51
|
Voigt K, Izsvák Z, Ivics Z. Targeted gene insertion for molecular medicine. J Mol Med (Berl) 2008; 86:1205-19. [PMID: 18607557 DOI: 10.1007/s00109-008-0381-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 05/22/2008] [Accepted: 05/27/2008] [Indexed: 11/24/2022]
Abstract
Genomic insertion of a functional gene together with suitable transcriptional regulatory elements is often required for long-term therapeutical benefit in gene therapy for several genetic diseases. A variety of integrating vectors for gene delivery exist. Some of them exhibit random genomic integration, whereas others have integration preferences based on attributes of the targeted site, such as primary DNA sequence and physical structure of the DNA, or through tethering to certain DNA sequences by host-encoded cellular factors. Uncontrolled genomic insertion bears the risk of the transgene being silenced due to chromosomal position effects, and can lead to genotoxic effects due to mutagenesis of cellular genes. None of the vector systems currently used in either preclinical experiments or clinical trials displays sufficient preferences for target DNA sequences that would ensure appropriate and reliable expression of the transgene and simultaneously prevent hazardous side effects. We review in this paper the advantages and disadvantages of both viral and non-viral gene delivery technologies, discuss mechanisms of target site selection of integrating genetic elements (viruses and transposons), and suggest distinct molecular strategies for targeted gene delivery.
Collapse
Affiliation(s)
- Katrin Voigt
- Max Delbrück Center for Molecular Medicine, Robert-Rössle Strasse 10, 13092, Berlin, Germany
| | | | | |
Collapse
|
52
|
Daniel R, Smith JA. Integration site selection by retroviral vectors: molecular mechanism and clinical consequences. Hum Gene Ther 2008; 19:557-68. [PMID: 18533894 DOI: 10.1089/hum.2007.148] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Retroviral DNA integration into the host cell genome is an essential feature of the retroviral life cycle. The ability to integrate their DNA into the DNA of infected cells also makes retroviruses attractive vectors for delivery of therapeutic genes into the genome of cells carrying adverse mutations in their cellular DNA. Sequencing of the entire human genome has enabled identification of integration site preferences of both replication-competent retroviruses and retroviral vectors. These results, together with the unfortunate outcome of a gene therapy trial, in which integration of a retroviral vector in the vicinity of a protooncogene was associated with the development of leukemia, have stimulated efforts to elucidate the molecular mechanism underlying integration site selection by retroviral vectors, as well as the development of methods to direct integration to specific DNA sequences and chromosomal regions. This review outlines our current knowledge of the mechanism of integration site selection by retroviruses in vitro, in cultured cells, and in vivo; the outcome of several of the more recent gene therapy trials, which employed these vectors; and the efforts of several laboratories to develop vectors that integrate at predetermined sites in the human genome.
Collapse
Affiliation(s)
- René Daniel
- Division of Infectious Diseases, Center for Human Virology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
53
|
Abstract
HIV integrates a DNA copy of its genome into a host cell chromosome in each replication cycle. The essential DNA cleaving and joining chemistry of integration is known, but there is less understanding of the process as it occurs in a cell, where two complex and dynamic macromolecular entities are joined: the viral pre-integration complex and chromatin. Among implicated cellular factors, much recent attention has coalesced around LEDGF/p75, a nuclear protein that may act as a chromatin docking factor or receptor for lentiviral pre-integration complexes. LEDGF/p75 tethers HIV integrase to chromatin, protects it from degradation, and strongly influences the genome-wide pattern of HIV integration. Depleting the protein from cells and/or over-expressing its integrase-binding domain blocks viral replication. Current goals are to establish the underlying mechanisms and to determine whether this knowledge can be exploited for antiviral therapy or for targeting lentiviral vector integration in human gene therapy.
