51
|
Teren M, Turonova Michova H, Vondrakova L, Demnerova K. Molecules Autoinducer 2 and cjA and Their Impact on Gene Expression in Campylobacter jejuni. J Mol Microbiol Biotechnol 2019; 28:207-215. [DOI: 10.1159/000495411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/14/2018] [Indexed: 11/19/2022] Open
Abstract
Quorum sensing is a widespread form of cell-to-cell communication, which is based on the production of signaling molecules known as autoinducers (AIs). The first group contains highly species-specific N-acyl homoserine lactones (N-AHLs), generally known as AI-1, which are produced by AHL synthase. The second group, possessing the characteristic structure of a furanone ring, are known as AI-2. The enzyme responsible for their production is S-ribosylhomocysteine lyase (LuxS). In <i>Campylobacter jejuni</i>, AI-2 and LuxS play a role in many important processes, including biofilm formation, stress response, motility, expression of virulence factors, and colonization. However, neither the receptor protein nor the exact structure of the AI-2 molecule have been identified to date. Similarly, little is known about the possible existence of AHL-synthase producing AI-1 and its impact on gene expression. Recently, an analogue of homoserine lactone, called cjA, was isolated from a cell-free supernatant of <i>C. jejuni</i> strain<i></i> 81–176 and from the food isolate c11. The molecule cjA particularly impacted the expression of virulence factors and biofilm formation. This review summarizes the role of AI-2 and cjA in the context of biofilm formation, motility, stress responses, and expression of virulence factors.
Collapse
|
52
|
Rossi E, Paroni M, Landini P. Biofilm and motility in response to environmental and host-related signals in Gram negative opportunistic pathogens. J Appl Microbiol 2018; 125:1587-1602. [PMID: 30153375 DOI: 10.1111/jam.14089] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/30/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
Most bacteria can switch between a planktonic, sometimes motile, form and a biofilm mode, in which bacterial cells can aggregate and attach to a solid surface. The transition between these two forms represents an example of bacterial adaptation to environmental signals and stresses. In 'environmental pathogens', namely, environmental bacteria that are also able to cause disease in animals and humans, signals associated either with the host or with the external environment, such as temperature, oxygen availability, nutrient concentrations etc., play a major role in triggering the switch between the motile and the biofilm mode, via complex regulatory mechanisms that control flagellar synthesis and motility, and production of adhesion factors. In this review article, we present examples of how environmental signals can impact biofilm formation and cell motility in the Gram negative bacteria Pseudomonas aeruginosa, Escherichia coli and in the Burkholderia genus, and how the switch between motile and biofilm mode can be an essential part of a more general process of adaptation either to the host or to the external environment.
Collapse
Affiliation(s)
- E Rossi
- Department of Clinical Microbiology, Rigshospitalet, København, Denmark
| | - M Paroni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - P Landini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
53
|
Han B, Lin CCJ, Hu G, Wang MC. 'Inside Out'- a dialogue between mitochondria and bacteria. FEBS J 2018; 286:630-641. [PMID: 30390412 DOI: 10.1111/febs.14692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/05/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
Abstract
Mitochondria play crucial roles in regulating metabolism and longevity. A body of recent evidences reveals that the gut microbiome can also exert significant effects on these activities in the host. Here, by summarizing the currently known mechanisms underlying these regulations, and by comparing mitochondrial fission-fusion dynamics with bacterial interactions such as quorum sensing, we hypothesize that the microbiome impacts the host by communicating with their intracellular relatives, mitochondria. We highlight recent discoveries supporting this model, and these new findings reveal that metabolite molecules derived from bacteria can fine-tune mitochondrial dynamics in intestinal cells and hence influence host metabolic fitness and longevity. This perspective mode of chemical communication between bacteria and mitochondria may help us understand complex and dynamic environment-microbiome-host interactions regarding their vital impacts on health and diseases.
Collapse
Affiliation(s)
- Bing Han
- Children's Hospital, Fudan University, Minhang, Shanghai, China.,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Chih-Chun Janet Lin
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Guo Hu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| |
Collapse
|
54
|
Latif M, May EE. A Multiscale Agent-Based Model for the Investigation of E. coli K12 Metabolic Response During Biofilm Formation. Bull Math Biol 2018; 80:2917-2956. [PMID: 30218278 DOI: 10.1007/s11538-018-0494-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
Abstract
Bacterial biofilm formation is an organized collective response to biochemical cues that enables bacterial colonies to persist and withstand environmental insults. We developed a multiscale agent-based model that characterizes the intracellular, extracellular, and cellular scale interactions that modulate Escherichia coli MG1655 biofilm formation. Each bacterium's intracellular response and cellular state were represented as an outcome of interactions with the environment and neighboring bacteria. In the intracellular model, environment-driven gene expression and metabolism were captured using statistical regression and Michaelis-Menten kinetics, respectively. In the cellular model, growth, death, and type IV pili- and flagella-dependent movement were based on the bacteria's intracellular state. We implemented the extracellular model as a three-dimensional diffusion model used to describe glucose, oxygen, and autoinducer 2 gradients within the biofilm and bulk fluid. We validated the model by comparing simulation results to empirical quantitative biofilm profiles, gene expression, and metabolic concentrations. Using the model, we characterized and compared the temporal metabolic and gene expression profiles of sessile versus planktonic bacterial populations during biofilm formation and investigated correlations between gene expression and biofilm-associated metabolites and cellular scale phenotypes. Based on our in silico studies, planktonic bacteria had higher metabolite concentrations in the glycolysis and citric acid cycle pathways, with higher gene expression levels in flagella and lipopolysaccharide-associated genes. Conversely, sessile bacteria had higher metabolite concentrations in the autoinducer 2 pathway, with type IV pili, autoinducer 2 export, and cellular respiration genes upregulated in comparison with planktonic bacteria. Having demonstrated results consistent with in vitro static culture biofilm systems, our model enables examination of molecular phenomena within biofilms that are experimentally inaccessible and provides a framework for future exploration of how hypothesized molecular mechanisms impact bulk community behavior.
Collapse
Affiliation(s)
- Majid Latif
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Elebeoba E May
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
55
|
Božik M, Cejnar P, Šašková M, Nový P, Maršík P, Klouček P. Stress response of Escherichia coli to essential oil components - insights on low-molecular-weight proteins from MALDI-TOF. Sci Rep 2018; 8:13042. [PMID: 30158663 PMCID: PMC6115441 DOI: 10.1038/s41598-018-31255-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/15/2018] [Indexed: 01/21/2023] Open
Abstract
The antibacterial effects of essential oils and their components (EOCs) are usually attributed to effects on membranes and metabolism. Studies of the effects of EOCs on protein expression have primarily analysed proteins larger than 10 kDa using gel electrophoresis. In the present study, we used MALDI-TOF-MS to investigate the effects of EOCs on low-molecular-weight proteins. From 297 m/z features, we identified 94 proteins with important differences in expression among untreated samples, samples treated with EOCs, and samples treated with antibiotics, peroxide, or chlorine. The targets of these treatments obviously differ, even among EOCs. In addition to ribosomal proteins, stress-, membrane- and biofilm-related proteins were affected. These findings may provide a basis for identifying new targets of essential oils and synergies with other antibiotics.
Collapse
Affiliation(s)
- Matěj Božik
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Prague, Czech Republic
| | - Pavel Cejnar
- University of Chemistry and Technology, Department of Computing and Control Engineering, Prague, Czech Republic.,Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Plant Protection, Prague, Czech Republic
| | - Martina Šašková
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Prague, Czech Republic
| | - Pavel Nový
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Prague, Czech Republic
| | - Petr Maršík
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Prague, Czech Republic
| | - Pavel Klouček
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Prague, Czech Republic.
| |
Collapse
|
56
|
Multidrug-Resistant Acinetobacter baumannii Chloramphenicol Resistance Requires an Inner Membrane Permease. Antimicrob Agents Chemother 2018; 62:AAC.00513-18. [PMID: 29891596 DOI: 10.1128/aac.00513-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative organism that is a cause of hospital-acquired multidrug-resistant (MDR) infections. A. baumannii has a unique cell surface compared to those of many other Gram-negative pathogens in that it can live without lipopolysaccharide (LPS) and it has a high content of cardiolipin in the outer membrane. Therefore, to better understand the cell envelope and mechanisms of MDR A. baumannii, we screened a transposon library for mutants with defective permeability barrier function, defined as a deficiency in the ability to exclude the phosphatase chromogenic substrate 5-bromo-4-chloro-3-indolylphosphate (XP). We identified multiple mutants with mutations in the ABUW_0982 gene, predicted to encode a permease broadly present in A. baumannii isolates with increased susceptibility to the ribosome-targeting antibiotic chloramphenicol (CHL). Moreover, compared to other known CHL resistance genes, such as chloramphenicol acyltransferase genes, we found that ABUW_0982 is the primary determinant of intrinsic CHL resistance in A. baumannii strain 5075 (Ab5075), an important isolate responsible for severe MDR infections in humans. Finally, studies measuring the efflux of chloramphenicol and expression of ABUW_0982 in CHL-susceptible Escherichia coli support the conclusion that ABUW_0982 encodes a single-component efflux protein with specificity for small, hydrophobic molecules, including CHL.
