMID: 15758227 DOI: 10.1099/mic.0.27364-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
LasX regulates the transcription of the divergent operons lasXY and lasA–W, which specify the production of lactocin S in Lactobacillus sakei L45. Using histidine-tagged LasX, and a DNA fragment containing the complete intergenic lasA–lasX region, electrophoresis mobility-shift (EMSA) analyses were employed to demonstrate that LasX binds to the lasA–lasX intergenic DNA. Two direct heptanucleotide motifs directly upstream of P
lasA–W
, and a third imperfect copy of this motif, overlapping the −10 element of P
lasA–W
, were identified as possible LasX-binding sites. To assess the role of the direct repeats in the binding of LasX to the intergenic lasA–lasX region, binding experiments were performed using DNA probes with different combinations of the repeats, and with arbitrarily chosen repeat substitutions. The result of these experiments demonstrated that only the middle repeat was required for the binding of LasX to the las-promoter region. This observation correlated with the results of subsequent reporter-gene analyses, thereby weakening the hypothesis of the involvement of the direct repeats in LasX-mediated transcription regulation. By analysing the ability of LasX to bind successively shortened derivatives of the original intergenic fragment, a tentative 19 bp minimum LasX-binding site was identified.
Collapse
Affiliation(s)
| | - Ingolf F Nes
- Laboratory of Microbial Gene Technology, PO Box 5003, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Morten Skaugen
- Laboratory of Microbial Gene Technology, PO Box 5003, Norwegian University of Life Sciences, N-1432 Ås, Norway
| |
Collapse
|
58
|
Tanaka M, Hasegawa T, Okamoto A, Torii K, Ohta M. Effect of antibiotics on group A Streptococcus exoprotein production analyzed by two-dimensional gel electrophoresis. Antimicrob Agents Chemother 2005; 49:88-96. [PMID: 15616280 PMCID: PMC538853 DOI: 10.1128/aac.49.1.88-96.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-dose clindamycin (CLDM) and benzylpenicillin (PCG) are the recommended chemotherapeutic remedies for toxic shock-like syndrome caused by group A streptococci. One reason for this is that it has been shown that CLDM suppresses the expression of some exoproteins, e.g., SpeB, SpeA, and streptolysin O (Slo). We analyzed the effects of antibiotics on the production of whole exoproteins by two-dimensional gel electrophoresis. Unexpectedly, we found that the levels of several exoproteins, Slo, NAD(+)-glycohydrolase (Nga), M protein, and Sic, were increased by CLDM treatment, although we also confirmed previous findings that the levels of various exoproteins, including SpeB, were decreased. The increases in exoprotein levels were also detected by using other protein synthesis inhibitor antibiotics: erythromycin, kanamycin, tetracycline, chloramphenicol, and linezolid. Peptidoglycan synthesis inhibitors (such as PCG, cefazolin, and imipenem), DNA replication inhibitors (such as gatifloxacin), and an RNA polymerase inhibitor (rifampin) did not have significant effects on exoprotein production. The combination of CLDM and PCG had no advantageous effects with regard to exoprotein production compared to the effect achieved with CLDM alone. We also analyzed the transcriptional levels of slo and nga by reverse transcription-PCR and found that this change was also detected at the transcriptional level. Furthermore, the phenomenon was seen not only in strains of the M1 serotype but also in strains of the other M serotypes. Our study suggests that the clinical effectiveness of CLDM might be due to the inhibition of the production of a limited number of exoproteins.
Collapse
Affiliation(s)
- Megumi Tanaka
- Department of Molecular Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | |
Collapse
|
59
|
Chaussee MA, Callegari EA, Chaussee MS. Rgg regulates growth phase-dependent expression of proteins associated with secondary metabolism and stress in Streptococcus pyogenes. J Bacteriol 2004; 186:7091-9. [PMID: 15489420 PMCID: PMC523193 DOI: 10.1128/jb.186.21.7091-7099.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional regulatory protein Rgg coordinates amino acid catabolism and virulence factor expression in Streptococcus pyogenes. We used a proteomic approach to compare cytoplasmic proteins isolated from S. pyogenes wild-type strain NZ131 (serotype M49) to proteins isolated from an rgg mutant strain during the exponential and stationary phases of growth. Proteins were separated by two-dimensional gel electrophoresis, and 125 protein spots of interest were identified by tandem mass spectrometry. Comparative analysis of proteins isolated from the isogenic strains revealed that growth phase-associated regulation of enzymes involved in the metabolism of arginine (ArcABC), histidine (HutI), and serine (SdhA) was abrogated in the rgg mutant strain, which synthesized the proteins in the exponential phase of growth. In contrast, the enzymes were detected only among wild-type proteins isolated from organisms in the stationary phase of growth. The differences in protein composition were correlated with previously described metabolic changes. In addition, proteins associated with thermal and oxidative stress responses, including ClpE and ClpL, were present in samples isolated from the rgg mutant strain but not in samples isolated from the wild-type strain. The rgg mutant strain was more tolerant to elevated temperature and puromycin than the wild-type strain; however, the mutant was less tolerant to paraquat. We concluded that Rgg is a global regulatory factor that contributes to growth phase-dependent synthesis of proteins associated with secondary metabolism and oxidative and thermal stress responses.
