51
|
Saez de Guinoa J, Barrio L, Carrasco YR. Vinculin Arrests Motile B Cells by Stabilizing Integrin Clustering at the Immune Synapse. THE JOURNAL OF IMMUNOLOGY 2013; 191:2742-51. [DOI: 10.4049/jimmunol.1300684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
52
|
T cell antigen receptor activation and actin cytoskeleton remodeling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:546-56. [PMID: 23680625 DOI: 10.1016/j.bbamem.2013.05.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/02/2013] [Indexed: 12/20/2022]
Abstract
T cells constitute a crucial arm of the adaptive immune system and their optimal function is required for a healthy immune response. After the initial step of T cell-receptor (TCR) triggering by antigenic peptide complexes on antigen presenting cell (APC), the T cell exhibits extensive cytoskeletal remodeling. This cytoskeletal remodeling leads to the formation of an "immunological synapse" [1] characterized by regulated clustering, segregation and movement of receptors at the interface. Synapse formation regulates T cell activation and response to antigenic peptides and proceeds via feedback between actin cytoskeleton and TCR signaling. Actin polymerization participates in various events during the synapse formation, maturation, and eventually its disassembly. There is increasing knowledge about the actin effectors that couple TCR activation to actin rearrangements [2,3], and how defects in these effectors translate into impairment of T cell activation. In this review we aim to summarize and integrate parts of what is currently known about this feedback process. In addition, in light of recent advancements in our understanding of TCR triggering and translocation at the synapse, we speculate on the organizational and functional diversity of microfilament architecture in the T cell. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
|
53
|
WASH knockout T cells demonstrate defective receptor trafficking, proliferation, and effector function. Mol Cell Biol 2012; 33:958-73. [PMID: 23275443 DOI: 10.1128/mcb.01288-12] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
WASH is an Arp2/3 activator of the Wiskott-Aldrich syndrome protein superfamily that functions during endosomal trafficking processes in collaboration with the retromer and sorting nexins, but its in vivo function has not been examined. To elucidate the physiological role of WASH in T cells, we generated a WASH conditional knockout (WASHout) mouse model. Using CD4(Cre) deletion, we found that thymocyte development and naive T cell activation are unaltered in the absence of WASH. Surprisingly, despite normal T cell receptor (TCR) signaling and interleukin-2 production, WASHout T cells demonstrate significantly reduced proliferative potential and fail to effectively induce experimental autoimmune encephalomyelitis. Interestingly, after activation, WASHout T cells fail to maintain surface levels of TCR, CD28, and LFA-1. Moreover, the levels of the glucose transporter, GLUT1, are also reduced compared to wild-type T cells. We further demonstrate that the loss of surface expression of these receptors in WASHout cells results from aberrant accumulation within the collapsed endosomal compartment, ultimately leading to degradation within the lysosome. Subsequently, activated WASHout T cells experience reduced glucose uptake and metabolic output. Thus, we found that WASH is a newly recognized regulator of TCR, CD28, LFA-1, and GLUT1 endosome-to-membrane recycling. Aberrant trafficking of these key T cell proteins may potentially lead to attenuated proliferation and effector function.
Collapse
|
54
|
Nishida A, Nagahama K, Imaeda H, Ogawa A, Lau CW, Kobayashi T, Hisamatsu T, Preffer FI, Mizoguchi E, Ikeuchi H, Hibi T, Fukuda M, Andoh A, Blumberg RS, Mizoguchi A. Inducible colitis-associated glycome capable of stimulating the proliferation of memory CD4+ T cells. ACTA ACUST UNITED AC 2012; 209:2383-94. [PMID: 23209314 PMCID: PMC3526363 DOI: 10.1084/jem.20112631] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The colitis-associated glycome mediates CD4+ T cell expansion and contributes to the exacerbation of T cell–mediated intestinal inflammation. Immune responses are modified by a diverse and abundant repertoire of carbohydrate structures on the cell surface, which is known as the glycome. In this study, we propose that a unique glycome that can be identified through the binding of galectin-4 is created on local, but not systemic, memory CD4+ T cells under diverse intestinal inflammatory conditions, but not in the healthy state. The colitis-associated glycome (CAG) represents an immature core 1–expressing O-glycan. Development of CAG may be mediated by down-regulation of the expression of core-2 β1,6-N-acetylglucosaminyltransferase (C2GnT) 1, a key enzyme responsible for the production of core-2 O-glycan branch through addition of N-acetylglucosamine (GlcNAc) to a core-1 O-glycan structure. Mechanistically, the CAG seems to contribute to super raft formation associated with the immunological synapse on colonic memory CD4+ T cells and to the consequent stabilization of protein kinase C θ activation, resulting in the stimulation of memory CD4+ T cell expansion in the inflamed intestine. Functionally, CAG-mediated CD4+ T cell expansion contributes to the exacerbation of T cell–mediated experimental intestinal inflammations. Therefore, the CAG may be an attractive therapeutic target to specifically suppress the expansion of effector memory CD4+ T cells in intestinal inflammation such as that seen in inflammatory bowel disease.
