51
|
Evidence of in vivo prophage induction during Clostridium difficile infection. Appl Environ Microbiol 2012; 78:7662-70. [PMID: 22923402 DOI: 10.1128/aem.02275-12] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prophages contribute to the evolution and virulence of most bacterial pathogens, but their role in Clostridium difficile is unclear. Here we describe the isolation of four Myoviridae phages, ΦMMP01, ΦMMP02, ΦMMP03, and ΦMMP04, that were recovered as free viral particles in the filter-sterilized stool supernatants of patients suffering from C. difficile infection (CDI). Furthermore, identical prophages were found in the chromosomes of C. difficile isolated from the corresponding fecal samples. We therefore provide, for the first time, evidence of in vivo prophage induction during CDI. We completely sequenced the genomes of ΦMMP02 and ΦMMP04, and bioinformatics analyses did not reveal the presence of virulence factors but underlined the unique character of ΦMMP04. We also studied the mobility of ΦMMP02 and ΦMMP04 prophages in vitro. Both prophages were spontaneously induced, with 4 to 5 log PFU/ml detected in the culture supernatants of the corresponding lysogens. When lysogens were grown in the presence of subinhibitory concentrations of ciprofloxacin, moxifloxacin, levofloxacin, or mitomycin C, the phage titers further increased, reaching 8 to 9 log PFU/ml in the case of ΦMMP04. In summary, our study highlights the extensive genetic diversity and mobility of C. difficile prophages. Moreover, antibiotics known to represent risk factors for CDI, such as quinolones, can stimulate prophage mobility in vitro and probably in vivo as well, which underscores their potential impact on phage-mediated horizontal gene transfer events and the evolution of C. difficile.
Collapse
|
52
|
Connolly KL, Braden AK, Holder RC, Reid SD. Srv mediated dispersal of streptococcal biofilms through SpeB is observed in CovRS+ strains. PLoS One 2011; 6:e28640. [PMID: 22163320 PMCID: PMC3233586 DOI: 10.1371/journal.pone.0028640] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/11/2011] [Indexed: 12/02/2022] Open
Abstract
Group A Streptococcus (GAS) is a human specific pathogen capable of causing both mild infections and severe invasive disease. We and others have shown that GAS is able to form biofilms during infection. That is to say, they form a three-dimensional, surface attached structure consisting of bacteria and a multi-component extracellular matrix. The mechanisms involved in regulation and dispersal of these GAS structures are still unclear. Recently we have reported that in the absence of the transcriptional regulator Srv in the MGAS5005 background, the cysteine protease SpeB is constitutively produced, leading to increased tissue damage and decreased biofilm formation during a subcutaneous infection in a mouse model. This was interesting because MGAS5005 has a naturally occurring mutation that inactivates the sensor kinase domain of the two component regulatory system CovRS. Others have previously shown that strains lacking covS are associated with decreased SpeB production due to CovR repression of speB expression. Thus, our results suggest the inactivation of srv can bypass CovR repression and lead to constitutive SpeB production. We hypothesized that Srv control of SpeB production may be a mechanism to regulate biofilm dispersal and provide a mechanism by which mild infection can transition to severe disease through biofilm dispersal. The question remained however, is this mechanism conserved among GAS strains or restricted to the unique genetic makeup of MGAS5005. Here we show that Srv mediated control of SpeB and biofilm dispersal is conserved in the invasive clinical isolates RGAS053 (serotype M1) and MGAS315 (serotype M3), both of which have covS intact. This work provides additional evidence that Srv regulated control of SpeB may mediate biofilm formation and dispersal in diverse strain backgrounds.
Collapse
Affiliation(s)
- Kristie L. Connolly
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Amy K. Braden
- Program in Molecular Genetics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Robert C. Holder
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Sean D. Reid
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
53
|
Quiroz TS, Nieto PA, Tobar HE, Salazar-Echegarai FJ, Lizana RJ, Quezada CP, Santiviago CA, Araya DV, Riedel CA, Kalergis AM, Bueno SM. Excision of an unstable pathogenicity island in Salmonella enterica serovar Enteritidis is induced during infection of phagocytic cells. PLoS One 2011; 6:e26031. [PMID: 22039432 PMCID: PMC3198454 DOI: 10.1371/journal.pone.0026031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 09/15/2011] [Indexed: 12/28/2022] Open
Abstract
The availability of the complete genome sequence of several Salmonella enterica serovars has revealed the presence of unstable genetic elements in these bacteria, such as pathogenicity islands and prophages. This is the case of Salmonella enterica serovar Enteritidis (S. Enteritidis), a bacterium that causes gastroenteritis in humans and systemic infection in mice. The whole genome sequence analysis for S. Enteritidis unveiled the presence of several genetic regions that are absent in other Salmonella serovars. These regions have been denominated “regions of difference” (ROD). In this study we show that ROD21, one of such regions, behaves as an unstable pathogenicity island. We observed that ROD21 undergoes spontaneous excision by two independent recombination events, either under laboratory growth conditions or during infection of murine cells. Importantly, we also found that one type of excision occurred at higher rates when S. Enteritidis was residing inside murine phagocytic cells. These data suggest that ROD21 is an unstable pathogenicity island, whose frequency of excision depends on the environmental conditions found inside phagocytic cells.
Collapse
Affiliation(s)
- Tania S. Quiroz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela A. Nieto
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo E. Tobar
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco J. Salazar-Echegarai
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo J. Lizana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina P. Quezada
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Daniela V. Araya
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Facultad de Ciencias Biológicas y Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
54
|
Livezey J, Perez L, Suciu D, Yu X, Robinson B, Bush D, Merrill G. Analysis of group A Streptococcus gene expression in humans with pharyngitis using a microarray. J Med Microbiol 2011; 60:1725-1733. [PMID: 21799202 DOI: 10.1099/jmm.0.022939-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pharyngitis caused by group A streptococci (GAS) is one of the most common infections around the world. However, relatively little is known about which genes are expressed and which genes regulate expression during acute infection. Due to their ability to provide genome-wide views of gene expression at one time, microarrays are increasingly being incorporated in GAS research. In this study, a novel electrochemical detection-based microarray was used to identify gene expression patterns among humans with culture-confirmed GAS pharyngitis. Using 14 samples (11 GAS-positive and three GAS-negative) obtained from subjects seen at the Brooke Army Medical Center paediatric clinic, this study demonstrated two different clusters of gene expression patterns. One cluster expressed a larger number of genes related to phages, immune-system evasion and survival among competing oral flora, signifying a potentially more virulent pattern of gene expression. The other cluster showed a greater number of genes related to nutrient acquisition and protein expression. This in vivo genome-wide analysis of GAS gene expression in humans with pharyngitis evaluated global gene expression in terms of virulence factors.
Collapse
Affiliation(s)
- Jeffrey Livezey
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Luis Perez
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Dominic Suciu
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Xin Yu
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Brian Robinson
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - David Bush
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Gerald Merrill
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| |
Collapse
|
55
|
Identification of Rgg binding sites in the Streptococcus pyogenes chromosome. J Bacteriol 2011; 193:4933-42. [PMID: 21764942 DOI: 10.1128/jb.00429-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Streptococcus pyogenes Rgg is a regulatory protein that controls the transcription of 588 genes in strain NZ131 during the post-exponential phase of growth, including the virulence-associated genes encoding the extracellular SpeB protease, pullulanase A (PulA), and two extracellular nucleases (SdaB and Spd-3). Rgg binds to DNA proximally to the speB promoter (PspeB) to activate transcription; however, it is not known if Rgg binds to the promoters of other genes to influence expression, or if the perturbation of other global regulons accounts for the genome-wide changes in expression associated with the mutant. To address this issue, chromatin immunoprecipitation followed by DNA microarray analysis (ChIP-chip) was used to identify the DNA binding sites of Rgg. Rgg bound to 65 sites in the chromosome. Thirty-five were within noncoding DNA, and 43% of these were adjacent to genes previously identified as regulated by Rgg. Electrophoretic mobility shift assays were used to assess the binding of Rgg to a subset of sites bound in vivo, including the noncoding DNA upstream of speB, the genes encoding PulA, Spd-3, and a transcriptional regulator (SPY49_1113), and prophage-associated genes encoding a putative integrase (SPY49_0746) and a surface antigen (SPY49_0396). Rgg bound to all target DNAs in vitro, consistent with the in vivo results. Finally, analyses with a transcriptional reporter system showed that the DNA bound by Rgg contained an active promoter that was regulated by Rgg. Overall, the results indicate that Rgg binds specifically to multiple sites in the chromosome, including prophage DNA, to influence gene expression.
