51
|
Abstract
The past decade has witnessed steady and rapid progress in HCV research, which has led to the recent breakthrough in therapies against this significant human pathogen. Yet a deeper understanding of the life cycle of the virus is required to develop more affordable treatments and to advance vaccine design. HCV entry presents both a challenge for scientific research and an opportunity for alternative intervention approaches, owning to its highly complex nature and the myriad of players involved. More than half a dozen cellular proteins are implicated in HCV entry; and a more definitive picture regarding the structures of the glycoproteins is emerging. A role of apolipoproteins in HCV entry has also been established. Still, major questions remain, and the answers to these, which we summarize in this review, will hopefully close the gaps in our understanding and complete the puzzle that is HCV entry.
Collapse
Affiliation(s)
- Sarah C Ogden
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA ; Institute of Health Sciences, Anhui University, Hefei, 230601, PR China
| |
Collapse
|
52
|
Bridge SH, Sheridan DA, Felmlee DJ, Crossey MME, Fenwick FI, Lanyon CV, Dubuc G, Seidah NG, Davignon J, Thomas HC, Taylor-Robinson SD, Toms GL, Neely RDG, Bassendine MF. PCSK9, apolipoprotein E and lipoviral particles in chronic hepatitis C genotype 3: evidence for genotype-specific regulation of lipoprotein metabolism. J Hepatol 2015; 62:763-70. [PMID: 25463543 DOI: 10.1016/j.jhep.2014.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 10/28/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) associates with lipoproteins to form "lipoviral particles" (LVPs) that can facilitate viral entry into hepatocytes. Initial attachment occurs via heparan sulphate proteoglycans and low-density lipoprotein receptor (LDLR); CD81 then mediates a post-attachment event. Proprotein convertase subtilisin kexin type 9 (PCSK9) enhances the degradation of the LDLR and modulates liver CD81 levels. We measured LVP and PCSK9 in patients chronically infected with HCV genotype (G)3. PCSK9 concentrations were also measured in HCV-G1 to indirectly examine the role of LDLR in LVP clearance. METHODS HCV RNA, LVP (d<1.07g/ml) and non-LVP (d>1.07g/ml) fractions, were quantified in patients with HCV-G3 (n=39) by real time RT-PCR and LVP ratios (LVPr; LVP/(LVP+non-LVP)) were calculated. Insulin resistance (IR) was assessed using the homeostasis model assessment of IR (HOMA-IR). Plasma PCSK9 concentrations were measured by ELISA in HCV-G3 and HCV-G1 (n=51). RESULTS In HCV-G3 LVP load correlated inversely with HDL-C (r=-0.421; p=0.008), and apoE (r=-0.428; p=0.013). The LVPr varied more than 35-fold (median 0.286; range 0.027 to 0.969); PCSK9 was the strongest negative predictor of LVPr (R(2)=16.2%; p=0.012). HOMA-IR was not associated with LVP load or LVPr. PCSK9 concentrations were significantly lower in HCV-G3 compared to HCV-G1 (p<0.001). PCSK9 did not correlate with LDL-C in HCV-G3 or G1. CONCLUSIONS The inverse correlation of LVP with apoE in HCV-G3, compared to the reverse in HCV-G1 suggests HCV genotype-specific differences in apoE mediated viral entry. Lower PCSK9 and LDL concentrations imply upregulated LDLR activity in HCV-G3.
Collapse
Affiliation(s)
- Simon H Bridge
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| | - David A Sheridan
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Institute of Translational & Stratified Medicine, Plymouth University Peninsula School of Medicine & Dentistry, United Kingdom
| | - Daniel J Felmlee
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Inserm U1110, University of Strasbourg and Center for Liver and Digestive Diseases, Strasbourg University Hospitals, 3 Rue Koeberlé, F-67000 Strasbourg, France
| | - Mary M E Crossey
- Liver Unit, Department of Medicine, Imperial College London, St Mary's Hospital Campus, Praed Street, London, United Kingdom
| | - Fiona I Fenwick
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Clare V Lanyon
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Geneviève Dubuc
- Hyperlipidemia and Atherosclerosis Research Group, Clinical Research Institute of Montréal (IRCM), Montréal, Canada; University of Montréal, Montréal, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montréal, Montréal, Canada; University of Montréal, Montréal, Canada
| | - Jean Davignon
- Hyperlipidemia and Atherosclerosis Research Group, Clinical Research Institute of Montréal (IRCM), Montréal, Canada; University of Montréal, Montréal, Canada
| | - Howard C Thomas
- Liver Unit, Department of Medicine, Imperial College London, St Mary's Hospital Campus, Praed Street, London, United Kingdom
| | - Simon D Taylor-Robinson
- Liver Unit, Department of Medicine, Imperial College London, St Mary's Hospital Campus, Praed Street, London, United Kingdom
| | - Geoffrey L Toms
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - R Dermot G Neely
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Clinical Biochemistry, Newcastle upon Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, United Kingdom
| | - Margaret F Bassendine
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
53
|
Abstract
ABSTRACT HCV encodes two envelope glycoproteins, E1 and E2, which assemble as a non-covalent heterodimer in infected cells. During HCV morphogenesis, these proteins are incorporated into viral particles and they are the major viral determinants of HCV entry. Functional studies have revealed unique features in these viral envelope glycoproteins. Indeed, E1–E2 interaction, mediated by their transmembrane domain, is essential for HCV assembly and entry. Furthermore, recent data also show that these glycoproteins interact with apolipoproteins. Recent crystallography data provide some structural support to better understand how these proteins interact with the host. In this review, we summarize the biogenesis of HCV envelope glycoproteins and their role in HCV morphogenesis in the context of the hijacking of the very low-density lipoprotein assembly pathway by this virus. We also describe the functions of HCV glycoproteins during virus entry with a special focus on the unexpected structural features of E2 glycoprotein. Finally, we discuss the major neutralizing epitopes in the light of E2 structure.
Collapse
Affiliation(s)
- Muriel Lavie
- Center for Infection & Immunity of Lille, Institut Pasteur of Lille, Inserm U1019, CNRS UMR-8204, University of Lille, F-59021 Lille, France
| | - François Penin
- Institut de Biologie & Chimie des Protéines, Bases Moléculaires & Structurales des Systèmes Infectieux, UMR-5086-CNRS, Labex Ecofect, Université de Lyon, Lyon, France
| | - Jean Dubuisson
- Center for Infection & Immunity of Lille, Institut Pasteur of Lille, Inserm U1019, CNRS UMR-8204, University of Lille, F-59021 Lille, France
| |
Collapse
|
54
|
Abstract
Although chronic infection of hepatitis C virus (HCV) induces disorders of lipid metabolism, HCV is known to utilize lipid metabolism for efficient propagation in the liver. Due to the morphological and physiological similarities of HCV particles to lipoproteins, lipid-associated HCV particles are named lipoviroparticles. Previous reports have shown that lipoprotein receptors or cholesterol transporter participate in the entry of lipoviroparticles. In addition, recent analyses revealed that exchangeable apolipoproteins directly interact with the viral membrane to generate infectious HCV particles. In this review, we would like to discuss about involvement of lipoprotein and apolipoprotein in HCV lifecycle.
Collapse
Affiliation(s)
- Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University
| | | |
Collapse
|
55
|
Hepatitis C virus life cycle and lipid metabolism. BIOLOGY 2014; 3:892-921. [PMID: 25517881 PMCID: PMC4280516 DOI: 10.3390/biology3040892] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 12/12/2022]
Abstract
Hepatitis C Virus (HCV) infects over 150 million people worldwide. In most cases HCV infection becomes chronic, causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. HCV affects the cholesterol homeostasis and at the molecular level, every step of the virus life cycle is intimately connected to lipid metabolism. In this review, we present an update on the lipids and apolipoproteins that are involved in the HCV infectious cycle steps: entry, replication and assembly. Moreover, the result of the assembly process is a lipoviroparticle, which represents a peculiarity of hepatitis C virion. This review illustrates an example of an intricate virus-host interaction governed by lipid metabolism.
Collapse
|
56
|
The mechanism of HCV entry into host cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:63-107. [PMID: 25595801 DOI: 10.1016/bs.pmbts.2014.10.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is an enveloped, positive strand RNA virus classified within the Flaviviridae family and is a major cause of liver disease worldwide. HCV life cycle and propagation are tightly linked to several aspects of lipid metabolism. HCV propagation depends on and also shapes several aspects of lipid metabolism such as cholesterol uptake and efflux through different lipoprotein receptors during its entry into cells, lipid metabolism modulating HCV genome replication, lipid droplets acting as a platform for recruitment of viral components, and very low density lipoprotein assembly pathway resulting in incorporation of neutral lipids and apolipoproteins into viral particles. During the first steps of infection, HCV enters hepatocytes through a multistep and slow process. The initial capture of HCV particles by glycosaminoglycans and/or lipoprotein receptors is followed by coordinated interactions with the scavenger receptor class B type I, a major receptor of high-density lipoprotein, the CD81 tetraspanin, and the tight junction proteins Claudin-1 and Occludin. This tight concert of receptor interactions ultimately leads to uptake and cellular internalization of HCV through a process of clathrin-dependent endocytosis. Over the years, the identification of the HCV entry receptors and cofactors has led to a better understanding of HCV entry and of the narrow tropism of HCV for the liver. Yet, the role of the two HCV envelope glycoproteins, E1 and E2, remains ill-defined, particularly concerning their involvement in the membrane fusion process. Here, we review the current knowledge and advances addressing the mechanism of HCV cell entry within hepatocytes and we highlight the challenges that remain to be addressed.