Collapse
Affiliation(s)
- Atsushi Nishida
- Molecular Pathology Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Michalczyk I, Sikorski AF, Kotula L, Junghans RP, Dubielecka PM. The emerging role of protein kinase Cθ in cytoskeletal signaling. J Leukoc Biol 2012. [PMID: 23192428 DOI: 10.1189/jlb.0812371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytoskeletal rearrangements often occur as the result of transduction of signals from the extracellular environment. Efficient awakening of this powerful machinery requires multiple activation and deactivation steps, which usually involve phosphorylation or dephosphorylation of different signaling units by kinases and phosphatases, respectively. In this review, we discuss the signaling characteristics of one of the nPKC isoforms, PKCθ, focusing on PKCθ-mediated signal transduction to cytoskeletal elements, which results in cellular rearrangements critical for cell type-specific responses to stimuli. PKCθ is the major PKC isoform present in hematopoietic and skeletal muscle cells. PKCθ plays roles in T cell signaling through the IS, survival responses in adult T cells, and T cell FasL-mediated apoptosis, all of which involve cytoskeletal rearrangements and relocation of this enzyme. PKCθ has been linked to the regulation of cell migration, lymphoid cell motility, and insulin signaling and resistance in skeletal muscle cells. Additional roles were suggested for PKCθ in mitosis and cell-cycle regulation. Comprehensive understanding of cytoskeletal regulation and the cellular "modus operandi" of PKCθ holds promise for improving current therapeutic applications aimed at autoimmune diseases.
Collapse
Affiliation(s)
- Izabela Michalczyk
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | | | | | | |
Collapse
|
56
|
O’Connor RS, Hao X, Shen K, Bashour K, Akimova T, Hancock WW, Kam L, Milone MC. Substrate rigidity regulates human T cell activation and proliferation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:1330-9. [PMID: 22732590 PMCID: PMC3401283 DOI: 10.4049/jimmunol.1102757] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adoptive immunotherapy using cultured T cells holds promise for the treatment of cancer and infectious disease. Ligands immobilized on surfaces fabricated from hard materials such as polystyrene plastic are commonly employed for T cell culture. The mechanical properties of a culture surface can influence the adhesion, proliferation, and differentiation of stem cells and fibroblasts. We therefore explored the impact of culture substrate stiffness on the ex vivo activation and expansion of human T cells. We describe a simple system for the stimulation of the TCR/CD3 complex and the CD28 receptor using substrates with variable rigidity manufactured from poly(dimethylsiloxane), a biocompatible silicone elastomer. We show that softer (Young's Modulus [E] < 100 kPa) substrates stimulate an average 4-fold greater IL-2 production and ex vivo proliferation of human CD4(+) and CD8(+) T cells compared with stiffer substrates (E > 2 MPa). Mixed peripheral blood T cells cultured on the stiffer substrates also demonstrate a trend (nonsignificant) toward a greater proportion of CD62L(neg), effector-differentiated CD4(+) and CD8(+) T cells. Naive CD4(+) T cells expanded on softer substrates yield an average 3-fold greater proportion of IFN-γ-producing Th1-like cells. These results reveal that the rigidity of the substrate used to immobilize T cell stimulatory ligands is an important and previously unrecognized parameter influencing T cell activation, proliferation, and Th differentiation. Substrate rigidity should therefore be a consideration in the development of T cell culture systems as well as when interpreting results of T cell activation based upon solid-phase immobilization of TCR/CD3 and CD28 ligands.
Collapse
Affiliation(s)
- Roddy S. O’Connor
- Department of Pathology and Laboratory Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA 19104
| | - Xueli Hao
- Department of Pathology and Laboratory Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA 19104
| | - Keyue Shen
- Department of Biomedical Engineering School of Engineering and Applied Science Columbia University New York, NY 10111
| | - Keenan Bashour
- Department of Biomedical Engineering School of Engineering and Applied Science Columbia University New York, NY 10111
| | - Tatiana Akimova
- Department of Pathology and Laboratory Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA 19104
| | - Wayne W. Hancock
- Department of Pathology and Laboratory Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA 19104
| | - Lance Kam
- Department of Biomedical Engineering School of Engineering and Applied Science Columbia University New York, NY 10111
| | - Michael C. Milone
- Department of Pathology and Laboratory Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA 19104
| |
Collapse
|
57
|
n-3 polyunsaturated fatty acids suppress phosphatidylinositol 4,5-bisphosphate-dependent actin remodelling during CD4+ T-cell activation. Biochem J 2012; 443:27-37. [PMID: 22250985 DOI: 10.1042/bj20111589] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
n-3 PUFA (polyunsaturated fatty acids), i.e. DHA (docosahexaenoic acid), found in fish oil, exhibit anti-inflammatory properties; however, the molecular mechanisms remain unclear. Since PtdIns(4,5)P2 resides in raft domains and DHA can alter the size of rafts, we hypothesized that PtdIns(4,5)P2 and downstream actin remodelling are perturbed by the incorporation of n-3 PUFA into membranes, resulting in suppressed T-cell activation. CD4+ T-cells isolated from Fat-1 transgenic mice (membranes enriched in n-3 PUFA) exhibited a 50% decrease in PtdIns(4,5)P2. Upon activation by plate-bound anti-CD3/anti-CD28 or PMA/ionomycin, Fat-1 CD4+ T-cells failed to metabolize PtdIns(4,5)P2. Furthermore, actin remodelling failed to initiate in Fat-1 CD4+ T-cells upon stimulation; however, the defect was reversed by incubation with exogenous PtdIns(4,5)P2. When Fat-1 CD4+ T-cells were stimulated with anti-CD3/anti-CD28-coated beads, WASP (Wiskott-Aldrich syndrome protein) failed to translocate to the immunological synapse. The suppressive phenotype, consisting of defects in PtdIns(4,5)P2 metabolism and actin remodelling, were recapitulated in CD4+ T-cells isolated from mice fed on a 4% DHA triacylglycerol-enriched diet. Collectively, these data demonstrate that n-3 PUFA, such as DHA, alter PtdIns(4,5)P2 in CD4+ T-cells, thereby suppressing the recruitment of WASP to the immunological synapse, and impairing actin remodelling in CD4+ T-cells.
