51
|
Quorum-sensing and BvrR/BvrS regulation, the type IV secretion system, cyclic glucans, and BacA in the virulence of Brucella ovis: similarities to and differences from smooth brucellae. Infect Immun 2012; 80:1783-93. [PMID: 22392933 DOI: 10.1128/iai.06257-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella ovis is a rough bacterium--lacking O-polysaccharide chains in the lipopolysaccharide--that is virulent in its natural host and whose virulence mechanisms remain almost unexplored. In a search for additional traits that distinguish B. ovis from smooth Brucella, which require O-polysaccharide chains for virulence, we have analyzed the significance in B. ovis of the main virulence factors described for smooth Brucella. Attempts to obtain strains of virulent B. ovis strain PA that are mutated in the BvrR/BvrS two-component regulatory system were unsuccessful, suggesting the requirement of that system for in vitro survival, while the inactivation of bacA--in contrast to the results seen with smooth Brucella--did not affect splenic colonization in mice or behavior in J774.A1 murine macrophages. Defects in the synthesis of cyclic ß-1,2 glucans reduced the uptake of B. ovis PA in macrophages and, although the intracellular multiplication rate was unaffected, led to attenuation in mice. Growth of strains with mutations in the type IV secretion system (encoded by the virB operon) and the quorum-sensing-related regulator VjbR was severely attenuated in the mouse model, and although the mutant strains internalized like the parental strain in J774.A1 murine macrophages, they were impaired for intracellular replication. As described for B. melitensis, VjbR regulates the transcription of the virB operon positively, and the N-dodecanoyl-dl-homoserine lactone (C(12)-HSL) autoinducer abrogates this effect. In contrast, no apparent VjbR-mediated regulation of the fliF flagellar gene was observed in B. ovis, probably due to the two deletions detected upstream of fliF. These results, together with others reported in the text, point to similarities between rough virulent B. ovis and smooth Brucella species as regards virulence but also reveal distinctive traits that could be related to the particular pathogenicity and host tropism characteristics of B. ovis.
Collapse
|
52
|
Adone R, Muscillo M, La Rosa G, Francia M, Tarantino M. Antigenic, immunologic and genetic characterization of rough strains B. abortus RB51, B. melitensis B115 and B. melitensis B18. PLoS One 2011; 6:e24073. [PMID: 22065984 PMCID: PMC3204967 DOI: 10.1371/journal.pone.0024073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022] Open
Abstract
The lipopolysaccharide (LPS) is considered the major virulent factor in Brucella spp. Several genes have been identified involved in the synthesis of the three LPS components: lipid A, core and O-PS. Usually, Brucella strains devoid of O-PS (rough mutants) are less virulent than the wild type and do not induce undesirable interfering antibodies. Such of them proved to be protective against brucellosis in mice. Because of these favorable features, rough strains have been considered potential brucellosis vaccines. In this study, we evaluated the antigenic, immunologic and genetic characteristics of rough strains B.abortus RB51, B.melitensis B115 and B.melitensis B18. RB51 derived from B.abortus 2308 virulent strain and B115 is a natural rough strain in which the O-PS is present in the cytoplasm. B18 is a rough rifampin-resistan mutant isolated in our laboratory. The surface antigenicity of RB51, B115 and B18 was evaluated by testing their ability to bind antibodies induced by rough or smooth Brucella strains. The antibody response induced by each strain was evaluated in rabbits. Twenty-one genes, involved in the LPS-synthesis, were sequenced and compared with the B.melitensis 16M strain. The results indicated that RB51, B115 and B18 have differences in antigenicity, immunologic and genetic properties. Particularly, in B115 a nonsense mutation was detected in wzm gene, which could explain the intracellular localization of O-PS in this strain. Complementation studies to evaluate the precise role of each mutation in affecting Brucella morphology and its virulence, could provide useful information for the assessment of new, attenuated vaccines for brucellosis.
Collapse
Affiliation(s)
- Rosanna Adone
- Dipartimento Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità, Roma, Italy.
| | | | | | | | | |
Collapse
|
53
|
Protective live oral brucellosis vaccines stimulate Th1 and th17 cell responses. Infect Immun 2011; 79:4165-74. [PMID: 21768283 DOI: 10.1128/iai.05080-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Zoonotic transmission of brucellosis often results from exposure to Brucella-infected livestock, feral animals, or wildlife or frequently via consumption of unpasteurized milk products or raw meat. Since natural infection of humans often occurs by the oral route, mucosal vaccination may offer a means to confer protection for both mucosal and systemic tissues. Significant efforts have focused on developing a live brucellosis vaccine, and deletion of the znuA gene involved in zinc transport has been found to attenuate Brucella abortus. A similar mutation has been adapted for Brucella melitensis and tested to determine whether oral administration of ΔznuA B. melitensis can confer protection against nasal B. melitensis challenge. A single oral vaccination with ΔznuA B. melitensis rapidly cleared from mice within 2 weeks and effectively protected mice upon nasal challenge with wild-type B. melitensis 16M. In 83% of the vaccinated mice, no detectable brucellae were found in their spleens, unlike with phosphate-buffered saline (PBS)-dosed mice, and vaccination also enhanced the clearance of brucellae from the lungs. Moreover, vaccinated gamma interferon-deficient (IFN-γ(-/-)) mice also showed protection in both spleens and lungs, albeit protection that was not as effective as in immunocompetent mice. Although IFN-γ, interleukin 17 (IL-17), and IL-22 were stimulated by these live vaccines, only RB51-mediated protection was codependent upon IL-17 in BALB/c mice. These data suggest that oral immunization with the live, attenuated ΔznuA B. melitensis vaccine provides an attractive strategy to protect against inhalational infection with virulent B. melitensis.
Collapse
|
54
|
Palacios-Chaves L, Conde-Álvarez R, Gil-Ramírez Y, Zúñiga-Ripa A, Barquero-Calvo E, Chacón-Díaz C, Chaves-Olarte E, Arce-Gorvel V, Gorvel JP, Moreno E, de Miguel MJ, Grilló MJ, Moriyón I, Iriarte M. Brucella abortus ornithine lipids are dispensable outer membrane components devoid of a marked pathogen-associated molecular pattern. PLoS One 2011; 6:e16030. [PMID: 21249206 PMCID: PMC3017556 DOI: 10.1371/journal.pone.0016030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/03/2010] [Indexed: 11/19/2022] Open
Abstract
The brucellae are α-Proteobacteria facultative intracellular parasites that cause an important zoonosis. These bacteria escape early detection by innate immunity, an ability associated to the absence of marked pathogen-associated molecular patterns in the cell envelope lipopolysaccharide, lipoproteins and flagellin. We show here that, in contrast to the outer membrane ornithine lipids (OL) of other Gram negative bacteria, Brucella abortus OL lack a marked pathogen-associated molecular pattern activity. We identified two OL genes (olsB and olsA) and by generating the corresponding mutants found that olsB deficient B. abortus did not synthesize OL or their lyso-OL precursors. Liposomes constructed with B. abortus OL did not trigger IL-6 or TNF-α release by macrophages whereas those constructed with Bordetella pertussis OL and the olsB mutant lipids as carriers were highly active. The OL deficiency in the olsB mutant did not promote proinflammatory responses or generated attenuation in mice. In addition, OL deficiency did not increase sensitivity to polymyxins, normal serum or complement consumption, or alter the permeability to antibiotics and dyes. Taken together, these observations indicate that OL have become dispensable in the extant brucellae and are consistent within the trend observed in α-Proteobacteria animal pathogens to reduce and eventually eliminate the envelope components susceptible of recognition by innate immunity.