Collapse
|
57
|
Propolis potentiates the effect of cranberry (Vaccinium macrocarpon) against the virulence of uropathogenic Escherichia coli. Sci Rep 2018; 8:10706. [PMID: 30013052 PMCID: PMC6048107 DOI: 10.1038/s41598-018-29082-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/29/2018] [Indexed: 01/08/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC), the most prevalent bacteria isolated in urinary tract infections (UTI), is now frequently resistant to antibiotics used to treat this pathology. The antibacterial properties of cranberry and propolis could reduce the frequency of UTIs and thus the use of antibiotics, helping in the fight against the emergence of antibiotic resistance. Transcriptomic profiles of a clinical UPEC strain exposed to cranberry proanthocyanidins alone (190 µg/mL), propolis alone (102.4 µg/mL) and a combination of both were determined. Cranberry alone, but more so cranberry + propolis combined, modified the expression of genes involved in different essential pathways: down-expression of genes involved in adhesion, motility, and biofilm formation, and up-regulation of genes involved in iron metabolism and stress response. Phenotypic assays confirmed the decrease of motility (swarming and swimming) and biofilm formation (early formation and formed biofilm). This study showed for the first time that propolis potentiated the effect of cranberry proanthocyanidins on adhesion, motility, biofilm formation, iron metabolism and stress response of UPEC. Cranberry + propolis treatment could represent an interesting new strategy to prevent recurrent UTI.
Collapse
|
58
|
Lee K, Kim YW, Lee S, Lee SH, Nahm CH, Kwon H, Park PK, Choo KH, Koyuncu I, Drews A, Lee CH, Lee JK. Stopping Autoinducer-2 Chatter by Means of an Indigenous Bacterium ( Acinetobacter sp. DKY-1): A New Antibiofouling Strategy in a Membrane Bioreactor for Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6237-6245. [PMID: 29714471 DOI: 10.1021/acs.est.7b05824] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bacterial quorum quenching (QQ) by means of degrading signaling molecules has been applied to antibiofouling strategies in a membrane bioreactor (MBR) for wastewater treatment. However, the target signaling molecules have been limited to N-acyl homoserine lactones participating in intraspecies quorum sensing. Here, an approach to disrupting autoinducer-2 (AI-2) signaling molecules participating in interspecies quorum sensing was pursued as a next-generation antibiofouling strategy in an MBR for wastewater treatment. We isolated an indigenous QQ bacterium ( Acinetobacter sp. DKY-1) that can attenuate the expression of the quorum-sensing (QS) response through the inactivation of an autoinducer-2 signaling molecule, 4,5-dihydroxy-2,3-pentanedione (DPD), among four kinds of autoinducer-2 QS bacteria. DKY-1 released AI-2 QQ compounds, which were verified to be hydrophilic with a molecular weight of <400 Da. The addition of DKY-1 entrapping beads into an MBR significantly decreased DPD concentration and remarkably reduced membrane biofouling. This new approach, combining molecular biology with wastewater engineering, could enlarge the range of QQ-MBR for antibiofouling and energy savings in the field of wastewater treatment.
Collapse
Affiliation(s)
- Kibaek Lee
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
- Advanced Institute of Water Industry , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Yea-Won Kim
- Department of Biomedicinal Science and Biotechnology , Paichai University , Daejeon 35345 , Republic of Korea
| | - Seonki Lee
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Sang Hyun Lee
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Chang Hyun Nahm
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Hyeokpil Kwon
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Pyung-Kyu Park
- Department of Environmental Engineering , Yonsei University , Wonju 26493 , Republic of Korea
| | - Kwang-Ho Choo
- Advanced Institute of Water Industry , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Ismail Koyuncu
- Department of Environmental Engineering , Istanbul Technical University , Istanbul 34469 , Turkey
| | - Anja Drews
- School of Life Science Engineering (Engineering II) , HTW Berlin-University of Applied Sciences , Berlin 12459 , Germany
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Jung-Kee Lee
- Department of Biomedicinal Science and Biotechnology , Paichai University , Daejeon 35345 , Republic of Korea
| |
Collapse
|
59
|
Okshevsky M, Louw MG, Lamela EO, Nilsson M, Tolker‐Nielsen T, Meyer RL. A transposon mutant library of Bacillus cereus ATCC 10987 reveals novel genes required for biofilm formation and implicates motility as an important factor for pellicle-biofilm formation. Microbiologyopen 2018; 7:e00552. [PMID: 29164822 PMCID: PMC5911993 DOI: 10.1002/mbo3.552] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 11/16/2022] Open
Abstract
Bacillus cereus is one of the most common opportunistic pathogens causing foodborne illness, as well as a common source of contamination in the dairy industry. B. cereus can form robust biofilms on food processing surfaces, resulting in food contamination due to shedding of cells and spores. Despite the medical and industrial relevance of this species, the genetic basis of biofilm formation in B. cereus is not well studied. In order to identify genes required for biofilm formation in this bacterium, we created a library of 5000 + transposon mutants of the biofilm-forming strain B. cereusATCC 10987, using an unbiased mariner transposon approach. The mutant library was screened for the ability to form a pellicle biofilm at the air-media interface, as well as a submerged biofilm at the solid-media interface. A total of 91 genes were identified as essential for biofilm formation. These genes encode functions such as chemotaxis, amino acid metabolism and cellular repair mechanisms, and include numerous genes not previously known to be required for biofilm formation. Although the majority of disrupted genes are not directly responsible for motility, further investigations revealed that the vast majority of the biofilm-deficient mutants were also motility impaired. This observation implicates motility as a pivotal factor in the formation of a biofilm by B. cereus. These results expand our knowledge of the fundamental molecular mechanisms of biofilm formation by B. cereus.
Collapse
Affiliation(s)
- Mira Okshevsky
- Interdisciplinary Nanoscience CenterAarhus UniversityAarhusDenmark
| | | | | | - Martin Nilsson
- Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Tim Tolker‐Nielsen
- Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience CenterAarhus UniversityAarhusDenmark
- Department of BioscienceAarhus UniversityAarhusDenmark
| |
Collapse
|
60
|
Mohamed ET, Wang S, Lennen RM, Herrgård MJ, Simmons BA, Singer SW, Feist AM. Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution. Microb Cell Fact 2017; 16:204. [PMID: 29145855 PMCID: PMC5691611 DOI: 10.1186/s12934-017-0819-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/09/2017] [Indexed: 11/13/2022] Open
Abstract
Background There is a need to replace petroleum-derived with sustainable feedstocks for chemical production. Certain biomass feedstocks can meet this need as abundant, diverse, and renewable resources. Specific ionic liquids (ILs) can play a role in this process as promising candidates for chemical pretreatment and deconstruction of plant-based biomass feedstocks as they efficiently release carbohydrates which can be fermented. However, the most efficient pretreatment ILs are highly toxic to biological systems, such as microbial fermentations, and hinder subsequent bioprocessing of fermentative sugars obtained from IL-treated biomass. Methods To generate strains capable of tolerating residual ILs present in treated feedstocks, a tolerance adaptive laboratory evolution (TALE) approach was developed and utilized to improve growth of two different Escherichia coli strains, DH1 and K-12 MG1655, in the presence of two different ionic liquids, 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) and 1-butyl-3-methylimidazolium chloride ([C4C1Im]Cl). For multiple parallel replicate populations of E. coli, cells were repeatedly passed to select for improved fitness over the course of approximately 40 days. Clonal isolates were screened and the best performing isolates were subjected to whole genome sequencing. Results The most prevalent mutations in tolerant clones occurred in transport processes related to the functions of mdtJI, a multidrug efflux pump, and yhdP, an uncharacterized transporter. Additional mutations were enriched in processes such as transcriptional regulation and nucleotide biosynthesis. Finally, the best-performing strains were compared to previously characterized tolerant strains and showed superior performance in tolerance of different IL and media combinations (i.e., cross tolerance) with robust growth at 8.5% (w/v) and detectable growth up to 11.9% (w/v) [C2C1Im][OAc]. Conclusion The generated strains thus represent the best performing platform strains available for bioproduction utilizing IL-treated renewable substrates, and the TALE method was highly successful in overcoming the general issue of substrate toxicity and has great promise for use in tolerance engineering. Electronic supplementary material The online version of this article (10.1186/s12934-017-0819-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elsayed T Mohamed
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Shizeng Wang
- Joint Bioenergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Rebecca M Lennen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Markus J Herrgård
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Blake A Simmons
- Joint Bioenergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven W Singer
- Joint Bioenergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam M Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark. .,Department of Bioengineering, University of California, 9500 Gilman Drive La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
61
|
An Update on the Sociomicrobiology of Quorum Sensing in Gram-Negative Biofilm Development. Pathogens 2017; 6:pathogens6040051. [PMID: 29065453 PMCID: PMC5750575 DOI: 10.3390/pathogens6040051] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 11/16/2022] Open
Abstract
Bacteria are social creatures that are able to interact and coordinate behaviors with each other in a multitude of ways. The study of such group behaviors in microbes was coined “sociomicrobiology” in 2005. Two such group behaviors in bacteria are quorum sensing (QS) and biofilm formation. At a very basic level, QS is the ability to sense bacterial density via cell-to-cell signaling using self-produced signals called autoinducers, and biofilms are aggregates of cells that are attached to one another via a self-produced, extracellular matrix. Since cells in biofilm aggregates are in close proximity, biofilms represent an ecologically relevant environment for QS. While QS is known to affect biofilm formation in both Gram-negative and Gram-positive species, in this review, we will focus exclusively on Gram-negative bacteria, with an emphasis on Pseudomonas aeruginosa. We will begin by describing QS systems in P. aeruginosa and how they affect P. aeruginosa biofilm formation. We then expand our review to other Gram-negative bacteria and conclude with interesting questions with regard to the effect of biofilms on QS.