Collapse
|
56
|
Sitkiewicz I, Green NM, Guo N, Mereghetti L, Musser JM. Lateral gene transfer of streptococcal ICE element RD2 (region of difference 2) encoding secreted proteins. BMC Microbiol 2011; 11:65. [PMID: 21457552 PMCID: PMC3083328 DOI: 10.1186/1471-2180-11-65] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 04/01/2011] [Indexed: 11/10/2022] Open
Abstract
Background The genome of serotype M28 group A Streptococcus (GAS) strain MGAS6180 contains a novel genetic element named Region of Difference 2 (RD2) that encodes seven putative secreted extracellular proteins. RD2 is present in all serotype M28 strains and strains of several other GAS serotypes associated with female urogenital infections. We show here that the GAS RD2 element is present in strain MGAS6180 both as an integrative chromosomal form and a circular extrachromosomal element. RD2-like regions were identified in publicly available genome sequences of strains representing three of the five major group B streptococcal serotypes causing human disease. Ten RD2-encoded proteins have significant similarity to proteins involved in conjugative transfer of Streptococcus thermophilus integrative chromosomal elements (ICEs). Results We transferred RD2 from GAS strain MGAS6180 (serotype M28) to serotype M1 and M4 GAS strains by filter mating. The copy number of the RD2 element was rapidly and significantly increased following treatment of strain MGAS6180 with mitomycin C, a DNA damaging agent. Using a PCR-based method, we also identified RD2-like regions in multiple group C and G strains of Streptococcus dysgalactiae subsp.equisimilis cultured from invasive human infections. Conclusions Taken together, the data indicate that the RD2 element has disseminated by lateral gene transfer to genetically diverse strains of human-pathogenic streptococci.
Collapse
Affiliation(s)
- Izabela Sitkiewicz
- Department of Pathology, The Methodist Hospital, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
57
|
Carroll RK, Shelburne SA, Olsen RJ, Suber B, Sahasrabhojane P, Kumaraswami M, Beres SB, Shea PR, Flores AR, Musser JM. Naturally occurring single amino acid replacements in a regulatory protein alter streptococcal gene expression and virulence in mice. J Clin Invest 2011; 121:1956-68. [PMID: 21490401 DOI: 10.1172/jci45169] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/02/2011] [Indexed: 11/17/2022] Open
Abstract
Infection with different strains of the same species of bacteria often results in vastly different clinical outcomes. Despite extensive investigation, the genetic basis of microbial strain-specific virulence remains poorly understood. Recent whole-genome sequencing has revealed that SNPs are the most prevalent form of genetic diversity among different strains of the same species of bacteria. For invasive serotype M3 group A streptococci (GAS) strains, the gene encoding regulator of proteinase B (RopB) has the highest frequency of SNPs. Here, we have determined that ropB polymorphisms alter RopB function and modulate GAS host-pathogen interactions. Sequencing of ropB in 171 invasive serotype M3 GAS strains identified 19 distinct ropB alleles. Inactivation of the ropB gene in strains producing distinct RopB variants had dramatically divergent effects on GAS global gene expression. Additionally, generation of isoallelic GAS strains differing only by a single amino acid in RopB confirmed that variant proteins affected transcript levels of the gene encoding streptococcal proteinase B, a major RopB-regulated virulence factor. Comparison of parental, RopB-inactivated, and RopB isoallelic strains in mouse infection models demonstrated that ropB polymorphisms influence GAS virulence and disease manifestations. These data detail a paradigm in which unbiased, whole-genome sequence analysis of populations of clinical bacterial isolates creates new avenues of productive investigation into the pathogenesis of common human infections.
Collapse
Affiliation(s)
- Ronan K Carroll
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology and Laboratory Medicine, The Methodist Hospital, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Identification of three novel superantigen-encoding genes in Streptococcus equi subsp. zooepidemicus, szeF, szeN, and szeP. Infect Immun 2010; 78:4817-27. [PMID: 20713629 DOI: 10.1128/iai.00751-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acquisition of superantigen-encoding genes by Streptococcus pyogenes has been associated with increased morbidity and mortality in humans, and the gain of four superantigens by Streptococcus equi is linked to the evolution of this host-restricted pathogen from an ancestral strain of the opportunistic pathogen Streptococcus equi subsp. zooepidemicus. A recent study determined that the culture supernatants of several S. equi subsp. zooepidemicus strains possessed mitogenic activity but lacked known superantigen-encoding genes. Here, we report the identification and activities of three novel superantigen-encoding genes. The products of szeF, szeN, and szeP share 59%, 49%, and 34% amino acid sequence identity with SPEH, SPEM, and SPEL, respectively. Recombinant SzeF, SzeN, and SzeP stimulated the proliferation of equine peripheral blood mononuclear cells, and tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) production, in vitro. Although none of these superantigen genes were encoded within functional prophage elements, szeN and szeP were located next to a prophage remnant, suggesting that they were acquired by horizontal transfer. Eighty-one of 165 diverse S. equi subsp. zooepidemicus strains screened, including 7 out of 15 isolates from cases of disease in humans, contained at least one of these new superantigen-encoding genes. The presence of szeN or szeP, but not szeF, was significantly associated with mitogenic activity in the S. equi subsp. zooepidemicus population (P < 0.000001, P < 0.000001, and P = 0.104, respectively). We conclude that horizontal transfer of these novel superantigens from and within the diverse S. equi subsp. zooepidemicus population is likely to have implications for veterinary and human disease.
Collapse
|
59
|
Group A Streptococcus virulence and host factors in two toddlers with rheumatic fever following toxic shock syndrome. Int J Infect Dis 2010; 14:e403-9. [DOI: 10.1016/j.ijid.2009.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/17/2009] [Accepted: 06/20/2009] [Indexed: 11/20/2022] Open
|
60
|
Comparative genomics and transduction potential of Enterococcus faecalis temperate bacteriophages. J Bacteriol 2009; 192:1122-30. [PMID: 20008075 DOI: 10.1128/jb.01293-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine the relative importance of temperate bacteriophage in the horizontal gene transfer of fitness and virulence determinants of Enterococcus faecalis, a panel of 47 bacteremia isolates were treated with the inducing agents mitomycin C, norfloxacin, and UV radiation. Thirty-four phages were purified from culture supernatants and discriminated using pulsed-field gel electrophoresis (PFGE) and restriction mapping. From these analyses the genomes of eight representative phages were pyrosequenced, revealing four distinct groups of phages. Three groups of phages, PhiFL1 to 3, were found to be sequence related, with PhiFL1A to C and PhiFL2A and B sharing the greatest identity (87 to 88%), while PhiFL3A and B share 37 to 41% identity with PhiFL1 and 2. PhiFL4A shares 3 to 12% identity with the phages PhiFL1 to 3. The PhiFL3A and B phages possess a high DNA sequence identity with the morphogenesis and lysis modules of Lactococcus lactis subsp. cremoris prophages. Homologs of the Streptococcus mitis platelet binding phage tail proteins, PblA and PblB, are encoded on each sequenced E. faecalis phage. Few other phage genes encoding potential virulence functions were identified, and there was little evidence of carriage of lysogenic conversion genes distal to endolysin, as has been observed with genomes of many temperate phages from the opportunist pathogens Staphylococcus aureus and Streptococcus pyogenes. E. faecalis JH2-2 lysogens were generated using the eight phages, and these were examined for their relative fitness in Galleria mellonella. Several lysogens exhibited different effects upon survival of G. mellonella compared to their isogenic parent. The eight phages were tested for their ability to package host DNA, and three were shown to be very effective for generalized transduction of naive host cells of the laboratory strains OG1RF and JH2-2.
