51
|
Fung TS, Huang M, Liu DX. Coronavirus-induced ER stress response and its involvement in regulation of coronavirus-host interactions. Virus Res 2014; 194:110-23. [PMID: 25304691 PMCID: PMC7114476 DOI: 10.1016/j.virusres.2014.09.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 12/11/2022]
Abstract
Coronavirus replication is structurally and functionally associated with the endoplasmic reticulum (ER), a major site of protein synthesis, folding, modification and sorting in the eukaryotic cells. Disturbance of ER homeostasis may occur under various physiological or pathological conditions. In response to the ER stress, signaling pathways of the unfolded protein response (UPR) are activated. UPR is mediated by three ER transmembrane sensors, namely the PKR-like ER protein kinase (PERK), the inositol-requiring protein 1 (IRE1) and the activating transcriptional factor 6 (ATF6). UPR facilitates adaptation to ER stress by reversible translation attenuation, enhancement of ER protein folding capacity and activation of ER-associated degradation (ERAD). In cells under prolonged and irremediable ER stress, UPR can also trigger apoptotic cell death. Accumulating evidence has shown that coronavirus infection causes ER stress and induces UPR in the infected cells. UPR is closely associated with a number of major signaling pathways, including autophagy, apoptosis, the mitogen-activated protein (MAP) kinase pathways, innate immunity and pro-inflammatory response. Therefore, studies on the UPR are pivotal in elucidating the complicated issue of coronavirus-host interaction. In this paper, we present the up-to-date knowledge on coronavirus-induced UPR and discuss its potential involvement in regulation of innate immunity and apoptosis.
Collapse
Affiliation(s)
- To Sing Fung
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Mei Huang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| |
Collapse
|
52
|
Jang H, Koo BS, Jeon EO, Lee HR, Lee SM, Mo IP. Altered pro-inflammatory cytokine mRNA levels in chickens infected with infectious bronchitis virus. Poult Sci 2013; 92:2290-8. [PMID: 23960111 PMCID: PMC7194964 DOI: 10.3382/ps.2013-03116] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Infectious bronchitis virus (IBV) replicates primarily in the respiratory tract and grows in various organs in chickens, with or without pathological effects. The diversity of this virus has been verified by sequence analysis of the S1 glycoprotein gene, but this method must be supplemented with further analysis for characterization of the agent. To increase our understanding of the pathogenesis of the disease caused by this virus, we investigated the response of chickens to 2 IBV with different genotypes, KIIa and ChVI. The clinical signs induced by the viruses were observed. In addition, the mRNA levels of the pro-inflammatory cytokines, IL-6, IL-1β, and lipopolysaccharide-induced tumor necrosis factor-α factor and the serum levels of α1-acid glycoprotein, which is a major acute phase protein, were measured. The KIIa genotype (Kr/ADL110002/2011) induced clinical signs accompanied by the excessive production of pro-inflammatory cytokines and a higher viral load. In chickens infected with this isolate, simultaneous peaks in the viral copy number and cytokine production were observed at 7 dpi in the trachea and 9 d postinoculation in the kidney. On the other hand, the chickens infected with the ChVI genotype (Kr/ADL120003/2012) did not show a response other than a mild upregulation of cytokines at 1 d postinoculation, which appears to indicate the invasion of the virus. In summary, we confirmed a differential innate response following infection with distinct IBV. We hypothesize that an excessive innate response contributes to the scale of the pathophysiologic effect in chickens.
Collapse
Affiliation(s)
- Hyesun Jang
- Preventive Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University 12, Gaeshin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, Republic of Korea
| | | | | | | | | | | |
Collapse
|
53
|
Lau SKP, Lau CCY, Chan KH, Li CPY, Chen H, Jin DY, Chan JFW, Woo PCY, Yuen KY. Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. J Gen Virol 2013; 94:2679-2690. [PMID: 24077366 DOI: 10.1099/vir.0.055533-0] [Citation(s) in RCA: 303] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The high mortality associated with the novel Middle East respiratory syndrome coronavirus (MERS-CoV) has raised questions about the possible role of a cytokine storm in its pathogenesis. Although recent studies showed that MERS-CoV infection is associated with an attenuated IFN response, no induction of inflammatory cytokines was demonstrated during the early phase of infection. To study both early and late cytokine responses associated with MERS-CoV infection, we measured the mRNA levels of eight cytokine genes [TNF-α, IL-1β, IL-6, IL-8, IFN-β, monocyte chemotactic protein-1, transforming growth factor-β and IFN-γ-induced protein (IP)-10] in cell lysates of polarized airway epithelial Calu-3 cells infected with MERS-CoV or severe acute respiratory syndrome (SARS)-CoV up to 30 h post-infection. Among the eight cytokine genes, IL-1β, IL-6 and IL-8 induced by MERS-CoV were markedly higher than those induced by SARS-CoV at 30 h, whilst TNF-α, IFN-β and IP-10 induced by SARS-CoV were markedly higher than those induced by MERS-CoV at 24 and 30 h in infected Calu-3 cells. The activation of IL-8 and attenuated IFN-β response by MERS-CoV were also confirmed by protein measurements in the culture supernatant when compared with SARS-CoV and Sendai virus. To further confirm the attenuated antiviral response, cytokine response was compared with human HCoV-229E in embryonal lung fibroblast HFL cells, which also revealed higher IFN-β and IP-10 levels induced by HCoV-229E than MERS-CoV at 24 and 30 h. Whilst our data supported recent findings that MERS-CoV elicits attenuated innate immunity, this represents the first report to demonstrate delayed proinflammatory cytokine induction by MERS-CoV. Our results provide insights into the pathogenesis and treatment of MERS-CoV infections.