Collapse
|
62
|
McNerney MP, Styczynski MP. Small molecule signaling, regulation, and potential applications in cellular therapeutics. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [PMID: 28960879 DOI: 10.1002/wsbm.1405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
Small molecules have many important roles across the tree of life: they regulate processes from metabolism to transcription, they enable signaling within and between species, and they serve as the biochemical building blocks for cells. They also represent valuable phenotypic endpoints that are promising for use as biomarkers of disease states. In the context of engineering cell-based therapeutics, they hold particularly great promise for enabling finer control over the therapeutic cells and allowing them to be responsive to extracellular cues. The natural signaling and regulatory functions of small molecules can be harnessed and rewired to control cell activity and delivery of therapeutic payloads, potentially increasing efficacy while decreasing toxicity. To that end, this review considers small molecule-mediated regulation and signaling in bacteria. We first discuss some of the most prominent applications and aspirations for responsive cell-based therapeutics. We then describe the transport, signaling, and regulation associated with three classes of molecules that may be exploited in the engineering of therapeutic bacteria: amino acids, fatty acids, and quorum-sensing signaling molecules. We also present examples of existing engineering efforts to generate cells that sense and respond to levels of different small molecules. Finally, we discuss future directions for how small molecule-mediated regulation could be harnessed for therapeutic applications, as well as some critical considerations for the ultimate success of such endeavors. WIREs Syst Biol Med 2018, 10:e1405. doi: 10.1002/wsbm.1405 This article is categorized under: Biological Mechanisms > Cell Signaling Biological Mechanisms > Metabolism Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Monica P McNerney
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
63
|
Li P, Gu Y, Li J, Xie L, Li X, Xie J. Mycobacterium tuberculosis Major Facilitator Superfamily Transporters. J Membr Biol 2017; 250:573-585. [DOI: 10.1007/s00232-017-9982-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/18/2017] [Indexed: 01/26/2023]
|
64
|
Rossi E, Cimdins A, Lüthje P, Brauner A, Sjöling Å, Landini P, Römling U. "It's a gut feeling" - Escherichia coli biofilm formation in the gastrointestinal tract environment. Crit Rev Microbiol 2017; 44:1-30. [PMID: 28485690 DOI: 10.1080/1040841x.2017.1303660] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Escherichia coli can commonly be found, either as a commensal, probiotic or a pathogen, in the human gastrointestinal (GI) tract. Biofilm formation and its regulation is surprisingly variable, although distinct regulatory pattern of red, dry and rough (rdar) biofilm formation arise in certain pathovars and even clones. In the GI tract, environmental conditions, signals from the host and from commensal bacteria contribute to shape E. coli biofilm formation within the multi-faceted multicellular communities in a complex and integrated fashion. Although some major regulatory networks, adhesion factors and extracellular matrix components constituting E. coli biofilms have been recognized, these processes have mainly been characterized in vitro and in the context of interaction of E. coli strains with intestinal epithelial cells. However, direct observation of E. coli cells in situ, and the vast number of genes encoding surface appendages on the core or accessory genome of E. coli suggests the complexity of the biofilm process to be far from being fully understood. In this review, we summarize biofilm formation mechanisms of commensal, probiotic and pathogenic E. coli in the context of the gastrointestinal tract.
Collapse
Affiliation(s)
- Elio Rossi
- a Department of Biosciences , Università degli Studi di Milano , Milan , Italy.,b Novo Nordisk Center for Biosustainabiliy , Technical University of Denmark , Kgs. Lyngby , Denmark
| | - Annika Cimdins
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden.,d Institute of Hygiene, University of Münster , Münster , Germany
| | - Petra Lüthje
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden.,e Division of Clinical Microbiology, Department of Laboratory Medicine , Karolinska Institutet and Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Annelie Brauner
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| | - Åsa Sjöling
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| | - Paolo Landini
- a Department of Biosciences , Università degli Studi di Milano , Milan , Italy
| | - Ute Römling
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
65
|
Sharma VK, Bayles DO, Alt DP, Looft T, Brunelle BW, Stasko JA. Disruption of rcsB by a duplicated sequence in a curli-producing Escherichia coli O157:H7 results in differential gene expression in relation to biofilm formation, stress responses and metabolism. BMC Microbiol 2017; 17:56. [PMID: 28274217 PMCID: PMC5343319 DOI: 10.1186/s12866-017-0966-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/28/2017] [Indexed: 12/29/2022] Open
Abstract
Background Escherichia coli O157:H7 (O157) strain 86–24, linked to a 1986 disease outbreak, displays curli- and biofilm-negative phenotypes that are correlated with the lack of Congo red (CR) binding and formation of white colonies (CR−) on a CR-containing medium. However, on a CR medium this strain produces red isolates (CR+) capable of producing curli fimbriae and biofilms. Results To identify genes controlling differential expression of curli fimbriae and biofilm formation, the RNA-Seq profile of a CR+ isolate was compared to the CR− parental isolate. Of the 242 genes expressed differentially in the CR+ isolate, 201 genes encoded proteins of known functions while the remaining 41 encoded hypothetical proteins. Among the genes with known functions, 149 were down- and 52 were up-regulated. Some of the upregulated genes were linked to biofilm formation through biosynthesis of curli fimbriae and flagella. The genes encoding transcriptional regulators, such as CsgD, QseB, YkgK, YdeH, Bdm, CspD, BssR and FlhDC, which modulate biofilm formation, were significantly altered in their expression. Several genes of the envelope stress (cpxP), heat shock (rpoH, htpX, degP), oxidative stress (ahpC, katE), nutrient limitation stress (phoB-phoR and pst) response pathways, and amino acid metabolism were downregulated in the CR+ isolate. Many genes mediating acid resistance and colanic acid biosynthesis, which influence biofilm formation directly or indirectly, were also down-regulated. Comparative genomics of CR+ and CR− isolates revealed the presence of a short duplicated sequence in the rcsB gene of the CR+ isolate. The alignment of the amino acid sequences of RcsB of the two isolates showed truncation of RcsB in the CR+ isolate at the insertion site of the duplicated sequence. Complementation of CR+ isolate with rcsB of the CR− parent restored parental phenotypes to the CR+ isolate. Conclusions The results of this study indicate that RcsB is a global regulator affecting bacterial survival in growth-restrictive environments through upregulation of genes promoting biofilm formation while downregulating certain metabolic functions. Understanding whether rcsB inactivation enhances persistence and survival of O157 in carrier animals and the environment would be important in developing strategies for controlling this bacterial pathogen in these niches.
Collapse
Affiliation(s)
- V K Sharma
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, P. O. Box 70, 1920 Dayton Avenue, Ames, IA, 50010, USA.
| | - D O Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| | - D P Alt
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| | - T Looft
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, P. O. Box 70, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - B W Brunelle
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, P. O. Box 70, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - J A Stasko
- Microscopy Services Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| |
Collapse
|
66
|
Ribaudo N, Li X, Davis B, Wood TK, Huang ZJ. A Genome-Scale Modeling Approach to Quantify Biofilm Component Growth of Salmonella Typhimurium. J Food Sci 2016; 82:154-166. [PMID: 27992644 DOI: 10.1111/1750-3841.13565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Salmonella typhimurium (S. typhimurium) is an extremely dangerous foodborne bacterium that infects both animal and human subjects, causing fatal diseases around the world. Salmonella's robust virulence, antibiotic-resistant nature, and capacity to survive under harsh conditions are largely due to its ability to form resilient biofilms. Multiple genome-scale metabolic models have been developed to study the complex and diverse nature of this organism's metabolism; however, none of these models fully integrated the reactions and mechanisms required to study the influence of biofilm formation. This work developed a systems-level approach to study the adjustment of intracellular metabolism of S. typhimurium during biofilm formation. The most advanced metabolic reconstruction currently available, STM_v1.0, was 1st extended to include the formation of the extracellular biofilm matrix. Flux balance analysis was then employed to study the influence of biofilm formation on cellular growth rate and the production rates of biofilm components. With biofilm formation present, biomass growth was examined under nutrient rich and nutrient deficient conditions, resulting in overall growth rates of 0.8675 and 0.6238 h-1 respectively. Investigation of intracellular flux variation during biofilm formation resulted in the elucidation of 32 crucial reactions, and associated genes, whose fluxes most significantly adapt during the physiological response. Experimental data were found in the literature to validate the importance of these genes for the biofilm formation of S. typhimurium. This preliminary investigation on the adjustment of intracellular metabolism of S. typhimurium during biofilm formation will serve as a platform to generate hypotheses for further experimental study on the biofilm formation of this virulent bacterium.