Collapse
|
61
|
A naturally occurring Rgg variant in serotype M3 Streptococcus pyogenes does not activate speB expression due to altered specificity of DNA binding. Infect Immun 2009; 77:5411-7. [PMID: 19752034 DOI: 10.1128/iai.00373-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The transcriptional regulator Rgg of Streptococcus pyogenes is essential for expression of the secreted cysteine protease SpeB. Although all isolates of S. pyogenes possess the speB gene, not all of them produce the protein in vitro. In a murine model of infection, the absence of SpeB production is associated with invasive disease. We speculated that naturally occurring mutations in rgg, which would also abrogate SpeB production, may be present in invasive isolates of S. pyogenes. Examination of the inferred Rgg sequences available in public databases revealed that the rgg gene in strain MGAS315 (a serotype M3 strain associated with invasive disease) encodes a proline at amino acid position 103 (Rgg(103P)); in contrast, all other strains encode a serine at this position (Rgg(103S)). A caseinolytic assay and Western blotting indicated that strain MGAS315 does not produce SpeB in vitro. Gene-swapping experiments showed that the rgg gene of MGAS315 is solely responsible for the lack of SpeB expression. In contrast to Rgg(103S), Rgg(103P) does not bind to the speB promoter in gel shift assays, which correlates with a lack of speB expression. Despite its inability to activate speB expression, Rgg(103P) retains the ability to bind to DNA upstream of norA and to influence its expression. Overall, this study illustrates how variation at the rgg locus may contribute to the phenotypic diversity of S. pyogenes.
Collapse
|
62
|
Holden MTG, Heather Z, Paillot R, Steward KF, Webb K, Ainslie F, Jourdan T, Bason NC, Holroyd NE, Mungall K, Quail MA, Sanders M, Simmonds M, Willey D, Brooks K, Aanensen DM, Spratt BG, Jolley KA, Maiden MCJ, Kehoe M, Chanter N, Bentley SD, Robinson C, Maskell DJ, Parkhill J, Waller AS. Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens. PLoS Pathog 2009; 5:e1000346. [PMID: 19325880 PMCID: PMC2654543 DOI: 10.1371/journal.ppat.1000346] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 02/24/2009] [Indexed: 11/19/2022] Open
Abstract
The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A(2) toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci.
Collapse
Affiliation(s)
- Matthew T. G. Holden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Zoe Heather
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Romain Paillot
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Karen F. Steward
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Katy Webb
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Fern Ainslie
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Thibaud Jourdan
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Nathalie C. Bason
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nancy E. Holroyd
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Karen Mungall
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Michael A. Quail
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Mark Simmonds
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - David Willey
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Karen Brooks
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - David M. Aanensen
- Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's Hospital Campus, London, United Kingdom
| | - Brian G. Spratt
- Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's Hospital Campus, London, United Kingdom
| | - Keith A. Jolley
- The Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Martin C. J. Maiden
- The Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Michael Kehoe
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Neil Chanter
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Stephen D. Bentley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Carl Robinson
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Duncan J. Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Andrew S. Waller
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| |
Collapse
|
63
|
Ahmed S, Saito A, Suzuki M, Nemoto N, Nishigaki K. Host-parasite relations of bacteria and phages can be unveiled by oligostickiness, a measure of relaxed sequence similarity. Bioinformatics 2009; 25:563-70. [PMID: 19126576 DOI: 10.1093/bioinformatics/btp003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The recent metagenome analysis has been producing a large number of host-unassigned viruses. Although assigning viruses to their hosts is basically important not only for virology but also for prevention of epidemic, it has been a laborious and difficult task to date. The only effective method for this purpose has been to find them in a same microscopic view. Now, we tried a computational approach based on genome sequences of bacteria and phages, introducing a physicochemical parameter, SOSS (set of oligostickiness similarity score) derived from oligostickiness, a measure of binding affinity of oligonucleotides to template DNA. RESULTS We could confirm host-parasite relationships of bacteria and their phages by SOSS analysis: all phages tested (25 species) had a remarkably higher SOSS value with its host than with unrelated bacteria. Interestingly, according to SOSS values, lysogenic phages such as lambda phage (host: Escherichia coli) or SPP1 (host: Bacillus subtilis) have distinctively higher similarity with its host than its non-lysogenic (excretive or virulent) ones such as fd and T4 (host: E.coli) or phages gamma and PZA (host: B.subtilis). This finding is very promising for assigning host-unknown viruses to its host. We also investigated the relationship in codon usage frequency or G+C content of genomes to interpret the phenomenon revealed by SOSS analysis, obtaining evidences which support the hypothesis that higher SOSS values resulted from the cohabitation in the same environment which may cause the common biased mutation. Thus, lysogenic phages which stay inside longer resemble the host.
Collapse
Affiliation(s)
- Shamim Ahmed
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | | | | | | | | |
Collapse
|
64
|
Gryllos I, Grifantini R, Colaprico A, Cary ME, Hakansson A, Carey DW, Suarez-Chavez M, Kalish LA, Mitchell PD, White GL, Wessels MR. PerR confers phagocytic killing resistance and allows pharyngeal colonization by group A Streptococcus. PLoS Pathog 2008; 4:e1000145. [PMID: 18773116 PMCID: PMC2518855 DOI: 10.1371/journal.ppat.1000145] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 08/07/2008] [Indexed: 01/24/2023] Open
Abstract
The peroxide response transcriptional regulator, PerR, is thought to contribute to virulence of group A Streptococcus (GAS); however, the specific mechanism through which it enhances adaptation for survival in the human host remains unknown. Here, we identify a critical role of PerR-regulated gene expression in GAS phagocytosis resistance and in virulence during pharyngeal infection. Deletion of perR in M-type 3 strain 003Sm was associated with reduced resistance to phagocytic killing in human blood and by murine macrophages in vitro. The increased phagocytic killing of the perR mutant was abrogated in the presence of the general oxidative burst inhibitor diphenyleneiodonium chloride (DPI), a result that suggests PerR-dependent gene expression counteracts the phagocyte oxidative burst. Moreover, an isogenic perR mutant was severely attenuated in a baboon model of GAS pharyngitis. In competitive infection experiments, the perR mutant was cleared from two animals at 24 h and from four of five animals by day 14, in sharp contrast to wild-type bacteria that persisted in the same five animals for 28 to 42 d. GAS genomic microarrays were used to compare wild-type and perR mutant transcriptomes in order to characterize the PerR regulon of GAS. These studies identified 42 PerR-dependent loci, the majority of which had not been previously recognized. Surprisingly, a large proportion of these loci are involved in sugar utilization and transport, in addition to oxidative stress adaptive responses and virulence. This finding suggests a novel role for PerR in mediating sugar uptake and utilization that, together with phagocytic killing resistance, may contribute to GAS fitness in the infected host. We conclude that PerR controls expression of a diverse regulon that enhances GAS resistance to phagocytic killing and allows adaptation for survival in the pharynx.