Collapse
Affiliation(s)
- Susanna K P Lau
- Department of Microbiology, University of Hong Kong, Hong Kong, P.R. China.,State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, P.R. China.,Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, P.R. China.,Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, P.R. China
| | - Candy C Y Lau
- Department of Microbiology, University of Hong Kong, Hong Kong, P.R. China
| | - Kwok-Hung Chan
- Department of Microbiology, University of Hong Kong, Hong Kong, P.R. China
| | - Clara P Y Li
- Department of Microbiology, University of Hong Kong, Hong Kong, P.R. China
| | - Honglin Chen
- Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, P.R. China.,Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, P.R. China.,State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, P.R. China.,Department of Microbiology, University of Hong Kong, Hong Kong, P.R. China
| | - Dong-Yan Jin
- Department of Biochemistry, University of Hong Kong, Hong Kong, P.R. China
| | - Jasper F W Chan
- Department of Microbiology, University of Hong Kong, Hong Kong, P.R. China
| | - Patrick C Y Woo
- Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, P.R. China.,Department of Microbiology, University of Hong Kong, Hong Kong, P.R. China.,State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, P.R. China.,Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, P.R. China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, P.R. China.,Department of Microbiology, University of Hong Kong, Hong Kong, P.R. China.,Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, P.R. China.,Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, P.R. China
| |
Collapse
|
54
|
Chan JFW, Chan KH, Choi GKY, To KKW, Tse H, Cai JP, Yeung ML, Cheng VCC, Chen H, Che XY, Lau SKP, Woo PCY, Yuen KY. Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation. J Infect Dis 2013; 207:1743-52. [PMID: 23532101 PMCID: PMC7107374 DOI: 10.1093/infdis/jit123] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The emerging novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) was recently isolated from patients with severe pneumonia and renal failure and was associated with an unexplained high crude fatality rate of 56%. We performed a cell line susceptibility study with 28 cell lines. HCoV-EMC was found to infect the human respiratory tract (polarized airway epithelium cell line Calu-3, embryonic fibroblast cell line HFL, and lung adenocarcinoma cell line A549), kidney (embryonic kidney cell line HEK), intestinal tract (colorectal adenocarcinoma cell line Caco-2), liver cells (hepatocellular carcinoma cell line Huh-7), and histiocytes (malignant histiocytoma cell line His-1), as evident by detection of high or increasing viral load in culture supernatants, detection of viral nucleoprotein expression by immunostaining, and/or detection of cytopathic effects. Although an infected human neuronal cell line (NT2) and infected monocyte and T lymphocyte cell lines (THP-1, U937, and H9) had increased viral loads, their relatively lower viral production corroborated with absent nucleoprotein expression and cytopathic effects. This range of human tissue tropism is broader than that for all other HCoVs, including SARS coronavirus, HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63, which may explain the high mortality associated with this disease. A recent cell line susceptibility study showed that HCoV-EMC can infect primate, porcine, and bat cells and therefore may jump interspecies barriers. We found that HCoV-EMC can also infect civet lung fibroblast and rabbit kidney cell lines. These findings have important implications for the diagnosis, pathogenesis, and transmission of HCoV-EMC.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Rd, Pokfulam, Hong Kong Special Administrative Region, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Singh DD, Jain A. Multipurpose instantaneous microarray detection of acute encephalitis causing viruses and their expression profiles. Curr Microbiol 2012; 65:290-303. [PMID: 22674173 PMCID: PMC7080014 DOI: 10.1007/s00284-012-0154-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/14/2012] [Indexed: 01/15/2023]
Abstract
Detection of multiple viruses is important for global analysis of gene or protein content and expression, opening up new prospects in terms of molecular and physiological systems for pathogenic diagnosis. Early diagnosis is crucial for disease treatment and control as it reduces inappropriate use of antiviral therapy and focuses surveillance activity. This requires the ability to detect and accurately diagnose infection at or close to the source/outbreak with minimum delay and the need for specific, accessible point-of-care diagnosis able to distinguish causative viruses and their subtypes. None of the available viral diagnostic assays combine a point-of-care format with the complex capability to identify a large range of human and animal viruses. Microarray detection provides a useful, labor-saving tool for detection of multiple viruses with several advantages, such as convenience and prevention of cross-contamination of polymerase chain reaction (PCR) products, which is of foremost importance in such applications. Recently, real-time PCR assays with the ability to confirm the amplification product and quantitate the target concentration have been developed. Furthermore, nucleotide sequence analysis of amplification products has facilitated epidemiological studies of infectious disease outbreaks and monitoring of treatment outcomes for infections, in particular for viruses that mutate at high frequency. This review discusses applications of microarray technology as a potential new tool for detection and identification of acute encephalitis-causing viruses in human serum, plasma, and cell cultures.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Virology Laboratory, Department of Microbiology, C S M Medical University, Lucknow, UP 226003, India.
| | | |
Collapse
|
56
|
Cao Z, Han Z, Shao Y, Liu X, Sun J, Yu D, Kong X, Liu S. Proteomics analysis of differentially expressed proteins in chicken trachea and kidney after infection with the highly virulent and attenuated coronavirus infectious bronchitis virus in vivo. Proteome Sci 2012; 10:24. [PMID: 22463732 PMCID: PMC3342233 DOI: 10.1186/1477-5956-10-24] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/31/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Infectious bronchitis virus (IBV) is first to be discovered coronavirus which is probably endemic in all regions with intensive impact on poultry production. In this study, we used two-dimensional gel electrophoresis (2-DE) and two-dimensional fluorescence difference gel electrophoresis (2-DIGE), coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS), to explore the global proteome profiles of trachea and kidney tissues from chicken at different stages infected in vivo with the highly virulent ck/CH/LDL/97I P5 strain of infectious bronchitis virus (IBV) and the embryo-passaged, attenuated ck/CH/LDL/97I P115 strain. RESULTS Fifty-eight differentially expressed proteins were identified. Results demonstrated that some proteins which had functions in cytoskeleton organization, anti-oxidative stress, and stress response, showed different change patterns in abundance from chicken infected with the highly virulent ck/CH/LDL/97I P5 strain and those given the embryo-passaged, attenuated P115 stain. In addition, the dynamic transcriptional alterations of 12 selected proteins were analyzed by the real-time RT-PCR, and western blot analysis confirmed the change in abundance of heat shock proteins (HSP) beta-1, annexin A2, and annexin A5. CONCLUSIONS The proteomic alterations described here may suggest that these changes to protein expression correlate with IBV virus' virulence in chicken, hence provides valuable insights into the interactions of IBV with its host and may also assist with investigations of the pathogenesis of IBV and other coronavirus infections.
Collapse
Affiliation(s)
- Zhongzan Cao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Varshney B, Agnihotram S, Tan YJ, Baric R, Lal SK. SARS coronavirus 3b accessory protein modulates transcriptional activity of RUNX1b. PLoS One 2012; 7:e29542. [PMID: 22253733 PMCID: PMC3257236 DOI: 10.1371/journal.pone.0029542] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/30/2011] [Indexed: 12/12/2022] Open
Abstract
Background The causative agent of severe acute respiratory syndrome, SARS coronavirus (SARS-CoV) genome encodes several unique group specific accessory proteins with unknown functions. Among them, accessory protein 3b (also known as ORF4) was lately identified as one of the viral interferon antagonist. Recently our lab uncovered a new role for 3b in upregulation of AP-1 transcriptional activity and its downstream genes. Thus, we believe that 3b might play an important role in SARS-CoV pathogenesis and therefore is of considerable interest. The current study aims at identifying novel host cellular interactors of the 3b protein. Methodology/Principal Findings In this study, using yeast two-hybrid and co-immunoprecipitation techniques, we have identified a host transcription factor RUNX1b (Runt related transcription factor, isoform b) as a novel interacting partner for SARS-CoV 3b protein. Chromatin immunoprecipitaion (ChIP) and reporter gene assays in 3b expressing jurkat cells showed recruitment of 3b on the RUNX1 binding element that led to an increase in RUNX1b transactivation potential on the IL2 promoter. Kinase assay and pharmacological inhibitor treatment implied that 3b also affect RUNX1b transcriptional activity by regulating its ERK dependent phosphorylation levels. Additionally, mRNA levels of MIP-1α, a RUNX1b target gene upregulated in SARS-CoV infected monocyte-derived dendritic cells, were found to be elevated in 3b expressing U937 monocyte cells. Conclusions/Significance These results unveil a novel interaction of SARS-CoV 3b with the host factor, RUNX1b, and speculate its physiological relevance in upregulating cytokines and chemokine levels in state of SARS virus infection.