Collapse
|
58
|
Wernimont SA, Wiemer AJ, Bennin DA, Monkley SJ, Ludwig T, Critchley DR, Huttenlocher A. Contact-dependent T cell activation and T cell stopping require talin1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:6256-67. [PMID: 22075696 PMCID: PMC3237745 DOI: 10.4049/jimmunol.1102028] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell-APC contact initiates T cell activation and is maintained by the integrin LFA-1. Talin1, an LFA-1 regulator, localizes to the immune synapse (IS) with unknown roles in T cell activation. In this study, we show that talin1-deficient T cells have defects in contact-dependent T cell stopping and proliferation. Although talin1-deficient T cells did not form stable interactions with APCs, transient contacts were sufficient to induce signaling. In contrast to prior models, LFA-1 polarized to T cell-APC contacts in talin1-deficient T cells, but vinculin and F-actin polarization at the IS was impaired. These results indicate that T cell proliferation requires sustained, talin1-mediated T cell-APC interactions and that talin1 is necessary for F-actin polarization and the stability of the IS.
Collapse
Affiliation(s)
- Sarah A Wernimont
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison WI 53705
| | - Andrew J Wiemer
- Department of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin, Madison WI 53706
- Institute on Aging, University of Wisconsin-Madison, Madison WI 53706
| | - David A Bennin
- Department of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin, Madison WI 53706
| | - Susan J Monkley
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | - Thomas Ludwig
- Institute for Cancer Genetics, Columbia University, New York, NY 10032
| | - David R Critchley
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | - Anna Huttenlocher
- Department of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin, Madison WI 53706
| |
Collapse
|
59
|
Ichikawa D, Mizuno M, Yamamura T, Miyake S. GRAIL (gene related to anergy in lymphocytes) regulates cytoskeletal reorganization through ubiquitination and degradation of Arp2/3 subunit 5 and coronin 1A. J Biol Chem 2011; 286:43465-74. [PMID: 22016387 DOI: 10.1074/jbc.m111.222711] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Anergy is an important mechanism for the maintenance of peripheral tolerance and avoidance of autoimmunity. The up-regulation of E3 ubiqitin ligases, including GRAIL (gene related to anergy in lymphocytes), is a key event in the induction and preservation of anergy in T cells. However, the mechanisms of GRAIL-mediated anergy induction are still not completely understood. We examined which proteins serve as substrates for GRAIL in anergic T cells. Arp2/3-5 (actin-related protein 2/3 subunit 5) and coronin 1A were polyubiquitinated by GRAIL via Lys-48 and Lys-63 linkages. In anergic T cells and GRAIL-overexpressed T cells, the expression of Arp2/3-5 and coronin 1A was reduced. Furthermore, we demonstrated that GRAIL impaired lamellipodium formation and reduced the accumulation of F-actin at the immunological synapse. GRAIL functions via the ubiquitination and degradation of actin cytoskeleton-associated proteins, in particular Arp2/3-5 and coronin 1A. These data reveal that GRAIL regulates proteins involved in the actin cytoskeletal organization, thereby maintaining the unresponsive state of anergic T cells.
Collapse
Affiliation(s)
- Daiju Ichikawa
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | |
Collapse
|
60
|
Dustin ML, Depoil D. New insights into the T cell synapse from single molecule techniques. Nat Rev Immunol 2011; 11:672-84. [PMID: 21904389 DOI: 10.1038/nri3066] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
T cell activation depends on extracellular ligation of the T cell receptor (TCR) by peptide-MHC complexes in a synapse between the T cell and an antigen-presenting cell. The process then requires the assembly of signalling complexes between the TCR and the adaptor protein linker for activation of T cells (LAT), and subsequent filamentous actin (F-actin)-dependent TCR cluster formation. Recent progress in each of these areas, made possible by the emergence of new techniques, has forced us to rethink our assumptions and consider some radical new models. These describe the receptor interaction parameters that control T cell responses and the mechanism by which LAT is recruited to the TCR signalling machinery. This is an exciting time in T cell biology, and further innovation in imaging and genomics is likely to lead to a greater understanding of how T cells are activated.
Collapse
Affiliation(s)
- Michael L Dustin
- Helene and Martin Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, 540 First Avenue, New York, New York 10012, USA.
| | | |
Collapse
|
61
|
Abstract
Invasion of non-phagocytic cells by a number of bacterial pathogens involves the subversion of the actin cytoskeletal remodelling machinery to produce actin-rich cell surface projections designed to engulf the bacteria. The signalling that occurs to induce these actin-rich structures has considerable overlap among a diverse group of bacteria. The molecular organization within these structures act in concert to internalize the invading pathogen. This dynamic process could be subdivided into three acts - actin recruitment, engulfment, and finally, actin disassembly/internalization. This review will present the current state of knowledge of the molecular processes involved in each stage of bacterial invasion, and provide a perspective that highlights the temporal and spatial control of actin remodelling that occurs during bacterial invasion.
Collapse
Affiliation(s)
- Rey Carabeo
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London, UK.
| |
Collapse
|
62
|
Functional cooperation between the proteins Nck and ADAP is fundamental for actin reorganization. Mol Cell Biol 2011; 31:2653-66. [PMID: 21536650 DOI: 10.1128/mcb.01358-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T cell antigen receptor (TCR) activation triggers profound changes in the actin cytoskeleton. In addition to controlling cellular shape and polarity, this process regulates vital T cell responses, such as T cell adhesion, motility, and proliferation. These depend on the recruitment of the signaling proteins Nck and Wiskott-Aldrich syndrome protein (WASp) to the site of TCR activation and on the functional properties of the adapter proteins linker for activation of T cells (LAT) and SH2-domain-containing leukocyte protein of 76 kDa (SLP76). We now demonstrate that Nck is necessary but insufficient for the recruitment of WASp. We show that two pathways lead to SLP76-dependent actin rearrangement. One requires the SLP76 acidic domain, crucial to association with the Nck SH2 domain, and another requires the SLP76 SH2 domain, essential for interaction with the adhesion- and degranulation-promoting adapter protein ADAP. Functional cooperation between Nck and ADAP mediates SLP76-WASp interactions and actin rearrangement. We also reveal the molecular mechanism linking ADAP to actin reorganization.