Collapse
Affiliation(s)
- Leyre Palacios-Chaves
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
- Focal Area Infection Biology, Biozentrum of the University of Basel, Basel, Switzerland
| | - Yolanda Gil-Ramírez
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Amaia Zúñiga-Ripa
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Carlos Chacón-Díaz
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Faculté de Sciences de Luminy, Marseille, INSERM U631, CNRS UMR6102, Marseille, France
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Faculté de Sciences de Luminy, Marseille, INSERM U631, CNRS UMR6102, Marseille, France
| | - Edgardo Moreno
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San Pedro, Costa Rica
| | - María-Jesús de Miguel
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Unidad de Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Pamplona, Spain
| | - Ignacio Moriyón
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
55
|
Chacón-Díaz C, Muñoz-Rodríguez M, Barquero-Calvo E, Guzmán-Verri C, Chaves-Olarte E, Grilló MJ, Moreno E. The use of green fluorescent protein as a marker for Brucella vaccines. Vaccine 2011; 29:577-82. [DOI: 10.1016/j.vaccine.2010.09.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 08/04/2010] [Accepted: 09/26/2010] [Indexed: 11/27/2022]
|
56
|
Importance of Lipopolysaccharide and Cyclic β-1,2-Glucans in Brucella-Mammalian Infections. Int J Microbiol 2010; 2010:124509. [PMID: 21151694 PMCID: PMC2995898 DOI: 10.1155/2010/124509] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 10/04/2010] [Indexed: 01/28/2023] Open
Abstract
Brucella species are the causative agents of one of the most prevalent zoonotic diseases: brucellosis. Infections by Brucella species cause major economic losses in agriculture, leading to abortions in infected animals and resulting in a severe, although rarely lethal, debilitating disease in humans. Brucella species persist as intracellular pathogens that manage to effectively evade recognition by the host's immune system. Sugar-modified components in the Brucella cell envelope play an important role in their host interaction. Brucella lipopolysaccharide (LPS), unlike Escherichia coli LPS, does not trigger the host's innate immune system. Brucella produces cyclic β-1,2-glucans, which are important for targeting them to their replicative niche in the endoplasmic reticulum within the host cell. This paper will focus on the role of LPS and cyclic β-1,2-glucans in Brucella-mammalian infections and discuss the use of mutants, within the biosynthesis pathway of these cell envelope structures, in vaccine development.
Collapse
|
57
|
Nikolich MP, Warren RL, Lindler LE, Izadjoo MJ, Hoover DL. Attenuation of defined Brucella melitensis wboA mutants. Vaccine 2010; 28 Suppl 5:F12-6. [DOI: 10.1016/j.vaccine.2010.03.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 11/15/2022]
|
58
|
Lai XH, Shirley RL, Crosa L, Kanistanon D, Tempel R, Ernst RK, Gallagher LA, Manoil C, Heffron F. Mutations of Francisella novicida that alter the mechanism of its phagocytosis by murine macrophages. PLoS One 2010; 5:e11857. [PMID: 20686600 PMCID: PMC2912274 DOI: 10.1371/journal.pone.0011857] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 06/29/2010] [Indexed: 12/15/2022] Open
Abstract
Infection with the bacterial pathogen Francisella tularensis tularensis (F. tularensis) causes tularemia, a serious and debilitating disease. Francisella tularensis novicida strain U112 (abbreviated F. novicida), which is closely related to F. tularensis, is pathogenic for mice but not for man, making it an ideal model system for tularemia. Intracellular pathogens like Francisella inhibit the innate immune response, thereby avoiding immune recognition and death of the infected cell. Because activation of inflammatory pathways may lead to cell death, we reasoned that we could identify bacterial genes involved in inhibiting inflammation by isolating mutants that killed infected cells faster than the wild-type parent. We screened a comprehensive transposon library of F. novicida for mutant strains that increased the rate of cell death following infection in J774 macrophage-like cells, as compared to wild-type F. novicida. Mutations in 28 genes were identified as being hypercytotoxic to both J774 and primary macrophages of which 12 were less virulent in a mouse infection model. Surprisingly, we found that F. novicida with mutations in four genes (lpcC, manB, manC and kdtA) were taken up by and killed macrophages at a much higher rate than the parent strain, even upon treatment with cytochalasin D (cytD), a classic inhibitor of macrophage phagocytosis. At least 10-fold more mutant bacteria were internalized by macrophages as compared to the parent strain if the bacteria were first fixed with formaldehyde, suggesting a surface structure is required for the high phagocytosis rate. However, bacteria were required to be viable for macrophage toxicity. The four mutant strains do not make a complete LPS but instead have an exposed lipid A. Interestingly, other mutations that result in an exposed LPS core were not taken up at increased frequency nor did they kill host cells more than the parent. These results suggest an alternative, more efficient macrophage uptake mechanism for Francisella that requires exposure of a specific bacterial surface structure(s) but results in increased cell death following internalization of live bacteria.
Collapse
Affiliation(s)
- Xin-He Lai
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
- Virogenomics, Inc., Tigard, Oregon, United States of America
- * E-mail: (X-HL); (FH)
| | | | - Lidia Crosa
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Duangjit Kanistanon
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Rebecca Tempel
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Larry A. Gallagher
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Colin Manoil
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail: (X-HL); (FH)
| |
Collapse
|
59
|
Lacerda TLS, Cardoso PG, Augusto de Almeida L, Camargo ILBDC, Afonso DAF, Trant CC, Macedo GC, Campos E, Cravero SL, Salcedo SP, Gorvel JP, Oliveira SC. Inactivation of formyltransferase (wbkC) gene generates a Brucella abortus rough strain that is attenuated in macrophages and in mice. Vaccine 2010; 28:5627-34. [PMID: 20580469 DOI: 10.1016/j.vaccine.2010.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Rough mutants of Brucella abortus were generated by disruption of wbkC gene which encodes the formyltransferase enzyme involved in LPS biosynthesis. In bone marrow-derived macrophages the B. abortusDeltawbkC mutants were attenuated, could not reach a replicative niche and induced higher levels of IL-12 and TNF-alpha when compared to parental smooth strains. Additionally, mutants exhibited attenuation in vivo in C57BL/6 and interferon regulatory factor-1 knockout mice. DeltawbkC mutant strains induced lower protective immunity in C56BL/6 than smooth vaccine S19 but similar to rough vaccine RB51. Finally, we demonstrated that Brucella wbkC is critical for LPS biosynthesis and full bacterial virulence.