Collapse
Affiliation(s)
- Bhavna Varshney
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sudhakar Agnihotram
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yee-Joo Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ralph Baric
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sunil K. Lal
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail:
| |
Collapse
|
58
|
DeDiego ML, Nieto-Torres JL, Jiménez-Guardeño JM, Regla-Nava JA, Alvarez E, Oliveros JC, Zhao J, Fett C, Perlman S, Enjuanes L. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis. PLoS Pathog 2011; 7:e1002315. [PMID: 22028656 PMCID: PMC3197621 DOI: 10.1371/journal.ppat.1002315] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/29/2011] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome virus (SARS-CoV) that lacks the envelope (E) gene (rSARS-CoV-ΔE) is attenuated in vivo. To identify factors that contribute to rSARS-CoV-ΔE attenuation, gene expression in cells infected by SARS-CoV with or without E gene was compared. Twenty-five stress response genes were preferentially upregulated during infection in the absence of the E gene. In addition, genes involved in signal transduction, transcription, cell metabolism, immunoregulation, inflammation, apoptosis and cell cycle and differentiation were differentially regulated in cells infected with rSARS-CoV with or without the E gene. Administration of E protein in trans reduced the stress response in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, or treated with drugs, such as tunicamycin and thapsigargin that elicit cell stress by different mechanisms. In addition, SARS-CoV E protein down-regulated the signaling pathway inositol-requiring enzyme 1 (IRE-1) of the unfolded protein response, but not the PKR-like ER kinase (PERK) or activating transcription factor 6 (ATF-6) pathways, and reduced cell apoptosis. Overall, the activation of the IRE-1 pathway was not able to restore cell homeostasis, and apoptosis was induced probably as a measure to protect the host by limiting virus production and dissemination. The expression of proinflammatory cytokines was reduced in rSARS-CoV-ΔE-infected cells compared to rSARS-CoV-infected cells, suggesting that the increase in stress responses and the reduction of inflammation in the absence of the E gene contributed to the attenuation of rSARS-CoV-ΔE. To identify potential mechanisms mediating the in vivo attenuation of SARS-CoV lacking the E gene (rSARS-CoV-ΔE), the effect of the presence of the E gene on host gene expression was studied. In rSARS-CoV-ΔE-infected cells, the expression of at least 25 stress response genes was preferentially upregulated, compared to cells infected with rSARS-CoV. E protein supplied in trans reversed the increase in stress response genes observed in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, and by treatment with drugs causing stress by different mechanisms. Furthermore, in the presence of the E protein a subset (IRE-1 pathway), but not two others (PERK and ATF-6), of the unfolded protein response was also reduced. Nevertheless, the activation of the unfolded protein response to control cell homeostasis was not sufficient to alleviate cell stress, and an increase in cell apoptosis in cells infected with the virus lacking E protein was observed. This apoptotic response was probably induced to protect the host by limiting virus production and dissemination. In cells infected with rSARS-CoV-ΔE, genes associated with the proinflammatory pathway were down-regulated compared to cells infected with virus expressing E protein, supporting the idea that a reduction in inflammation was also relevant in the attenuation of the virus deletion mutant.
Collapse
Affiliation(s)
- Marta L DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Wu H, Wang J, Deng R, Xing K, Xiong Y, Huang J, He X, Wang X. Benefits of random-priming: exhaustive survey of a cDNA library from lung tissue of a SARS patient. J Med Virol 2011; 83:574-86. [PMID: 21328370 PMCID: PMC7166665 DOI: 10.1002/jmv.22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The severe acute respiratory syndrome (SARS) leads to severe injury in the lungs with multiple factors, though the pathogenesis is still largely unclear. This paper describes the particular analyses of the transcriptome of human lung tissue that was infected by SARS‐associated coronavirus (SARS‐CoV). Random primers were used to produce ESTs from total RNA samples of the lung tissue. The result showed a high diversity of the transcripts, covering much of the human genome, including loci which do not contain protein coding sequences. 10,801 ESTs were generated and assembled into 267 contigs plus 7,659 singletons. Sequences matching to SARS‐CoV RNAs and other pneumonia‐related microbes were found. The transcripts were well classified by functional annotation. Among the 7,872 assembled sequences that were identified as from human genome, 578 non‐coding genes were revealed by BLAST search. The transcripts were mapped to the human genome with the restriction of identity = 100%, which found a candidate pool of 448 novel transcriptional loci where EST transcriptional signal was never found before. Among these, 13 loci were never reported to be transcriptional by other detection methods such as gene chips, tiling arrays, and paired‐end ditags (PETs). The result showed that random‐priming cDNA library is valid for the investigation of transcript diversity in the virus‐infected tissue. The EST data could be a useful supplemental source for SARS pathology researches. J. Med. Virol. 83:574–586, 2011. © 2011 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- Hongkai Wu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Xingangxi Road, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Zhou Z, Wang N, Woodson SE, Dong Q, Wang J, Liang Y, Rijnbrand R, Wei L, Nichols JE, Guo JT, Holbrook MR, Lemon SM, Li K. Antiviral activities of ISG20 in positive-strand RNA virus infections. Virology 2011; 409:175-88. [PMID: 21036379 PMCID: PMC3018280 DOI: 10.1016/j.virol.2010.10.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/05/2010] [Accepted: 10/06/2010] [Indexed: 01/19/2023]
Abstract
ISG20 is an interferon-inducible 3'-5' exonuclease that inhibits replication of several human and animal RNA viruses. However, the specificities of ISG20's antiviral action remain poorly defined. Here we determine the impact of ectopic expression of ISG20 on replication of several positive-strand RNA viruses from distinct viral families. ISG20 inhibited infections by cell culture-derived hepatitis C virus (HCV) and a pestivirus, bovine viral diarrhea virus and a picornavirus, hepatitis A virus. Moreover, ISG20 demonstrated cell-type specific antiviral activity against yellow fever virus, a classical flavivirus. Overexpression of ISG20, however, did not inhibit propagation of severe acute respiratory syndrome coronavirus, a highly-pathogenic human coronavirus in Huh7.5 cells. The antiviral effects of ISG20 were all dependent on its exonuclease activity. The closely related cellular exonucleases, ISG20L1 and ISG20L2, did not inhibit HCV replication. Together, these data may help better understand the antiviral specificity and action of ISG20.
Collapse
Affiliation(s)
- Zhi Zhou
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Infectious Diseases, the Second Teaching Hospital, Chongqing Medical University, Chongqing, China
| | - Nan Wang
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sara E. Woodson
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Qingming Dong
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jie Wang
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yuqiong Liang
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Rene Rijnbrand
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Lai Wei
- Peking University Hepatology Institute, Peking University People's Hospital, Beijing, China
| | - Joan E. Nichols
- Department of Internal Medicine, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Ju-Tao Guo
- Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA, USA
| | - Michael R. Holbrook
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Stanley M. Lemon
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Internal Medicine, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kui Li
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
61
|
SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 2010; 42:37-45. [PMID: 20976535 PMCID: PMC7088804 DOI: 10.1007/s11262-010-0544-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/13/2010] [Indexed: 11/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes a highly basic nucleocapsid (N) protein which can inhibit the synthesis of type I interferon (IFN), but the molecular mechanism of this antagonism remains to be identified. In this study, we demonstrated that the N protein of SARS-CoV could inhibit IFN-beta (IFN-β) induced by poly(I:C) or Sendai virus. However, we found that N protein could not inhibit IFN-β production induced by overexpression of downstream signaling molecules of two important IFN-β induction pathways, toll-like receptor 3 (TLR3)- and RIG-I-like receptors (RLR)-dependent pathways. These results indicate that SARS-CoV N protein targets the initial step, probably the cellular PRRs (pattern recognition receptors)-RNAs-recognition step in the innate immune pathways, to suppress IFN expression responses. In addition, co-immunoprecipitation assays revealed that N protein did not interact with RIG-I or MDA5. Further, an assay using truncated mutants revealed that the C-terminal domain of N protein was critical for its antagonism of IFN induction, and the N deletion mutant impaired for RNA-binding almost completely lost the IFN-β antagonist activity. These results contribute to our further understanding of the pathogenesis of SARS-CoV.
