51
|
Suri S, Singh A, Nguyen AH, Bratt-Leal AM, McDevitt TC, Lu H. Microfluidic-based patterning of embryonic stem cells for in vitro development studies. LAB ON A CHIP 2013; 13:4617-24. [PMID: 24113509 PMCID: PMC3844158 DOI: 10.1039/c3lc50663k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments.
Collapse
Affiliation(s)
- Shalu Suri
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA. Fax: 404-894-4200; Tel: 404-894-8473
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA. Fax: 404-894-4243; Tel: 404-385-6647
| | - Ankur Singh
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Anh H. Nguyen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA. Fax: 404-894-4243; Tel: 404-385-6647
| | - Andres M. Bratt-Leal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA. Fax: 404-894-4243; Tel: 404-385-6647
| | - Todd C. McDevitt
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA. Fax: 404-894-4243; Tel: 404-385-6647
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA. Fax: 404-894-4200; Tel: 404-894-8473
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
52
|
Yuan X, Braunstein EM, Ye Z, Liu CF, Chen G, Zou J, Cheng L, Brodsky RA. Generation of glycosylphosphatidylinositol anchor protein-deficient blood cells from human induced pluripotent stem cells. Stem Cells Transl Med 2013; 2:819-29. [PMID: 24113066 DOI: 10.5966/sctm.2013-0069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PIG-A is an X-linked gene required for the biosynthesis of glycosylphosphatidylinositol (GPI) anchors; thus, PIG-A mutant cells have a deficiency or absence of all GPI-anchored proteins (GPI-APs). Acquired mutations in hematopoietic stem cells result in the disease paroxysmal nocturnal hemoglobinuria, and hypomorphic germline PIG-A mutations lead to severe developmental abnormalities, seizures, and early death. Human induced pluripotent stem cells (iPSCs) can differentiate into cell types derived from all three germ layers, providing a novel developmental system for modeling human diseases. Using PIG-A gene targeting and an inducible PIG-A expression system, we have established, for the first time, a conditional PIG-A knockout model in human iPSCs that allows for the production of GPI-AP-deficient blood cells. PIG-A-null iPSCs were unable to generate hematopoietic cells or any cells expressing the CD34 marker and were defective in generating mesodermal cells expressing KDR/VEGFR2 (kinase insert domain receptor) and CD56 markers. In addition, PIG-A-null iPSCs had a block in embryonic development prior to mesoderm differentiation that appears to be due to defective signaling through bone morphogenetic protein 4. However, early inducible PIG-A transgene expression allowed for the generation of GPI-AP-deficient blood cells. This conditional PIG-A knockout model should be a valuable tool for studying the importance of GPI-APs in hematopoiesis and human development.
Collapse
Affiliation(s)
- Xuan Yuan
- Division of Hematology, Department of Medicine, School of Medicine, and
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Zhao X, Liu J, Peng M, Liu J, Chen F. BMP4 is involved in the chemoresistance of myeloid leukemia cells through regulating autophagy-apoptosis balance. Cancer Invest 2013; 31:555-62. [PMID: 24044460 DOI: 10.3109/07357907.2013.834925] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study showed that silencing BMP4 expression significantly activated caspase-2, 3, and 9, while decreasing Matrigel colony formation in Cytarabine (Ara-C)-treated leukemia HL-60 cells. In contrast, Ara-C significantly upregulated Atg5 and Beclin-1 expression, the ratio of LC3-II/LC3-I, and CDK1 and cyclin B1 expression in leukemia cells expressing BMP4. BafA significantly sensitized the apoptotic effect of Ara-C in leukemia cells. Injection of Ara-C significantly inhibited tumor growth in mice inoculated with leukemia cells with BMP4 silenced. In conclusion, BMP4 plays a crucial role in the chemoresistance of leukemia cells through the activation of autophagy and subsequent inhibition of apoptosis.
Collapse
|
54
|
Chowdhury MM, Fujii T, Sakai Y. Importance of a diffusion-dominant small volume to activate cell-secreted soluble factor signaling in embryonic stem cell culture in microbioreactors: A mathematical model based study. J Biosci Bioeng 2013; 116:118-25. [DOI: 10.1016/j.jbiosc.2013.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
55
|
Topić I, Ikić M, Ivčević S, Kovačić N, Marušić A, Kušec R, Grčević D. Bone morphogenetic proteins regulate differentiation of human promyelocytic leukemia cells. Leuk Res 2013; 37:705-12. [DOI: 10.1016/j.leukres.2013.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/01/2013] [Accepted: 03/03/2013] [Indexed: 11/26/2022]
|
56
|
Steering signal transduction pathway towards cardiac lineage from human pluripotent stem cells: A review. Cell Signal 2013; 25:1096-107. [DOI: 10.1016/j.cellsig.2013.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
|
57
|
Clements WK, Traver D. Signalling pathways that control vertebrate haematopoietic stem cell specification. Nat Rev Immunol 2013; 13:336-48. [PMID: 23618830 PMCID: PMC4169178 DOI: 10.1038/nri3443] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Haematopoietic stem cells (HSCs) are tissue-specific stem cells that replenish all mature blood lineages during the lifetime of an individual. Clinically, HSCs form the foundation of transplantation-based therapies for leukaemias and congenital blood disorders. Researchers have long been interested in understanding the normal signalling mechanisms that specify HSCs in the embryo, in part because recapitulating these requirements in vitro might provide a means to generate immune-compatible HSCs for transplantation. Recent embryological work has demonstrated the existence of previously unknown signalling requirements. Moreover, it is now clear that gene expression in the nearby somite is integrally involved in regulating the transition of the embryonic endothelium to a haemogenic fate. Here, we review current knowledge of the intraembryonic signals required for the specification of HSCs in vertebrates.