Collapse
Affiliation(s)
- Ioannis Gryllos
- Division of Infectious Diseases, Children's Hospital Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | | | | | - Max E. Cary
- Department of Pathology and Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Anders Hakansson
- Division of Infectious Diseases, Children's Hospital Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - David W. Carey
- Department of Pathology and Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Maria Suarez-Chavez
- Department of Pathology and Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Leslie A. Kalish
- Division of Infectious Diseases, Children's Hospital Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Clinical Research Program, Children's Hospital Boston, Boston, Massachusetts, United States of America
| | - Paul D. Mitchell
- Division of Infectious Diseases, Children's Hospital Boston, Massachusetts, United States of America
- Clinical Research Program, Children's Hospital Boston, Boston, Massachusetts, United States of America
| | - Gary L. White
- Department of Pathology and Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Michael R. Wessels
- Division of Infectious Diseases, Children's Hospital Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
65
|
Ryan PA, Kirk BW, Euler CW, Schuch R, Fischetti VA. Novel algorithms reveal streptococcal transcriptomes and clues about undefined genes. PLoS Comput Biol 2008; 3:e132. [PMID: 17616984 PMCID: PMC1913099 DOI: 10.1371/journal.pcbi.0030132] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/22/2007] [Indexed: 01/22/2023] Open
Abstract
Bacteria-host interactions are dynamic processes, and understanding transcriptional responses that directly or indirectly regulate the expression of genes involved in initial infection stages would illuminate the molecular events that result in host colonization. We used oligonucleotide microarrays to monitor (in vitro) differential gene expression in group A streptococci during pharyngeal cell adherence, the first overt infection stage. We present neighbor clustering, a new computational method for further analyzing bacterial microarray data that combines two informative characteristics of bacterial genes that share common function or regulation: (1) similar gene expression profiles (i.e., co-expression); and (2) physical proximity of genes on the chromosome. This method identifies statistically significant clusters of co-expressed gene neighbors that potentially share common function or regulation by coupling statistically analyzed gene expression profiles with the chromosomal position of genes. We applied this method to our own data and to those of others, and we show that it identified a greater number of differentially expressed genes, facilitating the reconstruction of more multimeric proteins and complete metabolic pathways than would have been possible without its application. We assessed the biological significance of two identified genes by assaying deletion mutants for adherence in vitro and show that neighbor clustering indeed provides biologically relevant data. Neighbor clustering provides a more comprehensive view of the molecular responses of streptococci during pharyngeal cell adherence.
Collapse
Affiliation(s)
- Patricia A Ryan
- Department of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA.
| | | | | | | | | |
Collapse
|
66
|
Vojtek I, Pirzada ZA, Henriques-Normark B, Mastny M, Janapatla RP, Charpentier E. Lysogenic transfer of group A Streptococcus superantigen gene among Streptococci. J Infect Dis 2008; 197:225-34. [PMID: 18179387 PMCID: PMC3030952 DOI: 10.1086/524687] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A group A Streptococcus (GAS) isolate, serotype M12, recovered from a patient with streptococcal toxic shock syndrome was analyzed for superantigen-carrying prophages, revealing phi149, which encodes superantigen SSA. Sequence analysis of the att-L proximal region of phi149 showed that the phage had a mosaic nature. Remarkably, we successfully obtained lysogenic conversion of GAS clinical isolates of various M serotypes (M1, M3, M5, M12, M19, M28, and M94), as well as of group C Streptococcus equisimilis (GCSE) clinical isolates, via transfer of a recombinant phage phi149::Km(r). Phage phi149::Km(r) from selected lysogenized GAS and GCSE strains could be transferred back to M12 GAS strains. Our data indicate that horizontal transfer of lysogenic phages among GAS can occur across the M-type barrier; these data also provide further support for the hypothesis that toxigenic conversion can occur via lysogeny between species. Streptococci might employ this mechanism specifically to allow more efficient adaptation to changing host challenges, potentially leading to fitter and more virulent clones.
Collapse
Affiliation(s)
- Ivo Vojtek
- Max F. Perutz Laboratories, University of Vienna, Department of Microbiology and Immunobiology, Vienna, Austria
| | - Zaid A. Pirzada
- Max F. Perutz Laboratories, University of Vienna, Department of Microbiology and Immunobiology, Vienna, Austria
| | - Birgitta Henriques-Normark
- Swedish Institute for Infectious Disease Control, Department of Bacteriology
- Karolinska Institute, Solna, Sweden
| | - Markus Mastny
- Max F. Perutz Laboratories, University of Vienna, Department of Microbiology and Immunobiology, Vienna, Austria
| | - Rajendra P. Janapatla
- Max F. Perutz Laboratories, University of Vienna, Department of Microbiology and Immunobiology, Vienna, Austria
| | - Emmanuelle Charpentier
- Max F. Perutz Laboratories, University of Vienna, Department of Microbiology and Immunobiology, Vienna, Austria
| |
Collapse
|
67
|
Vernikos GS, Parkhill J. Resolving the structural features of genomic islands: a machine learning approach. Genome Res 2007; 18:331-42. [PMID: 18071028 PMCID: PMC2203631 DOI: 10.1101/gr.7004508] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Large inserts of horizontally acquired DNA that contain functionally related genes with limited phylogenetic distribution are often referred to as genomic islands (GIs), and structural definitions of these islands, based on common features, have been proposed. Although a large number of mobile elements fall well within the GI definition, there are several concerns about the structural consensus for GIs: The current GI definition was put forward 10 yr ago when only 12 complete bacterial genomes were available, a large number of GIs deviate from that definition, and in silico predictions assuming a full/partial GI structural model bias the sampling of the GI structural space toward "well-structured" GIs. In this study, the structural features of genomic regions are sampled by a hypothesis-free, bottom-up search, and these are exploited in a machine learning approach with the aim of explicitly quantifying and modeling the contribution of each feature to the GI structure. Performing a whole-genome-based comparative analysis between 37 strains of three different genera and 12 outgroup genomes, 668 genomic regions were sampled and used to train structural GI models. The data show that, overall, GIs from the three different genera fall into distinct, genus-specific structural families. However, decreasing the taxa resolution, by studying GI structures across different genus boundaries, provides models that converge on a fairly similar GI structure, further suggesting that GIs can be seen as a superfamily of mobile elements, with core and variable structural features, rather than a well-defined family.
Collapse
Affiliation(s)
- Georgios S Vernikos
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | |
Collapse
|
68
|
Eran Y, Getter Y, Baruch M, Belotserkovsky I, Padalon G, Mishalian I, Podbielski A, Kreikemeyer B, Hanski E. Transcriptional regulation of the sil locus by the SilCR signalling peptide and its implications on group A streptococcus virulence. Mol Microbiol 2007; 63:1209-22. [PMID: 17238919 DOI: 10.1111/j.1365-2958.2007.05581.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the last two decades an increasing number of local outbreaks of invasive group A streptococcus (GAS) infections including necrotizing fasciitis (NF) have been reported. We identified the streptococcal invasion locus (sil) which is essential for virulence of the M14 strain JS95 isolated from an NF patient. This locus contains six genes: silA/B and silD/E encoding two-component system (TCS) and ABC transporter, respectively, homologous to the corresponding entities in the regulon of Streptococcus pneumoniae involved in genetic competence. Situated between these two units are silC and silCR, which highly overlap and are transcribed from the complementing strand at opposite directions. SilCR is a putative competence stimulating peptide, but in the M14 strain it has a start codon mutation. Deletion of silC or addition of synthetic SilCR attenuates virulence of the M14 strain. Here we found that silC and silCR form a novel regulatory circuit that controls the sil locus transcription. Under non-inducing conditions silC represses the silCR promoter. Externally added SilCR peptide activates the TCS, which in turn stimulates silCR transcription. Ongoing silCR transcription mediates the repression of the converging and overlapping silC transcript. Transcription of bacteriocin-like peptide (blp) operon mirrors the inverse relationships between the silC and silCR transcripts. It is upregulated by either addition of SilCR or deletion of silC. Moreover, expression of silC from a plasmid in a silC deleted-mutant significantly represses blp transcription. Finally, we show that 18% of clinically relevant GAS isolates possess sil and produce SilCR. Based on these results we propose a working model for regulation gene expression and virulence in GAS by the SilCR signalling peptide.