Collapse
|
57
|
Amphipathic α-helices in apolipoproteins are crucial to the formation of infectious hepatitis C virus particles. PLoS Pathog 2014; 10:e1004534. [PMID: 25502789 PMCID: PMC4263759 DOI: 10.1371/journal.ppat.1004534] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022] Open
Abstract
Apolipoprotein B (ApoB) and ApoE have been shown to participate in the particle formation and the tissue tropism of hepatitis C virus (HCV), but their precise roles remain uncertain. Here we show that amphipathic α-helices in the apolipoproteins participate in the HCV particle formation by using zinc finger nucleases-mediated apolipoprotein B (ApoB) and/or ApoE gene knockout Huh7 cells. Although Huh7 cells deficient in either ApoB or ApoE gene exhibited slight reduction of particles formation, knockout of both ApoB and ApoE genes in Huh7 (DKO) cells severely impaired the formation of infectious HCV particles, suggesting that ApoB and ApoE have redundant roles in the formation of infectious HCV particles. cDNA microarray analyses revealed that ApoB and ApoE are dominantly expressed in Huh7 cells, in contrast to the high level expression of all of the exchangeable apolipoproteins, including ApoA1, ApoA2, ApoC1, ApoC2 and ApoC3 in human liver tissues. The exogenous expression of not only ApoE, but also other exchangeable apolipoproteins rescued the infectious particle formation of HCV in DKO cells. In addition, expression of these apolipoproteins facilitated the formation of infectious particles of genotype 1b and 3a chimeric viruses. Furthermore, expression of amphipathic α-helices in the exchangeable apolipoproteins facilitated the particle formation in DKO cells through an interaction with viral particles. These results suggest that amphipathic α-helices in the exchangeable apolipoproteins play crucial roles in the infectious particle formation of HCV and provide clues to the understanding of life cycle of HCV and the development of novel anti-HCV therapeutics targeting for viral assembly.
Collapse
|
58
|
Vercauteren K, Mesalam AA, Leroux-Roels G, Meuleman P. Impact of lipids and lipoproteins on hepatitis C virus infection and virus neutralization. World J Gastroenterol 2014; 20:15975-91. [PMID: 25473151 PMCID: PMC4239485 DOI: 10.3748/wjg.v20.i43.15975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/09/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infections represent a major global health problem. End-stage liver disease caused by chronic HCV infection is a major indication for liver transplantation. However, after transplantation the engrafted liver inevitably becomes infected by the circulating virus. Direct acting antivirals are not yet approved for use in liver transplant patients, and limited efficacy and severe side effects hamper the use of pegylated interferon combined with ribavirin in a post-transplant setting. Therefore, alternative therapeutic options need to be explored. Viral entry represents an attractive target for such therapeutic intervention. Understanding the mechanisms of viral entry is essential to define the viral and cellular factors involved. The HCV life cycle is dependent of and associated with lipoprotein physiology and the presence of lipoproteins has been correlated with altered antiviral efficacy of entry inhibitors. In this review, we summarise the current knowledge on how lipoprotein physiology influences the HCV life cycle. We focus especially on the influence of lipoproteins on antibodies that target HCV envelope proteins or antibodies that target the cellular receptors of the virus. This information can be particularly relevant for the prevention of HCV re-infection after liver transplantation.
Collapse
|
59
|
Abstract
Hepatitis C virus (HCV) is a major global health burden accounting for around 170 million chronic infections worldwide. Although highly potent direct-acting antiviral drugs to treat chronic hepatitis C have been approved recently, owing to their high costs and limited availability and a large number of undiagnosed infections, the burden of disease is expected to rise in the next few years. In addition, HCV is an excellent paradigm for understanding the tight link between a pathogen and host cell pathways, most notably lipid metabolism. HCV extensively remodels intracellular membranes to establish its cytoplasmic replication factory and also usurps components of the intercellular lipid transport system for production of infectious virus particles. Here, we review the molecular mechanisms of viral replicase function, cellular pathways employed during HCV replication factory biogenesis, and viral, as well as cellular, determinants of progeny virus production.
Collapse
|
60
|
Cashman SB, Marsden BD, Dustin LB. The Humoral Immune Response to HCV: Understanding is Key to Vaccine Development. Front Immunol 2014; 5:550. [PMID: 25426115 PMCID: PMC4226226 DOI: 10.3389/fimmu.2014.00550] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/16/2014] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) remains a global problem, despite advances in treatment. The low cost and high benefit of vaccines have made them the backbone of modern public health strategies, and the fight against HCV will not be won without an effective vaccine. Achievement of this goal will benefit from a robust understanding of virus-host interactions and protective immunity in HCV infection. In this review, we summarize recent findings on HCV-specific antibody responses associated with chronic and spontaneously resolving human infection. In addition, we discuss specific epitopes within HCV's envelope glycoproteins that are targeted by neutralizing antibodies. Understanding what prompts or prevents a successful immune response leading to viral clearance or persistence is essential to designing a successful vaccine.
Collapse
Affiliation(s)
- Siobhán B Cashman
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford , Oxford , UK
| | - Brian D Marsden
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford , Oxford , UK ; Nuffield Department of Medicine, Structural Genomics Consortium, University of Oxford , Oxford , UK
| | - Lynn B Dustin
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford , Oxford , UK
| |
Collapse
|
61
|
Dubuisson J, Cosset FL. Virology and cell biology of the hepatitis C virus life cycle: an update. J Hepatol 2014; 61:S3-S13. [PMID: 25443344 DOI: 10.1016/j.jhep.2014.06.031] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is an important human pathogen that causes hepatitis, liver cirrhosis and hepatocellular carcinoma. It imposes a serious problem to public health in the world as the population of chronically infected HCV patients who are at risk of progressive liver disease is projected to increase significantly in the next decades. However, the arrival of new antiviral molecules is progressively changing the landscape of hepatitis C treatment. The search for new anti-HCV therapies has also been a driving force to better understand how HCV interacts with its host, and major progresses have been made on the various steps of the HCV life cycle. Here, we review the most recent advances in the fast growing knowledge on HCV life cycle and interaction with host factors and pathways.
Collapse
Affiliation(s)
- Jean Dubuisson
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, France; CNRS UMR8204, F-59021 Lille, France; Inserm U1019, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France.
| | - François-Loïc Cosset
- CIRI - International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France; Inserm, U1111, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; CNRS, UMR5308, Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France; LabEx Ecofect, Université de Lyon, Lyon, France.
| |
Collapse
|
62
|
Laird ME, Mohsen A, Duffy D, Mamdouh R, LeFouler L, Casrouge A, El-Daly M, Rafik M, Abdel-Hamid M, Soulier A, Pawlotsky JM, Hézode C, Rosa I, Renard P, Mohamed MK, Bonnard P, Izopet J, Mallet V, Pol S, Albert ML, Fontanet A. Apolipoprotein H expression is associated with IL28B genotype and viral clearance in hepatitis C virus infection. J Hepatol 2014; 61:770-6. [PMID: 24905490 DOI: 10.1016/j.jhep.2014.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 05/05/2014] [Accepted: 05/25/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS HCV requires host lipid metabolism for replication, and apolipoproteins have been implicated in the response to treatment. METHODS We examined plasma apolipoprotein concentrations in three cohorts of patients: mono-infected patients with symptomatic acute hepatitis C (aHCV); those undergoing treatment for chronic hepatitis C (cHCV); and HIV/HCV co-infected patients being treated for their chronic hepatitis C. We also evaluated associations between apolipoproteins and IL28B polymorphisms, a defined genetic determinant of viral clearance. RESULTS Plasma apolipoprotein H (ApoH) levels were significantly higher in patients who achieved spontaneous clearance or responded to pegylated-interferon/ribavirin therapy. Strikingly, patients carrying the IL28B rs12979860 CC SNP correlated with the plasma concentration of ApoH in all three cohorts. Both ApoH and IL28B CC SNP were associated with HCV clearance in univariate analysis. Additional multivariate analysis revealed that the association between IL28B and HCV clearance was closely linked to that of Apo H and HCV clearance, suggesting that both belong to the same biological pathway to clearance. The association between IL28B CC SNP and ApoH was not observed in healthy individuals, suggesting that early post-infection events trigger differential ApoH expression in an IL28B allele dependent manner. CONCLUSIONS This relationship identifies ApoH as the first induced protein quantitative trait associated with IL28B, and characterises a novel host factor implicated in HCV clearance.