Collapse
Affiliation(s)
- E M Poeschla
- Guggenheim 18, Mayo Clinic College of Medicine, 200 First Street SW, Rochester 55905, USA.
| |
Collapse
|
54
|
Walisko O, Schorn A, Rolfs F, Devaraj A, Miskey C, Izsvák Z, Ivics Z. Transcriptional activities of the Sleeping Beauty transposon and shielding its genetic cargo with insulators. Mol Ther 2007; 16:359-69. [PMID: 18071335 DOI: 10.1038/sj.mt.6300366] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Sleeping Beauty (SB) transposable element shows efficient transposition in human cells, and provides long-term transgene expression in preclinical animal models. Random chromosomal insertion of SB vectors represents a safety issue in human gene therapeutic applications, due to potential genotoxic effects associated with transposon integration. We investigated the transcriptional activities of SB in order to assess its potential to alter host gene expression upon integration. The untranslated regions (UTRs) of the transposon direct convergent, inward-directed transcription. Transcription from the 5'-UTR of SB is upregulated by the host-encoded factor high-mobility group 2-like 1 (HMG2L1), and requires a 65-base pair (bp) region not present in commonly used SB vectors. The SB transposase antagonizes the effect of HMG2L1, suggesting that natural transposase expression is under a negative feedback regulation. SB transposon vectors lacking the 65-bp region associated with HMG2L1-dependent upregulation exhibit benign transcriptional activities, at a level up to 100-times lower than that of the murine leukemia virus (MLV) long terminal repeat (LTR). Incorporation of chicken beta-globin HS4 insulator sequences in SB-based vectors reduces the transactivation of model promoters by transposon-borne enhancers, and thus may lower the risk of transcriptional activation of host genes situated close to a transposon insertion site.
Collapse
Affiliation(s)
- Oliver Walisko
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
55
|
Cockrell AS, Kafri T. Gene delivery by lentivirus vectors. Mol Biotechnol 2007; 36:184-204. [PMID: 17873406 DOI: 10.1007/s12033-007-0010-8] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/28/2022]
Abstract
The capacity to efficiently transduce nondividing cells, shuttle large genetic payloads, and maintain stable long-term transgene expression are attributes that have brought lentiviral vectors to the forefront of gene delivery vehicles for research and therapeutic applications in a clinical setting. Our discussion initiates with advances in lentiviral vector development and how these sophisticated lentiviral vectors reflect improvements in safety, regarding the prevention of replication competent lentiviruses (RCLs), vector mobilization, and insertional mutagenesis. Additionally, we describe conventional molecular regulatory systems to manage gene expression levels in a spatial and temporal fashion in the context of a lentiviral vector. State of the art technology for lentiviral vector production by transient transfection and packaging cell lines are explicitly presented with current practices used for concentration, purification, titering, and determining the safety of a vector stock. We summarize lentiviral vector applications that have received a great deal of attention in recent years including the generation of transgenic animals and the stable delivery of RNA interference molecules. Concluding remarks address some of the successes in preclinical animals, and the recent transition of lentiviral vectors to human clinical trials as therapy for a variety of infectious and genetic diseases.
Collapse
Affiliation(s)
- Adam S Cockrell
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
56
|
Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD, Holmes MC, Naldini L. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007; 25:1298-306. [PMID: 17965707 DOI: 10.1038/nbt1353] [Citation(s) in RCA: 642] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 10/09/2007] [Indexed: 11/08/2022]
Abstract
Achieving the full potential of zinc-finger nucleases (ZFNs) for genome engineering in human cells requires their efficient delivery to the relevant cell types. Here we exploited the infectivity of integrase-defective lentiviral vectors (IDLV) to express ZFNs and provide the template DNA for gene correction in different cell types. IDLV-mediated delivery supported high rates (13-39%) of editing at the IL-2 receptor common gamma-chain gene (IL2RG) across different cell types. IDLVs also mediated site-specific gene addition by a process that required ZFN cleavage and homologous template DNA, thus establishing a platform that can target the insertion of transgenes into a predetermined genomic site. Using IDLV delivery and ZFNs targeting distinct loci, we observed high levels of gene addition (up to 50%) in a panel of human cell lines, as well as human embryonic stem cells (5%), allowing rapid, selection-free isolation of clonogenic cells with the desired genetic modification.