Collapse
Affiliation(s)
- Michelle A Chaussee
- Division of Basic Biomedical Sciences, University of South Dakota College of Medicine, Lee Medical Building, 414 East Clark Street, Vermillion, SD 57069-2390, USA.
| | | | | |
Collapse
|
60
|
Brüssow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 2004; 68:560-602, table of contents. [PMID: 15353570 PMCID: PMC515249 DOI: 10.1128/mmbr.68.3.560-602.2004] [Citation(s) in RCA: 1121] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like "swarms" of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework.
Collapse
Affiliation(s)
- Harald Brüssow
- Nestlé, Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne, Switzerland.
| | | | | |
Collapse
|
61
|
Ribardo DA, McIver KS. amrA encodes a putative membrane protein necessary for maximal exponential phase expression of the Mga virulence regulon in Streptococcus pyogenes. Mol Microbiol 2004; 50:673-85. [PMID: 14617188 DOI: 10.1046/j.1365-2958.2003.03726.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptional regulator Mga activates a regulon of virulence genes important for colonization and immune evasion in GAS. Using transposon mutagenesis of a serotype M6 group A streptococcus (GAS) reporter strain KSM148, we have identified an open reading frame (ORF) designated amrA that is required for maximal activation of the Mga regulon during exponential phase. A deletion in amrA, but not in the downstream transcriptionally linked ORF Spy0798, was able to reproduce the phenotype seen in the transposon mutants. Northern analysis for mga and emm transcripts, as well as Western analysis of Mga, confirmed a reduction in mga expression leading to a decrease in transcription of the Mga-regulated emm in the amrA deletion and transposon mutants. Furthermore, both the amrA deletion mutant and an original transposon mutant could be complemented using amrA expressed from a nisin-inducible expression system. As amrA is strongly conserved across the sequenced streptococcal M types, and inactivation of amrA in an M3 serotype also resulted in reduction of emm transcripts, the role of amrA does not appear to be serotype specific. Although the specific function of AmrA is unknown, its putative membrane localization and homology to transporters involved in cell wall synthesis suggest a link between growth and virulence gene expression in GAS.
Collapse
Affiliation(s)
- Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9048, USA
| | | |
Collapse
|
62
|
Kuo CF, Luo YH, Lin HY, Huang KJ, Wu JJ, Lei HY, Lin MT, Chuang WJ, Liu CC, Jin YT, Lin YS. Histopathologic changes in kidney and liver correlate with streptococcal pyrogenic exotoxin B production in the mouse model of group A streptococcal infection. Microb Pathog 2004; 36:273-85. [PMID: 15043862 DOI: 10.1016/j.micpath.2004.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 01/15/2004] [Accepted: 01/19/2004] [Indexed: 11/25/2022]
Abstract
Previous studies show that isogenic mutants deficient in streptococcal pyrogenic exotoxin B (SPE B) cause less mortality and skin tissue damage than wild-type strains of Streptococcus pyogenes when inoculated into mice via an air pouch. In this study, the growth and dissemination of bacteria, pathologic changes in various organs, and their correlation with SPE B production were examined. Bacterial numbers in the air pouch from wild-type strain NZ131-infected mice increased at 48 h, while those from speB mutant SW510-infected mice continuously reduced. Mice infected with NZ131 developed bacteremia and greater dissemination in the kidney, liver, and spleen; those infected with SW510 showed either no or slight bacteremia and dissemination. Co-inoculation of SW510 with recombinant SPE B showed a higher bacterial count in the air pouch, bacteremia, and organ dissemination compared to co-inoculation with a C192S mutant lacking protease activity. The histopathologic changes examined showed lesions in kidney and liver in the NZ131-infected but not in SW510-infected mice. The elevation in sera of BUN, AST, and ALT correlated positively with renal and liver impairment. Taken together, SPE B produced during S. pyogenes infection plays a pathogenic role. A direct effect of SPE B on vessel permeability change was also demonstrated.