Collapse
Affiliation(s)
- Thaís Lourdes Santos Lacerda
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Pampulha, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Blasco J, Moriyon I. Eradication of bovine brucellosis in the Azores, Portugal—Outcome of a 5-year programme (2002–2007) based on test-and-slaughter and RB51 vaccination. Prev Vet Med 2010; 94:154-7. [DOI: 10.1016/j.prevetmed.2009.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 10/15/2009] [Indexed: 12/01/2022]
|
61
|
Yang X, Thornburg T, Walters N, Pascual DW. DeltaznuADeltapurE Brucella abortus 2308 mutant as a live vaccine candidate. Vaccine 2010; 28:1069-74. [PMID: 19914192 PMCID: PMC9811401 DOI: 10.1016/j.vaccine.2009.10.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/15/2009] [Accepted: 10/19/2009] [Indexed: 01/18/2023]
Abstract
To create a new, safe brucellosis live vaccine, a double mutant strain was constructed from Brucella abortus 2308. Using the DeltaznuA B. abortus 2308 mutant, a second mutation was introduced by deleting purE gene. The DeltaznuA DeltapurE B. abortus 2308 strain was less capable of surviving in macrophages. When evaluated in vivo, it was cleared within 8 weeks (wks) from mice, causing significantly less inflammation than spleens obtained from wild-type B. abortus 2308-infected mice. Furthermore, two doses of DeltaznuA DeltapurE B. abortus 2308 conferred 0.79 log protection, similar to S19 as did a single dose of DeltaznuA B. abortus 2308. Thus, this study shows the DeltaznuA DeltapurE B. abortus 2308 strain to be a potential livestock vaccine candidate.
Collapse
Affiliation(s)
| | | | | | - David W. Pascual
- Corresponding author at: Veterinary Molecular Biology, Molecular Biosciences Building, 960 Technology Blvd., Bozeman, MT 59718-4000, United States. Tel.: +1 406 994 6244; fax: +1 406 994 4303. (D.W. Pascual)
| |
Collapse
|
62
|
Martín-Martín AI, Vizcaíno N, Fernández-Lago L. Cholesterol, ganglioside GM1 and class A scavenger receptor contribute to infection by Brucella ovis and Brucella canis in murine macrophages. Microbes Infect 2010; 12:246-51. [PMID: 20083220 DOI: 10.1016/j.micinf.2009.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/15/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
The establishment of infection by Brucella ovis and Brucella canis in J774.A1 macrophages was found to be dependent upon cholesterol and ganglioside GM(1), two components of lipid rafts. This process also required a class A scavenger receptor of macrophages, and was not inhibited by smooth and rough lipopolysaccharides from Brucella spp. In response to infection, both bacteria induced a weak degree of macrophage activation. These results demonstrate that B. ovis and B. canis use cell surface receptors common to smooth Brucella spp. for macrophage infection, thus limiting macrophage activation and favouring intracellular multiplication and/or the survival of both bacteria.
Collapse
Affiliation(s)
- Ana I Martín-Martín
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | | | | |
Collapse
|
63
|
Ficht TA, Kahl-McDonagh MM, Arenas-Gamboa AM, Rice-Ficht AC. Brucellosis: the case for live, attenuated vaccines. Vaccine 2009; 27 Suppl 4:D40-3. [PMID: 19837284 PMCID: PMC2780424 DOI: 10.1016/j.vaccine.2009.08.058] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
Abstract
The successful control of animal brucellosis and associated reduction in human exposure has limited the development of human brucellosis vaccines. However, the potential use of Brucella in bioterrorism or biowarfare suggests that direct intervention strategies are warranted. Although the dominant approach has explored the use of live attenuated vaccines, side effects associated with their use has prevented widespread use in humans. Development of live, attenuated Brucella vaccines that are safe for use in humans has focused on the deletion of important genes required for survival. However, the enhanced safety of deletion mutants is most often associated with reduced efficacy. For this reason recent efforts have sought to combine the optimal features of a attenuated live vaccine that is safe, free of side effects and efficacious in humans with enhanced immune stimulation through microencapsulation. The competitive advantages and innovations of this approach are: (1) use of highly attenuated, safe, gene knockout, live Brucella mutants; (2) manufacturing with unique disposable closed system technologies, and (3) oral/intranasal delivery in a novel microencapsulation-mediated controlled release formula to optimally provide the long term mucosal immunostimulation required for protective immunity. Based upon preliminary data, it is postulated that such vaccine delivery systems can be storage stable, administered orally or intranasally, and generally applicable to a number of agents.
Collapse
Affiliation(s)
- Thomas A Ficht
- Department of Veterinary Pathobiology, Texas A&M University and TX AgriLife Research, College Station, TX 77843-4467, USA.
| | | | | | | |
Collapse
|
64
|
Lamontagne J, Forest A, Marazzo E, Denis F, Butler H, Michaud JF, Boucher L, Pedro I, Villeneuve A, Sitnikov D, Trudel K, Nassif N, Boudjelti D, Tomaki F, Chaves-Olarte E, Guzmán-Verri C, Brunet S, Côté-Martin A, Hunter J, Moreno E, Paramithiotis E. Intracellular adaptation of Brucella abortus. J Proteome Res 2009; 8:1594-609. [PMID: 19216536 DOI: 10.1021/pr800978p] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macrophages were infected with virulent Brucella abortus strain 2308 or attenuated strain 19. Intracellular bacteria were recovered at different times after infection and their proteomes compared. The virulent strain initially reduced most biosynthesis and altered its respiration; adaptations reversed later in infection. The attenuated strain was unable to match the magnitude of the virulent strain's adjustments. The results provide insight into mechanisms utilized by Brucella to establish intracellular infections.
Collapse
Affiliation(s)
- Julie Lamontagne
- Caprion Proteomics, Inc., 7150 Alexander-Fleming, Montreal, Quebec, Canada, H4S 2C8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Zygmunt MS, Blasco JM, Letesson JJ, Cloeckaert A, Moriyón I. DNA polymorphism analysis of Brucella lipopolysaccharide genes reveals marked differences in O-polysaccharide biosynthetic genes between smooth and rough Brucella species and novel species-specific markers. BMC Microbiol 2009; 9:92. [PMID: 19439075 PMCID: PMC2698832 DOI: 10.1186/1471-2180-9-92] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 05/13/2009] [Indexed: 02/05/2023] Open
Abstract
Background The lipopolysaccharide is a major antigen and virulence factor of Brucella, an important bacterial pathogen. In smooth brucellae, lipopolysaccharide is made of lipid A-core oligosaccharide and N-formylperosamine O-polysaccharide. B. ovis and B. canis (rough species) lack the O-polysaccharide. Results The polymorphism of O-polysaccharide genes wbkE, manAO-Ag, manBO-Ag, manCO-Ag, wbkF and wbkD) and wbo (wboA and wboB), and core genes manBcore and wa** was analyzed. Although most genes were highly conserved, species- and biovar-specific restriction patterns were found. There were no significant differences in putative N-formylperosamyl transferase genes, suggesting that Brucella A and M serotypes are not related to specific genes. In B. pinnipedialis and B. ceti (both smooth), manBO-Ag carried an IS711, confirming its dispensability for perosamine synthesis. Significant differences between smooth and rough species were found in wbkF and wbkD, two adjacent genes putatively related to bactoprenol priming for O-polysaccharide polymerization. B. ovis wbkF carried a frame-shift and B. canis had a long deletion partially encompassing both genes. In smooth brucellae, this region contains two direct repeats suggesting the deletion mechanism. Conclusion The results define species and biovar markers, confirm the dispensability of manBO-Ag for O-polysaccharide synthesis and contribute to explain the lipopolysaccharide structure of rough and smooth Brucella species.