Collapse
Affiliation(s)
- Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy, via Olgettina, 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Philpott NJ, Thrasher AJ. Use of nonintegrating lentiviral vectors for gene therapy. Hum Gene Ther 2007; 18:483-9. [PMID: 17523890 DOI: 10.1089/hum.2007.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Vectors based on lentiviruses have become potent tools for efficient gene transfer to multiple cell types both in vitro and in vivo. In part this is attributable to the stability of transduction afforded by integration into the target cell genome. However, evidence indicates that episomal forms of the vector can also be harnessed for effective gene expression. Nonintegrating vectors retain the high transduction efficiency and broad tropism of conventional lentiviruses but avoid the potential problems associated with the nonspecific integration of a transgene. In this respect they are particularly useful in postmitotic tissue because the vector genome is not diluted out through cell division. Here we discuss the various mutations that may be introduced into human immunodeficiency virus-based lentiviral vectors to achieve efficient transduction, and the mechanisms by which these vectors are effective. We also discuss their potential application to gene therapy and the treatment of genetic disease.
Collapse
Affiliation(s)
- Nicola J Philpott
- Molecular Immunology Unit, Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | | |
Collapse
|
58
|
Negri DRM, Michelini Z, Baroncelli S, Spada M, Vendetti S, Buffa V, Bona R, Leone P, Klotman ME, Cara A. Successful immunization with a single injection of non-integrating lentiviral vector. Mol Ther 2007; 15:1716-23. [PMID: 17593926 DOI: 10.1038/sj.mt.6300241] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We evaluated the ability of an integrase (IN)-defective self-inactivating lentiviral vector (sinLV) for the delivery of human immunodeficiency virus-1 (HIV-1) envelope sequences in mice to elicit specific immune responses. BALB/c mice were immunized with a single intramuscular injection of the IN-defective sinLV expressing the codon optimized HIV-1(JR-FL) gp120 sequence, and results were compared with those for the IN-competent counterpart. The IN-defective sinLV elicited specific and long-lasting immune responses, as evaluated up to 90 days from the immunization by enzyme-linked immunosorbent spot (ELISPOT) and intracellular staining (ICS) for interferon-gamma (IFN-gamma) assays in both splenocytes and bone marrow (BM) cells, chromium release assay in splenocytes, and antibody detection in sera, without integration of the vector into the host genome. These data provide evidence that a single administration of an IN-defective sinLV elicits a significant immune response in the absence of vector integration and may be a safe and useful strategy for vaccine development.
Collapse
Affiliation(s)
- Donatella R M Negri
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Yant SR, Huang Y, Akache B, Kay MA. Site-directed transposon integration in human cells. Nucleic Acids Res 2007; 35:e50. [PMID: 17344320 PMCID: PMC1874657 DOI: 10.1093/nar/gkm089] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 11/14/2022] Open
Abstract
The Sleeping Beauty (SB) transposon is a promising gene transfer vector that integrates nonspecifically into host cell genomes. Herein, we attempt to direct transposon integration into predetermined DNA sites by coupling a site-specific DNA-binding domain (DBD) to the SB transposase. We engineered fusion proteins comprised of a hyperactive SB transposase (HSB5) joined via a variable-length linker to either end of the polydactyl zinc-finger protein E2C, which binds a unique sequence on human chromosome 17. Although DBD linkage to the C-terminus of SB abolished activity in a human cell transposition assay, the N-terminal addition of the E2C or Gal4 DBD did not. Molecular analyses indicated that these DBD-SB fusion proteins retained DNA-binding specificity for their respective substrate molecules and were capable of mediating bona fide transposition reactions. We also characterized transposon integrations in the presence of the E2C-SB fusion protein to determine its potential to target predefined DNA sites. Our results indicate that fusion protein-mediated tethering can effectively redirect transposon insertion site selection in human cells, but suggest that stable docking of integration complexes may also partially interfere with the cut-and-paste mechanism. These findings illustrate the feasibility of directed transposon integration and highlight potential means for future development.