Collapse
Affiliation(s)
- Wilson K Clements
- Department of Hematology, Division of Experimental Hematology, St Jude Children's Research Hospital, 262 Danny Thomas Pl., Memphis, Tennessee 38105, USA
| | | |
Collapse
|
58
|
Golos TG, Giakoumopoulos M, Gerami-Naini B. Review: Trophoblast differentiation from human embryonic stem cells. Placenta 2013; 34 Suppl:S56-61. [PMID: 23261342 PMCID: PMC3586288 DOI: 10.1016/j.placenta.2012.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 12/13/2022]
Abstract
The human embryo is not a feasible experimental system for the detailed study of implantation and early placentation, so surrogate systems have been sought for investigating the determination of the trophectoderm lineage, its differentiation into trophoblasts of the early implantation site, and subsequently the morphogenesis of the definitive placenta. An alternative to the use of embryos for studying early placental development was revealed by work with human embryonic stem cells (hESC), demonstrating BMP2/4-stimulated trophoblast differentiation, and spontaneous formation from embryoid bodies (EBs). These cells display a trophoblastic transcriptome, as well as a placental protein and steroid hormone secretory profile, and invasive and chemotactic behavior resembling human placental trophoblasts. With EB-derived trophoblasts, two-dimensional and three-dimensional paradigms and other modifications of the culture environment, including extracellular matrix and aggregation with placental fibroblasts, impact on trophoblast differentiation. Recent studies have questioned the identity of the trophoblasts directed by BMP treatment of hESC, and careful attention to culture conditions is needed to interpret different results among research groups. Although the precise placental counterpart of the hESC-derived trophoblast remains unclear, hESC-derived trophoblasts remain an intriguing platform for modeling early implantation.
Collapse
Affiliation(s)
- T G Golos
- Wisconsin National Primate Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53715-1299, USA.
| | | | | |
Collapse
|
59
|
Salani S, Donadoni C, Rizzo F, Bresolin N, Comi GP, Corti S. Generation of skeletal muscle cells from embryonic and induced pluripotent stem cells as an in vitro model and for therapy of muscular dystrophies. J Cell Mol Med 2012; 16:1353-64. [PMID: 22129481 PMCID: PMC3823206 DOI: 10.1111/j.1582-4934.2011.01498.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders characterized by progressive muscle wasting and weakness likely associated with exhaustion of muscle regeneration potential. At present, no cures or efficacious treatments are available for these diseases, but cell transplantation could be a potential therapeutic strategy. Transplantation of myoblasts using satellite cells or other myogenic cell populations has been attempted to promote muscle regeneration, based on the hypothesis that the donor cells repopulate the muscle and contribute to its regeneration. Embryonic stem cells (ESCs) and more recently induced pluripotent stem cells (iPSCs) could generate an unlimited source of differentiated cell types, including myogenic cells. Here we review the literature regarding the generation of myogenic cells considering the main techniques employed to date to elicit efficient differentiation of human and murine ESCs or iPSCs into skeletal muscle. We also critically analyse the possibility of using these cellular populations as an alternative source of myogenic cells for cell therapy of MDs.
Collapse
Affiliation(s)
- Sabrina Salani
- Department of Neurological Sciences, Dino Ferrari Centre, University of Milan, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
60
|
Sakurai H, Sakaguchi Y, Shoji E, Nishino T, Maki I, Sakai H, Hanaoka K, Kakizuka A, Sehara-Fujisawa A. In vitro modeling of paraxial mesodermal progenitors derived from induced pluripotent stem cells. PLoS One 2012; 7:e47078. [PMID: 23115636 PMCID: PMC3480377 DOI: 10.1371/journal.pone.0047078] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 09/11/2012] [Indexed: 11/22/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are generated from adult somatic cells by transduction of defined factors. Given their unlimited proliferation and differentiation potential, iPS cells represent promising sources for cell therapy and tools for research and drug discovery. However, systems for the directional differentiation of iPS cells toward paraxial mesodermal lineages have not been reported. In the present study, we established a protocol for the differentiation of mouse iPS cells into paraxial mesodermal lineages in serum-free culture. The protocol was dependent on Activin signaling in addition to BMP and Wnt signaling which were previously shown to be effective for mouse ES cell differentiation. Independently of the cell origin, the number of transgenes, or the type of vectors used to generate iPS cells, the use of serum-free monolayer culture stimulated with a combination of BMP4, Activin A, and LiCl enabled preferential promotion of mouse iPS cells to a PDGFR-α+/Flk-1− population, which represents a paraxial mesodermal lineage. The mouse iPS cell-derived paraxial mesodermal cells exhibited differentiation potential into osteogenic, chondrogenic, and myogenic cells both in vitro and in vivo and contributed to muscle regeneration. Moreover, purification of the PDGFR-α+/KDR− population after differentiation allowed enrichment of human iPS cell populations with paraxial mesodermal characteristics. The resultant PDGFR-α+/KDR− population derived from human iPS cells specifically exhibited osteogenic, chondrogenic, and myogenic differentiation potential in vitro, implying generation of paraxial mesodermal progenitors similar to mouse iPS cell-derived progenitors. These findings highlight the potential of protocols based on the serum-free, stepwise induction and purification of paraxial mesodermal cell lineages for use in stem cell therapies to treat diseased bone, cartilage, and muscle.