Collapse
Affiliation(s)
- Melissa E Laird
- Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France; INSERM U818, Paris, France
| | - Amira Mohsen
- Community Medicine Department, National Research Center, Cairo, Egypt
| | - Darragh Duffy
- Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France; INSERM U818, Paris, France
| | - Rasha Mamdouh
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Lenaig LeFouler
- Emerging Disease Epidemiology Unit, Institut Pasteur, Paris, France
| | - Armanda Casrouge
- Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France; INSERM U818, Paris, France
| | - Mai El-Daly
- Liver Disease Research Unit, National Hepatology & Tropical Medicine Research Institute, Cairo, Egypt
| | - Mona Rafik
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Abdel-Hamid
- Liver Disease Research Unit, National Hepatology & Tropical Medicine Research Institute, Cairo, Egypt; Faculty of Medicine, Minia University, Egypt
| | - Alexandre Soulier
- National Reference Center for Viral Hepatitis B, C, and D, Department of Virology, Hôpital Henri Mondor, Université Paris-Est, Créteil, France; INSERM U955, Créteil, France
| | - Jean-Michel Pawlotsky
- National Reference Center for Viral Hepatitis B, C, and D, Department of Virology, Hôpital Henri Mondor, Université Paris-Est, Créteil, France; INSERM U955, Créteil, France
| | - Christophe Hézode
- INSERM U955, Créteil, France; Department of Hepatology and Gastroenterology, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
| | - Isabelle Rosa
- INSERM U955, Créteil, France; Department of Hepatology and Gastroenterology, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
| | - Philippe Renard
- Department of Gastroenterology and Hepatology, Hôpital Victor Dupouy, Argenteuil, France
| | - Mostafa K Mohamed
- Liver Disease Research Unit, National Hepatology & Tropical Medicine Research Institute, Cairo, Egypt
| | - Philippe Bonnard
- Maladies Infectieuses et Tropicales, Hôpital Tenon (APHP), Paris, France; INSERM U-707, UPMC, Paris, France
| | - Jacques Izopet
- Department of Virology, CHU Toulouse, Toulouse, France; INSERM U1043, IFR-BMT, Toulouse, France
| | - Vincent Mallet
- Université Paris Descartes, Paris, France; Institut Cochin, INSERM (IMR-S1016), CNRS (UMR 8104), Paris, France; Assistance Publique - Hôpitaux de Paris (APHP), Groupe Hospitalier Cochin Saint-Vincent de Paul, Unité d'Hepatologie, Paris, France
| | - Stanislas Pol
- Université Paris Descartes, Paris, France; Institut Cochin, INSERM (IMR-S1016), CNRS (UMR 8104), Paris, France; Assistance Publique - Hôpitaux de Paris (APHP), Groupe Hospitalier Cochin Saint-Vincent de Paul, Unité d'Hepatologie, Paris, France
| | - Matthew L Albert
- Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France; INSERM U818, Paris, France; Assistance Publique - Hôpitaux de Paris (APHP), Groupe Hospitalier Cochin Saint-Vincent de Paul, Unité d'Hepatologie, Paris, France.
| | - Arnaud Fontanet
- Emerging Disease Epidemiology Unit, Institut Pasteur, Paris, France; Conservatoire National des Arts et Métiers, Paris, France.
| |
Collapse
|
63
|
Apolipoprotein E likely contributes to a maturation step of infectious hepatitis C virus particles and interacts with viral envelope glycoproteins. J Virol 2014; 88:12422-37. [PMID: 25122793 DOI: 10.1128/jvi.01660-14] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The assembly of infectious hepatitis C virus (HCV) particles is tightly linked to components of the very-low-density lipoprotein (VLDL) pathway. We and others have shown that apolipoprotein E (ApoE) plays a major role in production of infectious HCV particles. However, the mechanism by which ApoE contributes to virion assembly/release and how it gets associated with the HCV particle is poorly understood. We found that knockdown of ApoE reduces titers of infectious intra- and extracellular HCV but not of the related dengue virus. ApoE depletion also reduced amounts of extracellular HCV core protein without affecting intracellular core amounts. Moreover, we found that ApoE depletion affected neither formation of nucleocapsids nor their envelopment, suggesting that ApoE acts at a late step of assembly, such as particle maturation and infectivity. Importantly, we demonstrate that ApoE interacts with the HCV envelope glycoproteins, most notably E2. This interaction did not require any other viral proteins and depended on the transmembrane domain of E2 that also was required for recruitment of HCV envelope glycoproteins to detergent-resistant membrane fractions. These results suggest that ApoE plays an important role in HCV particle maturation, presumably by direct interaction with viral envelope glycoproteins. IMPORTANCE The HCV replication cycle is tightly linked to host cell lipid pathways and components. This is best illustrated by the dependency of HCV assembly on lipid droplets and the VLDL component ApoE. Although the role of ApoE for production of infectious HCV particles is well established, it is still poorly understood how ApoE contributes to virion formation and how it gets associated with HCV particles. Here, we provide experimental evidence that ApoE likely is required for an intracellular maturation step of HCV particles. Moreover, we demonstrate that ApoE associates with the viral envelope glycoproteins. This interaction appears to be dispensable for envelopment of virus particles but likely contributes to the quality control of secreted infectious virions. These results shed new light on the exploitation of host cell lipid pathways by HCV and the link of viral particle assembly to the VLDL component ApoE.
Collapse
|
64
|
Boyer A, Dumans A, Beaumont E, Etienne L, Roingeard P, Meunier JC. The association of hepatitis C virus glycoproteins with apolipoproteins E and B early in assembly is conserved in lipoviral particles. J Biol Chem 2014; 289:18904-13. [PMID: 24838241 PMCID: PMC4081931 DOI: 10.1074/jbc.m113.538256] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 05/15/2014] [Indexed: 12/15/2022] Open
Abstract
In patients chronically infected with hepatitis C virus and in the HCV cell culture system (HCVcc), it is known that highly infectious virus particles have low to very low buoyant densities. These low densities have been attributed to the association of HCV with lipoprotein components, which occur during the viral morphogenesis. The resulting hybrid particles are known as lipoviral particles (LVP); however, very little is known about how these particles are created. In our study, we used Huh7.5 cells to investigate the intracellular association between envelope proteins and apolipoproteins B and E (ApoB and ApoE, respectively). In particular, we were interested in the role of this association in initiating LVP morphogenesis. Co-immunoprecipitation assays revealed that ApoB, ApoE, and HCV glycoproteins formed a protein complex early in the HCV lifecycle. Confocal analyses of naïve, E1E2-transduced and HCVcc-infected cells showed that HCV glycoproteins, ApoB and ApoE were found strongly colocalized only in the endoplasmic reticulum. We also found that HCV glycoproteins, ApoB and ApoE were already associated with intracellular infectious viral particles and, furthermore, that the protein complex was conserved in the infectious viral particles present in the supernatant of infected Huh7.5 cells. The association of HCV glycoproteins with ApoE was also evidenced in the HCVpp system, using the non-hepatic HEK293T cell line. We suggest that the complex formed by HCV E1E2, ApoB, and ApoE may initiate lipoviral particle morphogenesis.
Collapse
Affiliation(s)
- Audrey Boyer
- From the INSERM U966, Université François Rabelais and CHRU de Tours, 37032 Tours, France
| | - Amélie Dumans
- From the INSERM U966, Université François Rabelais and CHRU de Tours, 37032 Tours, France
| | - Elodie Beaumont
- From the INSERM U966, Université François Rabelais and CHRU de Tours, 37032 Tours, France
| | - Loïc Etienne
- From the INSERM U966, Université François Rabelais and CHRU de Tours, 37032 Tours, France
| | - Philippe Roingeard
- From the INSERM U966, Université François Rabelais and CHRU de Tours, 37032 Tours, France
| | | |
Collapse
|
65
|
Lefèvre M, Felmlee DJ, Parnot M, Baumert TF, Schuster C. Syndecan 4 is involved in mediating HCV entry through interaction with lipoviral particle-associated apolipoprotein E. PLoS One 2014; 9:e95550. [PMID: 24751902 PMCID: PMC3994096 DOI: 10.1371/journal.pone.0095550] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/28/2014] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease worldwide and HCV infection represents a major health problem. HCV associates with host lipoproteins forming host/viral hybrid complexes termed lipoviral particles. Apolipoprotein E (apoE) is a lipoprotein component that interacts with heparan sulfate proteoglycans (HSPG) to mediate hepatic lipoprotein uptake, and may likewise mediate HCV entry. We sought to define the functional regions of apoE with an aim to identify critical apoE binding partners involved in HCV infection. Using adenoviral vectors and siRNA to modulate apoE expression we show a direct correlation of apoE expression and HCV infectivity, whereas no correlation exists with viral protein expression. Mutating the HSPG binding domain (HSPG-BD) of apoE revealed key residues that are critical for mediating HCV infection. Furthermore, a novel synthetic peptide that mimics apoE’s HSPG-BD directly and competitively inhibits HCV infection. Genetic knockdown of the HSPG proteins syndecan (SDC) 1 and 4 revealed that SDC4 principally mediates HCV entry. Our data demonstrate that HCV uses apoE-SDC4 interactions to enter hepatoma cells and establish infection. Targeting apoE-SDC interactions could be an alternative strategy for blocking HCV entry, a critical step in maintaining chronic HCV infection.
Collapse
Affiliation(s)
- Mathieu Lefèvre
- Inserm, U1110, Research Institute on Viral and Hepatic Disease, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Daniel J. Felmlee
- Inserm, U1110, Research Institute on Viral and Hepatic Disease, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Marie Parnot
- Inserm, U1110, Research Institute on Viral and Hepatic Disease, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thomas F. Baumert
- Inserm, U1110, Research Institute on Viral and Hepatic Disease, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pôle hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Catherine Schuster
- Inserm, U1110, Research Institute on Viral and Hepatic Disease, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
66
|
Zhu YZ, Qian XJ, Zhao P, Qi ZT. How hepatitis C virus invades hepatocytes: The mystery of viral entry. World J Gastroenterol 2014; 20:3457-3467. [PMID: 24707128 PMCID: PMC3974512 DOI: 10.3748/wjg.v20.i13.3457] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/03/2013] [Accepted: 01/05/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a global health problem, with an estimated 170 million people being chronically infected. HCV cell entry is a complex multi-step process, involving several cellular factors that trigger virus uptake into the hepatocytes. The high- density lipoprotein receptor scavenger receptor class B type I, tetraspanin CD81, tight junction protein claudin-1, and occludin are the main receptors that mediate the initial step of HCV infection. In addition, the virus uses cell receptor tyrosine kinases as entry regulators, such as epidermal growth factor receptor and ephrin receptor A2. This review summarizes the current understanding about how cell surface molecules are involved in HCV attachment, internalization, and membrane fusion, and how host cell kinases regulate virus entry. The advances of the potential antiviral agents targeting this process are introduced.