Collapse
Affiliation(s)
| | | | | | - Mark A. Kay
- Department of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5208, USA
| |
Collapse
|
60
|
Flotte TR, Ng P, Dylla DE, McCray PB, Wang G, Kolls JK, Hu J. Viral Vector–mediated and Cell-based Therapies for Treatment of Cystic Fibrosis. Mol Ther 2007; 15:229-41. [PMID: 17235299 DOI: 10.1038/sj.mt.6300002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gene and cell-based therapies are considered to be potentially powerful new approaches for the management of cystic fibrosis (CF) lung disease. Despite tremendous efforts that have been made, especially in studies to understand the obstacles to gene delivery, major challenges to the application of these approaches remain to be solved. This article will review the advancements made and challenges remaining in the development of viral vector-mediated and cell-based approaches to treat patients with CF.
Collapse
Affiliation(s)
- Terence R Flotte
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Ciuffi A, Diamond TL, Hwang Y, Marshall HM, Bushman FD. Modulating target site selection during human immunodeficiency virus DNA integration in vitro with an engineered tethering factor. Hum Gene Ther 2006; 17:960-7. [PMID: 16972764 DOI: 10.1089/hum.2006.17.960] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanisms controlling retroviral integration have been the topic of intense interest, in part because of adverse clinical events that occurred during retrovirus-mediated human gene therapy. Here we investigate the use of artificial tethering interactions to constrain retroviral integration site selection in an in vitro model. During normal infection, HIV DNA integration is favored in active cellular transcription units. One component of the targeting mechanism is the cellular LEDGF/p75 protein. LEDGF/p75 binds tightly to HIV integrase (IN) protein, and depletion of LEDGF/p75 from target cells results in reduced integration in transcription units, suggesting integration targeting by a tethering mechanism. We constructed and analyzed fusions of LEDGF/p75 or its IN-binding domain (IBD) to the DNA-binding domain of phage lambda repressor protein (lambdaR). In the presence of the lambdaR-LEDGF/p75 fusions, increased strand transfer by IN was seen in target DNA near lambdaR-binding sites in vitro . These data support the idea that a direct interaction between LEDGF/p75 and IN can mediate targeting via a tethering mechanism, and provide proof of concept for the idea that protein-protein interactions might be engineered to constrain integration site selection during human gene therapy.
Collapse
Affiliation(s)
- Angela Ciuffi
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6076, USA
| | | | | | | | | |
Collapse
|
62
|
Guinn BA, Norris JS, Farzaneh F, Deisseroth AB. International Society for Cell and Gene Therapy of Cancer: 2005 meeting in Shenzhen, China. Cancer Gene Ther 2006; 14:128-38. [PMID: 17041563 DOI: 10.1038/sj.cgt.7700996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The 2005 International Society for Cell and Gene Therapy of Cancer (ISCGT) Congress was held in Shenzhen, China (www.iscgtchina2005.com) from December 9th-11th 2005. Here, we describe a representation of the most seminal presentations providing an overview of the progress in the field of cancer gene therapy including the successful introduction of the first approved gene therapy drug.
Collapse
Affiliation(s)
- B A Guinn
- King's College London School of Medicine, Department of Haematological Medicine, The Rayne Institute, 123 Coldharbour Lane, London, UK.
| | | | | | | |
Collapse
|
63
|
Ciuffi A, Diamond TL, Hwang Y, Marshall HM, Bushman FD. Modulating Target Site Selection During Human Immunodeficiency Virus DNA Integration In Vitrowith an Engineered Tethering Factor. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|