Collapse
|
63
|
Orange JS, Roy-Ghanta S, Mace EM, Maru S, Rak GD, Sanborn KB, Fasth A, Saltzman R, Paisley A, Monaco-Shawver L, Banerjee PP, Pandey R. IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function. J Clin Invest 2011; 121:1535-48. [PMID: 21383498 PMCID: PMC3069781 DOI: 10.1172/jci44862] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 01/12/2011] [Indexed: 01/17/2023] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function.
Collapse
Affiliation(s)
- Jordan S Orange
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Jo JH, Kwon MS, Choi HO, Oh HM, Kim HJ, Jun CD. Recycling and LFA-1-dependent trafficking of ICAM-1 to the immunological synapse. J Cell Biochem 2011; 111:1125-37. [PMID: 20681010 DOI: 10.1002/jcb.22798] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Little is known about how adhesion molecules on APCs accumulate at immunological synapses. We show here that ICAM-1 on APCs is continuously internalized and rapidly recycled back to the interface after antigen-priming T-cell contact. The internalization rate is high in APCs, including Raji B cells and dendritic cells, but low in endothelial cells. Internalization is significantly reduced by inhibitors of Na(+)/H(+) exchangers (NHEs), suggesting that members of the NHE-family regulate this process. Once internalized, ICAM-1 is co-localized with MHC class II in the polarized recycling compartment. Surprisingly, not only ICAM-1, but also MHC class II, is targeted to the immunological synapse through LFA-1-dependent adhesion. Cytosolic ICAM-1 is highly mobile and forms a tubular structure. Inhibitors of microtubule or actin polymerization can reduce ICAM-1 mobility, and thereby block accumulation at immunological synapses. Membrane ICAM-1 also moves to the T-cell contact zone, presumably through an active, cytoskeleton-dependent mechanism. Collectively, these results demonstrate that ICAM-1 can be transported to the immunological synapse through the recycling compartment. Furthermore, the high-affinity state of LFA-1 on T cells is critical to induce targeted movements of both ICAM-1 and MHC class II to the immunological synapse on APCs.
Collapse
Affiliation(s)
- Jae-Hyeok Jo
- School of Life Sciences, Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | |
Collapse
|
65
|
New insights into vinculin function and regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:191-231. [PMID: 21414589 DOI: 10.1016/b978-0-12-386043-9.00005-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vinculin is a cytoplasmic actin-binding protein enriched in focal adhesions and adherens junctions that is essential for embryonic development. Much is now known regarding the role of vinculin in governing cell-matrix adhesion. In the past decade that the crystal structure of vinculin and the molecular details for how vinculin regulates adhesion events have emerged. The recent data suggests a critical function for vinculin in regulating integrin clustering, force generation, and strength of adhesion. In addition to an important role in cell-matrix adhesion, vinculin is also emerging as a regulator of apoptosis, Shigella entry into host cells, and cadherin-based cell-cell adhesion. A close inspection of this work reveals that there are similarities between vinculin's role in focal adhesions and these processes and also some intriguing differences.
Collapse
|
66
|
Abstract
The concept of an immunological synapse goes back to the early 1980s with the discovery of the relationship between T-cell antigen receptor mediated Ca(2+) signaling, adhesion, and directed secretion. However, this concept did not gain traction until images were published starting in 1998 that revealed a specific molecular pattern in the interface between T cells and model antigen-presenting cells or supported planar bilayers. The dominant pattern, a ring of adhesion molecules surrounding a central cluster of antigen receptors, was observed in both model systems. Analysis of the origins of this pattern over the past 10 years has presented a solution for a difficult problem in lymphocyte biology--how a highly motile cell can suddenly stop when it encounters a signal delivered by just a few antigenic ligands on the surface of another cell without disabling the sensory machinery of the motile cell. The T lymphocyte actively assembles the immunological synapse pattern following a modular design with roots in actin-myosin-based motility.
Collapse
|
67
|
Reicher B, Barda-Saad M. Multiple pathways leading from the T-cell antigen receptor to the actin cytoskeleton network. FEBS Lett 2010; 584:4858-64. [PMID: 20828569 DOI: 10.1016/j.febslet.2010.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/10/2010] [Accepted: 09/01/2010] [Indexed: 12/29/2022]
Abstract
Dynamic rearrangements of the actin cytoskeleton, following T-cell antigen receptor (TCR) engagement, provide the structural matrix and flexibility to enable intracellular signal transduction, cellular and subcellular remodeling, and driving effector functions. Recently developed cutting-edge imaging technologies have facilitated the study of TCR signaling and its role in actin-dependent processes. In this review, we describe how TCR signaling cascades induce the activation of actin regulatory proteins and the formation of actin networks, and how actin dynamics is important for T-cell homeostasis, activation, migration, and other effector functions.