Collapse
|
67
|
Incorporation of hepatitis C virus E1 and E2 glycoproteins: the keystones on a peculiar virion. Viruses 2014; 6:1149-87. [PMID: 24618856 PMCID: PMC3970144 DOI: 10.3390/v6031149] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/21/2014] [Accepted: 02/27/2014] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2. Their structure and mode of fusion remain unknown, and so does the virion architecture. The organization of the HCV envelope shell in particular is subject to discussion as it incorporates or associates with host-derived lipoproteins, to an extent that the biophysical properties of the virion resemble more very-low-density lipoproteins than of any virus known so far. The recent development of novel cell culture systems for HCV has provided new insights on the assembly of this atypical viral particle. Hence, the extensive E1E2 characterization accomplished for the last two decades in heterologous expression systems can now be brought into the context of a productive HCV infection. This review describes the biogenesis and maturation of HCV envelope glycoproteins, as well as the interplay between viral and host factors required for their incorporation in the viral envelope, in a way that allows efficient entry into target cells and evasion of the host immune response.
Collapse
|
68
|
Apolipoprotein E codetermines tissue tropism of hepatitis C virus and is crucial for viral cell-to-cell transmission by contributing to a postenvelopment step of assembly. J Virol 2013; 88:1433-46. [PMID: 24173232 DOI: 10.1128/jvi.01815-13] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) predominantly infects human hepatocytes, although extrahepatic virus reservoirs are being discussed. Infection of cells is initiated via cell-free and direct cell-to-cell transmission routes. Cell type-specific determinants of HCV entry and RNA replication have been reported. Moreover, several host factors required for synthesis and secretion of lipoproteins from liver cells, in part expressed in tissue-specific fashion, have been implicated in HCV assembly. However, the minimal cell type-specific requirements for HCV assembly have remained elusive. Here we report that production of HCV trans-complemented particles (HCVTCP) from nonliver cells depends on ectopic expression of apolipoprotein E (ApoE). For efficient virus production by full-length HCV genomes, microRNA 122 (miR-122)-mediated enhancement of RNA replication is additionally required. Typical properties of cell culture-grown HCV (HCVcc) particles from ApoE-expressing nonliver cells are comparable to those of virions derived from human hepatoma cells, although specific infectivity of virions is modestly reduced. Thus, apolipoprotein B (ApoB), microsomal triglyceride transfer protein (MTTP), and apolipoprotein C1 (ApoC1), previously implicated in HCV assembly, are dispensable for production of infectious HCV. In the absence of ApoE, release of core protein from infected cells is reduced, and production of extracellular as well as intracellular infectivity is ablated. Since envelopment of capsids was not impaired, we conclude that ApoE acts after capsid envelopment but prior to secretion of infectious HCV. Remarkably, the lack of ApoE also abrogated direct HCV cell-to-cell transmission. These findings highlight ApoE as a host factor codetermining HCV tissue tropism due to its involvement in a late assembly step and viral cell-to-cell transmission.
Collapse
|
69
|
Lindenbach BD, Rice CM. The ins and outs of hepatitis C virus entry and assembly. Nat Rev Microbiol 2013; 11:688-700. [PMID: 24018384 DOI: 10.1038/nrmicro3098] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus, a major human pathogen, produces infectious virus particles with several unique features, such as an ability to interact with serum lipoproteins, a dizzyingly complicated process of virus entry, and a pathway of virus assembly and release that is closely linked to lipoprotein secretion. Here, we review these unique features, with an emphasis on recent discoveries concerning virus particle structure, virus entry and virus particle assembly and release.
Collapse
Affiliation(s)
- Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut 06536, USA
| | | |
Collapse
|
70
|
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus and a major cause of chronic hepatitis and liver disease worldwide. Initial interactions between HCV virions and hepatocytes are required for productive viral infection and initiation of the viral life cycle. Furthermore, HCV entry contributes to the tissue tropism and species specificity of this virus. The elucidation of these interactions is critical, not only to understand the pathogenesis of HCV infection, but also to design efficient antiviral strategies and vaccines. This review summarizes our current knowledge of the host factors required for the HCV-host interactions during HCV binding and entry, our understanding of the molecular mechanisms underlying HCV entry into target cells, and the relevance of HCV entry for the pathogenesis of liver disease, antiviral therapy, and vaccine development.
Collapse
|
71
|
Abstract
Hepatitis C Virus (HCV) particles exhibit several unusual properties that are not found in other enveloped RNA viruses, most notably their low buoyant density and interaction with serum lipoproteins. With the advent of systems to grow HCV in cell culture, the molecular basis of HCV particle assembly and release can now be addressed. The process of virus assembly involves protein-protein interactions between viral structural and nonstructural proteins and the coordinated action of host factors. This chapter reviews our current understanding of these interactions and factors.
Collapse
Affiliation(s)
- Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
72
|
Sun HY, Lin CC, Lee JC, Wang SW, Cheng PN, Wu IC, Chang TT, Lai MD, Shieh DB, Young KC. Very low-density lipoprotein/lipo-viro particles reverse lipoprotein lipase-mediated inhibition of hepatitis C virus infection via apolipoprotein C-III. Gut 2013; 62:1193-203. [PMID: 22689516 DOI: 10.1136/gutjnl-2011-301798] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Circulating hepatitis C virus (HCV) virions are associated with triglyceride-rich lipoproteins, including very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL), designated as lipo-viro-particles (LVPs). Previous studies showed that lipoprotein lipase (LPL), a key enzyme for hydrolysing the triglyceride in VLDL to finally become LDL, may suppress HCV infection. This investigation considers the regulation of LPL by lipoproteins and LVPs, and their roles in the LPL-mediated anti-HCV function. DESIGN The lipoproteins were fractionated from normolipidemic blood samples using iodixanol gradients. Subsequent immunoglobulin-affinity purification from the canonical VLDL and LDL yielded the corresponding VLDL-LVP and LDL-LVP. Apolipoprotein (apo) Cs, LPL activity and HCV infection were quantified. RESULTS A higher triglyceride/cholesterol ratio of LDL was found more in HCV-infected donors than in healthy volunteers, and the triglyceride/cholesterol ratio of LDL-LVP was much increased, suggesting that the LPL hydrolysis of triglyceride may be impaired. VLDL, VLDL-LVP, LDL-LVP, but not LDL, suppressed LPL lipolytic activity, which was restored by antibodies that recognised apoC-III/-IV and correlated with the steadily abundant apoC-III/-IV quantities in those particles. In a cell-based system, treatment with VLDL and LVPs reversed the LPL-mediated inhibition of HCV infection in apoC-III/-IV-dependent manners. A multivariate logistic regression revealed that plasma HCV viral loads correlated negatively with LPL lipolytic activity, but positively with the apoC-III content of VLDL. Additionally, apoC-III in VLDL was associated with a higher proportion of HCV-RNA than was IgG. CONCLUSION This study reveals that LPL is an anti-HCV factor, and that apoC-III in VLDL and LVPs reduces the LPL-mediated inhibition of HCV infection.
Collapse
Affiliation(s)
- Hung-Yu Sun
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Hepatitis C virus, cholesterol and lipoproteins--impact for the viral life cycle and pathogenesis of liver disease. Viruses 2013; 5:1292-324. [PMID: 23698400 PMCID: PMC3712309 DOI: 10.3390/v5051292] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/10/2013] [Accepted: 04/27/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic liver disease, including chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Hepatitis C infection associates with lipid and lipoprotein metabolism disorders such as hepatic steatosis, hypobetalipoproteinemia, and hypocholesterolemia. Furthermore, virus production is dependent on hepatic very-low-density lipoprotein (VLDL) assembly, and circulating virions are physically associated with lipoproteins in complexes termed lipoviral particles. Evidence has indicated several functional roles for the formation of these complexes, including co-opting of lipoprotein receptors for attachment and entry, concealing epitopes to facilitate immune escape, and hijacking host factors for HCV maturation and secretion. Here, we review the evidence surrounding pathogenesis of the hepatitis C infection regarding lipoprotein engagement, cholesterol and triglyceride regulation, and the molecular mechanisms underlying these effects.
Collapse
|
74
|
|
75
|
Qian F, Bolen CR, Jing C, Wang X, Zheng W, Zhao H, Fikrig E, Bruce RD, Kleinstein SH, Montgomery RR. Impaired toll-like receptor 3-mediated immune responses from macrophages of patients chronically infected with hepatitis C virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:146-55. [PMID: 23220997 PMCID: PMC3571267 DOI: 10.1128/cvi.00530-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/23/2012] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus (HCV) is the most common chronic blood-borne infection in the United States, with the majority of patients becoming chronically infected and a subset (20%) progressing to cirrhosis and hepatocellular carcinoma. Individual variations in immune responses may help define successful resistance to infection with HCV. We have compared the immune response in primary macrophages from patients who have spontaneously cleared HCV (viral load negative [VL-], n = 37) to that of primary macrophages from HCV genotype 1 chronically infected (VL+) subjects (n = 32) and found that macrophages from VL- subjects have an elevated baseline expression of Toll-like receptor 3 (TLR3). Macrophages from HCV patients were stimulated ex vivo through the TLR3 pathway and assessed using gene expression arrays and pathway analysis. We found elevated TLR3 response genes and pathway activity from VL- subjects. Furthermore, macrophages from VL- subjects showed higher production of beta interferon (IFN-β) and related IFN response genes by quantitative PCR (Q-PCR) and increased phosphorylation of STAT-1 by immunoblotting. Analysis of polymorphisms in TLR3 revealed a significant association of intronic TLR3 polymorphism (rs13126816) with the clearance of HCV and the expression of TLR3. Of note, peripheral blood mononuclear cells (PBMCs) from the same donors showed opposite changes in gene expression, suggesting ongoing inflammatory responses in PBMCs from VL+ HCV patients. Our results suggest that an elevated innate immune response enhances HCV clearance mechanisms and may offer a potential therapeutic approach to increase viral clearance.