Collapse
Affiliation(s)
- Hidetoshi Sakurai
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Kaimakis P, Crisan M, Dzierzak E. The biochemistry of hematopoietic stem cell development. Biochim Biophys Acta Gen Subj 2012; 1830:2395-403. [PMID: 23069720 DOI: 10.1016/j.bbagen.2012.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/14/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND The cornerstone of the adult hematopoietic system and clinical treatments for blood-related disease is the cohort of hematopoietic stem cells (HSC) that is harbored in the adult bone marrow microenvironment. Interestingly, this cohort of HSCs is generated only during a short window of developmental time. In mammalian embryos, hematopoietic progenitor and HSC generation occurs within several extra- and intraembryonic microenvironments, most notably from 'hemogenic' endothelial cells lining the major vasculature. HSCs are made through a remarkable transdifferentiation of endothelial cells to a hematopoietic fate that is long-lived and self-renewable. Recent studies are beginning to provide an understanding of the biochemical signaling pathways and transcription factors/complexes that promote their generation. SCOPE OF REVIEW The focus of this review is on the biochemistry behind the generation of these potent long-lived self-renewing stem cells of the blood system. Both the intrinsic (master transcription factors) and extrinsic regulators (morphogens and growth factors) that affect the generation, maintenance and expansion of HSCs in the embryo will be discussed. MAJOR CONCLUSIONS The generation of HSCs is a stepwise process involving many developmental signaling pathways, morphogens and cytokines. Pivotal hematopoietic transcription factors are required for their generation. Interestingly, whereas these factors are necessary for HSC generation, their expression in adult bone marrow HSCs is oftentimes not required. Thus, the biochemistry and molecular regulation of HSC development in the embryo are overlapping, but differ significantly from the regulation of HSCs in the adult. GENERAL SIGNIFICANCE HSC numbers for clinical use are limiting, and despite much research into the molecular basis of HSC regulation in the adult bone marrow, no panel of growth factors, interleukins and/or morphogens has been found to sufficiently increase the number of these important stem cells. An understanding of the biochemistry of HSC generation in the developing embryo provides important new knowledge on how these complex stem cells are made, sustained and expanded in the embryo to give rise to the complete adult hematopoietic system, thus stimulating novel strategies for producing increased numbers of clinically useful HSCs. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- P Kaimakis
- Erasmus Medical Center, Erasmus MC Stem Cell Institute, Dept. of Cell Biology, PO Box 2040, 3000 CA Rotterdam, Netherlands
| | | | | |
Collapse
|
62
|
Kaimakis P, Crisan M, Dzierzak E. The biochemistry of hematopoietic stem cell development. BIOCHIMICA ET BIOPHYSICA ACTA 2012. [PMID: 23069720 DOI: 10.1016/j.bbagen.20 12.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The cornerstone of the adult hematopoietic system and clinical treatments for blood-related disease is the cohort of hematopoietic stem cells (HSC) that is harbored in the adult bone marrow microenvironment. Interestingly, this cohort of HSCs is generated only during a short window of developmental time. In mammalian embryos, hematopoietic progenitor and HSC generation occurs within several extra- and intraembryonic microenvironments, most notably from 'hemogenic' endothelial cells lining the major vasculature. HSCs are made through a remarkable transdifferentiation of endothelial cells to a hematopoietic fate that is long-lived and self-renewable. Recent studies are beginning to provide an understanding of the biochemical signaling pathways and transcription factors/complexes that promote their generation. SCOPE OF REVIEW The focus of this review is on the biochemistry behind the generation of these potent long-lived self-renewing stem cells of the blood system. Both the intrinsic (master transcription factors) and extrinsic regulators (morphogens and growth factors) that affect the generation, maintenance and expansion of HSCs in the embryo will be discussed. MAJOR CONCLUSIONS The generation of HSCs is a stepwise process involving many developmental signaling pathways, morphogens and cytokines. Pivotal hematopoietic transcription factors are required for their generation. Interestingly, whereas these factors are necessary for HSC generation, their expression in adult bone marrow HSCs is oftentimes not required. Thus, the biochemistry and molecular regulation of HSC development in the embryo are overlapping, but differ significantly from the regulation of HSCs in the adult. GENERAL SIGNIFICANCE HSC numbers for clinical use are limiting, and despite much research into the molecular basis of HSC regulation in the adult bone marrow, no panel of growth factors, interleukins and/or morphogens has been found to sufficiently increase the number of these important stem cells. An understanding of the biochemistry of HSC generation in the developing embryo provides important new knowledge on how these complex stem cells are made, sustained and expanded in the embryo to give rise to the complete adult hematopoietic system, thus stimulating novel strategies for producing increased numbers of clinically useful HSCs. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- P Kaimakis
- Erasmus Medical Center, Erasmus MC Stem Cell Institute, Dept. of Cell Biology, PO Box 2040, 3000 CA Rotterdam, Netherlands
| | | | | |
Collapse
|
63
|