Collapse
Affiliation(s)
- Nicholas Ribaudo
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| | - Xianhua Li
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| | - Brett Davis
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| | - Thomas K Wood
- Depts. of Chemical Engineering and Biochemistry and Molecular Biology, Pennsylvania State Univ, Univ. Park, 16802, PA, U.S.A
| | - Zuyi Jacky Huang
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| |
Collapse
|
67
|
Gart EV, Suchodolski JS, Welsh TH, Alaniz RC, Randel RD, Lawhon SD. Salmonella Typhimurium and Multidirectional Communication in the Gut. Front Microbiol 2016; 7:1827. [PMID: 27920756 PMCID: PMC5118420 DOI: 10.3389/fmicb.2016.01827] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022] Open
Abstract
The mammalian digestive tract is home to trillions of microbes, including bacteria, archaea, protozoa, fungi, and viruses. In monogastric mammals the stomach and small intestine harbor diverse bacterial populations but are typically less populated than the colon. The gut bacterial community (microbiota hereafter) varies widely among different host species and individuals within a species. It is influenced by season of the year, age of the host, stress and disease. Ideally, the host and microbiota benefit each other. The host provides nutrients to the microbiota and the microbiota assists the host with digestion and nutrient metabolism. The resident microbiota competes with pathogens for space and nutrients and, through this competition, protects the host in a phenomenon called colonization resistance. The microbiota participates in development of the host immune system, particularly regulation of autoimmunity and mucosal immune response. The microbiota also shapes gut–brain communication and host responses to stress; and, indeed, the microbiota is a newly recognized endocrine organ within mammalian hosts. Salmonella enterica serovar Typhimurium (S. Typhimurium hereafter) is a food-borne pathogen which adapts to and alters the gastrointestinal (GI) environment. In the GI tract, S. Typhimurium competes with the microbiota for nutrients and overcomes colonization resistance to establish infection. To do this, S. Typhimurium uses multiple defense mechanisms to resist environmental stressors, like the acidic pH of the stomach, and virulence mechanisms which allow it to invade the intestinal epithelium and disseminate throughout the host. To coordinate gene expression and disrupt signaling within the microbiota and between host and microbiota, S. Typhimurium employs its own chemical signaling and may regulate host hormone metabolism. This review will discuss the multidirectional interaction between S. Typhimurium, host and microbiota as well as mechanisms that allow S. Typhimurium to succeed in the gut.
Collapse
Affiliation(s)
- Elena V Gart
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station TX, USA
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station TX, USA
| | - Thomas H Welsh
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station TX, USA
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station TX, USA
| | | | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station TX, USA
| |
Collapse
|
68
|
Oguri S, Hanawa T, Matsuo J, Ishida K, Yamazaki T, Nakamura S, Okubo T, Fukumoto T, Akizawa K, Shimizu C, Kamiya S, Yamaguchi H. Protozoal ciliate promotes bacterial autoinducer-2 accumulation in mixed culture with Escherichia coli. J GEN APPL MICROBIOL 2016; 61:203-10. [PMID: 26582290 DOI: 10.2323/jgam.61.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have previously demonstrated conjugation of Escherichia coli into vacuoles of the protozoal ciliate (Tetrahymena thermophila). This indicated a possible role of ciliates in evoking bacterial quorum sensing, directly connecting bacterial survival via accumulation in the ciliate vacuoles. We therefore assessed if ciliates promoted bacterial autoinducer (AI)-2 accumulation with vacuole formation, which controls quorum sensing. E. coli AI-2 accumulation was significantly enhanced in the supernatants of a mixed culture of ciliates and bacteria, likely depending on ciliate density rather than bacterial concentration. As expected, AI-2 production was significantly correlated with vacuole formation. The experiment with E. coli luxS mutants showed that ciliates failed to enhance bacterial AI-2 accumulation, denying a nonspecific phenomenon. Fluorescence microscopy revealed accumulation of fragmented bacteria in ciliate vacuoles, and, more importantly, expulsion of the vacuoles containing disrupted bacteria into the culture supernatant. There was no increase in the expression of luxS (encoding AI-2) or ydgG (a transporter for controlling bacterial export of AI-2). We conclude that ciliates promote bacterial AI-2 accumulation in a mixed culture, via accumulation of disrupted bacteria in ciliate vacuoles followed by expulsion of the vacuoles, independently of luxS or ydgG gene induction. This is believed to be the first demonstration of a relationship between E. coli AI-2 dynamics and ciliates. In the natural environment, ciliate biotopes may provide a survival advantage to bacteria inhabiting such biotopes, via evoking quorum sensing.
Collapse
|
69
|
Straume D, Stamsås GA, Berg KH, Salehian Z, Håvarstein LS. Identification of pneumococcal proteins that are functionally linked to penicillin-binding protein 2b (PBP2b). Mol Microbiol 2016; 103:99-116. [DOI: 10.1111/mmi.13543] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Straume
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Ås NO-1432 Norway
| | - Gro Anita Stamsås
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Ås NO-1432 Norway
| | - Kari Helene Berg
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Ås NO-1432 Norway
| | - Zhian Salehian
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Ås NO-1432 Norway
| | - Leiv Sigve Håvarstein
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Ås NO-1432 Norway
| |
Collapse
|
70
|
Quorum Sensing Desynchronization Leads to Bimodality and Patterned Behaviors. PLoS Comput Biol 2016; 12:e1004781. [PMID: 27071007 PMCID: PMC4829230 DOI: 10.1371/journal.pcbi.1004781] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/01/2016] [Indexed: 12/17/2022] Open
Abstract
Quorum Sensing (QS) drives coordinated phenotypic outcomes among bacterial populations. Its role in mediating infectious disease has led to the elucidation of numerous autoinducers and their corresponding QS signaling pathways. Among them, the Lsr (LuxS-regulated) QS system is conserved in scores of bacteria, and its signal molecule, autoinducer-2 (AI-2), is synthesized as a product of 1-carbon metabolism. Lsr signal transduction processes, therefore, may help organize population scale activities in numerous bacterial consortia. Conceptions of how Lsr QS organizes population scale behaviors remain limited, however. Using mathematical simulations, we examined how desynchronized Lsr QS activation, arising from cell-to-cell population heterogeneity, could lead to bimodal Lsr signaling and fractional activation. This has been previously observed experimentally. Governing these processes are an asynchronous AI-2 uptake, where positive intracellular feedback in Lsr expression is combined with negative feedback between cells. The resulting activation patterns differ from that of the more widely studied LuxIR system, the topology of which consists of only positive feedback. To elucidate differences, both QS systems were simulated in 2D, where cell populations grow and signal each other via traditional growth and diffusion equations. Our results demonstrate that the LuxIR QS system produces an ‘outward wave’ of autoinduction, and the Lsr QS system yields dispersed autoinduction from spatially-localized secretion and uptake profiles. In both cases, our simulations mirror previously demonstrated experimental results. As a whole, these models inform QS observations and synthetic biology designs. Bacterial behavior is responsive to a multitude of soluble molecular cues. Among them are self-secreted autoinducers that control quorum sensing (QS) processes. While new quorum sensing systems are constantly being discovered, several systems have been well defined in terms of their molecular and genetic topologies, each influencing a variety of resultant phenotypes. These quorum sensing systems include LuxIR homologs that use an array of species specific autoinducers and Lsr system homologs that share a single autoinducer among numerous species. Here we suggest that the regulatory topology of these two systems mark them as opposites of a sort. Whereas the LuxIR system bears a strong positive intercellular feedback mechanism, the Lsr system bears strong negative intercellular feedback. In our simulations these differences are manifested in distinct patterns of signaling. This was readily visualized in the outward spread of autogenous LuxIR expression in a growing bacterial 2D ‘colony’ whereas a dispersed activity was produced by autogenous Lsr expression in an otherwise identical colony. Here, this dispersed activity is a reflection of bimodal Lsr expression. We show that this bimodality could arise from desynchronized Lsr driven autoinducer import (intercellular negative feedback). This may have consequences on the arrangement of downstream phenotypes.
Collapse
|
71
|
Chanos P, Mygind T. Co-culture-inducible bacteriocin production in lactic acid bacteria. Appl Microbiol Biotechnol 2016; 100:4297-308. [DOI: 10.1007/s00253-016-7486-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
72
|
Sun B, Zhang M. Analysis of the antibacterial effect of an Edwardsiella tarda LuxS inhibitor. SPRINGERPLUS 2016; 5:92. [PMID: 26848432 PMCID: PMC4729738 DOI: 10.1186/s40064-016-1733-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/15/2016] [Indexed: 11/12/2022]
Abstract
LuxS/AI-2 quorum sensing is involved in the virulence of many bacterial pathogens, including the fish pathogen Edwardsiella tarda. In a previous study, we identified a small peptide, 5906, which inhibits E. tarda LuxS activity by binding specifically to LuxS in a manner that probably prevents the formation of functional LuxS homodimer. In the present study, using Japanese flounder as the experimental animal, we analyzed the antibacterial effect of 5906 produced by DH5α/p5906 (an Escherichia coli strain that produces 5906) and pID5906 (a mammalian plasmid that functional in flounder constitutively expresses 5906) against different bacterial fish pathogens. We found that fish administered with both DH5α/p5906 and pID5906 exhibited reduced bacterial recovery following E. tarda challenge. We also examined the effect of 5906 on the infection caused by another two fish pathogen, Aeromonas hydrophila and Vibrio harveyi. The results indicated that 5906 produced by DH5α/p5906 inhibited the AI-2 activity of A. hydrophila and V. harveyi, and that fish administered with DH5α/p5906 showed enhanced resistance against challenges with both bacteria. These results suggest that 5906 or its analogues/derivatives may be exploited for the development of broad-spectrum antibacterial agents applied in the prevention and control of fish bacterial diseases.