Collapse
Affiliation(s)
- Yoni Eran
- Institute of Microbiology, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Fischetti VA. In vivo acquisition of prophage in Streptococcus pyogenes. Trends Microbiol 2007; 15:297-300. [PMID: 17543527 DOI: 10.1016/j.tim.2007.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 03/26/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
Genomic analysis of 12 Streptococcus pyogenes genomes representing six different serotypes reveals that they are poly-lysogenized, with as many as seven separate phage genomes (some of which are defective). Sequence alignments of these genomes (excluding incorporated prophage) have revealed that they are approximately 90% conserved, indicating that their diversity and disease capacity might be phage related. However, because S. pyogenes are only found in humans, how are new phages acquired? In vitro and in vivo experiments show that efficient phage transfer from donor to recipient streptococci occurs in the presence of mammalian cells. This suggests that, through evolution, phage have devised a system whereby progeny phage are induced and transferred to host streptococci at a site where host organisms are more prevalent.
Collapse
Affiliation(s)
- Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
70
|
Matson EG, Zuerner RL, Stanton TB. Induction and transcription of VSH-1, a prophage-like gene transfer agent of Brachyspira hyodysenteriae. Anaerobe 2007; 13:89-97. [PMID: 17540587 DOI: 10.1016/j.anaerobe.2007.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 04/06/2007] [Accepted: 04/18/2007] [Indexed: 11/16/2022]
Abstract
The anaerobic spirochete Brachyspira hyodysenteriae is host to a bacteriophage-like agent known as VSH-1. VSH-1 is a novel gene transfer mechanism which does not self-propagate and transfers random 7.5kb fragments of host DNA between B. hyodysenteriae cells. In these investigations early events during VSH-1 induction by mitomycin C were examined. Quantitative PCR analysis revealed that VSH-1 hvp38 and hvp53 genes did not detectably increase in copy numbers during induction. Based on Northern blot hybridization assays, transcription of VSH-1 genes hvp38, hvp53, hvp45, hvp101, and lys increased fivefold to tenfold between 2 and 4h after induction whereas mRNA levels for B. hyodysenteriae flaA1 declined over the same time period. Chloramphenicol prevented the mitomycin C-induced increases in VSH-1 gene transcription. Hydrogen peroxide (300muM) substituted for mitomycin C as an inducer of VSH-1 gene transcription and is a possible 'natural' inducer of VSH-1 production in vivo. Northern blot hybridization, RT PCR, and primer extension analyses showed that VSH-1 genes are co-transcribed at an initiation site upstream of the VSH-1 gene operon. Two direct heptanucleotide repeats (ACTTATA) were identified between the putative -35 and -10 positions of the VSH-1 gene operon and are likely to represent a binding site for transcription proteins. These findings indicate VSH-1 virion production does not require genome replication, consistent with the inability of VSH-1 to self-propagate. Early events in VSH-1 induction include de novo synthesis of protein(s) essential for transcription of VSH-1 genes as polycistronic mRNA initiating upstream of the hvp45 gene.
Collapse
Affiliation(s)
- Eric G Matson
- Department of Microbiology, Iowa State University, Ames, IA 50010, USA
| | | | | |
Collapse
|
71
|
Vlaminckx BJM, Schuren FHJ, Montijn RC, Caspers MPM, Beitsma MM, Wannet WJB, Schouls LM, Verhoef J, Jansen WTM. Dynamics in prophage content of invasive and noninvasive M1 and M28 Streptococcus pyogenes isolates in The Netherlands from 1959 to 1996. Infect Immun 2007; 75:3673-9. [PMID: 17452467 PMCID: PMC1932935 DOI: 10.1128/iai.01695-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Invasive group A streptococcal (GAS) disease re-emerged in The Netherlands in the late 1980s. To seek an explanation for this resurgence, the genetic compositions of 22 M1 and 19 M28 GAS strains isolated in The Netherlands between 1960s and the mid-1990s were analyzed by using a mixed-genome DNA microarray. During this four-decade period, M1 and especially M28 strains acquired prophages on at least eight occasions. All prophages carried a superantigen (speA2, speC, speK) or a streptodornase (sdaD2, sdn), both associated with invasive GAS disease. Invasive and noninvasive GAS strains did not differ in prophage acquisition, suggesting that there was an overall increase in the pathogenicity of M1 and M28 strains over the last four decades rather than emergence of hypervirulent subclones. The increased overall pathogenic potential may have contributed to the reemergence of invasive GAS disease in The Netherlands.
Collapse
Affiliation(s)
- Bart J M Vlaminckx
- Medical Microbiology and Immunology, St. Antonius Hospital, Koekoekslaan 1, 3430 EM Nieuwegein, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Allison HE. Stx-phages: drivers and mediators of the evolution of STEC and STEC-like pathogens. Future Microbiol 2007; 2:165-74. [PMID: 17661653 DOI: 10.2217/17460913.2.2.165] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacteriophages, also known as phages, are viruses that infect bacteria. Until recently they have been ignored by most of the scientific community, but their impact upon our world is enormous. They are the most abundant lifeform on the globe and drive the diversity and abundance of bacteria around us, including, in many instances, the pathogenic profiles of many of mankind's most feared bacterial pathogens. This article focuses on how a group of bacteriophages, Stx-phages, which carry the genes encoding Shiga toxin, have driven and are driving the emergence of Shiga toxin-producing pathogens such as the infamous Escherichia coli O157:H7. Since the emergence of this foodborne pathogen as a cause of significant human disease in 1982, more than 500 different serogroups of E. coli have been reported to produce Shiga toxin, as well as a few other organisms. These events and many more are all controlled by the biology of Stx-phages.
Collapse
Affiliation(s)
- Heather E Allison
- University of Liverpool, School of Biological Sciences, Division of Integrative Biology, BioSciences Building, Liverpool, Merseyside, UK.
| |
Collapse
|
73
|
Davies MR, McMillan DJ, Van Domselaar GH, Jones MK, Sriprakash KS. Phage 3396 from a Streptococcus dysgalactiae subsp. equisimilis pathovar may have its origins in streptococcus pyogenes. J Bacteriol 2007; 189:2646-52. [PMID: 17259318 PMCID: PMC1855781 DOI: 10.1128/jb.01590-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus dysgalactiae subsp. equisimilis strains (group G streptococcus [GGS]) are largely defined as commensal organisms, which are closely related to the well-defined human pathogen, the group A streptococcus (GAS). While lateral gene transfers are emerging as a common theme in these species, little is known about the mechanisms and role of these transfers and their effect on the population structure of streptococci in nature. It is now becoming evident that bacteriophages are major contributors to the genotypic diversity of GAS and, consequently, are pivotal to the GAS strain structure. Furthermore, bacteriophages are strongly associated with altering the pathogenic potential of GAS. In contrast, little is know about phages from GGS and their role in the population dynamics of GGS. In this study we report the first complete genome sequence of a GGS phage, Phi3396. Exhibiting high homology to the GAS phage Phi315.1, the chimeric nature of Phi3396 is unraveled to reveal evidence of extensive ongoing genetic diversity and dissemination of streptococcal phages in nature. Furthermore, we expand on our recent findings to identify inducible Phi3396 homologues in GAS from a region of endemicity for GAS and GGS infection. Together, these findings provide new insights into not only the population structure of GGS but also the overall population structure of the streptococcal genus and the emergence of pathogenic variants.
Collapse
Affiliation(s)
- Mark R Davies
- Bacterial Pathogenesis Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4006, Australia
| | | | | | | | | |
Collapse
|
74
|
Sitkiewicz I, Stockbauer KE, Musser JM. Secreted bacterial phospholipase A2 enzymes: better living through phospholipolysis. Trends Microbiol 2006; 15:63-9. [PMID: 17194592 DOI: 10.1016/j.tim.2006.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/23/2006] [Accepted: 12/13/2006] [Indexed: 11/23/2022]
Abstract
Phospholipases are ubiquitous and diverse enzymes that induce changes in membrane composition, activate the inflammatory cascade and alter cell signaling pathways. Recent evidence suggests that certain bacterial pathogens have acquired genes encoding secreted phospholipase A2 enzymes through lateral gene transfer events. The two best-studied members of this class of enzyme are ExoU and SlaA, which are produced by Pseudomonas aeruginosa and group A Streptococcus, respectively. These enzymes modulate the host inflammatory response, increase the severity of disease and otherwise alter host-pathogen interactions. We propose that a key function of ExoU and SlaA is to increase the fitness of the subclones expressing these enzymes, thereby increasing the population size of the PLA2-positive strains and enhancing the likelihood of encountering an at-risk host.