Collapse
Affiliation(s)
- Chih-Feng Kuo
- Department of Nursing, I-Shou University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Chaussee MS, Somerville GA, Reitzer L, Musser JM. Rgg coordinates virulence factor synthesis and metabolism in Streptococcus pyogenes. J Bacteriol 2003; 185:6016-24. [PMID: 14526012 PMCID: PMC225023 DOI: 10.1128/jb.185.20.6016-6024.2003] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes is a human-specific pathogen that relies on its host for metabolic substrates. Rgg-like proteins constitute a family of transcriptional regulators present in several gram-positive bacteria. In S. pyogenes, Rgg influences the expression of several virulence-associated proteins localized to the cell wall and extracellular environment. Secreted enzymes may degrade host macromolecules, thereby liberating metabolic substrates. To determine if Rgg regulation of exoprotein expression is associated with altered metabolism, the catabolic activities of S. pyogenes strain NZ131 (serotype M49) and an isogenic rgg mutant strain were analyzed during growth with complex and defined media. As expected, the wild-type strain preferentially used glucose and produced lactic acid during the exponential phase of growth. In contrast, the rgg mutant fermented arginine in the exponential phase of growth, even in the presence of glucose. Arginine degradation was associated with a neutral culture pH and excretion of NH(3) and ornithine. Arginine, serine, and asparagine were depleted from mutant cultures during growth. The addition of arginine and serine to culture media increased the growth yield and NH(3) production of mutant but not wild-type cultures. Addition of asparagine had no effect on the growth yield of either strain. Altered metabolism of arginine and serine in the mutant was associated with increased transcript levels of genes encoding arginine deiminase and a putative serine dehydratase. Thus, Rgg coordinates virulence factor synthesis and catabolic activity and may be important in the pathogen's adaptation to changes in the availability of metabolic substrates.
Collapse
Affiliation(s)
- Michael S Chaussee
- Division of Basic Biomedical Science, University of South Dakota College of Medicine, Vermillion, South Dakota 57069, USA.
| | | | | | | |
Collapse
|
64
|
Neely MN, Lyon WR, Runft DL, Caparon M. Role of RopB in growth phase expression of the SpeB cysteine protease of Streptococcus pyogenes. J Bacteriol 2003; 185:5166-74. [PMID: 12923089 PMCID: PMC181010 DOI: 10.1128/jb.185.17.5166-5174.2003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Rgg family of transcription regulators is widely distributed among gram-positive bacteria; however, how the members of this family control transcription is poorly understood. In the pathogen Streptococcus pyogenes, the Rgg family member RopB is required for transcription of the gene that encodes the secreted SpeB cysteine protease. Expression of the protease follows distinct kinetics that involves control of transcription in response to the growth phase. In this study, the contribution of RopB to growth phase control was examined. The gene encoding the protease (speB) and ropB are transcribed divergently from a 940-bp intergenic region. Primer extension analyses, in conjunction with reporter fusion studies, revealed that the major region controlling the transcription of both speB and ropB is adjacent to ropB and that the promoters for the two genes likely overlap. Furthermore, it was found that RopB is a DNA-binding protein that specifically binds to sequences in this control region. The interrelationship between ropB and speB expression was further reflected in the observation that transcription of ropB itself is subject to growth phase control. However, while expression of ropB from a promoter expressed during the early logarithmic phase of growth could complement a ropB deletion mutant, ectopic expression of ropB did not uncouple the expression of speB from its growth phase signal. These data implicate other factors in growth phase control and suggest that regulation of ropB expression itself is not the central mechanism of control.