Collapse
Affiliation(s)
- Boguang Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071 China
| | - Min Zhang
- College of Marine Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109 China
| |
Collapse
|
73
|
Magalon A, Alberge F. Distribution and dynamics of OXPHOS complexes in the bacterial cytoplasmic membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:198-213. [PMID: 26545610 DOI: 10.1016/j.bbabio.2015.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022]
Abstract
Oxidative phosphorylation (OXPHOS) is an essential process for most living organisms mostly sustained by protein complexes embedded in the cell membrane. In order to thrive, cells need to quickly respond to changes in the metabolic demand or in their environment. An overview of the strategies that can be employed by bacterial cells to adjust the OXPHOS outcome is provided. Regulation at the level of gene expression can only provide a means to adjust the OXPHOS outcome to long-term trends in the environment. In addition, the actual view is that bioenergetic membranes are highly compartmentalized structures. This review discusses what is known about the spatial organization of OXPHOS complexes and the timescales at which they occur. As exemplified with the commensal gut bacterium Escherichia coli, three levels of spatial organization are at play: supercomplexes, membrane microdomains and polar assemblies. This review provides a particular focus on whether dynamic spatial organization can fine-tune the OXPHOS through the definition of specialized functional membrane microdomains. Putative mechanisms responsible for spatio-temporal regulation of the OXPHOS complexes are discussed. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.
Collapse
Affiliation(s)
- Axel Magalon
- CNRS, Laboratoire de Chimie Bactérienne (UMR 7283), Institut de Microbiologie de la Méditerranée, 13009 Marseille, France; Aix-Marseille University, UMR 7283, 13009 Marseille, France.
| | - François Alberge
- CNRS, Laboratoire de Chimie Bactérienne (UMR 7283), Institut de Microbiologie de la Méditerranée, 13009 Marseille, France; Aix-Marseille University, UMR 7283, 13009 Marseille, France
| |
Collapse
|
74
|
Protein Analysis of Sapienic Acid-Treated Porphyromonas gingivalis Suggests Differential Regulation of Multiple Metabolic Pathways. J Bacteriol 2015; 198:157-67. [PMID: 26483519 DOI: 10.1128/jb.00665-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Lipids endogenous to skin and mucosal surfaces exhibit potent antimicrobial activity against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Our previous work demonstrated the antimicrobial activity of the fatty acid sapienic acid (C(16:1Δ6)) against P. gingivalis and found that sapienic acid treatment alters both protein and lipid composition from those in controls. In this study, we further examined whole-cell protein differences between sapienic acid-treated bacteria and untreated controls, and we utilized open-source functional association and annotation programs to explore potential mechanisms for the antimicrobial activity of sapienic acid. Our analyses indicated that sapienic acid treatment induces a unique stress response in P. gingivalis resulting in differential expression of proteins involved in a variety of metabolic pathways. This network of differentially regulated proteins was enriched in protein-protein interactions (P = 2.98 × 10(-8)), including six KEGG pathways (P value ranges, 2.30 × 10(-5) to 0.05) and four Gene Ontology (GO) molecular functions (P value ranges, 0.02 to 0.04), with multiple suggestive enriched relationships in KEGG pathways and GO molecular functions. Upregulated metabolic pathways suggest increases in energy production, lipid metabolism, iron acquisition and processing, and respiration. Combined with a suggested preferential metabolism of serine, which is necessary for fatty acid biosynthesis, these data support our previous findings that the site of sapienic acid antimicrobial activity is likely at the bacterial membrane. IMPORTANCE P. gingivalis is an important opportunistic pathogen implicated in periodontitis. Affecting nearly 50% of the population, periodontitis is treatable, but the resulting damage is irreversible and eventually progresses to tooth loss. There is a great need for natural products that can be used to treat and/or prevent the overgrowth of periodontal pathogens and increase oral health. Sapienic acid is endogenous to the oral cavity and is a potent antimicrobial agent, suggesting a potential therapeutic or prophylactic use for this fatty acid. This study examines the effects of sapienic acid treatment on P. gingivalis and highlights the membrane as the likely site of antimicrobial activity.
Collapse
|
75
|
Kingston AW, Roussel-Rossin C, Dupont C, Raleigh EA. Novel recA-Independent Horizontal Gene Transfer in Escherichia coli K-12. PLoS One 2015; 10:e0130813. [PMID: 26162088 PMCID: PMC4498929 DOI: 10.1371/journal.pone.0130813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/27/2015] [Indexed: 01/19/2023] Open
Abstract
In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length) donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP) increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F'-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10(-12) CFU/recipient per hour.
Collapse
Affiliation(s)
- Anthony W. Kingston
- New England Biolabs, Ipswich, Massachusetts, 01938, United States of America
| | | | - Claire Dupont
- New England Biolabs, Ipswich, Massachusetts, 01938, United States of America
| | - Elisabeth A. Raleigh
- New England Biolabs, Ipswich, Massachusetts, 01938, United States of America
- * E-mail:
| |
Collapse
|
76
|
Directed assembly of a bacterial quorum. ISME JOURNAL 2015; 10:158-69. [PMID: 26046256 DOI: 10.1038/ismej.2015.89] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/13/2015] [Accepted: 04/21/2015] [Indexed: 11/08/2022]
Abstract
Many reports have elucidated the mechanisms and consequences of bacterial quorum sensing (QS), a molecular communication system by which bacterial cells enumerate their cell density and organize collective behavior. In few cases, however, the numbers of bacteria exhibiting this collective behavior have been reported, either as a number concentration or a fraction of the whole. Not all cells in the population, for example, take on the collective phenotype. Thus, the specific attribution of the postulated benefit can remain obscure. This is partly due to our inability to independently assemble a defined quorum, for natural and most artificial systems the quorum itself is a consequence of the biological context (niche and signaling mechanisms). Here, we describe the intentional assembly of quantized quorums. These are made possible by independently engineering the autoinducer signal transduction cascade of Escherichia coli (E. coli) and the sensitivity of detector cells so that upon encountering a particular autoinducer level, a discretized sub-population of cells emerges with the desired phenotype. In our case, the emergent cells all express an equivalent amount of marker protein, DsRed, as an indicator of a specific QS-mediated activity. The process is robust, as detector cells are engineered to target both large and small quorums. The process takes about 6 h, irrespective of quorum level. We demonstrate sensitive detection of autoinducer-2 (AI-2) as an application stemming from quantized quorums. We then demonstrate sub-population partitioning in that AI-2-secreting cells can 'call' groups neighboring cells that 'travel' and establish a QS-mediated phenotype upon reaching the new locale.
Collapse
|
77
|
Basu A, Mishra B, Leong SSJ. Global transcriptome analysis reveals distinct bacterial response towards soluble and surface-immobilized antimicrobial peptide (Lasioglossin-III). RSC Adv 2015. [DOI: 10.1039/c5ra14862f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacterial response towards soluble and immobilized AMP molecules revealed through global transcriptome analysis.
Collapse
Affiliation(s)
- Anindya Basu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
| | - Biswajit Mishra
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
| | - Susanna Su Jan Leong
- Singapore Institute of Technology
- Singapore 138683
- Department of Biochemistry
- Yong Loo Lin School of Medicine
- National University of Singapore
| |
Collapse
|
78
|
Lord DM, Baran AU, Wood TK, Peti W, Page R. BdcA, a protein important for Escherichia coli biofilm dispersal, is a short-chain dehydrogenase/reductase that binds specifically to NADPH. PLoS One 2014; 9:e105751. [PMID: 25244619 PMCID: PMC4171110 DOI: 10.1371/journal.pone.0105751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/25/2014] [Indexed: 02/07/2023] Open
Abstract
The Escherichia coli protein BdcA (previously referred to as YjgI) plays a key role in the dispersal of cells from bacterial biofilms, and its constitutive activation provides an attractive therapeutic target for dismantling these communities. In order to investigate the function of BdcA at a molecular level, we integrated structural and functional studies. Our 2.05 Å structure of BdcA shows that it is a member of the NAD(P)(H)-dependent short-chain dehydrogenase/reductase (SDR) superfamily. Structural comparisons with other members of the SDR family suggested that BdcA binds NADP(H). This was demonstrated experimentally using thermal denaturation studies, which showed that BcdA binds specifically to NADPH. Subsequent ITC experiments further confirmed this result and reported a Kd of 25.9 µM. Thus, BdcA represents the newest member of the limited number of oxidoreductases shown to be involved in quorum sensing and biofilm dispersal.
Collapse
Affiliation(s)
- Dana M. Lord
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- Graduate Program in Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island, United States of America
| | - Ayse Uzgoren Baran
- Department of Molecular Pharmacology, Physiology and Biotechnology and Department of Chemistry, Brown University, Providence, Rhode Island, United States of America
| | - Thomas K. Wood
- Department of Chemical Engineering and Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology and Department of Chemistry, Brown University, Providence, Rhode Island, United States of America
| | - Rebecca Page
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
79
|
Kendall MM, Sperandio V. Cell-to-Cell Signaling in Escherichia coli and Salmonella. EcoSal Plus 2014; 6:10.1128/ecosalplus.ESP-0002-2013. [PMID: 26442936 PMCID: PMC4229655 DOI: 10.1128/ecosalplus.esp-0002-2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 01/21/2023]
Abstract
Bacteria must be able to respond rapidly to changes in the environment to survive. One means of coordinating gene expression relies on tightly regulated and complex signaling systems. One of the first signaling systems that was described in detail is quorum sensing (QS). During QS, a bacterial cell produces and secretes a signaling molecule called an autoinducer (AI). As the density of the bacterial population increases, so does the concentration of secreted AI molecules, thereby allowing a bacterial species to coordinate gene expression based on population density. Subsequent studies have demonstrated that bacteria are also able to detect signal molecules produced by other species of bacteria as well as hormones produced by their mammalian hosts. This type of signaling interaction has been termed cell-to-cell signaling because it does not rely on a threshold concentration of bacterial cells. This review discusses the three main types of cell-to-cell signaling mechanisms used by Escherichia coli and Salmonella: the LuxR process, in which E. coli and Salmonella detect signals produced by other species of bacteria; the LuxS/AI-2 system, in which E. coli and Salmonella participate in intra- and interspecies signaling; and the AI-3/epinephrine/norepinephrine system, in which E. coli and Salmonella recognize self-produced AI, signal produced by other microbes, and/or the human stress hormones epinephrine and/or norepinephrine.