Collapse
|
62
|
Maggina P, Christodoulou I, Papaevangelou V, Tsolia M, Papadopoulos NG. Dendritic cells in viral bronchiolitis. Expert Rev Clin Immunol 2010; 5:271-82. [PMID: 20477005 DOI: 10.1586/eci.09.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dendritic cells (DCs) are major antigen-presenting cells that constitute a link between innate and adaptive immune responses, and are critical in the processes of control and elimination of viral infections. On the other hand, there is a large body of data strongly implicating respiratory viruses in morbidity during infancy through the induction of lower respiratory tract infections, such as bronchiolitis, and later on in childhood and adult life, mainly due to their association with asthma exacerbations. Little is known, however, about the precise role of DCs in human respiratory tract infections. This review focuses on current data, both from in vivo and in vitro studies, that highlight the interplay between DCs and the viral causes of bronchiolitis.
Collapse
Affiliation(s)
- Paraskevi Maggina
- Allergy Research Centre, 2nd Paediatric Clinic, Medical School, University of Athens, 41 Fidippidou Street, Goudi, 11527 Athens, Greece.
| | | | | | | | | |
Collapse
|
63
|
Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication. J Virol 2010; 84:6050-9. [PMID: 20392858 DOI: 10.1128/jvi.00213-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The discovery of a novel coronavirus (CoV) as the causative agent of severe acute respiratory syndrome (SARS) has highlighted the need for a better understanding of CoV replication. The replication of SARS-CoV is highly dependent on host cell factors. However, relatively little is known about the cellular proteome changes that occur during SARS-CoV replication. Recently, we developed a cell line expressing a SARS-CoV subgenomic replicon and used it to screen inhibitors of SARS-CoV replication. To identify host proteins important for SARS-CoV RNA replication, the protein profiles of the SARS-CoV replicon cells and parental BHK21 cells were compared using a quantitative proteomic strategy termed "stable-isotope labeling by amino acids in cell culture-mass spectrometry" (SILAC-MS). Our results revealed that, among the 1,081 host proteins quantified in both forward and reverse SILAC measurements, 74 had significantly altered levels of expression. Of these, significantly upregulated BCL2-associated athanogene 3 (BAG3) was selected for further functional studies. BAG3 is involved in a wide variety of cellular processes, including cell survival, cellular stress response, proliferation, migration, and apoptosis. Our results show that inhibition of BAG3 expression by RNA interference led to significant suppression of SARS-CoV replication, suggesting the possibility that upregulation of BAG3 may be part of the machinery that SARS-CoV relies on for replication. By correlating the proteomic data with these functional studies, the findings of this study provide important information for understanding SARS-CoV replication.
Collapse
|
64
|
Yoshikawa T, Hill TE, Yoshikawa N, Popov VL, Galindo CL, Garner HR, Peters CJ, Tseng CT(K. Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection. PLoS One 2010; 5:e8729. [PMID: 20090954 PMCID: PMC2806919 DOI: 10.1371/journal.pone.0008729] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 12/18/2009] [Indexed: 12/12/2022] Open
Abstract
Human lung epithelial cells are likely among the first targets to encounter invading severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Not only can these cells support the growth of SARS-CoV infection, but they are also capable of secreting inflammatory cytokines to initiate and, eventually, aggravate host innate inflammatory responses, causing detrimental immune-mediated pathology within the lungs. Thus, a comprehensive evaluation of the complex epithelial signaling to SARS-CoV is crucial for paving the way to better understand SARS pathogenesis. Based on microarray-based functional genomics, we report here the global gene response of 2B4 cells, a cloned bronchial epithelial cell line derived from Calu-3 cells. Specifically, we found a temporal and spatial activation of nuclear factor (NF)kappaB, activator protein (AP)-1, and interferon regulatory factor (IRF)-3/7 in infected 2B4 cells at 12-, 24-, and 48-hrs post infection (p.i.), resulting in the activation of many antiviral genes, including interferon (IFN)-beta, -lambdas, inflammatory mediators, and many IFN-stimulated genes (ISGs). We also showed, for the first time, that IFN-beta and IFN-lambdas were capable of exerting previously unrecognized, non-redundant, and complementary abilities to limit SARS-CoV replication, even though their expression could not be detected in infected 2B4 bronchial epithelial cells until 48 hrs p.i. Collectively, our results highlight the mechanics of the sequential events of antiviral signaling pathway/s triggered by SARS-CoV in bronchial epithelial cells and identify novel cellular targets for future studies, aiming at advancing strategies against SARS.
Collapse
Affiliation(s)
- Tomoki Yoshikawa
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Terence E. Hill
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Naoko Yoshikawa
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Vsevolod L. Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Cristi L. Galindo
- The McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Harold R. Garner
- The McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - C. J. Peters
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chien-Te (Kent) Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
65
|
Abstract
Viral culture is the historical gold standard for detection of most viruses that cause respiratory tract infections. Viral culture remains valuable because it is reasonably sensitive for most respiratory viruses, and it is cheaper and less technically demanding than nucleic acid amplified tests. The disadvantages of conventional viral culture using multiple tubes of cell lines are that it is labor intensive, moderately expensive, and slow. Advances in viral culture include the introduction of new cell lines, which can be more sensitive or convenient than previously used cell lines, and the use of shell-vial culture for respiratory viruses. Shell-vial culture is as sensitive as conventional culture for most respiratory viruses and it has a much shorter turn-around time. The shorter turn-around time increases the clinical utility of these cultures.
Collapse
|
66
|
Magold AI, Cacquevel M, Fraering PC. Gene expression profiling in cells with enhanced gamma-secretase activity. PLoS One 2009; 4:e6952. [PMID: 19763259 PMCID: PMC2739295 DOI: 10.1371/journal.pone.0006952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 07/27/2009] [Indexed: 01/10/2023] Open
Abstract
Background Processing by γ-secretase of many type-I membrane protein substrates triggers signaling cascades by releasing intracellular domains (ICDs) that, following nuclear translocation, modulate the transcription of different genes regulating a diverse array of cellular and biological processes. Because the list of γ-secretase substrates is growing quickly and this enzyme is a cancer and Alzheimer's disease therapeutic target, the mapping of γ-secretase activity susceptible gene transcription is important for sharpening our view of specific affected genes, molecular functions and biological pathways. Methodology/Principal Findings To identify genes and molecular functions transcriptionally affected by γ-secretase activity, the cellular transcriptomes of Chinese hamster ovary (CHO) cells with enhanced and inhibited γ-secretase activity were analyzed and compared by cDNA microarray. The functional clustering by FatiGO of the 1,981 identified genes revealed over- and under-represented groups with multiple activities and functions. Single genes with the most pronounced transcriptional susceptibility to γ-secretase activity were evaluated by real-time PCR. Among the 21 validated genes, the strikingly decreased transcription of PTPRG and AMN1 and increased transcription of UPP1 potentially support data on cell cycle disturbances relevant to cancer, stem cell and neurodegenerative diseases' research. The mapping of interactions of proteins encoded by the validated genes exclusively relied on evidence-based data and revealed broad effects on Wnt pathway members, including WNT3A and DVL3. Intriguingly, the transcription of TERA, a gene of unknown function, is affected by γ-secretase activity and was significantly altered in the analyzed human Alzheimer's disease brain cortices. Conclusions/Significance Investigating the effects of γ-secretase activity on gene transcription has revealed several affected clusters of molecular functions and, more specifically, 21 genes that hold significant potential for a better understanding of the biology of γ-secretase and its roles in cancer and Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Alexandra I. Magold
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Matthias Cacquevel
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Patrick C. Fraering
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
67
|
Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. J Virol 2009; 83:10314-8. [PMID: 19640993 DOI: 10.1128/jvi.00842-09] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) generates 16 nonstructural proteins (nsp's) through proteolytic cleavage of a large precursor protein. Although several nsp's exhibit catalytic activities that are important for viral replication and transcription, other nsp's have less clearly defined roles during an infection. In order to gain a better understanding of their functions, we attempted to identify host proteins that interact with nsp's during SARS-CoV infections. For nsp2, we identified an interaction with two host proteins, prohibitin 1 (PHB1) and PHB2. Our results suggest that nsp2 may be involved in the disruption of intracellular host signaling during SARS-CoV infections.