Collapse
Affiliation(s)
- Izabela Sitkiewicz
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | | | | |
Collapse
|
75
|
Dmitriev AV, McDowell EJ, Kappeler KV, Chaussee MA, Rieck LD, Chaussee MS. The Rgg regulator of Streptococcus pyogenes influences utilization of nonglucose carbohydrates, prophage induction, and expression of the NAD-glycohydrolase virulence operon. J Bacteriol 2006; 188:7230-41. [PMID: 17015662 PMCID: PMC1636216 DOI: 10.1128/jb.00877-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The expression of many virulence-associated genes in Streptococcus pyogenes is controlled in a growth phase-dependent manner. Unlike the model organisms Escherichia coli and Bacillus subtilis, such regulation is apparently not dependent upon alternative sigma factors but appears to rely on complex interactions among several transcriptional regulators, including Rgg. The purpose of this study was to identify changes in gene expression associated with inactivation of the rgg gene in S. pyogenes strain NZ131 (serotype M49). To this end, the transcriptomes of wild-type and rgg mutant strains were analyzed during both the exponential and postexponential phases of growth using Affymetrix NimbleExpress gene chips. Genomewide differences in transcript levels were identified in both phases of growth. Inactivation of rgg disrupted coordinate expression of genes associated with the metabolism of nonglucose carbon sources, such as fructose, mannose, and sucrose. The changes were associated with an inability of the mutant strain to grow using these compounds as the primary carbon source. Bacteriophage transcript levels were also altered in the mutant strain and were associated with decreased induction of at least one prophage. Finally, transcripts encoding virulence factors involved in cytolysin-mediated translocation of NAD-glycohydrolase, including the immunity factor IFS and the cytolysin (streptolysin O [SLO]), were more abundant in the mutant strain, which correlated with the amount of NADase and SLO activities in culture supernatant fluids. The results provide further evidence that Rgg contributes to growth phase-dependent gene regulation in strain NZ131.
Collapse
Affiliation(s)
- Alexander V Dmitriev
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Lee Medical Building, 414 East Clark Street, Vermillion, SD 57069-2390, USA
| | | | | | | | | | | |
Collapse
|
76
|
Sitkiewicz I, Nagiec MJ, Sumby P, Butler SD, Cywes-Bentley C, Musser JM. Emergence of a bacterial clone with enhanced virulence by acquisition of a phage encoding a secreted phospholipase A2. Proc Natl Acad Sci U S A 2006; 103:16009-14. [PMID: 17043230 PMCID: PMC1635118 DOI: 10.1073/pnas.0607669103] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Indexed: 11/18/2022] Open
Abstract
The molecular basis of pathogen clone emergence is relatively poorly understood. Acquisition of a bacteriophage encoding a previously unknown secreted phospholipase A(2) (designated SlaA) has been implicated in the rapid emergence in the mid-1980s of a new hypervirulent clone of serotype M3 group A Streptococcus. Although several lines of circumstantial evidence suggest that SlaA is a virulence factor, this issue has not been addressed experimentally. We found that an isogenic DeltaslaA mutant strain was significantly impaired in ability to adhere to and kill human epithelial cells compared with the wild-type parental strain. The mutant strain was less virulent for mice than the wild-type strain, and immunization with purified SlaA significantly protected mice from invasive disease. Importantly, the mutant strain was significantly attenuated for colonization in a monkey model of pharyngitis. We conclude that transductional acquisition of the ability of a GAS strain to produce SlaA enhanced the spread and virulence of the serotype M3 precursor strain. Hence, these studies identified a crucial molecular event underlying the evolution, rapid emergence, and widespread dissemination of unusually severe human infections caused by a distinct bacterial clone.
Collapse
Affiliation(s)
- Izabela Sitkiewicz
- *Center for Molecular and Translational Human Infectious Diseases Research, Methodist Hospital Research Institute, Houston, TX 77030
| | - Michal J. Nagiec
- *Center for Molecular and Translational Human Infectious Diseases Research, Methodist Hospital Research Institute, Houston, TX 77030
| | - Paul Sumby
- *Center for Molecular and Translational Human Infectious Diseases Research, Methodist Hospital Research Institute, Houston, TX 77030
| | | | - Colette Cywes-Bentley
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - James M. Musser
- *Center for Molecular and Translational Human Infectious Diseases Research, Methodist Hospital Research Institute, Houston, TX 77030
| |
Collapse
|
77
|
Serra-Moreno R, Acosta S, Hernalsteens JP, Jofre J, Muniesa M. Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BMC Mol Biol 2006; 7:31. [PMID: 16984631 PMCID: PMC1626079 DOI: 10.1186/1471-2199-7-31] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 09/19/2006] [Indexed: 12/24/2022] Open
Abstract
Background The Red recombinase system of bacteriophage lambda has been used to inactivate chromosomal genes in E. coli K-12 through homologous recombination using linear PCR products. The aim of this study was to induce mutations in the genome of some temperate Shiga toxin encoding bacteriophages. When phage genes are in the prophage state, they behave like chromosomal genes. This enables marker genes, such as antibiotic resistance genes, to be incorporated into the stx gene. Once the phages' lytic cycle is activated, recombinant Shiga toxin converting phages are produced. These phages can transfer the marker genes to the bacteria that they infect and convert. As the Red system's effectiveness decreased when used for our purposes, we had to introduce significant variations to the original method. These modifications included: confirming the stability of the target stx gene increasing the number of cells to be transformed and using a three-step PCR method to produce the amplimer containing the antibiotic resistance gene. Results Seven phages carrying two different antibiotic resistance genes were derived from phages that are directly involved in the pathogenesis of Shiga toxin-producing strains, using this modified protocol. Conclusion This approach facilitates exploration of the transduction processes and is a valuable tool for studying phage-mediated horizontal gene transfer.
Collapse
Affiliation(s)
- Ruth Serra-Moreno
- Department of Microbiology. Faculty of Biology. University of Barcelona. Diagonal 645. E-08028 Barcelona. Spain
| | - Sandra Acosta
- Department of Microbiology. Faculty of Biology. University of Barcelona. Diagonal 645. E-08028 Barcelona. Spain
| | - Jean Pierre Hernalsteens
- Viral Genetics Laboratory, Faculty of Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Juan Jofre
- Department of Microbiology. Faculty of Biology. University of Barcelona. Diagonal 645. E-08028 Barcelona. Spain
| | - Maite Muniesa
- Department of Microbiology. Faculty of Biology. University of Barcelona. Diagonal 645. E-08028 Barcelona. Spain
| |
Collapse
|
78
|
Jing HB, Ning BA, Hao HJ, Zheng YL, Chang D, Jiang W, Jiang YQ. Epidemiological analysis of group A streptococci recovered from patients in China. J Med Microbiol 2006; 55:1101-1107. [PMID: 16849731 DOI: 10.1099/jmm.0.46243-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Since the mid-1980s, there has been a resurgence of severe forms of invasive group A streptococcal (GAS) disease in many countries and regions. However, there has not been any systemic epidemiologic analysis of GAS disease reported in mainland China. To analyse the molecular epidemiology of GAS disease, 86 strains from patients in different regions of mainland China were collected. The collection sites included blood, pus, wounds, the epipharynx and other sites. A total of 21 different emm types were identified in the isolates. In both invasive and non-invasive isolates, M1 (29.1%) and M12 (23.3%) were the most prevalent types, a different distribution to M type distributions reported in other countries. Furthermore, minor emm gene sequence alterations were noted for six types. Several important GAS virulence factors were detected by PCR using specific primers. The speB and slo genes were detected in all isolates and were species specific. Four superantigen genes, speA, speC, smeZ and ssa, were found in 52% (45/86), 51% (44/86), 82% (71/86) and 23% (27/86) of isolates, respectively. M1 isolates harboured more speA (84%) and fewer speC genes (44%), while M12 isolates had fewer speA (35%) and more speC genes (100%). There was also an association between some virulence genes and isolation sites, perhaps due to the correlation between the emm type distribution and virulence gene occurrence. For two important virulence genes related to necrotizing fasciitis, the sil gene was only carried by 11 of 86 isolates, and no sil gene contained the start codon ATA. The sla gene rarely occurred in GAS isolates, only four of 86 GAS strains being positive, including two isolates obtained from blood. In antimicrobial susceptibility tests, the overall rate of drug resistance in GAS isolates was higher than reported rates in other countries, and the resistance rates to erythromycin, tetracycline and clindamycin were 91.8, 93.4 and 80%, respectively. This epidemiological study may help to understand the pathogenesis of GAS disease and aid in vaccine development.