Wobus AM, Rohwedel J, Maltsev V, Hescheler J. In vitro cellular models for cardiac development and pharmacotoxicology. Toxicol In Vitro 2012; 9:477-88. [PMID: 20650116 DOI: 10.1016/0887-2333(95)00023-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Permanent cultures of cardiac cells described so far have limited value for studying cell biology and pharmacology of the developing heart because of the loss of proliferative capacity and cardiac-specific properties of cardiomyocytes during long-term cultivation. Pluripotent embryonic carcinoma (EC) and embryonic stem (ES) cells cultivated as permanent lines offer a new approach for studying cardiogenic differentiation in vitro. We describe cardiogenesis in vitro by differentiating EC and ES cells by way of embryo-like aggregates (embryoid bodies) into spontaneously beating cardiomyocytes. During cardiomyocyte differentiation three distinct developmental stages were defined by expression of specific action potentials and ionic currents measured by the whole-cell patch-clamp technique. Whereas early differentiated cardiomyocytes are characterized by action potentials and ionic currents typical for early pacemaker cells, terminally differentiated cardiomyocytes show action potentials and ionic currents inherent to ventricular-, atrial- or sinus nodal-like cells. These functional characteristics are in accordance with the expression of alpha- and beta-cardiac myosin heavy chain at early differentiation stages and the additional expression of ventricular-specific MLC-2V and atrial-specific ANF genes at terminal stages demonstrated by reverse transcription polymerase chain reaction (RT-PCR) analysis. Pharmacological studies performed by measuring chronotropic responses and by analysing the Ca(2+) channel activity correspond to data obtained with cardiac cells from living organisms. For testing the influence of exogenous compounds on cardiac differentiation the teratogenic compound retinoic acid (RA) was applied during distinct stages of embryoid body development. A temporally controlled influence of RA on cardiac differentiation and expression of cardiac-specific genes was found. We conclude that ES cell-derived cardiomyocytes provide an excellent cellular model to study early cardiac development and to perform pharmacological and embryotoxicological investigations.
Collapse
Affiliation(s)
- A M Wobus
- Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | | | | | | |
Collapse
|
64
|
Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 2012; 111:344-58. [PMID: 22821908 DOI: 10.1161/circresaha.110.227512] [Citation(s) in RCA: 548] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since human embryonic stem cells were first differentiated to beating cardiomyocytes a decade ago, interest in their potential applications has increased exponentially. This has been further enhanced over recent years by the discovery of methods to induce pluripotency in somatic cells, including those derived from patients with hereditary cardiac diseases. Human pluripotent stem cells have been among the most challenging cell types to grow stably in culture, but advances in reagent development now mean that most laboratories can expand both embryonic and induced pluripotent stem cells robustly using commercially available products. However, differentiation protocols have lagged behind and in many cases only produce the cell types required with low efficiency. Cardiomyocyte differentiation techniques were also initially inefficient and not readily transferable across cell lines, but there are now a number of more robust protocols available. Here, we review the basic biology underlying the differentiation of pluripotent cells to cardiac lineages and describe current state-of-the-art protocols, as well as ongoing refinements. This should provide a useful entry for laboratories new to this area to start their research. Ultimately, efficient and reliable differentiation methodologies are essential to generate desired cardiac lineages to realize the full promise of human pluripotent stem cells for biomedical research, drug development, and clinical applications.
Collapse
Affiliation(s)
- Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
65
|
Robertson RD, Mukherjee A. Synexpression group analyses identify new functions of FSTL3, a TGFβ ligand inhibitor. Biochem Biophys Res Commun 2012; 427:568-73. [DOI: 10.1016/j.bbrc.2012.09.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/18/2012] [Indexed: 12/20/2022]
|
66
|
Stage-Specific Cardiomyocyte Differentiation Method for H7 and H9 Human Embryonic Stem Cells. Stem Cell Rev Rep 2012; 8:1120-8. [DOI: 10.1007/s12015-012-9403-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
67
|
Ao A, Hao J, Hopkins CR, Hong CC. DMH1, a novel BMP small molecule inhibitor, increases cardiomyocyte progenitors and promotes cardiac differentiation in mouse embryonic stem cells. PLoS One 2012; 7:e41627. [PMID: 22848549 PMCID: PMC3407188 DOI: 10.1371/journal.pone.0041627] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/22/2012] [Indexed: 01/24/2023] Open
Abstract
The possibility of using cell-based therapeutics to treat cardiac failure has generated significant interest since the initial introduction of stem cell-based technologies. However, the methods to quickly and robustly direct stem cell differentiation towards cardiac cell types have been limited by a reliance on recombinant growth factors to provide necessary biological cues. We report here the use of dorsomorphin homologue 1 (DMH1), a second-generation small molecule BMP inhibitor based on dorsomorphin, to efficiently induce beating cardiomyocyte formation in mouse embryonic stem cells (ESCs) and to specifically upregulate canonical transcriptional markers associated with cardiac development. DMH1 differs significantly from its predecessor by its ability to enrich for pro-cardiac progenitor cells that respond to late-stage Wnt inhibition using XAV939 and produce secondary beating cardiomyocytes. Our study demonstrates the utility of small molecules to complement existing in vitro cardiac differentiation protocols and highlights the role of transient BMP inhibition in cardiomyogenesis.