Collapse
|
68
|
de Lang A, Baas T, Smits SL, Katze MG, Osterhaus AD, Haagmans BL. Unraveling the complexities of the interferon response during SARS-CoV infection. Future Virol 2009; 4:71-78. [PMID: 19885368 DOI: 10.2217/17460794.4.1.71] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Viruses employ different strategies to circumvent the antiviral actions of the innate immune response. SARS coronavirus (SARS-CoV), a virus that causes severe lung damage, encodes an array of proteins able to inhibit induction and signaling of type-I interferons. However, recent studies have demonstrated that interferons are produced during SARS-CoV infection in humans and macaques. Furthermore, nuclear translocation of activated STAT1 and a range of interferon-stimulated genes could be demonstrated in the lungs of SARS-CoV-infected macaques. In line with these observations, plasmacytoid dendritic cells have been shown to produce interferons upon SARS-CoV infection in vitro. Given the pivotal role of interferons during viral infections, (differential) induction of interferons may affect the outcome of the infection. Therefore, the functional implication of interferon production during SARS-CoV infection remains to be re-investigated.
Collapse
Affiliation(s)
- Anna de Lang
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
69
|
Andeweg AC, Haagmans BL, Osterhaus AD. Virogenomics: the virus-host interaction revisited. Curr Opin Microbiol 2008; 11:461-6. [PMID: 18822388 PMCID: PMC7108363 DOI: 10.1016/j.mib.2008.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 01/15/2023]
Abstract
Genomics tools allow us to assess gene expression ‘genome wide’ providing an unprecedented view on the host-side of the virus–host interaction. The success of the application of these tools crucially depends on our ability to reduce the total information load while increasing the information density of the data collected. In addition to the advanced data analysis algorithms, gene annotation-pathway databases, and theoretical models, specifically designed sets of complementary experiments are crucial in translating the collected genomics data into palatable knowledge. A better understanding of the molecular basis of virus–host interactions will support the rational design of improved and novel intervention strategies for viral infections.
Collapse
Affiliation(s)
- Arno C Andeweg
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
70
|
Scagnolari C, Trombetti S, Cicetti S, Antonelli S, Selvaggi C, Perrone L, Visca M, Romano S, Antonelli G. Severe acute respiratory syndrome coronavirus elicits a weak interferon response compared to traditional interferon-inducing viruses. Intervirology 2008; 51:217-23. [PMID: 18781076 PMCID: PMC7179525 DOI: 10.1159/000154258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 07/07/2008] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study is to investigate changes of interferon (IFN) production occurring over the first 48 h after infection of peripheral blood mononuclear cells (PBMCs) with severe acute respiratory syndrome (SARS) coronavirus (CoV) and to compare these changes to those induced by well-established IFN-inducing viruses, such as vesicular stomatitis (VSV) and Newcastle viruses (NDV). Experiments have been carried out using PBMCs of 10 different healthy donors. The results showed that the antiviral activity of IFN contained in the supernatant of SARS-CoV-infected PBMCs was lower than those induced by VSV and NDV. Consequently, SARS-CoV induces a lower synthesis of IFN-alpha, -beta and -gamma compared to VSV and NDV. Characterization of the profile of IFN-alpha subtypes genes expression in SARS-CoV-infected PBMCs demonstrated that the level of IFN-alpha2 and -6 subtypes were higher compared to other IFN-alpha subtypes namely, IFN-alpha5, -8, -10, -13/1, -17, and -21. In conclusion, SARS-CoV induces IFNs to a less extent compared to VSV and NDV, thus suggesting that the IFN system does play a limited role in early host defense against SARS-CoV infection.
Collapse
Affiliation(s)
- Carolina Scagnolari
- Department of Experimental Medicine - Virology Section, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Genomic analysis reveals age-dependent innate immune responses to severe acute respiratory syndrome coronavirus. J Virol 2008; 82:9465-76. [PMID: 18632870 DOI: 10.1128/jvi.00489-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The relationship between immunosenescence and the host response to virus infection is poorly understood at the molecular level. Two different patterns of pulmonary host responses to virus were observed when gene expression profiles from severe acute respiratory syndrome coronavirus (SARS-CoV)-infected young mice that show minimal disease were compared to those from SARS-CoV-infected aged mice that develop pneumonitis. In young mice, genes related to cellular development, cell growth, and cell cycle were downregulated during peak viral replication, and these transcripts returned to basal levels as virus was cleared. In contrast, aged mice had a greater number of upregulated immune response and cell-to-cell signaling genes, and the expression of many genes was sustained even after viral clearance, suggesting an exacerbated host response to virus. Interestingly, in SARS-CoV-infected aged mice, a subset of genes, including Tnfa, Il6, Ccl2, Ccl3, Cxcl10, and Ifng, was induced in a biphasic pattern that correlated with peak viral replication and a subsequent influx of lymphocytes and severe histopathologic changes in the lungs. We provide insight into gene expression profiles and molecular signatures underlying immunosenescence in the context of the host response to viral infection.
Collapse
|
72
|
Raaben M, Whitley P, Bouwmeester D, Setterquist RA, Rottier PJM, de Haan CAM. Improved microarray gene expression profiling of virus-infected cells after removal of viral RNA. BMC Genomics 2008; 9:221. [PMID: 18479515 PMCID: PMC2397413 DOI: 10.1186/1471-2164-9-221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 05/14/2008] [Indexed: 01/15/2023] Open
Abstract
Background Sensitivity and accuracy are key points when using microarrays to detect alterations in gene expression under different conditions. Critical to the acquisition of reliable results is the preparation of the RNA. In the field of virology, when analyzing the host cell's reaction to infection, the often high representation of viral RNA (vRNA) within total RNA preparations from infected cells is likely to interfere with microarray analysis. Yet, this effect has not been investigated despite the many reports that describe gene expression profiling of virus-infected cells using microarrays. Results In this study we used coronaviruses as a model to show that vRNA indeed interferes with microarray analysis, decreasing both sensitivity and accuracy. We also demonstrate that the removal of vRNA from total RNA samples, by means of virus-specific oligonucleotide capturing, significantly reduced the number of false-positive hits and increased the sensitivity of the method as tested on different array platforms. Conclusion We therefore recommend the specific removal of vRNA, or of any other abundant 'contaminating' RNAs, from total RNA samples to improve the quality and reliability of microarray analyses.
Collapse
Affiliation(s)
- Matthijs Raaben
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
73
|
Abstract
The emergence of the highly pathogenic SARS coronavirus (SARS-CoV) has reignited interest in coronavirus biology and pathogenesis. An emerging theme in coronavirus pathogenesis is that the interaction between specific viral genes and the host immune system, specifically the innate immune system, functions as a key determinant in regulating virulence and disease outcomes. Using SARS-CoV as a model, we will review the current knowledge of the interplay between coronavirus infection and the host innate immune system in vivo, and then discuss the mechanisms by which specific gene products antagonize the host innate immune response in cell culture models. Our data suggests that the SARS-CoV uses specific strategies to evade and antagonize the sensing and signaling arms of the interferon pathway. We summarize by identifying future points of consideration that will contribute greatly to our understanding of the molecular mechanisms governing coronavirus pathogenesis and virulence, and the development of severe disease in humans and animals.