Collapse
Affiliation(s)
| | | | | | | | - Wei Zheng
- W. M. Keck Biotechnology Resource Laboratory
| | - Hongyu Zhao
- W. M. Keck Biotechnology Resource Laboratory
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine
- The Howard Hughes Medical Institute
| | | | - Steven H. Kleinstein
- Department of Pathology
- Interdepartmental Program in Computational Biology and Bioinformatics
| | | |
Collapse
|
76
|
Hepatitis C vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
77
|
Pécheur EI. Lipoprotein receptors and lipid enzymes in hepatitis C virus entry and early steps of infection. SCIENTIFICA 2012; 2012:709853. [PMID: 24278733 PMCID: PMC3820461 DOI: 10.6064/2012/709853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 10/31/2012] [Indexed: 06/02/2023]
Abstract
Viruses are obligate intracellular agents that depend on host cells for successful propagation, hijacking cellular machineries to their own profit. The molecular interplay between host factors and invading viruses is a continuous coevolutionary process that determines viral host range and pathogenesis. The hepatitis C virus (HCV) is a strictly human pathogen, causing chronic liver injuries accompanied by lipid disorders. Upon infection, in addition to protein-protein and protein-RNA interactions usual for such a positive-strand RNA virus, HCV relies on protein-lipid interactions at multiple steps of its life cycle to establish persistent infection, making use of hepatic lipid pathways. This paper focuses on lipoproteins in HCV entry and on receptors and enzymes involved in lipid metabolism that HCV exploits to enter hepatocytes.
Collapse
Affiliation(s)
- Eve-Isabelle Pécheur
- Department of Mechanisms of Chronic Hepatitis B and C, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
- Inserm U1052/CNRS UMR 5286, CRCL, Université de Lyon, 151 Cours Albert Thomas, 69424 Lyon Cedex 03, France
| |
Collapse
|
78
|
|
79
|
Dao Thi VL, Granier C, Zeisel MB, Guérin M, Mancip J, Granio O, Penin F, Lavillette D, Bartenschlager R, Baumert TF, Cosset FL, Dreux M. Characterization of hepatitis C virus particle subpopulations reveals multiple usage of the scavenger receptor BI for entry steps. J Biol Chem 2012; 287:31242-57. [PMID: 22767607 PMCID: PMC3438956 DOI: 10.1074/jbc.m112.365924] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/29/2012] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) particles assemble along the very low density lipoprotein pathway and are released from hepatocytes as entities varying in their degree of lipid and apolipoprotein (apo) association as well as buoyant densities. Little is known about the cell entry pathway of these different HCV particle subpopulations, which likely occurs by regulated spatiotemporal processes involving several cell surface molecules. One of these molecules is the scavenger receptor BI (SR-BI), a receptor for high density lipoprotein that can bind to the HCV glycoprotein E2. By studying the entry properties of infectious virus subpopulations differing in their buoyant densities, we show that these HCV particles utilize SR-BI in a manifold manner. First, SR-BI mediates primary attachment of HCV particles of intermediate density to cells. These initial interactions involve apolipoproteins, such as apolipoprotein E, present on the surface of HCV particles, but not the E2 glycoprotein, suggesting that lipoprotein components in the virion act as host-derived ligands for important entry factors such as SR-BI. Second, we found that in contrast to this initial attachment, SR-BI mediates entry of HCV particles independent of their buoyant density. This function of SR-BI does not depend on E2/SR-BI interaction but relies on the lipid transfer activity of SR-BI, probably by facilitating entry steps along with other HCV entry co-factors. Finally, our results underscore a third function of SR-BI governed by specific residues in hypervariable region 1 of E2 leading to enhanced cell entry and depending on SR-BI ability to bind to E2.
Collapse
Affiliation(s)
- Viet Loan Dao Thi
- From the INSERM, U758, Human Virology Laboratory, EVIR team, Lyon, F-69007, France
- Ecole Normale Supérieure de Lyon, Lyon, F-69007, France
- Université de Lyon, UCB-Lyon1, Lyon, F-69007, France
- LabEx Ecofect, Université de Lyon, Lyon, F-69007, France
| | - Christelle Granier
- From the INSERM, U758, Human Virology Laboratory, EVIR team, Lyon, F-69007, France
- Ecole Normale Supérieure de Lyon, Lyon, F-69007, France
- Université de Lyon, UCB-Lyon1, Lyon, F-69007, France
- LabEx Ecofect, Université de Lyon, Lyon, F-69007, France
| | - Mirjam B. Zeisel
- INSERM, U748, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
| | | | - Jimmy Mancip
- From the INSERM, U758, Human Virology Laboratory, EVIR team, Lyon, F-69007, France
- Ecole Normale Supérieure de Lyon, Lyon, F-69007, France
- Université de Lyon, UCB-Lyon1, Lyon, F-69007, France
- LabEx Ecofect, Université de Lyon, Lyon, F-69007, France
| | - Ophélia Granio
- From the INSERM, U758, Human Virology Laboratory, EVIR team, Lyon, F-69007, France
- Ecole Normale Supérieure de Lyon, Lyon, F-69007, France
- Université de Lyon, UCB-Lyon1, Lyon, F-69007, France
- LabEx Ecofect, Université de Lyon, Lyon, F-69007, France
| | - François Penin
- LabEx Ecofect, Université de Lyon, Lyon, F-69007, France
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, Université de Lyon, Lyon, F-69367, France
| | - Dimitri Lavillette
- From the INSERM, U758, Human Virology Laboratory, EVIR team, Lyon, F-69007, France
- Ecole Normale Supérieure de Lyon, Lyon, F-69007, France
- Université de Lyon, UCB-Lyon1, Lyon, F-69007, France
- LabEx Ecofect, Université de Lyon, Lyon, F-69007, France
| | - Ralf Bartenschlager
- the Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, and
| | - Thomas F. Baumert
- INSERM, U748, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Pôle Hepato-digestif, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France
| | - François-Loïc Cosset
- From the INSERM, U758, Human Virology Laboratory, EVIR team, Lyon, F-69007, France
- Ecole Normale Supérieure de Lyon, Lyon, F-69007, France
- Université de Lyon, UCB-Lyon1, Lyon, F-69007, France
- LabEx Ecofect, Université de Lyon, Lyon, F-69007, France
| | - Marlène Dreux
- From the INSERM, U758, Human Virology Laboratory, EVIR team, Lyon, F-69007, France
- Ecole Normale Supérieure de Lyon, Lyon, F-69007, France
- Université de Lyon, UCB-Lyon1, Lyon, F-69007, France
- LabEx Ecofect, Université de Lyon, Lyon, F-69007, France
| |
Collapse
|
80
|
Scholtes C, Ramière C, Rainteau D, Perrin-Cocon L, Wolf C, Humbert L, Carreras M, Guironnet-Paquet A, Zoulim F, Bartenschlager R, Lotteau V, André P, Diaz O. High plasma level of nucleocapsid-free envelope glycoprotein-positive lipoproteins in hepatitis C patients. Hepatology 2012; 56:39-48. [PMID: 22290760 DOI: 10.1002/hep.25628] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 01/19/2012] [Indexed: 02/06/2023]
Abstract
UNLABELLED Hepatitis C virus (HCV) particles associate viral and lipoprotein moieties to form hybrid lipoviral particles (LVPs). Cell culture-produced HCV (HCVcc) and ex vivo-characterized LVPs primarily differ by their apolipoprotein (apo) B content, which is low for HCVcc, but high for LVPs. Recombinant nucleocapsid-free subviral LVPs are assembled and secreted by apoB-producing cell lines. To determine whether such subviral particles circulate in HCV-infected individuals, LVPs complexed with immunoglobulin were precipitated with protein A from low-density plasma fractions of 36 hepatitis C patients, and their lipid content, apolipoprotein profile, and viral composition were determined. HCV RNA in LVPs was quantified and molar ratios of apoB and HCV genome copy number were calculated. LVPs lipidome from four patients was determined via electrospray ionization/tandem mass spectrometry. Protein A-purified LVPs contained at least the envelope glycoprotein E2 and E2-specific antibodies. LVPs were present in every patient and were characterized by high lipid content, presence of apolipoproteins characteristic of triglyceride-rich lipoproteins (TRLs), HCV RNA, and viral glycoprotein. Importantly, save for four patients, LVPs fractions contained large amounts of apoB, with on average more than 1 × 10(6) apoB molecules per HCV RNA genome. Because there is one apoB molecule per TRL, this ratio suggested that most LVPs are nucleocapsid-free, envelope glycoprotein-containing subviral particles. LVPs and TRLs had similar composition of triacylglycerol and phospholipid classes. CONCLUSION LVPs are a mixed population of particles, comprising predominantly subviral particles that represent a distinct class of modified lipoproteins within the TRL family.