Collapse
Affiliation(s)
- Hong-Bo Jing
- State Key Laboratory of Pathogen and Biosecurity, The Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, no. 20 Dongda Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Boa-An Ning
- State Key Laboratory of Pathogen and Biosecurity, The Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, no. 20 Dongda Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Huai-Jie Hao
- State Key Laboratory of Pathogen and Biosecurity, The Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, no. 20 Dongda Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Yu-Ling Zheng
- State Key Laboratory of Pathogen and Biosecurity, The Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, no. 20 Dongda Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Dong Chang
- 304 Hospital, Haidian District, Beijing, 100037, People's Republic of China
| | - Wei Jiang
- 304 Hospital, Haidian District, Beijing, 100037, People's Republic of China
| | - Yong-Qiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, The Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, no. 20 Dongda Street, Fengtai District, Beijing, 100071, People's Republic of China
| |
Collapse
|
79
|
Tinsley CR, Bille E, Nassif X. Bacteriophages and pathogenicity: more than just providing a toxin? Microbes Infect 2006; 8:1365-71. [PMID: 16698301 DOI: 10.1016/j.micinf.2005.12.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 12/19/2005] [Indexed: 11/18/2022]
Abstract
An increasing number of pathogenicity factors carried by bacteriophages have been discovered. This review considers bacteriophage-bacterium interaction and its relation to disease processes. We discuss the search for new bacteriophage-associated pathogenicity factors, with emphasis on recent advances brought by the use of genomic sequence data and the techniques of genomic epidemiology.
Collapse
Affiliation(s)
- Colin R Tinsley
- Microbiologie et Génétique Moléculaire, UMR1238 INRA/INA-PG/CNRS, Institut National Agronomique Paris-Grignon, 78850 Thiverval-Grignon, France.
| | | | | |
Collapse
|
80
|
Maggi RG, Breitschwerdt EB. Isolation of Bacteriophages from Bartonella vinsonii subsp. berkhoffii and the Characterization of Pap31 Gene Sequences from Bacterial and Phage DNA. J Mol Microbiol Biotechnol 2005; 9:44-51. [PMID: 16254445 DOI: 10.1159/000088145] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bacteriophages enhance bacterial survival, facilitate bacterial adaptation to new environmental conditions, assist in the adaptation to a new host species, and enhance bacterial evasion or inactivation of host defense mechanisms. We describe the detection and purification of a novel tailed bacteriophage from Bartonella vinsonii subsp. berkhoffii, which was previously described as a bacteriophage-negative species. We also compare B. vinsonii subsp. berkhoffi Pap31 bacteriophage gene sequences to B. henselae (Houston I), and B. quintana (Fuller) bacteriophage Pap31 sequences. Negative staining electron microscopy of log phase culturesof B. vinsonii subsp. berkhoffii identified bacteriophages, possessing a 50-nm icosahedric head diameter and a 60- to 80-nm contractile tail. Sequence analysis of the bacteriophage Pap31 gene from B. vinsonii subsp. berkhoffii showed three consensus sequences and a 12-bp insertion when compared with Pap31 gene sequences from B. henselae (Houston I) and B. quintana (Fuller) bacteriophages. Isolation of B. vinsonii subsp. berkhoffii bacteriophages containing a Pap31 gene suggests that this heme-binding protein gene might play an important role in bacterial virulence through the genetic exchange of DNA within this subspecies. Defining phage-associated genes may also contribute to the enhanced understanding of the evolutionary relationships among members of the genus Bartonella.
Collapse
Affiliation(s)
- Ricardo G Maggi
- Vector-Borne Diseases Diagnostic Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | |
Collapse
|
81
|
Shelburne SA, Granville C, Tokuyama M, Sitkiewicz I, Patel P, Musser JM. Growth characteristics of and virulence factor production by group A Streptococcus during cultivation in human saliva. Infect Immun 2005; 73:4723-31. [PMID: 16040985 PMCID: PMC1201272 DOI: 10.1128/iai.73.8.4723-4731.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A Streptococcus (GAS) commonly infects the human oropharynx, but the initial molecular events governing this process are poorly understood. Saliva is a major component of the innate and acquired immune defense in this anatomic site. Although landmark studies were done more than 60 years ago, investigation of GAS-saliva interaction has not been addressed extensively in recent years. Serotype M1 GAS strain MGAS5005 cultured in human saliva grew to approximately 10(7) CFU/ml and, remarkably, maintained this density for up to 28 days. Strains of several other M-protein serotypes had similar initial growth patterns but did not maintain as high a CFU count during prolonged culture. As revealed by analysis of the growth of isogenic mutant strains, the ability of GAS to maintain high numbers of CFU/ml during the prolonged stationary phase in saliva was dependent on production of streptococcal inhibitor of complement (Sic) and streptococcal pyrogenic exotoxin B (SpeB). During cultivation in human saliva, GAS had growth-phase-dependent production of multiple proven and putative extracellular virulence factors, including Sic, SpeB, streptococcal pyrogenic exotoxin A, Mac protein, and streptococcal phospholipase A(2). Our results clearly show that GAS responds in a complex fashion to growth in human saliva, suggesting that the molecular processes that enhance colonization and survival in the upper respiratory tract of humans are well under way before the organism reaches the epithelial cell surface.
Collapse
Affiliation(s)
- Samuel A Shelburne
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
82
|
Watson M. ProGenExpress: visualization of quantitative data on prokaryotic genomes. BMC Bioinformatics 2005; 6:98. [PMID: 15829007 PMCID: PMC1087476 DOI: 10.1186/1471-2105-6-98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 04/13/2005] [Indexed: 11/10/2022] Open
Abstract
Background The integration of genomic information with quantitative experimental data is a key component of systems biology. An increasing number of microbial genomes are being sequenced, leading to an increasing amount of data from post-genomics technologies. The genomes of prokaryotes contain many structures of interest, such as operons, pathogenicity islands and prophage sequences, whose behaviour is of interest during infection and disease. There is a need for simple and novel tools to display and analyse data from these integrated datasets, and we have developed ProGenExpress as a tool for visualising arbitrarily complex numerical data in the context of prokaryotic genomes. Results Here we describe ProGenExpress, an R package that allows researchers to easily and quickly visualize quantitative measurements, such as those produced by microarray experiments, in the context of the genome organization of sequenced prokaryotes. Data from microarrays, proteomics or other whole-genome technologies can be accurately displayed on the genome. ProGenExpress can also search for novel regions of interest that consist of groups of adjacent genes that show similar patterns across the experimental data set. We demonstrate ProGenExpress with microarray data from a time-course experiment involving Salmonella typhimurium. Conclusion ProGenExpress can be used to visualize quantitative data from complex experiments in the context of the genome of sequenced prokaryotes, and to find novel regions of interest.