Collapse
Affiliation(s)
- Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
68
|
Mace EM, Zhang J, Siminovitch KA, Takei F. Elucidation of the integrin LFA-1-mediated signaling pathway of actin polarization in natural killer cells. Blood 2010; 116:1272-9. [PMID: 20472831 DOI: 10.1182/blood-2009-12-261487] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The leukocyte integrin LFA-1 is critical for natural killer (NK) cell cytotoxicity as it mediates NK-cell adhesion to target cells and generates activating signals that lead to polarization of the actin cytoskeleton. However, the LFA-1-mediated signaling pathway is not fully understood. Here, we examined the subcellular localization of actin-associated proteins in wild-type, talin-deficient, and Wiskott-Aldrich Syndrome protein (WASP)-deficient NK cells bound to beads coated with the LFA-1 ligand intercellular adhesion molecule-1 (ICAM-1). In addition, we carried out coimmunoprecipitation analyses and also used a pharmacologic reagent to reduce the level of phosphatidylinositol-4,5-bisphosphate (PIP(2)). The results revealed the following signaling pathways. Upon ICAM-1 binding to LFA-1, talin redistributes to the site of LFA-1 ligation and initiates 2 signaling pathways. First, talin recruits the actin nucleating protein complex Arp2/3 via constitutive association of vinculin with talin and Arp2/3. Second, talin also associates with type I phosphatidylinositol 4-phosphate 5-kinase (PIPKI) and binding of LFA-1 to ICAM-1 results in localized increase in PIP(2). This increase in PIP(2) recruits WASP to the site of LFA-1 ligation where WASP promotes Arp2/3-mediated actin polymerization. These processes are critical for the initiation of NK cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Emily M Mace
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC
| | | | | | | |
Collapse
|
69
|
A Dyn2-CIN85 complex mediates degradative traffic of the EGFR by regulation of late endosomal budding. EMBO J 2010; 29:3039-53. [PMID: 20711168 DOI: 10.1038/emboj.2010.190] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 07/14/2010] [Indexed: 11/09/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is over-expressed in a variety of human cancers. Downstream signalling of this receptor is tightly regulated both spatially and temporally by controlling its internalization and subsequent degradation. Internalization of the EGFR requires dynamin 2 (Dyn2), a large GTPase that deforms lipid bilayers, leading to vesicle scission. The adaptor protein CIN85 (cbl-interacting protein of 85 kDa), which has been proposed to indirectly link the EGFR to the endocytic machinery at the plasma membrane, is also thought to be involved in receptor internalization. Here, we report a novel and direct interaction between Dyn2 and CIN85 that is induced by EGFR stimulation and, most surprisingly, occurs late in the endocytic process. Importantly, disruption of the CIN85-Dyn2 interaction results in accumulation of internalized EGFR in late endosomes that become aberrantly elongated into distended tubules. Consistent with the accumulation of this receptor is a sustention of downstream signalling cascades. These findings provide novel insights into a previously unknown protein complex that can regulate EGFR traffic at very late stages of the endocytic pathway.
Collapse
|
70
|
Watzl C, Long EO. Signal transduction during activation and inhibition of natural killer cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2010; Chapter 11:Unit 11.9B. [PMID: 20814939 PMCID: PMC3857016 DOI: 10.1002/0471142735.im1109bs90] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Natural killer (NK) cells are important for early immune responses to viral infections and cancer. Upon activation, NK cells secrete cytokines and chemokines, and kill sensitive target cells by releasing the content of cytolytic granules. This unit is focused on the signal transduction pathways that regulate NK cell activities in response to contact with other cells. We will highlight signals regulating NK cell adhesion to target cells and describe the induction of cellular cytotoxicity by the engagement of different NK cell activation receptors. Negative signaling induced by inhibitory receptors opposes NK cell activation and provides an important safeguard from NK cell reactivity toward normal, healthy cells. We will discuss the complex integration of the different signals that occur during interaction of NK cells with target cells.
Collapse
Affiliation(s)
- Carsten Watzl
- Institute for Immunology, University Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
71
|
Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 2010; 11:288-300. [PMID: 20308986 PMCID: PMC3929966 DOI: 10.1038/nrm2871] [Citation(s) in RCA: 787] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-directed changes in the ligand-binding affinity ('activation') of integrins regulate cell adhesion and migration, extracellular matrix assembly and mechanotransduction, thereby contributing to embryonic development and diseases such as atherothrombosis and cancer. Integrin activation comprises triggering events, intermediate signalling events and, finally, the interaction of integrins with cytoplasmic regulators, which changes an integrin's affinity for its ligands. The first two events involve diverse interacting signalling pathways, whereas the final steps are immediately proximal to integrins, thus enabling integrin-focused therapeutic strategies. Recent progress provides insight into the structure of integrin transmembrane domains, and reveals how the final steps of integrin activation are mediated by integrin-binding proteins such as talins and kindlins.
Collapse
Affiliation(s)
- Sanford J Shattil
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | |
Collapse
|
72
|
Bunnell SC. Multiple microclusters: diverse compartments within the immune synapse. Curr Top Microbiol Immunol 2010; 340:123-54. [PMID: 19960312 DOI: 10.1007/978-3-642-03858-7_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The activation of classical alphabeta T cells is initiated when the T cell receptor (TCR) recognizes peptide antigens presented by major histocompatibility complex (pMHC) molecules. This recognition always occurs at the junction of a T cell and antigen-presenting cell (APC). Existing models of T-cell activation accurately explain the sensitivity and selectivity of antigen recognition within the immunological synapse. However, these models have not fully incorporated the diverse microcluster types revealed by current imaging technologies. It is increasingly clear that a better understanding of T-cell activation will require an appreciation of the diverse signaling assemblies arising within the immune synapse, the interrelationships between these structures, and the mechanisms by which underlying cytoskeletal systems govern their assembly and fate. Here, we will provide a brief framework for understanding these issues, review our contributions to current knowledge, and provide perspectives on the future of this rapidly advancing field.