Collapse
Affiliation(s)
- Ada Ao
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail: (AA); (CCH)
| | - Jijun Hao
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Corey R. Hopkins
- Vanderbilt Institute of Chemical Biology, Department of Pharmacology, Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Charles C. Hong
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- * E-mail: (AA); (CCH)
| |
Collapse
|
68
|
Torres J, Prieto J, Durupt FC, Broad S, Watt FM. Efficient differentiation of embryonic stem cells into mesodermal precursors by BMP, retinoic acid and Notch signalling. PLoS One 2012; 7:e36405. [PMID: 22558462 PMCID: PMC3340340 DOI: 10.1371/journal.pone.0036405] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/09/2012] [Indexed: 12/31/2022] Open
Abstract
The ability to direct differentiation of mouse embryonic stem (ES) cells into specific lineages not only provides new insights into the pathways that regulate lineage selection but also has translational applications, for example in drug discovery. We set out to develop a method of differentiating ES cells into mesodermal cells at high efficiency without first having to induce embryoid body formation. ES cells were plated on a feeder layer of PA6 cells, which have membrane-associated stromal-derived inducing activity (SDIA), the molecular basis of which is currently unknown. Stimulation of ES/PA6 co-cultures with Bone Morphogenetic Protein 4 (BMP4) both favoured self-renewal of ES cells and induced differentiation into a Desmin and Nestin double positive cell population. Combined stimulation with BMP4 and all-trans Retinoic Acid (RA) inhibited self-renewal and resulted in 90% of cells expressing Desmin and Nestin. Quantitative reverse transcription-polymerase chain reaction (qPCR) analysis confirmed that the cells were of mesodermal origin and expressed markers of mesenchymal and smooth muscle cells. BMP4 activation of a MAD-homolog (Smad)-dependent reporter in undifferentiated ES cells was attenuated by co-stimulation with RA and co-culture with PA6 cells. The Notch ligand Jag1 was expressed in PA6 cells and inhibition of Notch signalling blocked the differentiation inducing activity of PA6 cells. Our data suggest that mesodermal differentiation is regulated by the level of Smad activity as a result of inputs from BMP4, RA and the Notch pathway.
Collapse
Affiliation(s)
- Josema Torres
- Departamento de Biología Celular, Universidad de Valencia, Burjassot, Comunidad Valenciana, Spain
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (JT); (FMW)
| | - Javier Prieto
- Departamento de Biología Celular, Universidad de Valencia, Burjassot, Comunidad Valenciana, Spain
| | - Fabrice C. Durupt
- Departamento de Biología Celular, Universidad de Valencia, Burjassot, Comunidad Valenciana, Spain
| | - Simon Broad
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
| | - Fiona M. Watt
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (JT); (FMW)
| |
Collapse
|
69
|
A critical role for endoglin in the emergence of blood during embryonic development. Blood 2012; 119:5417-28. [PMID: 22535663 DOI: 10.1182/blood-2011-11-391896] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Much remains unknown about the signals that induce early mesoderm to initiate hematopoietic differentiation. Here, we show that endoglin (Eng), a receptor for the TGFβ superfamily, identifies all cells with hematopoietic fate in the early embryo. These arise in an Eng(+)Flk1(+) mesodermal precursor population at embryonic day 7.5 (E7.5), a cell fraction also endowed with endothelial potential. In Eng-knockout embryos, hematopoietic colony activity and numbers of CD71(+)Ter119(+) erythroid progenitors were severely reduced. This coincided with severely reduced expression of embryonic globin and key bone morphogenic protein (BMP) target genes, including the hematopoietic regulators Scl, Gata1, Gata2, and Msx-1. To interrogate molecular pathways active in the earliest hematopoietic progenitors, we applied transcriptional profiling to sorted cells from E7.5 embryos. Eng(+)Flk-1(+) progenitors coexpressed TGFβ and BMP receptors and target genes. Furthermore, Eng(+)Flk-1(+) cells presented high levels of phospho-SMAD1/5, indicating active TGFβ and/or BMP signaling. Remarkably, under hematopoietic serum-free culture conditions, hematopoietic outgrowth of Eng-expressing cells was dependent on the TGFβ superfamily ligands BMP4, BMP2, or TGF-β1. These data demonstrate that the E(+)F(+) fraction at E7.5 represents mesodermal cells competent to respond to TGFβ1, BMP4, or BMP2, shaping their hematopoietic development, and that Eng acts as a critical regulator in this process by modulating TGF/BMP signaling.
Collapse
|
70
|
Modeling human hematopoietic cell development from pluripotent stem cells. Exp Hematol 2012; 40:601-11. [PMID: 22510344 DOI: 10.1016/j.exphem.2012.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 04/04/2012] [Indexed: 11/20/2022]
Abstract
Understanding the steps and cues that allow hematopoietic cells to be generated during development holds great clinical as well as biological interest. Analysis of these events in mice has provided many important insights into the processes involved, but features that might be unique to humans remain challenging to elucidate because they cannot be studied directly in vivo. Human embryonic stem or induced pluripotent stem cells offer attractive in vitro alternatives to analyze the process. Here we review recent efforts to develop defined and quantitative systems to address outstanding developmental questions against a background of what we know about the development of hematopoietic cells in the fetus and derived from mouse embryonic stem cells.