Collapse
Affiliation(s)
- Michel S Zygmunt
- INRA, UR1282, Infectiologie Animale et Santé Publique, IASP, Nouzilly, France.
| | | | | | | | | |
Collapse
|
66
|
Barrio MB, Grilló MJ, Muñoz PM, Jacques I, González D, de Miguel MJ, Marín CM, Barberán M, Letesson JJ, Gorvel JP, Moriyón I, Blasco JM, Zygmunt MS. Rough mutants defective in core and O-polysaccharide synthesis and export induce antibodies reacting in an indirect ELISA with smooth lipopolysaccharide and are less effective than Rev 1 vaccine against Brucella melitensis infection of sheep. Vaccine 2009; 27:1741-9. [PMID: 19186196 DOI: 10.1016/j.vaccine.2009.01.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/30/2008] [Accepted: 01/11/2009] [Indexed: 12/23/2022]
Abstract
Classical brucellosis vaccines induce antibodies to the O-polysaccharide section of the lipopolysaccharide that interfere in serodiagnosis. Brucella rough (R) mutants lack the O-polysaccharide but their usefulness as vaccines is controversial. Here, Brucella melitensis R mutants in all main lipopolysaccharide biosynthetic pathways were evaluated in sheep in comparison with the reference B. melitensis Rev 1 vaccine. In a first experiment, these mutants were tested for ability to induce anti-O-polysaccharide antibodies, persistence and spread through target organs, and innocuousness. Using the data obtained and those of genetic studies, three candidates were selected and tested for efficacy as vaccines against a challenge infecting 100% of unvaccinated ewes. Protection by R vaccines was 54% or less whereas Rev 1 afforded 100% protection. One-third of R mutant vaccinated ewes became positive in an enzyme-linked immunosorbent assay with smooth lipopolysaccharide due to the core epitopes remaining in the mutated lipopolysaccharide. We conclude that R vaccines interfere in lipopolysaccharide immunosorbent assays and are less effective than Rev 1 against B. melitensis infection of sheep.
Collapse
Affiliation(s)
- María B Barrio
- INRA, UR1282, Infectiologie Animale et Santé Publique, IASP, Nouzilly F-37380, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Adone R, Francia M, Ciuchini F. Evaluation of Brucella melitensis B115 as rough-phenotype vaccine against B. melitensis and B. ovis infections. Vaccine 2008; 26:4913-7. [DOI: 10.1016/j.vaccine.2008.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/02/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
|
68
|
RNAi screen of endoplasmic reticulum-associated host factors reveals a role for IRE1alpha in supporting Brucella replication. PLoS Pathog 2008; 4:e1000110. [PMID: 18654626 PMCID: PMC2453327 DOI: 10.1371/journal.ppat.1000110] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/24/2008] [Indexed: 11/20/2022] Open
Abstract
Brucella species are facultative intracellular bacterial pathogens that cause brucellosis, a global zoonosis of profound importance. Although recent studies have demonstrated that Brucella spp. replicate within an intracellular compartment that contains endoplasmic reticulum (ER) resident proteins, the molecular mechanisms by which the pathogen secures this replicative niche remain obscure. Here, we address this issue by exploiting Drosophila S2 cells and RNA interference (RNAi) technology to develop a genetically tractable system that recapitulates critical aspects of mammalian cell infection. After validating this system by demonstrating a shared requirement for phosphoinositide 3-kinase (PI3K) activities in supporting Brucella infection in both host cell systems, we performed an RNAi screen of 240 genes, including 110 ER-associated genes, for molecules that mediate bacterial interactions with the ER. We uncovered 52 evolutionarily conserved host factors that, when depleted, inhibited or increased Brucella infection. Strikingly, 29 of these factors had not been previously suggested to support bacterial infection of host cells. The most intriguing of these was inositol-requiring enzyme 1 (IRE1), a transmembrane kinase that regulates the eukaryotic unfolded protein response (UPR). We employed IRE1α−/− murine embryonic fibroblasts (MEFs) to demonstrate a role for this protein in supporting Brucella infection of mammalian cells, and thereby, validated the utility of the Drosophila S2 cell system for uncovering novel Brucella host factors. Finally, we propose a model in which IRE1α, and other ER-associated genes uncovered in our screen, mediate Brucella replication by promoting autophagosome biogenesis. Brucella spp. are facultative intracellular pathogens that cause brucellosis in a broad range of hosts, including humans. Brucella melitensis, B. abortus, and B. suis are highly infectious and can be readily transmitted in aerosolized form, and a human vaccine against brucellosis is unavailable. Therefore, these pathogens are recognized as potential bioterror agents. Because genetic systems for studying host–Brucella interactions have been unavailable, little is known about the host factors that mediate infection. Here, we demonstrate that a Drosophila S2 cell system and RNA interference can be exploited to study the role that evolutionarily conserved Brucella host proteins play in these processes. We also show that this system provides for the identification and characterization of host factors that mediate Brucella interactions with the host cell endoplasmic reticulum. In fact, we identified 52 host factors that, when depleted, inhibited or increased Brucella infection. Among the identified Brucella host factors, 29 have not been previously shown to support bacterial infection. Finally, we demonstrate that the novel host factor inositol-requiring enzyme 1 (IRE1) and its mammalian ortholog (IRE1α) are required for Brucella infection of Drosophila S2 and mammalian cells, respectively. Therefore, this work contributes to our understanding of host factors mediating Brucella infection.