Collapse
Affiliation(s)
- Melody N Neely
- Department of Immunology and Microbiology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
65
|
Biswas I, Scott JR. Identification of rocA, a positive regulator of covR expression in the group A streptococcus. J Bacteriol 2003; 185:3081-90. [PMID: 12730168 PMCID: PMC154078 DOI: 10.1128/jb.185.10.3081-3090.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the group A streptococcus (GAS; Streptococcus pyogenes), a two-component system known as CovRS (or CsrRS) regulates about 15% of the genes, including several important virulence factors like the hyaluronic acid capsule. Most of these genes, including covR itself, are negatively regulated by CovR. We have isolated two independent ISS1 insertions in an open reading frame (ORF) that increases CovR expression as measured by a Pcov-gusA reporter fusion in single copy in the GAS chromosome. This ORF, named rocA for "regulator of Cov," activates covR transcription about threefold. As expected, a rocA mutant is mucoid and produces more transcript from the has promoter since this promoter is repressed by CovR. This effect is dependent on the presence of a wild-type covR gene. In contrast to its activation of Pcov, RocA negatively regulates its own expression. This autoregulation is not dependent on the presence of the covR gene. All the phenotypes of the rocA mutant were complemented by the presence of the rocA gene on a plasmid. The rocA gene is present in strains of all nine M serotypes of GAS tested and is absent from strains representing 11 other groups of streptococci and related bacteria, including strains of the closely related group C and G streptococci. It seems likely that rocA plays an important role in the pathogenesis of GAS since it affects expression of the global regulator CovR.
Collapse
Affiliation(s)
- Indranil Biswas
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
66
|
Kreikemeyer B, McIver KS, Podbielski A. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen-host interactions. Trends Microbiol 2003; 11:224-32. [PMID: 12781526 DOI: 10.1016/s0966-842x(03)00098-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Streptococcus pyogenes (group A streptococcus, GAS) is a very important human pathogen with remarkable adaptation capabilities. Survival within the harsh host surroundings requires sensing potential on the bacterial side, which leads in particular to coordinately regulated virulence factor expression. GAS 'stand-alone' response regulators (RRs) and two-component signal transduction systems (TCSs) link the signals from the host environment with adaptive responses of the bacterial cell. Numerous putative regulatory systems emerged from GAS genome sequences. Only three RRs [Mga, RofA-like protein (RALP) and Rgg/RopB] and three TCSs (CsrRS/CovRS, FasBCAX and Ihk/Irr) have been studied in some detail with respect to their growth-phase-dependent activity and their influence on GAS-host cell interaction. In particular, the Mga-, RALP- and Rgg/RopB-regulated pathways display interconnected activities that appear to influence GAS colonization, persistence and spreading mechanisms, in a growth-phase-related fashion. Here, we have summarized our current knowledge about these RRs and TCSs to highlight the questions that should be addressed in future research on GAS pathogenicity.
Collapse
Affiliation(s)
- Bernd Kreikemeyer
- University Hospital Rostock, Department of Medical Microbiology and Hospital Hygiene, Schillingallee 70, 18055 Rostock, Germany.
| | | | | |
Collapse
|
67
|
Bisno AL, Brito MO, Collins CM. Molecular basis of group A streptococcal virulence. THE LANCET. INFECTIOUS DISEASES 2003; 3:191-200. [PMID: 12679262 DOI: 10.1016/s1473-3099(03)00576-0] [Citation(s) in RCA: 319] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The group A streptococcus (GAS) (Streptococcus pyogenes) is among the most common and versatile of human pathogens. It is responsible for a wide spectrum of human diseases, ranging from trivial to lethal. The advent of modern techniques of molecular biology has taught much about the organism's virulence, and the genomes of several GAS types have now been deciphered. Surface structures of GAS including a family of M proteins, the hyaluronic acid capsule, and fibronectin-binding proteins, allow the organism to adhere to, colonise, and invade human skin and mucus membranes under varying environmental conditions. M protein binds to complement control factors and other host proteins to prevent activation of the alternate complement pathway and thus evade phagocytosis and killing by polymorphonuclear leucocytes. Extracellular toxins, including superantigenic streptococcal pyrogenic exotoxins, contribute to tissue invasion and initiate the cytokine storm felt responsible for illnesses such as necrotising fasciitis and the highly lethal streptococcal toxic shock syndrome. Progress has been made in understanding the molecular epidemiology of acute rheumatic fever but less is understood about its basic pathogenesis. The improved understanding of GAS genetic regulation, structure, and function has opened exciting possibilities for developing safe and effective GAS vaccines. Studies directed towards achieving this long-sought goal are being aggressively pursued.