Collapse
|
71
|
Riem Vis PW, Sluijter JPG, Soekhradj-Soechit RS, van Herwerden LA, Kluin J, Bouten CVC. Sequential use of human-derived medium supplements favours cardiovascular tissue engineering. J Cell Mol Med 2012; 16:730-9. [PMID: 21645237 PMCID: PMC3822844 DOI: 10.1111/j.1582-4934.2011.01351.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/23/2011] [Indexed: 11/27/2022] Open
Abstract
For clinical application of tissue engineering strategies, the use of animal-derived serum in culture medium is not recommended, because it can evoke immune responses in patients. We previously observed that human platelet-lysate (PL) is favourable for cell expansion, but generates weaker tissue as compared to culture in foetal bovine serum (FBS). We investigated if human serum (HS) is a better human supplement to increase tissue strength. Cells were isolated from venous grafts of 10 patients and expanded in media supplemented with PL or HS, to determine proliferation rates and expression of genes related to collagen production and maturation. Zymography was used to assess protease expression. Collagen contraction assays were used as a two-dimensional (2D) model for matrix contraction. As a prove of principle, 3D tissue culture and tensile testing was performed for two patients, to determine tissue strength. Cell proliferation was lower in HS-supplemented medium than in PL medium. The HS cells produced less active matrix metallo-proteinase 2 (MMP2) and showed increased matrix contraction as indicated by gel contraction assays and 3D-tissue culture. Tensile testing showed increased strength for tissues cultured in HS when compared to PL. This effect was more pronounced if cells were sequentially cultured in PL, followed by tissue culture in HS. These data suggest that sequential use of PL and HS as substitutes for FBS in culture medium for cardiovascular tissue engineering results in improved cell proliferation and tissue mechanical properties, as compared to use of PL or HS apart.
Collapse
Affiliation(s)
- Paul W Riem Vis
- Department of Cardio-Thoracic Surgery, University Medical Center, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
72
|
Mahfuz Chowdhury M, Kimura H, Fujii T, Sakai Y. Induction of alternative fate other than default neuronal fate of embryonic stem cells in a membrane-based two-chambered microbioreactor by cell-secreted BMP4. BIOMICROFLUIDICS 2012; 6:14117-1411713. [PMID: 22662099 PMCID: PMC3365351 DOI: 10.1063/1.3693590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 02/24/2012] [Indexed: 06/01/2023]
Abstract
Cell-secreted soluble factor signaling in a diffusion dominant microenvironment plays an important role on early stage differentiation of pluripotent stem cells invivo. In this study, we utilized a membrane-based two-chambered microbioreactor (MB) to differentiate mouse embryonic stem cells (mESCs) in a diffusion dominant microenvironment of the top chamber while providing enough nutrient through the bottom chamber. Speculating that accumulated FGF4 in the small top chamber will augment neuronal differentiation in the MB culture, we first differentiated mESCs for 8 days by using a chemically optimized culture medium for neuronal induction. However, comparison of cellular morphology and expression of neuronal markers in the MB with that in the 6-well plate (6WP) indicated relatively lower neuronal differentiation in the MB culture. Therefore, to investigate whether microenvironment in the MB facilitates non-neuronal differentiation, we differentiated mESCs for 8 days by using chemically defined basal medium. In this case, differentiated cell morphology differed markedly between the MB and 6WP cultures: epithelial sheet-like morphology in the MB, whereas rosette morphology in the 6WP. Expression of markers from the three germ layers indicated lower neuronal but higher meso- and endo-dermal differentiation of mESCs in the MB than the 6WP culture. Moreover, among various cell-secreted soluble factors, BMP4 expression was remarkably upregulated in the MB culture. Inhibition of BMP4 signaling demonstrated that enhanced effect of upregulated BMP4 was responsible for the prominent meso- and endo-dermal differentiation in the MB. However, in the 6WP, downregulated BMP4 had a minimal influence on the differentiation behavior. Our study demonstrated utilization of a microbioreactor to modulate the effect of cell-secreted soluble factors by autoregulation and thereby inducing alternative self-capability of mESCs. Understanding and implementation of autoregulation of soluble factors similar to this study will lead to the development of robust culture systems to control ESC behavior.
Collapse
|
73
|
Taubenschmid J, Weitzer G. Mechanisms of cardiogenesis in cardiovascular progenitor cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:195-267. [PMID: 22251563 PMCID: PMC7615846 DOI: 10.1016/b978-0-12-394304-0.00012-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Self-renewing cells of the vertebrate heart have become a major subject of interest in the past decade. However, many researchers had a hard time to argue against the orthodox textbook view that defines the heart as a postmitotic organ. Once the scientific community agreed on the existence of self-renewing cells in the vertebrate heart, their origin was again put on trial when transdifferentiation, dedifferentiation, and reprogramming could no longer be excluded as potential sources of self-renewal in the adult organ. Additionally, the presence of self-renewing pluripotent cells in the peripheral blood challenges the concept of tissue-specific stem and progenitor cells. Leaving these unsolved problems aside, it seems very desirable to learn about the basic biology of this unique cell type. Thus, we shall here paint a picture of cardiovascular progenitor cells including the current knowledge about their origin, basic nature, and the molecular mechanisms guiding proliferation and differentiation into somatic cells of the heart.