Collapse
|
69
|
González D, Grilló MJ, De Miguel MJ, Ali T, Arce-Gorvel V, Delrue RM, Conde-Álvarez R, Muñoz P, López-Goñi I, Iriarte M, Marín CM, Weintraub A, Widmalm G, Zygmunt M, Letesson JJ, Gorvel JP, Blasco JM, Moriyón I. Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export. PLoS One 2008; 3:e2760. [PMID: 18648644 PMCID: PMC2453230 DOI: 10.1371/journal.pone.0002760] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 06/24/2008] [Indexed: 11/19/2022] Open
Abstract
Background The brucellae are facultative intracellular bacteria that cause brucellosis, one of the major neglected zoonoses. In endemic areas, vaccination is the only effective way to control this disease. Brucella melitensis Rev 1 is a vaccine effective against the brucellosis of sheep and goat caused by B. melitensis, the commonest source of human infection. However, Rev 1 carries a smooth lipopolysaccharide with an O-polysaccharide that elicits antibodies interfering in serodiagnosis, a major problem in eradication campaigns. Because of this, rough Brucella mutants lacking the O-polysaccharide have been proposed as vaccines. Methodology/Principal Findings To examine the possibilities of rough vaccines, we screened B. melitensis for lipopolysaccharide genes and obtained mutants representing all main rough phenotypes with regard to core oligosaccharide and O-polysaccharide synthesis and export. Using the mouse model, mutants were classified into four attenuation patterns according to their multiplication and persistence in spleens at different doses. In macrophages, mutants belonging to three of these attenuation patterns reached the Brucella characteristic intracellular niche and multiplied intracellularly, suggesting that they could be suitable vaccine candidates. Virulence patterns, intracellular behavior and lipopolysaccharide defects roughly correlated with the degree of protection afforded by the mutants upon intraperitoneal vaccination of mice. However, when vaccination was applied by the subcutaneous route, only two mutants matched the protection obtained with Rev 1 albeit at doses one thousand fold higher than this reference vaccine. These mutants, which were blocked in O-polysaccharide export and accumulated internal O-polysaccharides, stimulated weak anti-smooth lipopolysaccharide antibodies. Conclusions/Significance The results demonstrate that no rough mutant is equal to Rev 1 in laboratory models and question the notion that rough vaccines are suitable for the control of brucellosis in endemic areas.
Collapse
Affiliation(s)
- David González
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Pamplona, Spain
| | - María-Jesús De Miguel
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - Tara Ali
- Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Faculté de Sciences de Luminy, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Rose-May Delrue
- Laboratoire d'Immunologie et Microbiologie - Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires - Notre-Dame de la Paix (FUNDP), Namur, Belgium
| | - Raquel Conde-Álvarez
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - Pilar Muñoz
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - Ignacio López-Goñi
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - Maite Iriarte
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - Clara-M. Marín
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - Andrej Weintraub
- Karolinska Institute, Department Laboratory Medicine, Division of Clinical Bacteriology, Karolinska University Hospital, Stockholm, Sweden
| | - Göran Widmalm
- Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Michel Zygmunt
- INRA, UR1282, Infectiologie Animale et Santé Publique, IASP, Nouzilly, France
| | - Jean-Jacques Letesson
- Laboratoire d'Immunologie et Microbiologie - Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires - Notre-Dame de la Paix (FUNDP), Namur, Belgium
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Faculté de Sciences de Luminy, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - José-María Blasco
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - Ignacio Moriyón
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
70
|
Caro-Hernández P, Fernández-Lago L, de Miguel MJ, Martín-Martín AI, Cloeckaert A, Grilló MJ, Vizcaíno N. Role of the Omp25/Omp31 family in outer membrane properties and virulence of Brucella ovis. Infect Immun 2007; 75:4050-61. [PMID: 17562767 PMCID: PMC1952020 DOI: 10.1128/iai.00486-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The genes coding for the five outer membrane proteins (OMPs) of the Omp25/Omp31 family expected to be located in the outer membrane (OM) of rough virulent Brucella ovis PA were inactivated to evaluate their role in virulence and OM properties. The OM properties of the mutant strains and of the mutants complemented with the corresponding wild-type genes were analyzed, in comparison with the parental strain and rough B. abortus RB51, in several tests: (i) binding of anti-Omp25 and anti-Omp31 monoclonal antibodies, (ii) autoagglutination of bacterial suspensions, and (iii) assessment of susceptibility to polymyxin B, sodium deoxycholate, hydrogen peroxide, and nonimmune ram serum. A tight balance of the members of the Omp25/Omp31 family was seen to be essential for the stability of the B. ovis OM, and important differences between the OMs of B. ovis PA and B. abortus RB51 rough strains were observed. Regarding virulence, the absence of Omp25d and Omp22 from the OM of B. ovis PA led to a drastic reduction in spleen colonization in mice. While the greater susceptibility of the Deltaomp22 mutant to nonimmune serum and its difficulty in surviving in the stationary phase might be on the basis of its dramatic attenuation, no defects in the OM able to explain the attenuation of the Deltaomp25d mutant were found, especially considering that the fully virulent Deltaomp25c mutant displayed more important OM defects. Accordingly, Omp25d, and perhaps Omp22, could be directly involved in the penetration and/or survival of B. ovis inside host cells. This aspect, together with the role of Omp25d and Omp22 in the virulence both of B. ovis in rams and of other Brucella species, should be thoroughly evaluated in future studies.
Collapse
Affiliation(s)
- Paola Caro-Hernández
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
71
|
Andrä J, Monreal D, Martinez de Tejada G, Olak C, Brezesinski G, Gomez SS, Goldmann T, Bartels R, Brandenburg K, Moriyon I. Rationale for the design of shortened derivatives of the NK-lysin-derived antimicrobial peptide NK-2 with improved activity against Gram-negative pathogens. J Biol Chem 2007; 282:14719-28. [PMID: 17389605 DOI: 10.1074/jbc.m608920200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peptide NK-2 is an effective antimicrobial agent with low hemolytic and cytotoxic activities and is thus a promising candidate for clinical applications. It comprises the alpha-helical, cationic core region of porcine NK-lysin a homolog of human granulysin and of amoebapores of pathogenic amoeba. Here we visualized the impact of NK-2 on Escherichia coli by electron microscopy and used NK-2 as a template for sequence variations to improve the peptide stability and activity and to gain insight into the structure/function relationships. We synthesized 18 new peptides and tested their activities on seven Gram-negative and one Gram-positive bacterial strains, human erythrocytes, and HeLa cells. Although all peptides appeared unordered in buffer, those active against bacteria adopted an alpha-helical conformation in membrane-mimetic environments like trifluoroethanol and negatively charged phosphatidylglycerol (PG) liposomes that mimick the cytoplasmic membrane of bacteria. This conformation was not observed in the presence of liposomes consisting of zwitterionic phosphatidylcholine (PC) typical for the human cell plasma membrane. The interaction was paralleled by intercalation of these peptides into PG liposomes as determined by FRET spectroscopy. A comparative analysis between biological activity and the calculated peptide parameters revealed that the decisive factor for a broad spectrum activity is not the peptide overall hydrophobicity or amphipathicity, but the possession of a minimal positive net charge plus a highly amphipathic anchor point of only seven amino acid residues (two helical turns).