Collapse
Affiliation(s)
- Stephen C Bunnell
- Department of Pathology, Tufts University Medical School, Boston, MA 02111, USA.
| |
Collapse
|
73
|
Zhang J, Dong B, Siminovitch KA. Contributions of Wiskott-Aldrich syndrome family cytoskeletal regulatory adapters to immune regulation. Immunol Rev 2009; 232:175-94. [PMID: 19909364 DOI: 10.1111/j.1600-065x.2009.00846.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytoskeletal structure and dynamic rearrangement are integrally involved in coupling external stimuli to the orchestrated network of molecular interactions and cellular responses required for T-cell effector function. Members of the Wiskott-Aldrich syndrome protein (WASp) family are now widely recognized as cytoskeletal scaffolding adapters that coordinate the transmission of stimulatory signals to downstream induction of actin remodeling and cytoskeletal-dependent T-cell responses. In this review, we discuss the structural and functional properties of the WASp family members, with an emphasis on the roles of these proteins in the molecular pathways underpinning T-cell activation. The contributions of WASp family proteins and the cytoskeletal reorganization they evoke to expression of specific T-cell effector functions and the implications of such activity to normal immune responses and to the immunologic deficits manifested by Wiskott-Aldrich syndrome patients are also described.
Collapse
Affiliation(s)
- Jinyi Zhang
- Department of Medicine, University of Toronto, Mount Sinai Hospital Samuel Lunenfeld Research Institute, Toronto, ON, Canada
| | | | | |
Collapse
|
74
|
Horn J, Wang X, Reichardt P, Stradal TE, Warnecke N, Simeoni L, Gunzer M, Yablonski D, Schraven B, Kliche S. Src homology 2-domain containing leukocyte-specific phosphoprotein of 76 kDa is mandatory for TCR-mediated inside-out signaling, but dispensable for CXCR4-mediated LFA-1 activation, adhesion, and migration of T cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:5756-67. [PMID: 19812192 DOI: 10.4049/jimmunol.0900649] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Engagement of the TCR or of chemokine receptors such as CXCR4 induces adhesion and migration of T cells via so-called inside-out signaling pathways. The molecular processes underlying inside-out signaling events are as yet not completely understood. In this study, we show that TCR- and CXCR4-mediated activation of integrins critically depends on the membrane recruitment of the adhesion- and degranulation-promoting adapter protein (ADAP)/Src kinase-associated phosphoprotein of 55 kDa (SKAP55)/Rap1-interacting adapter protein (RIAM)/Rap1 module. We further demonstrate that the Src homology 2 domain containing leukocyte-specific phosphoprotein of 76 kDa (SLP76) is crucial for TCR-mediated inside-out signaling and T cell/APC interaction. Besides facilitating membrane recruitment of ADAP, SKAP55, and RIAM, SLP76 regulates TCR-mediated inside-out signaling by controlling the activation of Rap1 as well as Rac-mediated actin polymerization. Surprisingly, however, SLP76 is not mandatory for CXCR4-mediated inside-out signaling. Indeed, both CXCR4-induced T cell adhesion and migration are not affected by loss of SLP76. Moreover, after CXCR4 stimulation, the ADAP/SKAP55/RIAM/Rap1 module is recruited to the plasma membrane independently of SLP76. Collectively, our data indicate a differential requirement for SLP76 in TCR- vs CXCR4-mediated inside-out signaling pathways regulating T cell adhesion and migration.
Collapse
Affiliation(s)
- Jessica Horn
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Wen KK, Rubenstein PA, DeMali KA. Vinculin nucleates actin polymerization and modifies actin filament structure. J Biol Chem 2009; 284:30463-73. [PMID: 19736312 DOI: 10.1074/jbc.m109.021295] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Vinculin links integrins to the actin cytoskeleton by binding F-actin. Little is known with respect to how this interaction occurs or affects actin dynamics. Here we assess the consequence of the vinculin tail (VT) on actin dynamics by examining its binding to monomeric and filamentous yeast actins. VT causes pyrene-labeled G-actin to polymerize in low ionic strength buffer (G-buffer), conditions that normally do not promote actin polymerization. Analysis by electron microscopy shows that, under these conditions, the filaments form small bundles at low VT concentrations, which gradually increase in size until saturation occurs at a ratio of 2 VT:1 actin. Addition of VT to pyrene-labeled mutant yeast G-actin (S265C) produced a fluorescence excimer band, which requires a relatively normal filament geometry. In higher ionic strength polymerization-promoting F-buffer, substoichiometric amounts of VT accelerate the polymerization of pyrene-labeled WT actin. However, the amplitude of the pyrene fluorescence caused by actin polymerization is quenched as the VT concentration increases without an effect on net actin polymerization as determined by centrifugation assays. Finally, addition of VT to preformed pyrene-labeled S265C F-actin causes a concentration-dependent decrease in the maximum amplitude of the pyrene fluorescence band demonstrating the ability of VT to remodel the conformation of the actin filament. These observations support the idea that vinculin can link adhesion plaques to the cytoskeleton by initiating the formation of bundled actin filaments or by remodeling existing filaments.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- Department of Biochemistry, University of Iowa, Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
76
|
Kim K, Wang L, Hwang I. A novel flow cytometric high throughput assay for a systematic study on molecular mechanisms underlying T cell receptor-mediated integrin activation. PLoS One 2009; 4:e6044. [PMID: 19557182 PMCID: PMC2698288 DOI: 10.1371/journal.pone.0006044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 06/02/2009] [Indexed: 01/22/2023] Open
Abstract
Lymphocyte function-associated antigen 1 (LFA-1), a member of β2-integrin family, exerts multiple roles in host T cell immunity and has been identified as a useful drug-development target for inflammatory and autoimmune diseases. Applying the findings that primary resting T cells absorb nanometric membrane vesicles derived from antigen presenting cells (APC) via dual receptor/ligand interactions of T cell receptor (TCR) with cognate peptide-major histocompatibility complex (MHC) complex (pMHC) and LFA-1 with its ligand, intercellular adhesion molecule-1 (ICAM-1), and that signaling cascades triggered by TCR/pMHC interaction take a part in the vesicle-absorption, we established a cell-based high throughput assay for systematic investigation, via isolation of small molecules modulating the level of vesicle-absorption, of molecular mechanisms underlying the T cell absorption of APC-derived vesicles, i.e., structural basis of TCR/pMHC and LFA-1/ICAM-1 interactions and TCR-mediated LFA-1 activation. As primary T cells along with physiological ligands expressed in biological membrane are used and also individual cells in assay samples are analyzed by flow cytometry, results obtained using the assay system hold superior physiological and therapeutic relevance as well as statistical precision.