Collapse
Affiliation(s)
- Jasmin Taubenschmid
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
74
|
Blancas AA, Shih AJ, Lauer NE, McCloskey KE. Endothelial cells from embryonic stem cells in a chemically defined medium. Stem Cells Dev 2011; 20:2153-61. [PMID: 21446878 PMCID: PMC3225059 DOI: 10.1089/scd.2010.0432] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 03/29/2011] [Indexed: 11/12/2022] Open
Abstract
Endothelial cells (ECs) are desired for their therapeutic potential in a variety of areas including gene therapy, cardiac regeneration, development of tissue-engineered vascular grafts, and prevascularized tissue transplants. Pluripotent embryonic stem cells (ESCs) can be induced to differentiate into ECs in vitro using embryoid bodies, monolayer cultures, or by genetic manipulation and immortalization. However, obtaining homogeneous cultures of proliferating ESC-derived ECs without genetic manipulation is a challenging undertaking and often requires optimization of protocols and rigorous purification techniques. Moreover, current differentiation methods that use medium containing fetal calf or bovine serum components introduce additional challenges because of our limited ability to control the differentiation signals and batch-to-batch variations of serum. We have explored the development of new medium formulations for deriving ECs from murine embryonic stem cells (mESCs) using only chemically defined reagents. We present 2 different medium formulations along with the detailed methodologies, including the optimization of extracellular matrix-derived substrates known to play a role in cell attachment and proliferation as well as cell differentiation. Characterization of the ESC-derived ECs indicate that (1) chemically defined medium formulations reproducibly generate superior ECs compared with previous serum-containing formulations, (2) fibronectin, and not collagen type-IV, is the optimal substrate for EC induction in our chemically defined medium formulations, (3) without additional activation of Notch-signaling, ESC-ECs develop predominantly into venous ECs, and (4) using these medium formulations, a second rigorous selection step is not required to generate proliferating ECs from ESCs, but it does enhance the final purity of the ECs.
Collapse
Affiliation(s)
- Alicia A. Blancas
- Graduate Program in Quantitative and Systems Biology, University of California, Merced, California
| | - Albert J. Shih
- School of Engineering, University of California, Merced, California
| | - Nicholas E. Lauer
- Graduate Program in Biological Engineering and Small-Scale Technologies, University of California, Merced, California
| | - Kara E. McCloskey
- Graduate Program in Quantitative and Systems Biology, University of California, Merced, California
- School of Engineering, University of California, Merced, California
- Graduate Program in Biological Engineering and Small-Scale Technologies, University of California, Merced, California
| |
Collapse
|
75
|
Schroeder IS, Sulzbacher S, Nolden T, Fuchs J, Czarnota J, Meisterfeld R, Himmelbauer H, Wobus AM. Induction and Selection of Sox17-Expressing Endoderm Cells Generated from Murine Embryonic Stem Cells. Cells Tissues Organs 2011; 195:507-23. [DOI: 10.1159/000329864] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2011] [Indexed: 01/16/2023] Open
|
76
|
Zhang H, Dai S, Bi J, Liu KK. Biomimetic three-dimensional microenvironment for controlling stem cell fate. Interface Focus 2011; 1:792-803. [PMID: 23050083 DOI: 10.1098/rsfs.2011.0035] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 07/05/2011] [Indexed: 12/31/2022] Open
Abstract
Stem cell therapy is an emerging technique which is being translated into treatment of degenerated tissues. However, the success of translation relies on the stem cell lineage commitment in the degenerated regions of interest. This commitment is precisely controlled by the stem cell microenvironment. Engineering a biomimetic three-dimensional microenvironment enables a thorough understanding of the mechanisms of governing stem cell fate. We review the individual microenvironment components, including soluble factors, extracellular matrix, cell-cell interaction and mechanical stimulation. The perspectives in creating the biomimetic microenvironments are discussed with emerging techniques.
Collapse
Affiliation(s)
- Hu Zhang
- School of Chemical Engineering , The University of Adelaide , Adelaide, South Australia 5005 , Australia
| | | | | | | |
Collapse
|
77
|
Cook BD, Liu S, Evans T. Smad1 signaling restricts hematopoietic potential after promoting hemangioblast commitment. Blood 2011; 117:6489-97. [PMID: 21515822 PMCID: PMC3123019 DOI: 10.1182/blood-2010-10-312389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 04/13/2011] [Indexed: 11/20/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling regulates embryonic hematopoiesis via receptor-mediated activation of downstream SMAD proteins, including SMAD1. In previous work, we showed that Smad1 expression is sufficient to enhance commitment of mesoderm to hemangioblast fate. We also found indirect evidence to support a subsequent repressive function for Smad1 in hematopoiesis. To test this hypothesis directly, we developed a novel system allowing temporal control of Smad1 levels by conditional knockdown in embryonic stem cell derivatives. Depletion of Smad1 in embryoid body cultures before hemangioblast commitment limits hematopoietic potential because of a block in mesoderm development. Conversely, when Smad1 is depleted in FlK1(+) mesoderm, at a stage after hemangioblast commitment, the pool of hematopoietic progenitors is expanded. This involves enhanced expression levels for genes specific to hematopoiesis, including Gata1, Runx1 and Eklf, rather than factors required for earlier specification of the hemangioblast. The phenotype correlates with increased nuclear SMAD2 activity, indicating molecular cross-regulation between the BMP and TGF-β signaling pathways. Consistent with this mechanism, hematopoiesis was enhanced when Smad2 was directly expressed during this same developmental window. Therefore, this study reveals a temporally defined function for Smad1 in restricting the expansion of early hematopoietic progenitors.