Collapse
Affiliation(s)
- A L Bisno
- Miami Veterans Affairs Medical Center, and the University of Miami School of Medicine, Miami, FL 33125, USA
| | | | | |
Collapse
|
68
|
Vickerman MM, Wang M, Baker LJ. An amino acid change near the carboxyl terminus of the Streptococcus gordonii regulatory protein Rgg affects its abilities to bind DNA and influence expression of the glucosyltransferase gene gtfG. MICROBIOLOGY (READING, ENGLAND) 2003; 149:399-406. [PMID: 12624202 DOI: 10.1099/mic.0.25983-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Streptococcus gordonii glucosyltransferase structural gene, gtfG, is located immediately downstream from its positive transcriptional regulatory determinant, rgg. Recent genetic studies have indicated that the 3' end of rgg is involved either directly as a binding site or indirectly, e.g. by playing a role in secondary structure, in the interaction of Rgg with the gtfG promoter. A previously identified spontaneous mutant with a point mutation near the 3' end of rgg had only approximately 25% of the parental level of glucosyltransferase activity. To determine if this decreased activity was due to a change in the DNA binding site of trans-acting Rgg, or due to a change in the Rgg protein itself, complementation analyses and DNA-binding studies were performed. In Rgg-deficient strains, the chromosomal rgg point mutation did not influence the ability of plasmid-borne rgg to increase glucosyltransferase expression. However, plasmids carrying parental rgg were able to increase glucosyltransferase activity and expression of a gtfG promoter fusion to a greater extent than plasmids carrying the mutant allele, indicating that the mutant Rgg protein had decreased activity. The ability of NH(2)-terminal (hexahistidine) tagged proteins to bind to a 107 bp dsDNA fragment corresponding to the region immediately upstream of gtfG was demonstrated by surface plasmon resonance. Despite their differences in activity, both mutant and parental recombinant Rgg proteins bound to this dsDNA, albeit with different strengths. These studies provide insights into functional domains of S. gordonii Rgg which influence glucosyltransferase expression, and may have implications for Rgg-like regulatory proteins in related bacteria.
Collapse
Affiliation(s)
- M M Vickerman
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Oral Surgery and Hospital Dentistry, School of Dentistry, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - M Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - L J Baker
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
69
|
Hytönen J, Haataja S, Finne J. Streptococcus pyogenes glycoprotein-binding strepadhesin activity is mediated by a surface-associated carbohydrate-degrading enzyme, pullulanase. Infect Immun 2003; 71:784-93. [PMID: 12540558 PMCID: PMC145387 DOI: 10.1128/iai.71.2.784-793.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interactions between pathogenic bacteria and the host need to be resolved at the molecular level in order to develop novel antiadhesive drugs and vaccines. We have previously identified strepadhesin, a novel glycoprotein-binding activity in Streptococcus pyogenes binding to thyroglobulin, submaxillar mucin, fetuin, and asialofetuin. The activity is known to be regulated by Mga, a regulator of streptococcal virulence factors, and is carried by the surface-associated streptococcal cysteine protease, SpeB. In the present study, we focused on the high strepadhesin activity in an S. pyogenes strain (NZ131rgg) lacking SpeB expression. By extracting surface proteins from the bacteria, a new strepadhesin protein was identified, and mass spectrometric analysis and database search identified it as a putative pullulanase. The gene was cloned, and the recombinant pullulanase (PulA) exhibited pullulanase and starch hydrolyzing activity, as well as strepadhesin activity. Sequencing of the pulA gene revealed an open reading frame with 3,498 bp encoding a protein of 1,165 amino acids with a predicted molecular mass of 129 kDa. PulA exhibited properties typical for a gram-positive surface protein with a putative signal sequence and LPKTGE cell wall anchoring motif and contained the four highly conserved regions common to pullulanases. Mutant bacteria deficient in PulA expression showed diminished strepadhesin activity on bacterial dot blot assay and reduced adherence to thyroglobulin immobilized on microtiter plates. Thus, S. pyogenes strepadhesin activity is carried by a surface-bound pullulanase, which combines glycoprotein-binding and carbohydrate-degrading activities in the same molecule.