Collapse
Affiliation(s)
- Matthew Frieman
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | | | | |
Collapse
|
74
|
Narayanan K, Huang C, Makino S. SARS coronavirus accessory proteins. Virus Res 2008; 133:113-21. [PMID: 18045721 PMCID: PMC2720074 DOI: 10.1016/j.virusres.2007.10.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/12/2007] [Accepted: 10/10/2007] [Indexed: 12/19/2022]
Abstract
The emergence of the severe acute respiratory syndrome coronavirus (SARS-CoV) has led to a renewed interest in studying the role of accessory proteins in regulating coronavirus infections in the natural host. A significant body of evidence has accumulated in the area of SARS-CoV and host interactions that indicate that the accessory proteins might play an important role in modulating the host response to virus infection and thereby, contribute to pathogenesis. In this review, we have compiled the current knowledge about SARS-CoV accessory proteins, obtained from studies in cell culture systems, reverse genetics and animal models, to shed some light into the possible role of these proteins in the propagation and virulence of SARS-CoV in its natural host. We conclude by providing some questions for future studies that will greatly advance our knowledge about the biological significance and contributions of the accessory proteins in the development of SARS in humans.
Collapse
Affiliation(s)
- Krishna Narayanan
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, United States
| | | | | |
Collapse
|
75
|
Thiel V, Weber F. Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev 2008; 19:121-32. [PMID: 18321765 PMCID: PMC7108449 DOI: 10.1016/j.cytogfr.2008.01.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The sudden emergence of severe acute respiratory syndrome (SARS) has boosted research on innate immune responses to coronaviruses. It is now well established that the causative agent, a newly identified coronavirus termed SARS-CoV, employs multiple passive and active mechanisms to avoid induction of the antiviral type I interferons in tissue cells. By contrast, chemokines such as IP-10 or IL-8 are strongly upregulated. The imbalance in the IFN response is thought to contribute to the establishment of viremia early in infection, whereas the production of chemokines by infected organs may be responsible for (i) massive immune cell infiltrations found in the lungs of SARS victims, and (ii) the dysregulation of adaptive immunity. Here, we will review the most recent findings on the interaction of SARS-CoV and related Coronaviridae members with the type I interferon and cytokine responses and discuss implications for pathogenesis and therapy.
Collapse
Affiliation(s)
- Volker Thiel
- Research Department, Kantonal Hospital St. Gallen, Switzerland
| | | |
Collapse
|
76
|
Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol 2008; 82:4471-9. [PMID: 18305050 DOI: 10.1128/jvi.02472-07] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) nsp1 protein has unique biological functions that have not been described in the viral proteins of any RNA viruses; expressed SARS-CoV nsp1 protein has been found to suppress host gene expression by promoting host mRNA degradation and inhibiting translation. We generated an nsp1 mutant (nsp1-mt) that neither promoted host mRNA degradation nor suppressed host protein synthesis in expressing cells. Both a SARS-CoV mutant virus, encoding the nsp1-mt protein (SARS-CoV-mt), and a wild-type virus (SARS-CoV-WT) replicated efficiently and exhibited similar one-step growth kinetics in susceptible cells. Both viruses accumulated similar amounts of virus-specific mRNAs and nsp1 protein in infected cells, whereas the amounts of endogenous host mRNAs were clearly higher in SARS-CoV-mt-infected cells than in SARS-CoV-WT-infected cells, in both the presence and absence of actinomycin D. Further, SARS-CoV-WT replication strongly inhibited host protein synthesis, whereas host protein synthesis inhibition in SARS-CoV-mt-infected cells was not as efficient as in SARS-CoV-WT-infected cells. These data revealed that nsp1 indeed promoted host mRNA degradation and contributed to host protein translation inhibition in infected cells. Notably, SARS-CoV-mt infection, but not SARS-CoV-WT infection, induced high levels of beta interferon (IFN) mRNA accumulation and high titers of type I IFN production. These data demonstrated that SARS-CoV nsp1 suppressed host innate immune functions, including type I IFN expression, in infected cells and suggested that SARS-CoV nsp1 most probably plays a critical role in SARS-CoV virulence.
Collapse
|
77
|
Abstract
Calculation of infectious viral titers represents a basic and essential experimental approach for virologists. Classical plaque assays cannot be used for viruses that do not cause significant cytopathic effects, which is the case for strains 229E and OC43 of human coronavirus (HCoV). An alternative indirect immunoperoxidase assay (IPA) is herein described for the detection and titration of these viruses. Susceptible cells are inoculated with serial logarithmic dilutions of samples in a 96-well plate. After viral growth, viral detection by IPA yields the infectious virus titer, expressed as "Tissue Culture Infectious Dose" (TCID50). This represents the dilution of a virus-containing sample at which half of a series of laboratory wells contain replicating virus. This technique is a reliable method for the titration of HCoV in biological samples (cells, tissues, or fluids).
Collapse
|
78
|
Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 2007; 20:660-94. [PMID: 17934078 DOI: 10.1128/cmr.00023-07] [Citation(s) in RCA: 681] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Before the emergence of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) in 2003, only 12 other animal or human coronaviruses were known. The discovery of this virus was soon followed by the discovery of the civet and bat SARS-CoV and the human coronaviruses NL63 and HKU1. Surveillance of coronaviruses in many animal species has increased the number on the list of coronaviruses to at least 36. The explosive nature of the first SARS epidemic, the high mortality, its transient reemergence a year later, and economic disruptions led to a rush on research of the epidemiological, clinical, pathological, immunological, virological, and other basic scientific aspects of the virus and the disease. This research resulted in over 4,000 publications, only some of the most representative works of which could be reviewed in this article. The marked increase in the understanding of the virus and the disease within such a short time has allowed the development of diagnostic tests, animal models, antivirals, vaccines, and epidemiological and infection control measures, which could prove to be useful in randomized control trials if SARS should return. The findings that horseshoe bats are the natural reservoir for SARS-CoV-like virus and that civets are the amplification host highlight the importance of wildlife and biosecurity in farms and wet markets, which can serve as the source and amplification centers for emerging infections.
Collapse
|
79
|
Tan YJ, Lim SG, Hong W. Regulation of cell death during infection by the severe acute respiratory syndrome coronavirus and other coronaviruses. Cell Microbiol 2007; 9:2552-61. [PMID: 17714515 PMCID: PMC7162196 DOI: 10.1111/j.1462-5822.2007.01034.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 12/16/2022]
Abstract
Both apoptosis and necrosis have been observed in cells infected by various coronaviruses, suggesting that the regulation of cell death is important for viral replication and/or pathogenesis. Expeditious research on the severe acute respiratory syndrome (SARS) coronavirus, one of the latest discovered coronaviruses that infect humans, has provided valuable insights into the molecular aspects of cell-death regulation during infection. Apoptosis was observed in vitro, while both apoptosis and necrosis were observed in tissues obtained from SARS patients. Viral proteins that can regulate apoptosis have been identified, and many of these also have the abilities to interfere with cellular functions. Occurrence of cell death in host cells during infection by other coronaviruses, such as the mouse hepatitis virus and transmissible porcine gastroenteritis virus, has also being extensively studied. The diverse cellular responses to infection revealed the complex manner by which coronaviruses affect cellular homeostasis and modulate cell death. As a result of the complex interplay between virus and host, infection of different cell types by the same virus does not necessarily activate the same cell-death pathway. Continuing research will lead to a better understanding of the regulation of cell death during viral infection and the identification of novel antiviral targets.