Collapse
Affiliation(s)
- Melissa M. Kendall
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Vanessa Sperandio
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| |
Collapse
|
80
|
Adams BL, Carter KK, Guo M, Wu HC, Tsao CY, Sintim HO, Valdes JJ, Bentley WE. Evolved Quorum sensing regulator, LsrR, for altered switching functions. ACS Synth Biol 2014; 3:210-9. [PMID: 24111753 DOI: 10.1021/sb400068z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In order to carry out innovative complex, multistep synthetic biology functions, members of a cell population often must communicate with one another to coordinate processes in a programmed manner. It therefore follows that native microbial communication systems are a conspicuous target for developing engineered populations and networks. Quorum sensing (QS) is a highly conserved mechanism of bacterial cell-cell communication and QS-based synthetic signal transduction pathways represent a new generation of biotechnology toolbox members. Specifically, the E. coli QS master regulator, LsrR, is uniquely positioned to actuate gene expression in response to a QS signal. In order to expand the use of LsrR in synthetic biology, two novel LsrR switches were generated through directed evolution: an "enhanced" repression and derepression eLsrR and a reversed repression/derepression function "activator" aLsrR. Protein modeling and docking studies are presented to gain insight into the QS signal binding to these two evolved proteins and their newly acquired functionality. We demonstrated the use of the aLsrR switch using a coculture system in which a QS signal, produced by one bacterial strain, is used to inhibit gene expression via aLsrR in a different strain. These first ever AI-2 controlled synthetic switches allow gene expression from the lsr promoter to be tuned simultaneously in two distinct cell populations. This work expands the tools available to create engineered microbial populations capable of carrying out complex functions necessary for the development of advanced synthetic products.
Collapse
Affiliation(s)
- Bryn L. Adams
- U.S.
Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010 United States
| | | | | | | | | | | | - James J. Valdes
- U.S.
Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010 United States
| | | |
Collapse
|
81
|
Biofilm formation, host-cell adherence, and virulence genes regulation of Streptococcus suis in response to autoinducer-2 signaling. Curr Microbiol 2013; 68:575-80. [PMID: 24370626 DOI: 10.1007/s00284-013-0509-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/04/2013] [Indexed: 12/20/2022]
Abstract
Autoinducer-2 (AI-2) is a universal signal molecule mediating intra- and interspecies communication among bacteria. AI-2 is a byproduct of the LuxS enzyme during the catabolism of S-adenosylhomocysteine and plays critical roles in regulating various behaviors of bacteria. In our previous study, the function of LuxS in AI-2 production was verified in Streptococcus suis (SS). Decreased levels of SS biofilm formation and host-cell adherence as well as the inability to produce AI-2 were observed in SS having a luxS mutant gene. In this study, exogenous addition of a low concentration of AI-2 synthesized in vitro was found to promote biofilm formation and host-cell adherence. However, higher concentrations of AI-2 inhibited SS biofilm formation and host-cell adherence. Real-time PCR results showed that the mRNA level of virulence factors of SS biofilm, gdh, cps2, sly, and mrp increased and ef, fbps, and gapdh decreased with increasing AI-2 concentrations. These findings demonstrated that AI-2 supplemented exogenously acted as a concentration-dependent signaling molecule to regulate SS biofilm formation, host-cell adherence, and transcription levels of many virulence genes.
Collapse
|
82
|
Huang B, Feng H, Ding Y, Zheng X, Wang M, Li N, Shen D, Zhang H. Microbial metabolism and activity in terms of nitrate removal in bioelectrochemical systems. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.08.172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
83
|
Mackie A, Keseler IM, Nolan L, Karp PD, Paulsen IT. Dead end metabolites--defining the known unknowns of the E. coli metabolic network. PLoS One 2013; 8:e75210. [PMID: 24086468 PMCID: PMC3781023 DOI: 10.1371/journal.pone.0075210] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
The EcoCyc database is an online scientific database which provides an integrated view of the metabolic and regulatory network of the bacterium Escherichia coli K-12 and facilitates computational exploration of this important model organism. We have analysed the occurrence of dead end metabolites within the database – these are metabolites which lack the requisite reactions (either metabolic or transport) that would account for their production or consumption within the metabolic network. 127 dead end metabolites were identified from the 995 compounds that are contained within the EcoCyc metabolic network. Their presence reflects either a deficit in our representation of the network or in our knowledge of E. coli metabolism. Extensive literature searches resulted in the addition of 38 transport reactions and 3 metabolic reactions to the database and led to an improved representation of the pathway for Vitamin B12 salvage. 39 dead end metabolites were identified as components of reactions that are not physiologically relevant to E. coli K-12 – these reactions are properties of purified enzymes in vitro that would not be expected to occur in vivo. Our analysis led to improvements in the software that underpins the database and to the program that finds dead end metabolites within EcoCyc. The remaining dead end metabolites in the EcoCyc database likely represent deficiencies in our knowledge of E. coli metabolism.
Collapse
Affiliation(s)
- Amanda Mackie
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | | | - Laura Nolan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Peter D. Karp
- SRI International, Menlo Park, California, United States of America
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
84
|
Chauhan A, Sakamoto C, Ghigo JM, Beloin C. Did I pick the right colony? Pitfalls in the study of regulation of the phase variable antigen 43 adhesin. PLoS One 2013; 8:e73568. [PMID: 24039985 PMCID: PMC3764049 DOI: 10.1371/journal.pone.0073568] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/21/2013] [Indexed: 11/27/2022] Open
Abstract
Ag43 is an abundant outer membrane autotransporter adhesin present in most commensal and pathogenic Escherichia coli. Expression of the agn43 gene is characterized by a regulated reversible switch or phase variation between the agn43 ON and agn43 OFF states. Although the agn43 regulatory switch leads to a heterogeneous population of ON and OFF bacteria, studies of Ag43 seldom consider potential biases associated with phase variation. We monitored agn43 ON/OFF phase-variation status genetically and phenotypically and we show that the use of populations with random agn43 ON or OFF status could result in misleading conclusions about Ag43 function or regulation. In particular, we demonstrate that Lrp and MqsR, previously identified as agn43 regulators, do not regulate agn43 expression or ON/OFF switch frequency. We also show that biofilm formation in dynamic flow conditions does not influence agn43 ON/OFF switching but physically selects aggregating agn43 ON cells. This indicates that misinterpretation is possible when studying gene expression within biofilms. Finally, we provide evidence that ignoring the initial agn43 ON/OFF status of the E. coli populations studied is likely to bias analyses of phenotypes associated with other E. coli adhesins. This study therefore emphasizes the importance of monitoring Ag43 phase variation and indicates that caution is required when interpreting experiments using strains that are neither deleted for agn43 nor carefully assessed for agn43 ON/OFF status.
Collapse
Affiliation(s)
- Ashwini Chauhan
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| | - Chizuko Sakamoto
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, cellule Pasteur, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| |
Collapse
|
85
|
Small molecule inhibitors of AI-2 signaling in bacteria: state-of-the-art and future perspectives for anti-quorum sensing agents. Int J Mol Sci 2013; 14:17694-728. [PMID: 23994835 PMCID: PMC3794749 DOI: 10.3390/ijms140917694] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/09/2013] [Accepted: 08/09/2013] [Indexed: 02/05/2023] Open
Abstract
Bacteria respond to different small molecules that are produced by other neighboring bacteria. These molecules, called autoinducers, are classified as intraspecies (i.e., molecules produced and perceived by the same bacterial species) or interspecies (molecules that are produced and sensed between different bacterial species). AI-2 has been proposed as an interspecies autoinducer and has been shown to regulate different bacterial physiology as well as affect virulence factor production and biofilm formation in some bacteria, including bacteria of clinical relevance. Several groups have embarked on the development of small molecules that could be used to perturb AI-2 signaling in bacteria, with the ultimate goal that these molecules could be used to inhibit bacterial virulence and biofilm formation. Additionally, these molecules have the potential to be used in synthetic biology applications whereby these small molecules are used as inputs to switch on and off AI-2 receptors. In this review, we highlight the state-of-the-art in the development of small molecules that perturb AI-2 signaling in bacteria and offer our perspective on the future development and applications of these classes of molecules.