Collapse
Affiliation(s)
- Kwangmi Kim
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Lin Wang
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Inkyu Hwang
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
77
|
Segovis CM, Schoon RA, Dick CJ, Nacusi LP, Leibson PJ, Billadeau DD. PI3K links NKG2D signaling to a CrkL pathway involved in natural killer cell adhesion, polarity, and granule secretion. THE JOURNAL OF IMMUNOLOGY 2009; 182:6933-42. [PMID: 19454690 DOI: 10.4049/jimmunol.0803840] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NK cell-activating receptor NKG2D plays a critical role in the destruction of malignant cells, but many of the cell-signaling mechanisms governing NKG2D-mediated cellular cytotoxicity are unknown. We have identified an NKG2D-mediated signaling pathway that governs both conjugate formation and cytotoxic granule polarization. We demonstrate that an interaction between the regulatory subunit of PI3K, p85, and the adaptor protein CrkL is required for efficient NKG2D-mediated cellular cytotoxicity. We show decreased NK cell-target cell conjugate formation in NK cells treated with PI3K inhibitors or depleted of CrkL. Independent of adhesion, we find that microtubule organization center polarization toward target cells expressing the NKG2D ligand MICA or toward anti-NKG2D-coated beads is impaired in the absence of CrkL. Ab-stimulated granule release is also impaired in NK cells depleted of CrkL. Furthermore, our data indicate that the small Ras family GTPase Rap1 is activated downstream of NKG2D engagement in a PI3K- and CrkL-dependent manner and is required for conjugate formation, MTOC (microtubule organizing center) polarization, and NKG2D-dependent cellular cytotoxicity. Taken together, our data identify an NKG2D-activated signaling pathway that collectively orchestrates NK cell adhesion, cell polarization, and granule release.
Collapse
Affiliation(s)
- Colin M Segovis
- Department of Immunology, .College of Medicine,Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
78
|
Abstract
This year marks the 25th anniversary of the first Annual Review of Immunology article to describe features of the T cell antigen receptor (TCR). In celebration of this anniversary, we begin with a brief introduction outlining the chronology of the earliest studies that established the basic paradigm for how the engaged TCR transduces its signals. This review continues with a description of the current state of our understanding of TCR signaling, as well as a summary of recent findings examining other key aspects of T cell activation, including cross talk between the TCR and integrins, the role of costimulatory molecules, and how signals may negatively regulate T cell function.Acronyms and DefinitionsAdapter protein: cellular protein that functions to bridge molecular interactions via characteristic domains able to mediate protein/protein or protein/lipid interactions Costimulation: signals delivered to T cells by cell surface receptors other than the TCR itself that potentiate T cell activation cSMAC: central supramolecular activation cluster Immunoreceptor tyrosine-based activation motif (ITAM): a short peptide sequence in the cytoplasmic tails of key surface receptors on hematopoietic cells that is characterized by tyrosine residues that are phosphorylated by Src family PTKs, enabling the ITAM to recruit activated Syk family kinases Inside-out signaling: signals initiated by engagement of immunoreceptors that lead to conformational changes and clustering of integrins, thereby increasing the affinity and avidity of the integrins for their ligands NFAT: nuclear factor of activated T cells PI3K: phosphoinositide 3-kinase PKC: protein kinase C PLC: phospholipase C pMHC: peptide major histocompatibility complex (MHC) complex pSMAC: peripheral supramolecular activation cluster PTK: protein tyrosine kinase Signal transduction: biochemical events linking surface receptor engagement to cellular responses TCR: T cell antigen receptor
Collapse
Affiliation(s)
- Jennifer E Smith-Garvin
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
79
|
Abstract
Stimulation of the T-cell antigen receptor (TCR) leads to the activation of signaling pathways that are essential for T-cell development and the response of mature T cells to antigens. The TCR has no intrinsic catalytic activity, but TCR engagement results in tyrosine phosphorylation of downstream targets by non-receptor tyrosine kinases. Three families of tyrosine kinases have long been recognized to play critical roles in TCR-dependent signaling. They are the Src, zeta-associated protein of 70 kDa, and Tec families of kinases. More recently, the Abelson (Abl) tyrosine kinases have been shown to be activated by TCR engagement and to be required for maximal TCR signaling. Using T-cell conditional knockout mice deficient for Abl family kinases, Abl (Abl1) and Abl-related gene (Arg) (Abl2), it was recently shown that loss of Abl kinases results in defective T-cell development and a partial block in the transition to the CD4(+)CD8(+) stage. Abl/Arg double null T cells exhibit impaired TCR-induced signaling, proliferation, and cytokine production. Moreover, conditional knockout mice lacking Abl and Arg in T cells exhibit impaired CD8(+) T-cell expansion in vivo upon Listeria monocytogenes infection. Thus, Abl kinase signaling is required for both T-cell development and mature T-cell function.