Collapse
Affiliation(s)
- Jörg Andrä
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Parkallee 10, D-23845 Borstel, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Zygmunt MS, Hagius SD, Walker JV, Elzer PH. Identification of Brucella melitensis 16M genes required for bacterial survival in the caprine host. Microbes Infect 2006; 8:2849-54. [PMID: 17090391 DOI: 10.1016/j.micinf.2006.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 09/15/2006] [Accepted: 09/21/2006] [Indexed: 11/24/2022]
Abstract
Brucella species are gram-negative bacteria which belong to alpha-Proteobacteria family. These organisms are zoonotic pathogens that induce abortion and sterility in domestic mammals and chronic infections in humans known as Malta fever. The virulence of Brucella is dependent upon its ability to enter and colonize the cells in which it multiplies. The genetic basis of this aspect is poorly understood. Signature-tagged mutagenesis (STM) was used to identify potential Brucella virulence factors. PCR amplification has been used in place of DNA hybridization to identify the STM-generated attenuated mutants. A library of 288 Brucella melitensis 16M tagged mini-Tn5 Km2 mutants, in 24 pools, was screened for its ability to colonize spleen, lymph nodes and liver of goats at three weeks post-i.v. infection. This comparative screening identified 7 mutants (approximately 5%) which were not recovered from the output pool in goats. Some genes were known virulence genes involved in biosynthesis of LPS (lpsA gene) or in intracellular survival (the virB operon). Other mutants included ones which had a disrupted gene homologous to flgF, a gene coding for the basal-body rod of the flagellar apparatus, and another with a disruption in a gene homologous to ppk which is involved in the biosynthesis of inorganic polyphosphate (PolyP) from ATP. Other genes identified encoded factors involved in DNA metabolism and oxidoreduction metabolism. Using STM and the caprine host for screening, potential virulence determinants in B. melitensis have been identified.
Collapse
Affiliation(s)
- Michel S Zygmunt
- UR 1282, Unité de Recherche Infectiologie Animale et Santé Publique, Institut National de la Recherche Agronomique, 3738 Nouzilly, France.
| | | | | | | |
Collapse
|
73
|
Kahl-McDonagh MM, Ficht TA. Evaluation of protection afforded by Brucella abortus and Brucella melitensis unmarked deletion mutants exhibiting different rates of clearance in BALB/c mice. Infect Immun 2006; 74:4048-57. [PMID: 16790778 PMCID: PMC1489724 DOI: 10.1128/iai.01787-05] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Research for novel Brucella vaccines has focused upon the development of live vaccine strains, which have proven more efficacious than killed or subunit vaccines. In an effort to develop improved vaccines, signature-tagged mutant banks were screened to identify mutants attenuated for survival. Mutants selected from these screens exhibited various degrees of attenuation characterized by the rate of clearance, ranging from a failure to grow in macrophages after 24 h of infection to a failure to persist in the mouse model beyond 8 weeks. Ideal vaccine candidates should be safe to the host, while evoking protective immunity. In the present work, we constructed unmarked deletion mutants of three gene candidates, manBA, virB2, and asp24, in both Brucella abortus and Brucella melitensis. The Deltaasp24 mutants, which persist for extended periods in vivo, are superior to current vaccine strains and to other deletion strains tested in the mouse model against homologous challenge infection after 12, 16, and 20 weeks postvaccination. The Deltaasp24 mutants also display superior protection compared to DeltamanBA and DeltavirB2 mutants against heterologous challenge in mice. From this study, a direct association between protection against infection and cytokine response was not apparent between all vaccine groups and, therefore, correlates of protective immunity will need to be considered further. A distinct correlation between persistence of the vaccine strain and protection against infection was corroborated.
Collapse
Affiliation(s)
- M M Kahl-McDonagh
- Texas A&M University, Department of Veterinary Pathobiology, MS 4467, College Station, TX 77843-4467, USA
| | | |
Collapse
|
74
|
Conde-Alvarez R, Grilló MJ, Salcedo SP, de Miguel MJ, Fugier E, Gorvel JP, Moriyón I, Iriarte M. Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cell Microbiol 2006; 8:1322-35. [PMID: 16882035 DOI: 10.1111/j.1462-5822.2006.00712.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphatidylcholine (PC) is a typical eukaryotic phospholipid absent from most prokaryotes. Thus, its presence in some intracellular bacteria is intriguing as it may constitute host mimicry. The role of PC in Brucella abortus was examined by generating mutants in pcs (BApcs) and pmtA (BApmtA), which encode key enzymes of the two bacterial PC biosynthetic routes, the choline and methyl-transferase pathways. In rich medium, BApcs and the double mutant BApcspmtA but not BApmtA displayed reduced growth, increased phosphatidylethanolamine and no PC, showing that Pcs is essential for PC synthesis under these conditions. In minimal medium, the parental strain, BApcs and BApmtA showed reduced but significant amounts of PC suggesting that PmtA may also be functional. Probing with phage Tb, antibiotics, polycations and serum demonstrated that all mutants had altered envelopes. In macrophages, BApcs and BApcspmtA showed reduced ability to evade fusion with lysosomes and establish a replication niche. In mice, BApcs showed attenuation only at early times after infection, BApmtA at later stages and BApcspmtA throughout. The results suggest that Pcs and PmtA have complementary roles in vivo related to nutrient availability and that PC and the membrane properties that depend on this typical eukaryotic phospholipid are essential for Brucella virulence.
Collapse
|
75
|
Rajashekara G, Glover DA, Banai M, O'Callaghan D, Splitter GA. Attenuated bioluminescent Brucella melitensis mutants GR019 (virB4), GR024 (galE), and GR026 (BMEI1090-BMEI1091) confer protection in mice. Infect Immun 2006; 74:2925-36. [PMID: 16622231 PMCID: PMC1459743 DOI: 10.1128/iai.74.5.2925-2936.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vivo bioluminescence imaging is a persuasive approach to investigate a number of issues in microbial pathogenesis. Previously, we have applied bioluminescence imaging to gain greater insight into Brucella melitensis pathogenesis. Endowing Brucella with bioluminescence allowed direct visualization of bacterial dissemination, pattern of tissue localization, and the contribution of Brucella genes to virulence. In this report, we describe the pathogenicity of three attenuated bioluminescent B. melitensis mutants, GR019 (virB4), GR024 (galE), and GR026 (BMEI1090-BMEI1091), and the dynamics of bioluminescent virulent bacterial infection following vaccination with these mutants. The virB4, galE, and BMEI1090-BMEI1091 mutants were attenuated in interferon regulatory factor 1-deficient (IRF-1(-/-)) mice; however, only the GR019 (virB4) mutant was attenuated in cultured macrophages. Therefore, in vivo imaging provides a comprehensive approach to identify virulence genes that are relevant to in vivo pathogenesis. Our results provide greater insights into the role of galE in virulence and also suggest that BMEI1090 and downstream genes constitute a novel set of genes involved in Brucella virulence. Survival of the vaccine strain in the host for a critical period is important for effective Brucella vaccines. The galE mutant induced no changes in liver and spleen but localized chronically in the tail and protected IRF-1(-/-) and wild-type mice from virulent challenge, implying that this mutant may serve as a potential vaccine candidate in future studies and that the direct visualization of Brucella may provide insight into selection of improved vaccine candidates.