Collapse
Affiliation(s)
- Michael Watson
- Institute for Animal Health, Compton laboratory, High street, Compton, Newbury, RG20 7NN, UK.
| |
Collapse
|
83
|
Graham MR, Virtaneva K, Porcella SF, Barry WT, Gowen BB, Johnson CR, Wright FA, Musser JM. Group A Streptococcus transcriptome dynamics during growth in human blood reveals bacterial adaptive and survival strategies. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:455-65. [PMID: 15681829 PMCID: PMC1602339 DOI: 10.1016/s0002-9440(10)62268-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The molecular basis for bacterial responses to host signals during natural infections is poorly understood. The gram-positive bacterial pathogen group A Streptococcus (GAS) causes human mucosal, skin, and life-threatening systemic infections. During the transition from a throat or skin infection to an invasive infection, GAS must adapt to changing environments and host factors. To better understand how GAS adapts, we used transcript profiling and functional analysis to investigate the transcriptome of a wild-type serotype M1 GAS strain in human blood. Global changes in GAS gene expression occur rapidly in response to human blood exposure. Increased transcription was observed for many genes that likely enhance bacterial survival, including those encoding superantigens and host-evasion proteins regulated by a multiple gene activator called Mga. GAS also coordinately expressed genes involved in proteolysis, transport, and catabolism of oligopeptides to obtain amino acids in this protein-rich host environment. Comparison of the transcriptome of the wild-type strain to that of an isogenic deletion mutant (DeltacovR) mutated in the two-component regulatory system designated CovR-CovS reinforced the hypothesis that CovR-CovS has an important role linking key biosynthetic, catabolic, and virulence functions during transcriptome restructuring. Taken together, the data provide crucial insights into strategies used by pathogenic bacteria for thwarting host defenses and surviving in human blood.
Collapse
Affiliation(s)
- Morag R Graham
- Center for Human Bacterial Pathogenesis, Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Sumby P, Barbian KD, Gardner DJ, Whitney AR, Welty DM, Long RD, Bailey JR, Parnell MJ, Hoe NP, Adams GG, Deleo FR, Musser JM. Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc Natl Acad Sci U S A 2005; 102:1679-84. [PMID: 15668390 PMCID: PMC547841 DOI: 10.1073/pnas.0406641102] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many pathogenic bacteria produce extracellular DNase, but the benefit of this enzymatic activity is not understood. For example, all strains of the human bacterial pathogen group A Streptococcus (GAS) produce at least one extracellular DNase, and most strains make several distinct enzymes. Despite six decades of study, it is not known whether production of DNase by GAS enhances virulence. To test the hypothesis that extracellular DNase is required for normal progression of GAS infection, we generated seven isogenic mutant strains in which the three chromosomal- and prophage-encoded DNases made by a contemporary serotype M1 GAS strain were inactivated. Compared to the wild-type parental strain, the isogenic triple-mutant strain was significantly less virulent in two mouse models of invasive infection. The triple-mutant strain was cleared from the skin injection site significantly faster than the wild-type strain. Preferential clearance of the mutant strain was related to the differential extracellular killing of the mutant and wild-type strains, possibly through degradation of neutrophil extracellular traps, innate immune structures composed of chromatin and granule proteins. The triple-mutant strain was also significantly compromised in its ability to cause experimental pharyngeal disease in cynomolgus macaques. Comparative analysis of the seven DNase mutant strains strongly suggested that the prophage-encoded SdaD2 enzyme is the major DNase that contributes to virulence in this clone. We conclude that extracellular DNase activity made by GAS contributes to disease progression, thereby resolving a long-standing question in bacterial pathogenesis research.
Collapse
Affiliation(s)
- Paul Sumby
- Center for Human Bacterial Pathogenesis Research, Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Brüssow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 2004; 68:560-602, table of contents. [PMID: 15353570 PMCID: PMC515249 DOI: 10.1128/mmbr.68.3.560-602.2004] [Citation(s) in RCA: 1122] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like "swarms" of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework.
Collapse
Affiliation(s)
- Harald Brüssow
- Nestlé, Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne, Switzerland.
| | | | | |
Collapse
|
86
|
Beres SB, Sylva GL, Sturdevant DE, Granville CN, Liu M, Ricklefs SM, Whitney AR, Parkins LD, Hoe NP, Adams GJ, Low DE, DeLeo FR, McGeer A, Musser JM. Genome-wide molecular dissection of serotype M3 group A Streptococcus strains causing two epidemics of invasive infections. Proc Natl Acad Sci U S A 2004; 101:11833-8. [PMID: 15282372 PMCID: PMC511060 DOI: 10.1073/pnas.0404163101] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Indexed: 11/18/2022] Open
Abstract
Molecular factors that contribute to the emergence of new virulent bacterial subclones and epidemics are poorly understood. We hypothesized that analysis of a population-based strain sample of serotype M3 group A Streptococcus (GAS) recovered from patients with invasive infection by using genome-wide investigative methods would provide new insight into this fundamental infectious disease problem. Serotype M3 GAS strains (n = 255) cultured from patients in Ontario, Canada, over 11 years and representing two distinct infection peaks were studied. Genetic diversity was indexed by pulsed-field gel electrophoresis, DNA-DNA microarray, whole-genome PCR scanning, prophage genotyping, targeted gene sequencing, and single-nucleotide polymorphism genotyping. All variation in gene content was attributable to acquisition or loss of prophages, a molecular process that generated unique combinations of proven or putative virulence genes. Distinct serotype M3 genotypes experienced rapid population expansion and caused infections that differed significantly in character and severity. Molecular genetic analysis, combined with immunologic studies, implicated a 4-aa duplication in the extreme N terminus of M protein as a factor contributing to an epidemic wave of serotype M3 invasive infections. This finding has implications for GAS vaccine research. Genome-wide analysis of population-based strain samples cultured from clinically well defined patients is crucial for understanding the molecular events underlying bacterial epidemics.
Collapse
Affiliation(s)
- Stephen B Beres
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Nagiec MJ, Lei B, Parker SK, Vasil ML, Matsumoto M, Ireland RM, Beres SB, Hoe NP, Musser JM. Analysis of a novel prophage-encoded group A Streptococcus extracellular phospholipase A(2). J Biol Chem 2004; 279:45909-18. [PMID: 15304506 DOI: 10.1074/jbc.m405434200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group A Streptococcus (GAS) is an important human pathogen that causes many types of infections, including pharyngitis and severe invasive diseases. We recently sequenced the genome of a serotype M3 strain and identified a prophage-encoded secreted phospholipase A(2) designated SlaA. To study SlaA structure-activity relationships, 20 site-specific mutants were constructed by alanine-replacement mutagenesis and purified to apparent homogeneity. Enzymatic activity was greatly reduced by alanine replacement of amino acid residues previously described as crucial in the catalytic mechanism of secreted phospholipase A(2). Similarly, substitution of five residues in an inferred Ca(2+)-binding loop and three residues in the inferred active site region resulted in loss of activity of 76.5% or greater relative to the wild-type enzyme. Analysis of enzyme substrate specificity confirmed SlaA as a phospholipase A(2), with activity against multiple phospholipid head groups and acyl chains located at the sn-2 position. PCR analysis of 1,189 GAS strains representing 48 M protein serotypes commonly causing human infections identified the slaA gene in 129 strains of nine serotypes (M1, M2, M3, M4, M6, M22, M28, M75, and st3757). Expression of SlaA by strains of these serotypes was confirmed by Western immunoblot. SlaA production increased rapidly and substantially on co-culture with Detroit 562 human pharyngeal epithelial cells. Together, these data provide new information about a novel extracellular enzyme that participates in GAS-human interactions.
Collapse
Affiliation(s)
- Michal J Nagiec
- Center for Human Bacterial Pathogenesis Research, Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|