Collapse
Affiliation(s)
- Jing Jin Gu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
80
|
Evans R, Patzak I, Svensson L, De Filippo K, Jones K, McDowall A, Hogg N. Integrins in immunity. J Cell Sci 2009; 122:215-25. [DOI: 10.1242/jcs.019117] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A successful immune response depends on the capacity of immune cells to travel from one location in the body to another–these cells are rapid migrators, travelling at speeds of μm/minute. Their ability to penetrate into tissues and to make contacts with other cells depends chiefly on the β2 integrin known as LFA-1. For this reason, we describe the control of its activity in some detail. For the non-immunologist, the fine details of an immune response often seem difficult to fathom. However, the behaviour of immune cells, known as leukocytes (Box 1), is subject to the same biological rules as many other cell types, and this holds true particularly for the functioning of the integrins on these cells. In this Commentary, we highlight, from a cell-biology point of view, the integrin-mediated immune-cell migration and cell-cell interactions that occur during the course of an immune response.
Collapse
Affiliation(s)
- Rachel Evans
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Irene Patzak
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Lena Svensson
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Katia De Filippo
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Kristian Jones
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Alison McDowall
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Nancy Hogg
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| |
Collapse
|
81
|
Alon R. Chapter 6 Membrane–Cytoskeletal Platforms for Rapid Chemokine Signaling to Integrins. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)64006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
82
|
Nolz JC, Nacusi LP, Segovis CM, Medeiros RB, Mitchell JS, Shimizu Y, Billadeau DD. The WAVE2 complex regulates T cell receptor signaling to integrins via Abl- and CrkL-C3G-mediated activation of Rap1. ACTA ACUST UNITED AC 2008; 182:1231-44. [PMID: 18809728 PMCID: PMC2542481 DOI: 10.1083/jcb.200801121] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
WAVE2 regulates T cell receptor (TCR)–stimulated actin cytoskeletal dynamics leading to both integrin clustering and affinity maturation. Although WAVE2 mediates integrin affinity maturation by recruiting vinculin and talin to the immunological synapse in an Arp2/3-dependent manner, the mechanism by which it regulates integrin clustering is unclear. We show that the Abl tyrosine kinase associates with the WAVE2 complex and TCR ligation induces WAVE2-dependent membrane recruitment of Abl. Furthermore, we show that WAVE2 regulates TCR-mediated activation of the integrin regulatory guanosine triphosphatase Rap1 via the recruitment and activation of the CrkL–C3G exchange complex. Moreover, we demonstrate that although Abl does not regulate the recruitment of CrkL–C3G into the membrane, it does affect the tyrosine phosphorylation of C3G, which is required for its guanine nucleotide exchange factor activity toward Rap1. This signaling node regulates not only TCR-stimulated integrin clustering but also affinity maturation. These findings identify a previously unknown mechanism by which the WAVE2 complex regulates TCR signaling to Rap1 and integrin activation.
Collapse
Affiliation(s)
- Jeffrey C Nolz
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Wernimont SA, Cortesio CL, Simonson WT, Huttenlocher A. Adhesions ring: a structural comparison between podosomes and the immune synapse. Eur J Cell Biol 2008; 87:507-15. [PMID: 18343530 PMCID: PMC2570187 DOI: 10.1016/j.ejcb.2008.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 01/16/2008] [Accepted: 01/16/2008] [Indexed: 11/30/2022] Open
Abstract
Podosomes and the immune synapse are integrin-mediated adhesive structures that share a common ring-like morphology. Both podosomes and immune synapses have a central core surrounded by a peripheral ring containing talin, vinculin and paxillin. Recent progress suggests significant parallels between the regulatory mechanisms that contribute to the formation of these adhesive structures. In this review, we compare the structures, functions and regulation of podosomes and the immune synapse.
Collapse
Affiliation(s)
- Sarah A. Wernimont
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1550 Linden Drive, Madison WI 53706, USA
| | - Christa L. Cortesio
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 1550 Linden Drive, Madison WI 53706, USA
| | - William T.N. Simonson
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1550 Linden Drive, Madison WI 53706, USA
| | - Anna Huttenlocher
- Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, 1550 Linden Drive, Madison WI 53706, USA
| |
Collapse
|
84
|
|
85
|
Abstract
More than a quarter of a century has passed since the observation that T cells rapidly polarize their actin and microtubule cytoskeletal systems toward antigen-presenting cells during activation. Since this initial discovery, several receptors on T cells (e.g., T cell receptor [TCR], co-receptors, integrins, and chemokine receptors) have been identified to regulate these two cytoskeletal networks through complex signaling pathways, which are still being elucidated. There is now an undeniable body of biochemical, pharmacological, and genetic evidence indicating that regulators of actin and microtubule dynamics are crucial for T cell activation and effector functions. In fact, the actin cytoskeleton participates in the initial clustering of TCR-major histocompatibility complex or peptide complexes, formation and stabilization of the immune synapse, integrin-mediated adhesion, and receptor sequestration, whereas both the actin and microtubule cytoskeletons regulate the establishment of cell polarity, cell migration, and directed secretion of cytokines and cytolytic granules. Over the past several years, we have begun to more thoroughly understand the contributions of specific actin-regulatory and actin-nucleating proteins that govern these processes. Herein, we discuss our current understanding of how activating receptors on T lymphocytes regulate the actin and microtubule cytoskeletons, and how in turn, these distinct but integrated cytoskeletal networks coordinate T cell immune responses.
Collapse
|