Collapse
Affiliation(s)
- Yee-Joo Tan
- Collaborative Anti-Viral Research Group, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673.
| | | | | |
Collapse
|
80
|
Yeung YS, Yip CW, Hon CC, Chow KYC, Ma ICM, Zeng F, Leung FCC. Transcriptional profiling of Vero E6 cells over-expressing SARS-CoV S2 subunit: insights on viral regulation of apoptosis and proliferation. Virology 2007; 371:32-43. [PMID: 17961624 PMCID: PMC7103328 DOI: 10.1016/j.virol.2007.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 04/30/2007] [Accepted: 09/14/2007] [Indexed: 01/01/2023]
Abstract
We have previously demonstrated that over-expression of spike protein (S) of severe acute respiratory syndrome coronavirus (SARS-CoV) or its C-terminal subunit (S2) is sufficient to induce apoptosis in vitro. To further investigate the possible roles of S2 in SARS-CoV-induced apoptosis and pathogenesis of SARS, we characterized the host expression profiles induced upon S2 over-expression in Vero E6 cells by oligonucleotide microarray analysis. Possible activation of mitochondrial apoptotic pathway in S2 expressing cells was suggested, as evidenced by the up-regulation of cytochrome c and down-regulation of the Bcl-2 family anti-apoptotic members. Inhibition of Bcl-2-related anti-apoptotic pathway was further supported by the diminution of S2-induced apoptosis in Vero E6 cells over-expressing Bcl-xL. In addition, modulation of CCN E2 and CDKN 1A implied the possible control of cell cycle arrest at G1/S phase. This study is expected to extend our understanding on the pathogenesis of SARS at a molecular level.
Collapse
Affiliation(s)
- Yin-Shan Yeung
- Department of Zoology, Kadoorie Biological Science Building, The University of Hong Kong, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
81
|
de Lang A, Baas T, Teal T, Leijten LM, Rain B, Osterhaus AD, Haagmans BL, Katze MG. Functional genomics highlights differential induction of antiviral pathways in the lungs of SARS-CoV-infected macaques. PLoS Pathog 2007; 3:e112. [PMID: 17696609 PMCID: PMC1941749 DOI: 10.1371/journal.ppat.0030112] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 06/18/2007] [Indexed: 01/11/2023] Open
Abstract
The pathogenesis of severe acute respiratory syndrome coronavirus (SARS-CoV) is likely mediated by disproportional immune responses and the ability of the virus to circumvent innate immunity. Using functional genomics, we analyzed early host responses to SARS-CoV infection in the lungs of adolescent cynomolgus macaques (Macaca fascicularis) that show lung pathology similar to that observed in human adults with SARS. Analysis of gene signatures revealed induction of a strong innate immune response characterized by the stimulation of various cytokine and chemokine genes, including interleukin (IL)-6, IL-8, and IP-10, which corresponds to the host response seen in acute respiratory distress syndrome. As opposed to many in vitro experiments, SARS-CoV induced a wide range of type I interferons (IFNs) and nuclear translocation of phosphorylated signal transducer and activator of transcription 1 in the lungs of macaques. Using immunohistochemistry, we revealed that these antiviral signaling pathways were differentially regulated in distinctive subsets of cells. Our studies emphasize that the induction of early IFN signaling may be critical to confer protection against SARS-CoV infection and highlight the strength of combining functional genomics with immunohistochemistry to further unravel the pathogenesis of SARS.
Collapse
Affiliation(s)
- Anna de Lang
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tracey Baas
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Thomas Teal
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Lonneke M Leijten
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Brandon Rain
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Albert D Osterhaus
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bart L Haagmans
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| | - Michael G Katze
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
82
|
Müller S, Geffers R, Günther S. Analysis of gene expression in Lassa virus-infected HuH-7 cells. J Gen Virol 2007; 88:1568-1575. [PMID: 17412988 DOI: 10.1099/vir.0.82529-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pathogenesis of Lassa fever is poorly understood. As the liver is a major target organ of Lassa virus, gene expression in Lassa virus-infected HuH-7 cells, a differentiated human hepatoma cell line, was studied. Cellular mRNA levels were measured at the late phase of acute infection, when virtually all cells expressed large amounts of nucleoprotein, and virus RNA concentration had reached>10(8) copies (ml supernatant)-1. Two types of transcription array were used: cDNA-based macroarrays with a set of 3500 genes (Atlas Human 1.2 arrays; Clontech) and oligonucleotide-based microarrays covering 18,400 transcripts (Human Genome U133A array; Affymetrix). Data analysis was based on statistical frameworks controlling the false-discovery rate. Atlas array data were considered relevant if they could be verified by U133A array or real-time RT-PCR. According to these criteria, there was no evidence for true changes in gene expression. Considering the precision of the U133A array and the number of replicates tested, potential expression changes due to Lassa virus infection are probably smaller than twofold. To substantiate the array data, beta interferon (IFN-beta) gene expression was studied longitudinally in Lassa virus-infected HuH-7 and FRhK-4 cells by using real-time RT-PCR. IFN-beta mRNA levels increased only twofold upon Lassa virus infection, although there was no evidence that the virus inhibited poly(I:C)-induced IFN-beta gene expression. In conclusion, Lassa virus interferes only minimally with gene expression in HuH-7 cells and poorly induces IFN-beta gene transcription.
Collapse
Affiliation(s)
- Stefanie Müller
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Robert Geffers
- Mucosal Immunity Group, German Research Centre for Biotechnology, 38124 Braunschweig, Germany
| | - Stephan Günther
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| |
Collapse
|
83
|
Scagnolari C, Trombetti S, Alberelli A, Cicetti S, Bellarosa D, Longo R, Spanò A, Riva E, Clementi M, Antonelli G. The synergistic interaction of interferon types I and II leads to marked reduction in severe acute respiratory syndrome-associated coronavirus replication and increase in the expression of mRNAs for interferon-induced proteins. Intervirology 2006; 50:156-60. [PMID: 17191018 PMCID: PMC7179537 DOI: 10.1159/000098242] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 08/21/2006] [Indexed: 01/19/2023] Open
Abstract
Interferon (IFN)-α, -β and -γ have been shown to be only marginally effective against severe acute respiratory syndrome coronavirus (SARS-CoV) replication in Vero cell lines. We investigated the combination of type I IFNs (IFN-α or -β) and IFN-γ for antiviral activity and found that such combinations synergistically inhibited SARS-CoV replication in Vero cells, using yield reduction assay and the isobologram and combination index methods of Chou and Talalay for evaluation. The highly synergistic anti-SARS-CoV action of type I IFNs and IFN-γ parallels the marked increase in 2′-5′-oligoadenylate synthetase and p56 mRNAs following exposure in Vero cells to either IFN-α or -β and IFN-γ compared with the transcriptional levels obtained after stimulation with either IFN alone. These results demonstrate that SARS-CoV, although only moderately sensitive to the antiviral action of the individual types of IFN, is highly sensitive to a combination of type I and II IFNs, which suggests that such combinations may have potential in the treatment of SARS-CoV infections.