Collapse
|
81
|
Shetty V, Jain P, Nickens Z, Sinnathamby G, Mehta A, Philip R. Investigation of plasma biomarkers in HIV-1/HCV mono- and coinfected individuals by multiplex iTRAQ quantitative proteomics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 15:705-17. [PMID: 21978398 DOI: 10.1089/omi.2011.0004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The analysis of plasma samples from HIV-1/HCV mono- and coinfected individuals by quantitative proteomics is an efficient strategy to investigate changes in protein abundances and to characterize the proteins that are the effectors of cellular functions involved in viral pathogenesis. In this study, the infected and healthy plasma samples (in triplicate) were treated with ProteoMiner beads to equalize protein concentrations and subjected to 4-plex iTRAQ labeling and liquid chromatography/mass spectrometry (LC-MS/MS) analysis. A total of 70 proteins were identified with high confidence in the triplicate analysis of plasma proteins and 65% of the proteins were found to be common among the three replicates. Apolipoproteins and complement proteins are the two major classes of proteins that exhibited differential regulation. The results of quantitative analysis revealed that APOA2, APOC2, APOE, C3, HRG proteins were upregulated in the plasma of all the three HIV-1 mono-, HCV mono-, and coinfected patient samples compared to healthy control samples. Ingenuity pathway analysis (IPA) of the upregulated proteins revealed that they are implicated in the hepatic lipid metabolism, inflammation, and acute-phase response signaling pathways. Thus, we identified several differentially regulated proteins in HIV-1/HCV mono and coinfected plasma samples that may be potential biomarkers for liver disease.
Collapse
Affiliation(s)
- Vivekananda Shetty
- Immunotope, Inc., Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
82
|
Suzuki T. Morphogenesis of infectious hepatitis C virus particles. Front Microbiol 2012; 3:38. [PMID: 22347224 PMCID: PMC3273859 DOI: 10.3389/fmicb.2012.00038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/23/2012] [Indexed: 12/17/2022] Open
Abstract
More than 170 million individuals are currently infected with hepatitis C virus (HCV) worldwide and are at continuous risk of developing chronic liver disease. Since a cell culture system enabling relatively efficient propagation of HCV has become available, an increasing number of viral and host factors involved in HCV particle formation have been identified. Association of the viral Core, which forms the capsid with lipid droplets appears to be prerequisite for early HCV morphogenesis. Maturation and release of HCV particles is tightly linked to very-low-density lipoprotein biogenesis. Although expression of Core as well as E1 and E2 envelope proteins produces virus-like particles in heterologous expression systems, there is increasing evidence that non-structural viral proteins and p7 are also required for the production of infectious particles, suggesting that HCV genome replication and virion assembly are closely linked. Advances in our understanding of the various molecular mechanisms by which infectious HCV particles are formed are summarized.
Collapse
Affiliation(s)
- Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine Hamamatsu, Japan
| |
Collapse
|
83
|
Matrigel-embedded 3D culture of Huh-7 cells as a hepatocyte-like polarized system to study hepatitis C virus cycle. Virology 2012; 425:31-9. [PMID: 22280897 DOI: 10.1016/j.virol.2011.12.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/11/2011] [Accepted: 12/31/2011] [Indexed: 12/26/2022]
Abstract
Hepatocytes are highly polarized cells where intercellular junctions, including tight junctions (TJs), determine the polarity. Recently, the TJ-associated proteins claudin-1 and occludin have been implicated in hepatitis C virus (HCV) entry and spread. Nevertheless, cell line-based experimental systems that exhibit hepatocyte-like polarity and permit robust infection and virion production are not currently available. Thus, we sought to determine whether cell line-based, Matrigel-embedded cultures could be used to study hepatitis C virus (HCV) infection and virion production in a context of hepatocyte-like polarized cells. In contrast to standard bidimensional cultures, Matrigel-cultured Huh-7 cells adopted hepatocyte polarization features forming a continuous network of functional proto-bile canaliculi structures. These 3D cultures supported HCV infection by JFH-1 virus and produced infective viral particles which shifted towards lower densities with higher associated specific infectivity. In conclusion, our findings describe a novel use of Matrigel to study the entire HCV cycle in a more relevant context.
Collapse
|
84
|
Tarr AW, Urbanowicz RA, Ball JK. The role of humoral innate immunity in hepatitis C virus infection. Viruses 2012; 4:1-27. [PMID: 22355450 PMCID: PMC3280516 DOI: 10.3390/v4010001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 12/19/2022] Open
Abstract
Infection with Hepatitis C Virus (HCV) causes chronic disease in approximately 80% of cases, resulting in chronic inflammation and cirrhosis. Current treatments are not completely effective, and a vaccine has yet to be developed. Spontaneous resolution of infection is associated with effective host adaptive immunity to HCV, including production of both HCV-specific T cells and neutralizing antibodies. However, the supporting role of soluble innate factors in protection against HCV is less well understood. The innate immune system provides an immediate line of defense against infections, triggering inflammation and playing a critical role in activating adaptive immunity. Innate immunity comprises both cellular and humoral components, the humoral arm consisting of pattern recognition molecules such as complement C1q, collectins and ficolins. These molecules activate the complement cascade, neutralize pathogens, and recruit antigen presenting cells. Here we review the current understanding of anti-viral components of the humoral innate immune system that play a similar role to antibodies, describing their role in immunity to HCV and their potential contribution to HCV pathogenesis.
Collapse
Affiliation(s)
- Alexander W. Tarr
- Biomedical Research Unit in Gastroenterology, School of Molecular Medical Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2UH, UK; (R.A.U.); (J.K.B.)
| | | | | |
Collapse
|
85
|
Bassendine MF, Sheridan DA, Felmlee DJ, Bridge SH, Toms GL, Neely RDG. HCV and the hepatic lipid pathway as a potential treatment target. J Hepatol 2011; 55:1428-40. [PMID: 21718665 DOI: 10.1016/j.jhep.2011.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/15/2011] [Accepted: 06/17/2011] [Indexed: 02/07/2023]
Abstract
Atherosclerosis has been described as a liver disease of the heart [1]. The liver is the central regulatory organ of lipid pathways but since dyslipidaemias are major contributors to cardiovascular disease and type 2 diabetes rather than liver disease, research in this area has not been a major focus for hepatologists. Virus-host interaction is a continuous co-evolutionary process [2] involving the host immune system and viral escape mechanisms [3]. One of the strategies HCV has adopted to escape immune clearance and establish persistent infection is to make use of hepatic lipid pathways. This review aims to: • update the hepatologist on lipid metabolism • review the evidence that HCV exploits hepatic lipid pathways to its advantage • discuss approaches to targeting host lipid pathways as adjunctive therapy.
Collapse
|
86
|
Sabo MC, Luca VC, Ray SC, Bukh J, Fremont DH, Diamond MS. Hepatitis C virus epitope exposure and neutralization by antibodies is affected by time and temperature. Virology 2011; 422:174-84. [PMID: 22078164 DOI: 10.1016/j.virol.2011.10.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/14/2011] [Accepted: 10/22/2011] [Indexed: 01/22/2023]
Abstract
A recent study with flaviviruses suggested that structural dynamics of the virion impact antibody neutralization via exposure of ostensibly cryptic epitopes. To determine whether this holds true for the distantly related hepatitis C virus (HCV), whose neutralizing epitopes may be obscured by a glycan shield, apolipoprotein interactions, and the hypervariable region on the E2 envelope protein, we assessed how time and temperature of pre-incubation altered monoclonal antibody (MAb) neutralization of HCV. Notably, several MAbs showed increased inhibitory activity when pre-binding was performed at 37°C or after longer pre-incubation periods, and a corresponding loss-of-neutralization was observed when pre-binding was performed at 4°C. A similar profile of changes was observed with acute and chronic phase sera from HCV-infected patients. Our data suggest that time and temperature of incubation modulate epitope exposure on the conformational ensembles of HCV virions and thus, alter the potency of antibody neutralization.
Collapse
Affiliation(s)
- Michelle C Sabo
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
87
|
Abstract
Hepatitis C virus (HCV) is a small enveloped virus with a positive stranded RNA genome belonging to the Flaviviridae family. The virion has the unique ability of forming a complex with lipoproteins, which is known as the lipoviroparticle. Lipoprotein components as well as the envelope proteins, E1 and E2, play a key role in virus entry into the hepatocyte. HCV entry is a complex multistep process involving sequential interactions with several cell surface proteins. The virus relies on glycosaminoglycans and possibly the low-density lipoprotein receptors to attach to cells. Furthermore, four specific entry factors are involved in the following steps which lead to virus internalization and fusion in early endosomes. These molecules are the scavenger receptor SRB1, tetraspanin CD81 and two tight junction proteins, Claudin-1 and Occludin. Although they are essential to HCV entry, the precise role of these molecules is not completely understood. Finally, hepatocytes are highly polarized cells and which likely affects the entry process. Our current knowledge on HCV entry is summarized in this review.
Collapse
|
88
|
Di Lorenzo C, Angus AGN, Patel AH. Hepatitis C virus evasion mechanisms from neutralizing antibodies. Viruses 2011; 3:2280-2300. [PMID: 22163345 PMCID: PMC3230852 DOI: 10.3390/v3112280] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/28/2011] [Accepted: 11/07/2011] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) represents a major public health problem, affecting 3% of the world's population. The majority of infected individuals develop chronic hepatitis, which can progress to cirrhosis and hepatocellular carcinoma. To date, a vaccine is not available and current therapy is limited by resistance, adverse effects and high costs. Although it is very well established that cell-mediated immunity is necessary for viral clearance, the importance of host antibodies in clearing HCV infection is being increasingly recognized. Indeed, recent studies indicate that neutralizing antibodies are induced in the early phase of infection by patients who subsequently clear viral infection. Conversely, patients who do not clear the virus develop high titers of neutralizing antibodies during the chronic stage. Surprisingly, these antibodies are not able to control HCV infection. HCV has therefore developed mechanisms to evade immune elimination, allowing it to persist in the majority of infected individuals. A detailed understanding of the mechanisms by which the virus escapes immune surveillance is therefore necessary if novel preventive and therapeutic treatments have to be designed. This review summarizes the current knowledge of the mechanisms used by HCV to evade host neutralizing antibodies.