Collapse
Affiliation(s)
- Gireesh Rajashekara
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
76
|
Cardoso PG, Macedo GC, Azevedo V, Oliveira SC. Brucella spp noncanonical LPS: structure, biosynthesis, and interaction with host immune system. Microb Cell Fact 2006; 5:13. [PMID: 16556309 PMCID: PMC1435926 DOI: 10.1186/1475-2859-5-13] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 03/23/2006] [Indexed: 11/10/2022] Open
Abstract
Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in professional and non-professional phagocytes, and cause abortion in domestic animals and undulant fever in humans. Several species are recognized within the genus Brucella and this classification is mainly based on the difference in pathogenicity and in host preference. Brucella strains may occur as either smooth or rough, expressing smooth LPS (S-LPS) or rough LPS (R-LPS) as major surface antigen. This bacterium possesses an unconventional non-endotoxic lipopolysaccharide that confers resistance to anti-microbial attacks and modulates the host immune response. The strains that are pathogenic for humans (B. abortus, B. suis, B. melitensis) carry a smooth LPS involved in the virulence of these bacteria. The LPS O-chain protects the bacteria from cellular cationic peptides, oxygen metabolites and complement-mediated lysis and it is a key molecule for Brucella survival and replication in the host. Here, we review i) Brucella LPS structure; ii) Brucella genome, iii) genes involved in LPS biosynthesis; iv) the interaction between LPS and innate immunity.
Collapse
Affiliation(s)
- Patrícia Gomes Cardoso
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Gilson Costa Macedo
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Vasco Azevedo
- Department of General Biology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, 30161-970, Brazil
| | - Sergio Costa Oliveira
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| |
Collapse
|
77
|
|
78
|
Vemulapalli TH, Vemulapalli R, Schurig GG, Boyle SM, Sriranganathan N. Role in virulence of a Brucella abortus protein exhibiting lectin-like activity. Infect Immun 2006; 74:183-91. [PMID: 16368972 PMCID: PMC1346633 DOI: 10.1128/iai.74.1.183-191.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella abortus is a facultative, intracellular zoonotic pathogen which can cause undulant fever in humans and abortions in cattle. A 14-kDa protein of B. abortus was previously identified to be immunogenic in animals infected with Brucella spp. In this study, we discovered that the 14-kDa protein possessed immunoglobulin binding and hemagglutination properties that appeared to be based on the protein's lectin-like properties. Hemagglutination inhibition experiments suggested that the 14-kDa protein has affinity towards mannose. Disruption of the gene encoding the 14-kDa protein in virulent B. abortus strain 2308 induced a rough-like phenotype with an altered smooth lipopolysaccharide (LPS) immunoblot profile and a significant reduction in the bacterium's ability to replicate in mouse spleens. However, the mutant strain was stably maintained in mouse spleens at 2.0 to 2.6 log(10) CFU/spleen from day 1 to week 6 after intraperitoneal inoculation with 4.65 log(10) CFU. In contrast to the case for the smooth virulent strain 2308, in the rough attenuated strain RB51 disruption of the 14-kDa protein's gene had no effect on the mouse clearance pattern. These findings indicate that the 14-kDa protein of B. abortus possesses lectin-like properties and is essential for the virulence of the species, probably because of its direct or indirect role in the synthesis of smooth LPS.
Collapse
Affiliation(s)
- Tracy H Vemulapalli
- Center for Molecular Medicine and Infectious Diseases, 1410 Prices Fork Road, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
79
|
Rajashekara G, Krepps M, Eskra L, Mathison A, Montgomery A, Ishii Y, Splitter G. UnravelingBrucellaGenomics and Pathogenesis in Immunocompromised IRF-1−/−Mice. Am J Reprod Immunol 2005; 54:358-68. [PMID: 16305661 DOI: 10.1111/j.1600-0897.2005.00329.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PROBLEM Brucellosis causes abortion in domestic animals and Malta fever in humans. Comparison of Brucella species genomes may reveal potential virulence mechanisms. Engineering bioluminescent Brucella would permit monitoring bacterial dissemination. METHOD OF STUDY Microarray of the B. melitensis genome allowed comparison of gene content from six Brucella species. Bioluminescent B. melitensis strains were developed using transposon mutagenesis permitting the study of pathogenic Brucella in mice. Monitoring bacterial dissemination as well as organ localization permits evaluating the role of genes and genomic islands in mutant bacteria. RESULTS Comparative genomic analysis revealed 217 ORFs altered in five Brucella species and were often found in islands. Bioluminescent bacteria disseminated from the injection site to liver, spleen, inguinal lymph nodes, testes and submanibular region. CONCLUSIONS Genomic islands contribute to Brucella pathogenicity. Biophotonic imaging suggests that Brucella dissemination in mice parallels acute and chronic infections of humans.
Collapse
Affiliation(s)
- Gireesh Rajashekara
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Jacob J, Hort GM, Overhoff P, Mielke MEA. In vitro and in vivo characterization of smooth small colony variants of Brucella abortus S19. Microbes Infect 2005; 8:363-71. [PMID: 16239117 DOI: 10.1016/j.micinf.2005.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 06/14/2005] [Accepted: 07/01/2005] [Indexed: 10/25/2022]
Abstract
Brucella abortus is known to produce chronic infections in both humans and a variety of animal species. However, the mechanisms underlying the persistence of the bacteria in the presence of an ongoing immune response are still unknown. In this respect we made use of the observation that in vitro grown B. abortus S19 exhibits heterogenicity in colony size when plated onto TS agar, while experimental infection of mice uniformly results in the in vivo selection of the small colony variant. We demonstrate that the spontaneous smooth small colony variant is characterized not only by a slower growth rate in vitro but also by an increased tolerance to hyperosmotic medium and, most importantly, a less effective clearance from spleens and livers of experimentally infected mice. On a molecular level, a gene with homology to a formerly described galactoside transport ATP binding protein (mglA) was differentially expressed in small versus large colonies of B. abortus S19.
Collapse
Affiliation(s)
- J Jacob
- Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany.
| | | | | | | |
Collapse
|
81
|
Manterola L, Moriyón I, Moreno E, Sola-Landa A, Weiss DS, Koch MHJ, Howe J, Brandenburg K, López-Goñi I. The lipopolysaccharide of Brucella abortus BvrS/BvrR mutants contains lipid A modifications and has higher affinity for bactericidal cationic peptides. J Bacteriol 2005; 187:5631-9. [PMID: 16077108 PMCID: PMC1196083 DOI: 10.1128/jb.187.16.5631-5639.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The two-component BvrS/BvrR system is essential for Brucella abortus virulence. It was shown previously that its dysfunction abrogates expression of some major outer membrane proteins and increases bactericidal peptide sensitivity. Here, we report that BvrS/BvrR mutants have increased surface hydrophobicity and susceptibility to killing by nonimmune serum. The bvrS and bvrR mutant lipopolysaccharides (LPSs) bound more polymyxin B, chimeras constructed with bvrS mutant cells and parental LPS showed augmented polymyxin B resistance, and, conversely, parental cells and bvrS mutant LPS chimeras were more sensitive and displayed polymyxin B-characteristic outer membrane lesions, implicating LPS as being responsible for the phenotype of the BvrS/BvrR mutants. No qualitative or quantitative changes were detected in other envelope and outer membrane components examined: periplasmic beta(1-2) glucans, native hapten polysaccharide, and phospholipids. The LPS of the mutants was similar to parental LPS in O-polysaccharide polymerization and fine structure but showed both increased underacylated lipid A species and higher acyl-chain fluidity that correlated with polymyxin B binding. These lipid A changes did not alter LPS cytokine induction, showing that in contrast to other gram-negative pathogens, recognition by innate immune receptors is not decreased by these changes in LPS structure. Transcription of Brucella genes required for incorporating long acyl chains into lipid A (acpXL and lpxXL) or implicated in lipid A acylation control (bacA) was not affected. We propose that in Brucella the outer membrane homeostasis depends on the functioning of BvrS/BvrR. Accordingly, disruption of BvrS/BvrR damages the outer membrane, thus contributing to the severe attenuation manifested by bvrS and bvrR mutants.