Collapse
Affiliation(s)
- Carolina Scagnolari
- Department of Experimental Medicine, Virology Section, University La Sapienza
| | - Simona Trombetti
- Department of Experimental Medicine, Virology Section, University La Sapienza
| | - Alessia Alberelli
- Department of Experimental Medicine, Virology Section, University La Sapienza
| | - Simona Cicetti
- Department of Experimental Medicine, Virology Section, University La Sapienza
| | | | | | | | | | - Massimo Clementi
- Microbiology and Virology Laboratory, San Raffaele Scientific Institute and School of Medicine, Vita-Salute University, Milan, Italy
| | - Guido Antonelli
- Department of Experimental Medicine, Virology Section, University La Sapienza
- * Guido Antonelli, Department of Experimental Medicine-Virology Section, University La Sapienza, Viale di Porta Tiburtina 28, IT-00185 Rome (Italy), Tel. +39 06 4474 122, Fax +39 06 4474 1236, E-Mail
| |
Collapse
|
84
|
Enjuanes L, Almazán F, Sola I, Zuñiga S. Biochemical aspects of coronavirus replication and virus-host interaction. Annu Rev Microbiol 2006; 60:211-30. [PMID: 16712436 DOI: 10.1146/annurev.micro.60.080805.142157] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infection by different coronaviruses (CoVs) causes alterations in the transcriptional and translational patterns, cell cycle, cytoskeleton, and apoptosis pathways of the host cells. In addition, CoV infection may cause inflammation, alter immune and stress responses, and modify the coagulation pathways. The balance between the up- and downregulated genes could explain the pathogenesis caused by these viruses. We review specific aspects of CoV-host interactions. CoV genome replication takes place in the cytoplasm in a membrane-protected microenvironment and may control the cell machinery by locating some of their proteins in the host cell nucleus. CoVs initiate translation by cap-dependent and cap-independent mechanisms. CoV transcription involves a discontinuous RNA synthesis (template switching) during the extension of a negative copy of the subgenomic mRNAs. The requirement for base-pairing during transcription has been formally demonstrated in arteriviruses and CoVs. CoV N proteins have RNA chaperone activity that may help initiate template switching. Both viral and cellular proteins are required for replication and transcription, and the role of selected proteins is addressed.
Collapse
Affiliation(s)
- Luis Enjuanes
- Department of Molecular and Cell Biology, CNB, CSIC, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
85
|
Spiegel M, Weber F. Inhibition of cytokine gene expression and induction of chemokine genes in non-lymphatic cells infected with SARS coronavirus. Virol J 2006; 3:17. [PMID: 16571117 PMCID: PMC1444920 DOI: 10.1186/1743-422x-3-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 03/29/2006] [Indexed: 02/07/2023] Open
Abstract
Background SARS coronavirus (SARS-CoV) is the etiologic agent of the severe acute respiratory syndrome. SARS-CoV mainly infects tissues of non-lymphatic origin, and the cytokine profile of those cells can determine the course of disease. Here, we investigated the cytokine response of two human non-lymphatic cell lines, Caco-2 and HEK 293, which are fully permissive for SARS-CoV. Results A comparison with established cytokine-inducing viruses revealed that SARS-CoV only weakly triggered a cytokine response. In particular, SARS-CoV did not activate significant transcription of the interferons IFN-α, IFN-β, IFN-λ1, IFN-λ2/3, as well as of the interferon-induced antiviral genes ISG56 and MxA, the chemokine RANTES and the interleukine IL-6. Interestingly, however, SARS-CoV strongly induced the chemokines IP-10 and IL-8 in the colon carcinoma cell line Caco-2, but not in the embryonic kidney cell line 293. Conclusion Our data indicate that SARS-CoV suppresses the antiviral cytokine system of non-immune cells to a large extent, thus buying time for dissemination in the host. However, synthesis of IP-10 and IL-8, which are established markers for acute-stage SARS, escapes the virus-induced silencing at least in some cell types. Therefore, the progressive infiltration of immune cells into the infected lungs observed in SARS patients could be due to the production of these chemokines by the infected tissue cells.
Collapse
Affiliation(s)
- Martin Spiegel
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität, Freiburg, D-79008 Freiburg, Germany
| | - Friedemann Weber
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität, Freiburg, D-79008 Freiburg, Germany
| |
Collapse
|
86
|
Malathi K, Paranjape JM, Bulanova E, Shim M, Guenther-Johnson JM, Faber PW, Eling TE, Williams BRG, Silverman RH. A transcriptional signaling pathway in the IFN system mediated by 2'-5'-oligoadenylate activation of RNase L. Proc Natl Acad Sci U S A 2005; 102:14533-8. [PMID: 16203993 PMCID: PMC1239948 DOI: 10.1073/pnas.0507551102] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Indexed: 12/12/2022] Open
Abstract
Virus replication in higher vertebrates is restrained by IFNs that cause cells to transcribe genes encoding antiviral proteins, such as 2'-5' oligoadenylate synthetases. 2'-5' oligoadenylate synthetase is stimulated by dsRNA to produce 5'-phosphorylated, 2'-5'-linked oligoadenylates (2-5A), whose function is to activate RNase L. Although RNase L is required for a complete IFN antiviral response and mutations in the RNase L gene (RNASEL or HPC1) increase prostate cancer rates, it is unknown how 2-5A affects these biological endpoints through its receptor, RNase L. Presently, we show that 2-5A activation of RNase L produces a remarkable stimulation of transcription (>/=20-fold) for genes that suppress virus replication and prostate cancer. Unexpectedly, exposure of DU145 prostate cancer cells to physiologic levels of 2-5A (0.1 muM) induced approximately twice as many RNA species as it down-regulated. Among the 2-5A-induced genes are several IFN-stimulated genes, including IFN-inducible transcript 1/P56, IFN-inducible transcript 2/P54, IL-8, and IFN-stimulated gene 15. 2-5A also potently elevated RNA for macrophage inhibitory cytokine-1/nonsteroidal antiinflammatory drug-activated gene-1, a TGF-beta superfamily member implicated as an apoptotic suppressor of prostate cancer. Transcriptional signaling to the macrophage inhibitory cytokine-1/nonsteroidal antiinflammatory drug-activated gene-1 promoter by 2-5A was deficient in HeLa cells expressing a nuclease-dead mutant of RNase L and was dependent on the mitogen-activated protein kinases c-Jun N-terminal kinase and extracellular signal-regulated kinase, both of which were activated in response to 2-5A treatments. Because 2-5A and RNase L participate in defenses against viral infections and prostate cancer, our findings have implications for basic cellular mechanisms that control major pathogenic processes.
Collapse
Affiliation(s)
- Krishnamurthy Malathi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Wong SA, Chen Y, Chan CM, Chan CM, Chan PK, Chui Y, Fung KP, Waye MM, Tsui SK, Chan HE. In vivo functional characterization of the SARS-Coronavirus 3a protein in Drosophila. Biochem Biophys Res Commun 2005; 337:720-9. [PMID: 16212942 PMCID: PMC7117541 DOI: 10.1016/j.bbrc.2005.09.098] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 09/16/2005] [Indexed: 11/30/2022]
Abstract
The Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3a locus encodes a 274 a.a. novel protein, and its expression has been confirmed in SARS patients. To study functional roles of 3a, we established a transgenic fly model for the SARS-CoV 3a gene. Misexpression of 3a in Drosophila caused a dominant rough eye phenotype. Using a specific monoclonal antibody, we demonstrated that the 3a protein displayed a punctate cytoplasmic localization in Drosophila as in SARS-CoV-infected cells. We provide genetic evidence to support that 3a is functionally related to clathrin-mediated endocytosis. We further found that 3a misexpression induces apoptosis, which could be modulated by cellular cytochrome c levels and caspase activity. From a forward genetic screen, 78 dominant 3a modifying loci were recovered and the identity of these modifiers revealed that the severity of the 3a-induced rough eye phenotype depends on multiple cellular processes including gene transcriptional regulation.
Collapse
Affiliation(s)
- S.L. Alan Wong
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Yiwei Chen
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Chak Ming Chan
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - C.S. Michael Chan
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Paul K.S. Chan
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Y.L. Chui
- Clinical Immunology Unit, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Kwok Pui Fung
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Mary M.Y. Waye
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Stephen K.W. Tsui
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - H.Y. Edwin Chan
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Corresponding author. Fax: +852 2603 7732.
| |
Collapse
|