Collapse
Affiliation(s)
- Caterina Di Lorenzo
- MRC - University of Glasgow Centre for Virus Research, Church Street, Glasgow, G11 5JR, UK; E-Mails: (C.D.L.); (A.G.N.A.)
| | - Allan G. N. Angus
- MRC - University of Glasgow Centre for Virus Research, Church Street, Glasgow, G11 5JR, UK; E-Mails: (C.D.L.); (A.G.N.A.)
| | - Arvind H. Patel
- MRC - University of Glasgow Centre for Virus Research, Church Street, Glasgow, G11 5JR, UK; E-Mails: (C.D.L.); (A.G.N.A.)
| |
Collapse
|
89
|
Benedicto I, Molina-Jiménez F, Moreno-Otero R, López-Cabrera M, Majano PL. Interplay among cellular polarization, lipoprotein metabolism and hepatitis C virus entry. World J Gastroenterol 2011; 17:2683-90. [PMID: 21734774 PMCID: PMC3122255 DOI: 10.3748/wjg.v17.i22.2683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/23/2010] [Accepted: 12/30/2010] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infects more than three million new individuals worldwide each year. In a high percentage of patients, acute infections become chronic, eventually progressing to fibrosis, cirrhosis, and hepatocellular carcinoma. Given the lack of effective prophylactic or therapeutic vaccines, and the limited sustained virological response rates to current therapies, new approaches are needed to prevent, control, and clear HCV infection. Entry into the host cell, being the first step of the viral cycle, is a potential target for the design of new antiviral compounds. Despite the recent discovery of the tight junction-associated proteins claudin-1 and occludin as HCV co-receptors, which is an important step towards the understanding of HCV entry, the precise mechanisms are still largely unknown. In addition, increasing evidence indicates that tools that are broadly employed to study HCV infection do not accurately reflect the real process in terms of viral particle composition and host cell phenotype. Thus, systems that more closely mimic natural infection are urgently required to elucidate the mechanisms of HCV entry, which will in turn help to design antiviral strategies against this part of the infection process.
Collapse
|
90
|
Herker E, Ott M. Unique ties between hepatitis C virus replication and intracellular lipids. Trends Endocrinol Metab 2011; 22:241-8. [PMID: 21497514 PMCID: PMC3118981 DOI: 10.1016/j.tem.2011.03.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/09/2011] [Accepted: 03/15/2011] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infects approximately 3% of the world's population, establishing a lifelong infection in the majority of cases. The life cycle of HCV is closely tied to the lipid metabolism of liver cells, and lipid droplets have emerged as crucial intracellular organelles that support persistent propagation of viral infection. In this review, we examine recent advances in our understanding of how HCV usurps intracellular lipids to propagate, and highlight unique opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Eva Herker
- Gladstone Institute of Virology and Immunology; 1650 Owens Street, San Francisco, California 94158
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Liver Center, University of California, San Francisco, CA 94143, USA
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology; 1650 Owens Street, San Francisco, California 94158
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Liver Center, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
91
|
Scavenger receptor class B type I and the hypervariable region-1 of hepatitis C virus in cell entry and neutralisation. Expert Rev Mol Med 2011; 13:e13. [PMID: 21489334 DOI: 10.1017/s1462399411001785] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease worldwide and represents a major public health problem. Viral attachment and entry - the first encounter of the virus with the host cell - are major targets of neutralising immune responses. Thus, a detailed understanding of the HCV entry process offers interesting opportunities for the development of novel therapeutic strategies. Different cellular or soluble host factors mediate HCV entry, and considerable progress has been made in recent years to decipher how they induce HCV attachment, internalisation and membrane fusion. Among these factors, the scavenger receptor class B type I (SR-BI/SCARB1) is essential for HCV replication in vitro, through its interaction with the HCV E1E2 surface glycoproteins and, more particularly, the HVR1 segment located in the E2 protein. SR-BI is an interesting receptor because HCV, whose replication cycle intersects with lipoprotein metabolism, seems to exploit some aspects of its physiological functions, such as cholesterol transfer from high-density lipoprotein (HDL), during cell entry. SR-BI is also involved in neutralisation attenuation and therefore could be an important target for therapeutic intervention. Recent results suggest that it should be possible to identify inhibitors of the interaction of HCV with SR-BI that do not impair its important physiological properties, as discussed in this review.
Collapse
|
92
|
Triyatni M, Berger EA, Saunier B. A new model to produce infectious hepatitis C virus without the replication requirement. PLoS Pathog 2011; 7:e1001333. [PMID: 21533214 PMCID: PMC3077361 DOI: 10.1371/journal.ppat.1001333] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 03/14/2011] [Indexed: 02/06/2023] Open
Abstract
Numerous constraints significantly hamper the experimental study of hepatitis C virus (HCV). Robust replication in cell culture occurs with only a few strains, and is invariably accompanied by adaptive mutations that impair in vivo infectivity/replication. This problem complicates the production and study of authentic HCV, including the most prevalent and clinically important genotype 1 (subtypes 1a and 1b). Here we describe a novel cell culture approach to generate infectious HCV virions without the HCV replication requirement and the associated cell-adaptive mutations. The system is based on our finding that the intracellular environment generated by a West-Nile virus (WNV) subgenomic replicon rendered a mammalian cell line permissive for assembly and release of infectious HCV particles, wherein the HCV RNA with correct 5' and 3' termini was produced in the cytoplasm by a plasmid-driven dual bacteriophage RNA polymerase-based transcription/amplification system. The released particles preferentially contained the HCV-based RNA compared to the WNV subgenomic RNA. Several variations of this system are described with different HCV-based RNAs: (i) HCV bicistronic particles (HCVbp) containing RNA encoding the HCV structural genes upstream of a cell-adapted subgenomic replicon, (ii) HCV reporter particles (HCVrp) containing RNA encoding the bacteriophage SP6 RNA polymerase in place of HCV nonstructural genes, and (iii) HCV wild-type particles (HCVwt) containing unmodified RNA genomes of diverse genotypes (1a, strain H77; 1b, strain Con1; 2a, strain JFH-1). Infectivity was assessed based on the signals generated by the HCV RNA molecules introduced into the cytoplasm of target cells upon virus entry, i.e. HCV RNA replication and protein production for HCVbp in Huh-7.5 cells as well as for HCVwt in HepG2-CD81 cells and human liver slices, and SP6 RNA polymerase-driven firefly luciferase for HCVrp in target cells displaying candidate HCV surface receptors. HCV infectivity was inhibited by pre-incubation of the particles with anti-HCV antibodies and by a treatment of the target cells with leukocyte interferon plus ribavirin. The production of authentic infectious HCV particles of virtually any genotype without the adaptive mutations associated with in vitro HCV replication represents a new paradigm to decipher the requirements for HCV assembly, release, and entry, amenable to analyses of wild type and genetically modified viruses of the most clinically significant HCV genotypes.
Collapse
Affiliation(s)
- Miriam Triyatni
- Molecular Structure Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Edward A. Berger
- Molecular Structure Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Bertrand Saunier
- Molecular Structure Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
- Paris-Descartes University, Faculty of Medicine, Paris, France
- Institut Cochin, Paris, France
- Inserm U1016, Paris, France
| |
Collapse
|
93
|
Angus AGN, Patel AH. Immunotherapeutic potential of neutralizing antibodies targeting conserved regions of the HCV envelope glycoprotein E2. Future Microbiol 2011; 6:279-94. [PMID: 21449840 DOI: 10.2217/fmb.11.9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HCV is a major cause of chronic liver disease worldwide. There is no vaccine available and the current antiviral therapies fail to cure approximately half of treated patients. Liver disease caused by HCV infection is the most common indication for orthotopic liver transplantation. Unfortunately, reinfection of the new liver is universal and often results in an aggressive form of the disease leading to graft loss and the need for retransplantation. Immunotherapies using antibodies that potently inhibit HCV infection have the potential to control or even prevent graft reinfection. The virion envelope glycoproteins E1 and E2, which are involved in HCV entry into host cells, are the targets of neutralizing antibodies. To date, a number of monoclonal antibodies targeting conserved regions of E2 have been described that display outstanding neutralizing capabilities against HCV infection in both in vitro and in vivo systems. This article will summarize the current literature on these neutralizing anti-E2 antibodies and discuss their potential immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Allan G N Angus
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Church Street, Glasgow, UK
| | | |
Collapse
|
94
|
Bartenschlager R, Penin F, Lohmann V, André P. Assembly of infectious hepatitis C virus particles. Trends Microbiol 2010; 19:95-103. [PMID: 21146993 DOI: 10.1016/j.tim.2010.11.005] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/08/2010] [Accepted: 11/12/2010] [Indexed: 02/07/2023]
Abstract
A hallmark of the hepatitis C virus (HCV) replication cycle is its tight link with host cell lipid synthesis. This is best illustrated by the peculiar pathway used for the assembly of infectious HCV particles. Research in the past few years has shown that formation of HC-virions is closely connected to lipid droplets that could serve as an assembly platform. Moreover, HCV particle production appears to be strictly linked to very-low-density lipoproteins. In this review, we focus on new insights into the molecular aspects of the architecture and assembly of this unique type of virus particle.