Collapse
|
86
|
Abstract
The autoinducer-2 (AI-2) quorum-sensing system has been linked to diverse phenotypes and regulatory changes in pathogenic bacteria. In the present study, we performed a molecular and biochemical characterization of the AI-2 system in Yersinia pestis, the causative agent of plague. In strain CO92, the AI-2 signal is produced in a luxS-dependent manner, reaching maximal levels of 2.5 μM in the late logarithmic growth phase, and both wild-type and pigmentation (pgm) mutant strains made equivalent levels of AI-2. Strain CO92 possesses a chromosomal lsr locus encoding factors involved in the binding and import of AI-2, and confirming this assignment, an lsr deletion mutant increased extracellular pools of AI-2. To assess the functional role of AI-2 sensing in Y. pestis, microarray studies were conducted by comparing Δpgm strain R88 to a Δpgm ΔluxS mutant or a quorum-sensing-null Δpgm ΔypeIR ΔyspIR ΔluxS mutant at 37°C. Our data suggest that AI-2 quorum sensing is associated with metabolic activities and oxidative stress genes that may help Y. pestis survive at the host temperature. This was confirmed by observing that the luxS mutant was more sensitive to killing by hydrogen peroxide, suggesting a potential requirement for AI-2 in evasion of oxidative damage. We also show that a large number of membrane protein genes are controlled by LuxS, suggesting a role for quorum sensing in membrane modeling. Altogether, this study provides the first global analysis of AI-2 signaling in Y. pestis and identifies potential roles for the system in controlling genes important to disease.
Collapse
|
87
|
Pieper R, Zhang Q, Clark DJ, Parmar PP, Alami H, Suh MJ, Kuntumalla S, Braisted JC, Huang ST, Tzipori S. Proteomic View of Interactions of Shiga Toxin-Producing Escherichia coli with the Intestinal Environment in Gnotobiotic Piglets. PLoS One 2013; 8:e66462. [PMID: 23840478 PMCID: PMC3686733 DOI: 10.1371/journal.pone.0066462] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/05/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Shiga toxin (Stx)-producing Escherichia coli cause severe intestinal infections involving colonization of epithelial Peyer's patches and formation of attachment/effacement (A/E) lesions. These lesions trigger leukocyte infiltration followed by inflammation and intestinal hemorrhage. Systems biology, which explores the crosstalk of Stx-producing Escherichia coli with the in vivo host environment, may elucidate novel molecular pathogenesis aspects. METHODOLOGY/PRINCIPAL FINDINGS Enterohemorrhagic E. coli strain 86-24 produces Shiga toxin-2 and belongs to the serotype O157:H7. Bacterial cells were scrapped from stationary phase cultures (the in vitro condition) and used to infect gnotobiotic piglets via intestinal lavage. Bacterial cells isolated from the piglets' guts constituted the in vivo condition. Cell lysates were subjected to quantitative 2D gel and shotgun proteomic analyses, revealing metabolic shifts towards anaerobic energy generation, changes in carbon utilization, phosphate and ammonia starvation, and high activity of a glutamate decarboxylase acid resistance system in vivo. Increased abundance of pyridine nucleotide transhydrogenase (PntA and PntB) suggested in vivo shortage of intracellular NADPH. Abundance changes of proteins implicated in lipopolysaccharide biosynthesis (LpxC, ArnA, the predicted acyltransferase L7029) and outer membrane (OM) assembly (LptD, MlaA, MlaC) suggested bacterial cell surface modulation in response to activated host defenses. Indeed, there was evidence for interactions of innate immunity-associated proteins secreted into the intestines (GP340, REG3-γ, resistin, lithostathine, and trefoil factor 3) with the bacterial cell envelope. SIGNIFICANCE Proteomic analysis afforded insights into system-wide adaptations of strain 86-24 to a hostile intestinal milieu, including responses to limited nutrients and cofactor supplies, intracellular acidification, and reactive nitrogen and oxygen species-mediated stress. Protein and lipopolysaccharide compositions of the OM were altered. Enhanced expression of type III secretion system effectors correlated with a metabolic shift back to a more aerobic milieu in vivo. Apparent pathogen pattern recognition molecules from piglet intestinal secretions adhered strongly to the bacterial cell surface.
Collapse
Affiliation(s)
- Rembert Pieper
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail:
| | - Quanshun Zhang
- Division of Infectious Diseases, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - David J. Clark
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Hamid Alami
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Moo-Jin Suh
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - John C. Braisted
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Shih-Ting Huang
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Saul Tzipori
- Division of Infectious Diseases, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
88
|
Mauter MS, Fait A, Elimelech M, Herzberg M. Surface cell density effects on Escherichia coli gene expression during cell attachment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6223-6230. [PMID: 23692120 DOI: 10.1021/es3047069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Escherichia coli attachment to a surface initiates a complex series of interconnected signaling and regulation pathways that promote biofilm formation and maturation. The present work investigates the effect of deposited cell density on E. coli cell physiology, metabolic activity, and gene expression in the initial stages of biofilm development. Deposited cell density is controlled by exploiting the relationship between ionic strength and bacterial attachment efficiency in a packed bed column. Distinct differences in cell transcriptome are analyzed by comparing sessile cultures at two different cell surface densities and differentiating ionic strength effects by analyzing planktonic cultures in parallel. Our results indicate that operons regulating trypotophan production and the galactitol phosphotransferase system (including dihydroxyacetone phosphate synthesis) are strongly affected by cell density on the surface. Additional transcriptome and metabolomic impacts of cell density on succinate, proline, and pyroglutamic acid systems are also reported. These results are consistent with the hypothesis that surface cell density plays a major role in sessile cell physiology, commencing with the first stage of biofilm formation. These findings improve our understanding of biofilm formation in natural and engineered environmental systems and will contribute to future work ranging from pathogen migration in the environment to control of biofouling on engineered surfaces.
Collapse
|
89
|
Growth media simulating ileal and colonic environments affect the intracellular proteome and carbon fluxes of enterohemorrhagic Escherichia coli O157:H7 strain EDL933. Appl Environ Microbiol 2013; 79:3703-15. [PMID: 23563955 DOI: 10.1128/aem.00062-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, the intracellular proteome of Escherichia coli O157:H7 strain EDL933 was analyzed by two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) spectrometry after growth in simulated ileal environment media (SIEM) and simulated colonic environment media (SCEM) under aerobic and microaerobic conditions. Differentially expressed intracellular proteins were identified and allocated to functional protein groups. Moreover, metabolic fluxes were analyzed by isotopologue profiling with [U-(13)C(6)]glucose as a tracer. The results of this study show that EDL933 responds with differential expression of a complex network of proteins and metabolic pathways, reflecting the high metabolic adaptability of the strain. Growth in SIEM and SCEM is obviously facilitated by the upregulation of nucleotide biosynthesis pathway proteins and could be impaired by exposition to 50 µM 6-mercaptopurine under aerobic conditions. Notably, various stress and virulence factors, including Shiga toxin, were expressed without having contact with a human host.
Collapse
|
90
|
Brito PH, Rocha EPC, Xavier KB, Gordo I. Natural genome diversity of AI-2 quorum sensing in Escherichia coli: conserved signal production but labile signal reception. Genome Biol Evol 2013; 5:16-30. [PMID: 23246794 PMCID: PMC3595036 DOI: 10.1093/gbe/evs122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Quorum sensing (QS) regulates the onset of bacterial social responses in function to cell density having an important impact in virulence. Autoinducer-2 (AI-2) is a signal that has the peculiarity of mediating both intra- and interspecies bacterial QS. We analyzed the diversity of all components of AI-2 QS across 44 complete genomes of Escherichia coli and Shigella strains. We used phylogenetic tools to study its evolution and determined the phenotypes of single-deletion mutants to predict phenotypes of natural strains. Our analysis revealed many likely adaptive polymorphisms both in gene content and in nucleotide sequence. We show that all natural strains possess the signal emitter (the luxS gene), but many lack a functional signal receptor (complete lsr operon) and the ability to regulate extracellular signal concentrations. This result is in striking contrast with the canonical species-specific QS systems where one often finds orphan receptors, without a cognate synthase, but not orphan emitters. Our analysis indicates that selection actively maintains a balanced polymorphism for the presence/absence of a functional lsr operon suggesting diversifying selection on the regulation of signal accumulation and recognition. These results can be explained either by niche-specific adaptation or by selection for a coercive behavior where signal-blind emitters benefit from forcing other individuals in the population to haste in cooperative behaviors.
Collapse
|
91
|
Tsao CY, Quan DN, Bentley WE. Development of the quorum sensing biotechnological toolbox. Curr Opin Chem Eng 2012. [DOI: 10.1016/j.coche.2012.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
92
|
Hahn A, Stevanovic M, Mirus O, Schleiff E. The TolC-like protein HgdD of the cyanobacterium Anabaena sp. PCC 7120 is involved in secondary metabolite export and antibiotic resistance. J Biol Chem 2012; 287:41126-38. [PMID: 23071120 DOI: 10.1074/jbc.m112.396010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of TolC has largely been explored in proteobacteria, where it functions as a metabolite and protein exporter. In contrast, little research has been carried out on the function of cyanobacterial homologues, and as a consequence, not much is known about the mechanism of cyanobacterial antibiotic uptake and metabolite secretion in general. It has been suggested that the TolC-like homologue of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120, termed heterocyst glycolipid deposition protein D (HgdD), is involved in both protein and lipid secretion. To describe its function in secondary metabolite secretion, we established a system to measure the uptake of antibiotics based on the fluorescent molecule ethidium bromide. We analyzed the rate of porin-dependent metabolite uptake and confirmed the functional relation between detoxification and the action of HgdD. Moreover, we identified two major facilitator superfamily proteins that are involved in this process. It appears that anaOmp85 (Alr2269) is not required for insertion or assembly of HgdD, because an alr2269 mutant does not exhibit a phenotype similar to the hgdD mutant. Thus, we could assign components of the metabolite efflux system and describe parameters of detoxification by Anabaena sp. PCC 7120.