Collapse
Affiliation(s)
- Lorea Manterola
- Departamento de Microbiología y Parasitología, Universidad de Navarra, c/ Irunlarrea no. 1, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Muñoz PM, Marín CM, Monreal D, González D, Garin-Bastuji B, Díaz R, Mainar-Jaime RC, Moriyón I, Blasco JM. Efficacy of several serological tests and antigens for diagnosis of bovine brucellosis in the presence of false-positive serological results due to Yersinia enterocolitica O:9. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:141-51. [PMID: 15642999 PMCID: PMC540215 DOI: 10.1128/cdli.12.1.141-151.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Yersinia enterocolitica O:9 bears a smooth lipopolysaccharide (S-LPS) of Brucella sp. O-chain A+C/Y epitopic structure and is a cause of false-positive serological reactions (FPSR) in standard tests for cattle brucellosis. Brucella S-LPS, cross-reacting S-LPSs representing several O-chain epitope combinations, Brucella core lipid A epitopes (rough LPS), Brucella abortus S-LPS-derived polysaccharide, native hapten polysaccharide, rough LPS group 3 outer membrane protein complexes, recombinant BP26, and cytosolic proteins were tested in enzyme-linked immunosorbent assays (ELISA) and precipitation tests to detect cattle brucellosis (sensitivity) and to differentiate it from FPSR (specificity). No single serological test and antigen combination showed 100% sensitivity and specificity simultaneously. Immunoprecipitation tests with native hapten polysaccharide, counterimmunoelectrophoresis with cytosolic proteins, and a chaotropic ELISA with Brucella S-LPS were 100% specific but less sensitive than the Rose Bengal test, complement fixation, and indirect ELISA with Brucella S-LPSs and native hapten or S-LPS-derived polysaccharides. A competitive ELISA with Brucella S-LPS and M84 C/Y-specific monoclonal antibody was not 100% specific and was less sensitive than other tests. ELISA with Brucella suis bv. 2 S-LPS (deficient in C epitopes), Escherichia hermannii S-LPSs [lacking the contiguous alpha-(1-2)-linked perosamine residues characteristic of Y. enterocolitica S-LPS], BP26 recombinant protein, and Brucella cytosolic fractions did not provide adequate sensitivity/specificity ratios. Although no serological test and antigen combination fully resolved the diagnosis of bovine brucellosis in the presence of FPSR, some are simple and practical alternatives to the brucellin skin test currently recommended for differential diagnosis.
Collapse
Affiliation(s)
- P M Muñoz
- Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Avenida de Montañana 930, Ap. 727, 50080 Zaragoza, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Rajashekara G, Glasner JD, Glover DA, Splitter GA. Comparative whole-genome hybridization reveals genomic islands in Brucella species. J Bacteriol 2004; 186:5040-51. [PMID: 15262941 PMCID: PMC451633 DOI: 10.1128/jb.186.15.5040-5051.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella species are responsible for brucellosis, a worldwide zoonotic disease causing abortion in domestic animals and Malta fever in humans. Based on host preference, the genus is divided into six species. Brucella abortus, B. melitensis, and B. suis are pathogenic to humans, whereas B. ovis and B. neotomae are nonpathogenic to humans and B. canis human infections are rare. Limited genome diversity exists among Brucella species. Comparison of Brucella species whole genomes is, therefore, likely to identify factors responsible for differences in host preference and virulence restriction. To facilitate such studies, we used the complete genome sequence of B. melitensis 16M, the species highly pathogenic to humans, to construct a genomic microarray. Hybridization of labeled genomic DNA from Brucella species to this microarray revealed a total of 217 open reading frames (ORFs) altered in five Brucella species analyzed. These ORFs are often found in clusters (islands) in the 16M genome. Examination of the genomic context of these islands suggests that many are horizontally acquired. Deletions of genetic content identified in Brucella species are conserved in multiple strains of the same species, and genomic islands missing in a given species are often restricted to that particular species. These findings suggest that, whereas the loss or gain of genetic material may be related to the host range and virulence restriction of certain Brucella species for humans, independent mechanisms involving gene inactivation or altered expression of virulence determinants may also contribute to these differences.
Collapse
Affiliation(s)
- Gireesh Rajashekara
- Department of Animal Health and Biomedical Sciences, University of Wisconsin, 1656 Linden Dr., Madison, WI 53706, USA
| | | | | | | |
Collapse
|
84
|
Izadjoo MJ, Bhattacharjee AK, Paranavitana CM, Hadfield TL, Hoover DL. Oral vaccination with Brucella melitensis WR201 protects mice against intranasal challenge with virulent Brucella melitensis 16M. Infect Immun 2004; 72:4031-9. [PMID: 15213148 PMCID: PMC427460 DOI: 10.1128/iai.72.7.4031-4039.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human brucellosis can be acquired from infected animal tissues by ingestion, inhalation, or contamination of conjunctiva or traumatized skin by infected animal products. In addition, Brucella is recognized as a biowarfare threat agent. Although a vaccine to protect humans from natural or deliberate infection could be useful, vaccines presently used in animals are unsuitable for human use. We tested orally administered live, attenuated, purine auxotrophic B. melitensis WR201 bacteria for their ability to elicit cellular and humoral immune responses and to protect mice against intranasal challenge with B. melitensis 16M bacteria. Immunized mice made serum antibody to lipopolysaccharide and non-O-polysaccharide antigens. Splenocytes from immunized animals released interleukin-2 and gamma interferon when grown in cultures with Brucella antigens. Immunization led to protection from disseminated infection and enhanced clearance of the challenge inoculum from the lungs. Optimal protection required administration of live bacteria, was related to immunizing dose, and was enhanced by booster immunization. These results establish the usefulness of oral vaccination against respiratory challenge with virulent Brucella and suggest that WR201 should be further investigated as a vaccine to prevent human brucellosis.
Collapse
Affiliation(s)
- Mina J Izadjoo
- Department of Infectious and Parasitic Diseases, Armed Forces Institute of Pathology, Washington, DC 20306-6000, USA.
| | | | | | | | | |
Collapse
|