Collapse
Affiliation(s)
- Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Im Neuenheimer Feld 345, Heidelberg University, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
95
|
Bailey J. An Assessment of the Use of Chimpanzees in Hepatitis C Research Past, Present and Future: 2. Alternative Replacement Methods. Altern Lab Anim 2010; 38:471-94. [DOI: 10.1177/026119291003800602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of chimpanzees in hepatitis C virus (HCV) research was examined in the report associated with this paper ( 1: Validity of the Chimpanzee Model), in which it was concluded that claims of past necessity of chimpanzee use were exaggerated, and that claims of current and future indispensability were unjustifiable. Furthermore, given the serious scientific and ethical issues surrounding chimpanzee experimentation, it was proposed that it must now be considered redundant — particularly in light of the demonstrable contribution of alternative methods to past and current scientific progress, and the future promise that these methods hold. This paper builds on this evidence, by examining the development of alternative approaches to the investigation of HCV, and by reviewing examples of how these methods have contributed, and are continuing to contribute substantially, to progress in this field. It augments the argument against chimpanzee use by demonstrating the comprehensive nature of these methods and the valuable data they deliver. The entire life-cycle of HCV can now be investigated in a human (and much more relevant) context, without recourse to chimpanzee use. This also includes the testing of new therapies and vaccines. Consequently, there is no sound argument against the changes in public policy that propose a move away from chimpanzee use in US laboratories.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA, USA
| |
Collapse
|
96
|
Mawatari H, Yoneda M, Fujita K, Nozaki Y, Shinohara Y, Sasaki H, Iida H, Takahashi H, Inamori M, Abe Y, Kobayashi N, Kubota K, Kirikoshi H, Nakajima A, Saito S. Association between phospholipids and free cholesterol in high-density lipoprotein and the response to hepatitis C treatment in Japanese with genotype 1b. J Viral Hepat 2010; 17:859-65. [PMID: 20070501 DOI: 10.1111/j.1365-2893.2009.01253.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pegylated interferon and ribavirin combination therapy is the standard treatment for patients with chronic hepatitis C (CHC), but treatment failure can be difficult to predict. We and others have reported a relation between lipid values and sustained viral responses in patients with CHC. However, the relationship between lipid values and treatment failure has not been previously reported. The present study investigated the association between the profiles of phospholipids and free cholesterol (FC), the main constitutive ingredients of the surface of lipoprotein, classified according to particle size and hepatitis C treatment, and determined the usefulness of these parameters for predicting the outcome of treatment. Fifty-five patients with CHC (33 men and 22 women) were included in the study. The serum total cholesterol, triglyceride, phospholipids, and FC levels in the lipoprotein subclasses were determined using high-performance liquid chromatography with gel permeation columns, enabling the lipoproteins to be classified into 13 subclasses according to particle size. According to a univariate analysis, the treatment failure group had a significantly higher serum phospholipid level overall in the high-density lipoprotein (HDL) and medium HDL fractions as well as a higher serum FC level in the HDL fraction and all HDL subclass fractions compared with the corresponding values in the non-nonvirological response group. Higher serum phospholipid and FC concentrations in the HDL subclasses were predictive of a failure to respond in patients with genotype 1b.
Collapse
Affiliation(s)
- H Mawatari
- Gastroenterology Division, Yokohama City University School of Medicine, Fukuura, Kanazawa-ku, Yokohama City, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Infectivity of hepatitis C virus is influenced by association with apolipoprotein E isoforms. J Virol 2010; 84:12048-57. [PMID: 20826689 DOI: 10.1128/jvi.01063-10] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a causative agent of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV in circulating blood associates with lipoproteins such as very low density lipoprotein (VLDL) and low-density lipoprotein (LDL). Although these associations suggest that lipoproteins are important for HCV infectivity, the roles of lipoproteins in HCV production and infectivity are not fully understood. To clarify the roles of lipoprotein in the HCV life cycle, we analyzed the effect of apolipoprotein E (ApoE), a component of lipoprotein, on virus production and infectivity. The production of infectious HCV was significantly reduced by the knockdown of ApoE. When an ApoE mutant that fails to be secreted into the culture medium was used, the amount of infectious HCV in the culture medium was dramatically reduced; the infectious HCV accumulated inside these cells, suggesting that infectious HCV must associate with ApoE prior to virus release. We performed rescue experiments in which ApoE isoforms were ectopically expressed in cells depleted of endogenous ApoE. The ectopic expression of the ApoE2 isoform, which has low affinity for the LDL receptor (LDLR), resulted in poor recovery of infectious HCV, whereas the expression of other isoforms, ApoE3 and ApoE4, rescued the production of infectious virus, raising it to an almost normal level. Furthermore, we found that the infectivity of HCV required both the LDLR and scavenger receptor class B, member I (SR-BI), ligands for ApoE. These findings indicate that ApoE is an essential apolipoprotein for HCV infectivity.
Collapse
|
98
|
Hepatitis C virus hypervariable region 1 modulates receptor interactions, conceals the CD81 binding site, and protects conserved neutralizing epitopes. J Virol 2010; 84:5751-63. [PMID: 20357091 DOI: 10.1128/jvi.02200-09] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The variability of the hepatitis C virus (HCV), which likely contributes to immune escape, is most pronounced in hypervariable region 1 (HVR1) of viral envelope protein 2. This domain is the target for neutralizing antibodies, and its deletion attenuates replication in vivo. Here we characterized the relevance of HVR1 for virus replication in vitro using cell culture-derived HCV. We show that HVR1 is dispensable for RNA replication. However, viruses lacking HVR1 (Delta HVR1) are less infectious, and separation by density gradients revealed that the population of Delta HVR1 virions comprises fewer particles with low density. Strikingly, Delta HVR1 particles with intermediate density (1.12 g/ml) are as infectious as wild-type virions, while those with low density (1.02 to 1.08 g/ml) are poorly infectious, despite quantities of RNA and core similar to those in wild-type particles. Moreover, Delta HVR1 particles exhibited impaired fusion, a defect that was partially restored by an E1 mutation (I347L), which also rescues infectivity and which was selected during long-term culture. Finally, Delta HVR1 particles were no longer neutralized by SR-B1-specific immunoglobulins but were more prone to neutralization and precipitation by soluble CD81, E2-specific monoclonal antibodies, and patient sera. These results suggest that HVR1 influences the biophysical properties of released viruses and that this domain is particularly important for infectivity of low-density particles. Moreover, they indicate that HVR1 obstructs the viral CD81 binding site and conserved neutralizing epitopes. These functions likely optimize virus replication, facilitate immune escape, and thus foster establishment and maintenance of a chronic infection.
Collapse
|
99
|
Bartosch B, Dubuisson J. Recent advances in hepatitis C virus cell entry. Viruses 2010; 2:692-709. [PMID: 21994653 PMCID: PMC3185649 DOI: 10.3390/v2030692] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/04/2010] [Accepted: 03/05/2010] [Indexed: 12/15/2022] Open
Abstract
More than 170 million patients worldwide are chronically infected with hepatitis C virus (HCV). Prevalence rates range from 0.5% in Northern European countries to 28% in some areas of Egypt. HCV is hepatotropic, and in many countries chronic hepatitis C is a leading cause of liver disease including fibrosis, cirrhosis and hepatocellular carcinoma. HCV persists in 50-85% of infected patients, and once chronic infection is established, spontaneous clearance is rare. HCV is a member of the Flaviviridae family, in which it forms its own genus. Many lines of evidence suggest that the HCV life cycle displays many differences to that of other Flaviviridae family members. Some of these differences may be due to the close interaction of HCV with its host's lipid and particular triglyceride metabolism in the liver, which may explain why the virus can be found in association with lipoproteins in serum of infected patients. This review focuses on the molecular events underlying the HCV cell entry process and the respective roles of cellular co-factors that have been implied in these events. These include, among others, the lipoprotein receptors low density lipoprotein receptor and scavenger receptor BI, the tight junction factors occludin and claudin-1 as well as the tetraspanin CD81. We discuss the roles of these cellular factors in HCV cell entry and how association of HCV with lipoproteins may modulate the cell entry process.
Collapse
Affiliation(s)
- Birke Bartosch
- INSERM, U871, 69003 Lyon, France
- Université Lyon 1, IFR62 Lyon-Est, 69008 Lyon, France
- Hospices Civils de Lyon, Hôtel Dieu, Service d’hépatologie et de gastroentérologie, 69002 Lyon, France
| | - Jean Dubuisson
- Université Lille Nord de France, F-59000 Lille, France; E-Mail: (J.D.)
- CNRS, Institut de Biologie de Lille (UMR8161), F-59021 Lille, France
- Institut Pasteur de Lille, F-59019 Lille, France
| |
Collapse
|
100
|
von Hahn T, Steinmann E, Ciesek S, Pietschmann T. Know your enemy: translating insights about the molecular biology of hepatitis C virus into novel therapeutic approaches. Expert Rev Gastroenterol Hepatol 2010; 4:63-79. [PMID: 20136590 DOI: 10.1586/egh.09.74] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Identified in 1989 as the cause of what was then known as hepatitis non-A non-B, the hepatitis C virus (HCV) continues to be a significant global public health threat, given that an estimated 123 million individuals are chronically infected and, thus, at risk for cirrhosis and hepatocellular carcinoma. After 20 years of basic and clinical research into HCV infection, the backbone of therapy has remained interferon, a drug that - in a different formulation - was already being employed before HCV was even identified. Nonetheless, research has overcome many obstacles that stood in the way of studying this pre-eminent human pathogen. Hard-won insights into its molecular biology have identified promising therapeutic targets, and we are now on the verge of an era where rationally designed therapeutics, also referred to as specifically targeted antiviral therapy for HCV, will reshape the treatment of hepatitis C. This article describes recent insights on the molecular biology of HCV and the efforts to translate them into clinical applications.
Collapse
Affiliation(s)
- Thomas von Hahn
- Division of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) & the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | | | | | | |
Collapse
|