Collapse
Affiliation(s)
- Alexander Hahn
- Department of Biosciences, Center of Membrane Proteomics, Cluster of Excellence Frankfurt, Goethe University, 60438 Frankfurt, Germany
| | | | | | | |
Collapse
|
93
|
AI-2 analogs and antibiotics: a synergistic approach to reduce bacterial biofilms. Appl Microbiol Biotechnol 2012; 97:2627-38. [DOI: 10.1007/s00253-012-4404-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/30/2012] [Accepted: 09/04/2012] [Indexed: 01/27/2023]
|
94
|
Quan DN, Bentley WE. Gene network homology in prokaryotes using a similarity search approach: queries of quorum sensing signal transduction. PLoS Comput Biol 2012; 8:e1002637. [PMID: 22916001 PMCID: PMC3420918 DOI: 10.1371/journal.pcbi.1002637] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/26/2012] [Indexed: 01/01/2023] Open
Abstract
Bacterial cell-cell communication is mediated by small signaling molecules known as autoinducers. Importantly, autoinducer-2 (AI-2) is synthesized via the enzyme LuxS in over 80 species, some of which mediate their pathogenicity by recognizing and transducing this signal in a cell density dependent manner. AI-2 mediated phenotypes are not well understood however, as the means for signal transduction appears varied among species, while AI-2 synthesis processes appear conserved. Approaches to reveal the recognition pathways of AI-2 will shed light on pathogenicity as we believe recognition of the signal is likely as important, if not more, than the signal synthesis. LMNAST (Local Modular Network Alignment Similarity Tool) uses a local similarity search heuristic to study gene order, generating homology hits for the genomic arrangement of a query gene sequence. We develop and apply this tool for the E. coli lac and LuxS regulated (Lsr) systems. Lsr is of great interest as it mediates AI-2 uptake and processing. Both test searches generated results that were subsequently analyzed through a number of different lenses, each with its own level of granularity, from a binary phylogenetic representation down to trackback plots that preserve genomic organizational information. Through a survey of these results, we demonstrate the identification of orthologs, paralogs, hitchhiking genes, gene loss, gene rearrangement within an operon context, and also horizontal gene transfer (HGT). We found a variety of operon structures that are consistent with our hypothesis that the signal can be perceived and transduced by homologous protein complexes, while their regulation may be key to defining subsequent phenotypic behavior. Bacteria communicate with each other through a network of small molecules that are secreted and perceived by nearest neighbors. In a process known as quorum sensing, bacteria communicate their cell density and certain behaviors emerge wherein the population of cells acts as a coordinated community. One small signaling molecule, AI-2, is synthesized by many bacteria so that in a natural ecosystem comprised of many secreting cells of different species, the molecule may be present in an appreciable concentration. The perception of the signal may be key to unlocking its importance, as some cells may recognize it at lower concentrations than others, etc. We have created a searching algorithm that finds similar gene sets among various bacteria. Here, we looked for signal transduction pathways similar to the one studied in E. coli. We found exact replicas to that of E. coli, but also found pathways with missing genes, added genes of unknown function, as well as different patterns by which the genes may be regulated. We suspect these attributes may play a significant role in determining quorum sensing behaviors. This, in turn, may lead to new discoveries for controlling groups of bacteria and possibly reducing the prevalence of infectious disease.
Collapse
Affiliation(s)
- David N. Quan
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland, United States of America
- Institute for Bioscience and Biotechnology Research, College Park, Maryland, United States of America
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland, United States of America
- Institute for Bioscience and Biotechnology Research, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
95
|
Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS. Limonin 7-methoxime interferes with Escherichia coli biofilm formation and attachment in type 1 pili and antigen 43 dependent manner. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
96
|
Pereira CS, Thompson JA, Xavier KB. AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 2012; 37:156-81. [PMID: 22712853 DOI: 10.1111/j.1574-6976.2012.00345.x] [Citation(s) in RCA: 388] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 02/06/2023] Open
Abstract
Success in nature depends upon an ability to perceive and adapt to the surrounding environment. Bacteria are not an exception; they recognize and constantly adjust to changing situations by sensing environmental and self-produced signals, altering gene expression accordingly. Autoinducer-2 (AI-2) is a signal molecule produced by LuxS, an enzyme found in many bacterial species and thus proposed to enable interspecies communication. Two classes of AI-2 receptors and many layers and interactions involved in downstream signalling have been identified so far. Although AI-2 has been implicated in the regulation of numerous niche-specific behaviours across the bacterial kingdom, interpretation of these results is complicated by the dual role of LuxS in signalling and the activated methyl cycle, a crucial central metabolic pathway. In this article, we present a comprehensive review of the discovery and early characterization of AI-2, current developments in signal detection, transduction and regulation, and the major studies investigating the phenotypes regulated by this molecule. The development of novel tools should help to resolve many of the remaining questions in the field; we highlight how these advances might be exploited in AI-2 quorum quenching, treatment of diseases, and the manipulation of beneficial behaviours caused by polyspecies communities.
Collapse
|
97
|
Rezzonico F, Smits THM, Duffy B. Detection of AI-2 receptors in genomes of Enterobacteriaceae suggests a role of type-2 quorum sensing in closed ecosystems. SENSORS 2012; 12:6645-65. [PMID: 22778662 PMCID: PMC3386761 DOI: 10.3390/s120506645] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/11/2012] [Accepted: 05/16/2012] [Indexed: 01/04/2023]
Abstract
The LuxS enzyme, an S-ribosyl-homocysteine lyase, catalyzes the production of the signal precursor for autoinducer-2 mediated quorum sensing (QS-2) in Vibrio. Its widespread occurrence among bacteria is often considered the evidence for a universal language for interspecies communication. Presence of the luxS gene and production of the autoinducer-2 (AI-2) signal have repeatedly been the only evidences presented to assign a functional QS-2 to the most diverse species. In fact, LuxS has a primary metabolic role as part of the activated methyl cycle. In this review we have analyzed the distribution of QS-2 related genes in Enterobacteriaceae by moving the focus of the investigation from AI-2 production to the detection of potential AI-2 receptors. The latter are common in pathogens or endosymbionts of animals, but were also found in a limited number of Enterobacteriaceae of the genera Enterobacter, Klebsiella, and Pantoea that live in close association with plants or fungi. Although a precise function of QS-2 in these species has not been identified, they all show an endophytic or endosymbiontic lifestyle that suggests a role of type-2 quorum sensing in the adaptation to closed ecosystems.
Collapse
Affiliation(s)
- Fabio Rezzonico
- Plant Protection Division, Agroscope Changins-Wädenswil ACW, Schloss 1, Wädenswil CH-8820, Switzerland.
| | | | | |
Collapse
|
98
|
Gölz G, Sharbati S, Backert S, Alter T. Quorum sensing dependent phenotypes and their molecular mechanisms in Campylobacterales. Eur J Microbiol Immunol (Bp) 2012; 2:50-60. [PMID: 24611121 DOI: 10.1556/eujmi.2.2012.1.8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 12/26/2022] Open
Abstract
Quorum sensing comprises the mechanism of communication between numerous bacteria via small signalling molecules, termed autoinducers (AI). Using quorum sensing, bacteria can regulate the expression of multiple genes involved in virulence, toxin production, motility, chemotaxis and biofilm formation, thus contributing to adaptation as well as colonisation. The current understanding of the role of quorum sensing in the lifecycle of Campylobacterales is still incomplete. Campylobacterales belong to the class of Epsilonproteobacteria representing a physiologically and ecologically diverse group of bacteria that are rather distinct from the more commonly studied Proteobacteria, such as Escherichia and Salmonella. This review summarises the recent knowledge on distribution and production of AI molecules, as well as possible quorum sensing dependent regulation in the mostly investigated species within the Campylobacterales group: Campylobacter jejuni and Helicobacter pylori.
Collapse
|
99
|
An MFS Transporter-Like ORF from MDR Acinetobacter baumannii AIIMS 7 Is Associated with Adherence and Biofilm Formation on Biotic/Abiotic Surface. Int J Microbiol 2012; 2012:490647. [PMID: 22518144 PMCID: PMC3299490 DOI: 10.1155/2012/490647] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 11/09/2011] [Accepted: 11/09/2011] [Indexed: 11/27/2022] Open
Abstract
A major facilitator superfamily (MFS) transporter-like open reading frame (ORF) of 453 bp was identified in a pathogenic strain Acinetobacter baumannii AIIMS 7, and its association with adherence and biofilm formation was investigated. Reverse transcription PCR (RT-PCR) showed differential expression in surface-attached biofilm cells than nonadherent cells. In vitro translation showed synthesis of a ~17 kDa protein, further confirmed by cloning and heterologous expression in E. coli DH5α. Up to 2.1-, 3.1-, and 4.1- fold biofilm augmentation was observed on abiotic (polystyrene) and biotic (S. cerevisiae/HeLa) surface, respectively. Scanning electron microscopy (SEM) and gfp-tagged fluorescence microscopy revealed increased adherence to abiotic (glass) and biotic (S. cerevisiae) surface. Extracellular DNA(eDNA) was found significantly during active growth; due to probable involvement of the protein in DNA export, strong sequence homology with MFS transporter proteins, and presence of transmembrane helices. In summary, our findings show that the putative MFS transporter-like ORF (pmt) is associated with adherence, biofilm formation, and probable eDNA release in A. baumannii AIIMS 7.
Collapse
|
100
|
In vitro antibiofilm activity of the melanin from Auricularia auricula, an edible jelly mushroom. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-011-0406-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|