Collapse
Affiliation(s)
- Jukka Hytönen
- Department of Medical Biochemistry and Molecular Biology, University of Turku, Finland.
| | | | | |
Collapse
|
70
|
Graham MR, Smoot LM, Migliaccio CAL, Virtaneva K, Sturdevant DE, Porcella SF, Federle MJ, Adams GJ, Scott JR, Musser JM. Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A 2002; 99:13855-60. [PMID: 12370433 PMCID: PMC129787 DOI: 10.1073/pnas.202353699] [Citation(s) in RCA: 297] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-component gene regulatory systems composed of a membrane-bound sensor and cytoplasmic response regulator are important mechanisms used by bacteria to sense and respond to environmental stimuli. Group A Streptococcus, the causative agent of mild infections and life-threatening invasive diseases, produces many virulence factors that promote survival in humans. A two-component regulatory system, designated covRS (cov, control of virulence; csrRS), negatively controls expression of five proven or putative virulence factors (capsule, cysteine protease, streptokinase, streptolysin S, and streptodornase). Inactivation of covRS results in enhanced virulence in mouse models of invasive disease. Using DNA microarrays and quantitative RT-PCR, we found that CovR influences transcription of 15% (n = 271) of all chromosomal genes, including many that encode surface and secreted proteins mediating host-pathogen interactions. CovR also plays a central role in gene regulatory networks by influencing expression of genes encoding transcriptional regulators, including other two-component systems. Differential transcription of genes influenced by covR also was identified in mouse soft-tissue infection. This analysis provides a genome-scale overview of a virulence gene network in an important human pathogen and adds insight into the molecular mechanisms used by group A Streptococcus to interact with the host, promote survival, and cause disease.
Collapse
Affiliation(s)
- Morag R Graham
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases/NIH, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Glaser P, Rusniok C, Buchrieser C, Chevalier F, Frangeul L, Msadek T, Zouine M, Couvé E, Lalioui L, Poyart C, Trieu-Cuot P, Kunst F. Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol 2002; 45:1499-513. [PMID: 12354221 DOI: 10.1046/j.1365-2958.2002.03126.x] [Citation(s) in RCA: 350] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Streptococcus agalactiae is a commensal bacterium colonizing the intestinal tract of a significant proportion of the human population. However, it is also a pathogen which is the leading cause of invasive infections in neonates and causes septicaemia, meningitis and pneumonia. We sequenced the genome of the serogroup III strain NEM316, responsible for a fatal case of septicaemia. The genome is 2 211 485 base pairs long and contains 2118 protein coding genes. Fifty-five per cent of the predicted genes have an ortholog in the Streptococcus pyogenes genome, representing a conserved backbone between these two streptococci. Among the genes in S. agalactiae that lack an ortholog in S. pyogenes, 50% are clustered within 14 islands. These islands contain known and putative virulence genes, mostly encoding surface proteins as well as a number of genes related to mobile elements. Some of these islands could therefore be considered as pathogenicity islands. Compared with other pathogenic streptococci, S. agalactiae shows the unique feature that pathogenicity islands may have an important role in virulence acquisition and in genetic diversity.
Collapse
Affiliation(s)
- Philippe Glaser
- Laboratoire de Génomique des Microorganismes Pathogènes, Institute Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Rawlinson ELA, Nes IF, Skaugen M. LasX, a transcriptional regulator of the lactocin S biosynthetic genes in Lactobacillus sakei L45, acts both as an activator and a repressor. Biochimie 2002; 84:559-67. [PMID: 12423800 DOI: 10.1016/s0300-9084(02)01420-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The 11 kb las locus, present on the 50 kb plasmid pCIM1, specifies the production of the lantibiotic lactocin S in Lactobacillus sakei L45. The gene cluster is organized into two oppositely orientated operons, lasAMNTUVPJW (lasA-W) and lasXY, the former of which contains the biosynthetic, immunity and transport genes. We have previously shown that inactivation of lasX abolishes lactocin S production and causes a drastic reduction in lasA-specific transcripts (encoding pre-lactocin S). The aim of this study was to determine whether or not the product of lasX, which is significantly similar to Rgg-like regulators, was directly involved in transcriptional regulation of the lactocin S biosynthetic genes. The divergently orientated and overlapping promoters, P(lasA)(-W) and P(lasXY), were transcriptionally fused to the Escherichia coli gusA gene, and the activity of the fusions was assayed in the presence and absence of lasX, which was expressed on a separate plasmid. A significant stimulation of expression (5-6-fold) of the P(lasA-W)-gusA fusion was observed in the presence of lasX, whereas expression of the P(lasXY)-gusA construct was reduced 1.5-2-fold. Our results strongly suggest that LasX is a bifunctional regulatory protein, acting both as an activator of lasA-W transcription and as a repressor of lasXY transcription. While a transcription stimulation activity has been described for several of the Rgg-like proteins, the present study is the first to report an autorepressor function for a member of this protein group.
Collapse
|