Collapse
Affiliation(s)
- Brandoch D Cook
- Department of Surgery, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | | | | |
Collapse
|
78
|
Stacpoole SRL, Bilican B, Webber DJ, Luzhynskaya A, He XL, Compston A, Karadottir R, Franklin RJM, Chandran S. Derivation of neural precursor cells from human ES cells at 3% O(2) is efficient, enhances survival and presents no barrier to regional specification and functional differentiation. Cell Death Differ 2011; 18:1016-23. [PMID: 21274009 PMCID: PMC3091847 DOI: 10.1038/cdd.2010.171] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 11/05/2010] [Accepted: 11/25/2010] [Indexed: 12/21/2022] Open
Abstract
In vitro stem cell systems traditionally employ oxygen levels that are far removed from the in vivo situation. This study investigates whether an ambient environment containing a physiological oxygen level of 3% (normoxia) enables the generation of neural precursor cells (NPCs) from human embryonic stem cells (hESCs) and whether the resultant NPCs can undergo regional specification and functional maturation. We report robust and efficient neural conversion at 3% O(2), demonstration of tri-lineage potential of resultant NPCs and the subsequent electrophysiological maturation of neurons. We also show that NPCs derived under 3% O(2) can be differentiated long term in the absence of neurotrophins and can be readily specified into both spinal motor neurons and midbrain dopaminergic neurons. Finally, modelling the oxygen stress that occurs during transplantation, we demonstrate that in vitro transfer of NPCs from a 20 to 3% O(2) environment results in significant cell death, while maintenance in 3% O(2) is protective. Together these findings support 3% O(2) as a physiologically relevant system to study stem cell-derived neuronal differentiation and function as well as to model neuronal injury.
Collapse
Affiliation(s)
- S R L Stacpoole
- University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Blank U, Karlsson S. The role of Smad signaling in hematopoiesis and translational hematology. Leukemia 2011; 25:1379-88. [PMID: 21566654 DOI: 10.1038/leu.2011.95] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) of adult individuals and function to produce and regenerate the entire blood and immune system over the course of an individual's lifetime. Historically, HSCs are among the most thoroughly characterized tissue-specific stem cells. Despite this, the regulation of fate options, such as self-renewal and differentiation, has remained elusive, partly because of the expansive plethora of factors and signaling cues that govern HSC behavior in vivo. In the BM, HSCs are housed in specialized niches that dovetail the behavior of HSCs with the need of the organism. The Smad-signaling pathway, which operates downstream of the transforming growth factor-β (TGF-β) superfamily of ligands, regulates a diverse set of biological processes, including proliferation, differentiation and apoptosis, in many different organ systems. Much of the function of Smad signaling in hematopoiesis has remained nebulous due to early embryonic lethality of most knockout mouse models. However, recently new data have been uncovered, suggesting that the Smad-signaling circuitry is intimately linked to HSC regulation. In this review, we bring the Smad-signaling pathway into focus, chronicling key concepts and recent advances with respect to TGF-β-superfamily signaling in normal and leukemic hematopoiesis.
Collapse
Affiliation(s)
- U Blank
- Division of Molecular Medicine and Gene Therapy, Laboratory Medicine, Lund Stem Cell Center, Lund University Hospital, Lund, Sweden.
| | | |
Collapse
|
80
|
Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 2011; 8:228-40. [PMID: 21295278 DOI: 10.1016/j.stem.2010.12.008] [Citation(s) in RCA: 863] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 10/07/2010] [Accepted: 12/10/2010] [Indexed: 02/06/2023]
Abstract
Efficient differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to a variety of lineages requires step-wise approaches replicating the key commitment stages found during embryonic development. Here we show that expression of PdgfR-α segregates mouse ESC-derived Flk-1 mesoderm into Flk-1(+)PdgfR-α(+) cardiac and Flk-1(+)PdgfR-α(-) hematopoietic subpopulations. By monitoring Flk-1 and PdgfR-α expression, we found that specification of cardiac mesoderm and cardiomyocytes is determined by remarkably small changes in levels of Activin/Nodal and BMP signaling. Translation to human ESCs and iPSCs revealed that the emergence of cardiac mesoderm could also be monitored by coexpression of KDR and PDGFR-α and that this process was similarly dependent on optimal levels of Activin/Nodal and BMP signaling. Importantly, we found that individual mouse and human pluripotent stem cell lines require optimization of these signaling pathways for efficient cardiac differentiation, illustrating a principle that may well apply in other contexts.
Collapse
Affiliation(s)
- Steven J Kattman
- McEwen Center for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Kanji S, Pompili VJ, Das H. Plasticity and maintenance of hematopoietic stem cells during development. Recent Pat Biotechnol 2011; 5:40-53. [PMID: 21517745 PMCID: PMC3294454 DOI: 10.2174/187220811795655896] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 03/29/2011] [Accepted: 04/06/2011] [Indexed: 05/30/2023]
Abstract
Maintenance of hematopoietic stem cells (HSCs) pool depends on fine balance between self-renewal and differentiation of HSCs. HSCs normally reside within the bone marrow niche of an adult mammal. The embryonic development of HSCs is a complex process that involves the migration of developing HSCs in multiple anatomical sites. Throughout the process, developing HSCs receive internal (transcriptional program) and external (HSC niche) signals, which direct them to maintain balance between self-renewal and differentiation, also to generate a pool of HSCs. In physiological condition HSCs differentiate into all mature cell types present in the blood. However, in pathological condition they may differentiate into non-hematological cells according to the need of the body. It was shown that HSCs can transdifferentiate into cell types that do not belong to the hematopoietic system suggests a complete paradigm shift of the hierarchical hematopoietic tree. This review describes the developmental origins and regulation of HSCs focusing on developmental signals that induce the adult hematopoietic stem cell program, as these informations are very critical for manipulating conditions for expansion of HSCs in ex vivo condition. This review also states clinical application and related patents using HSC.
Collapse
Affiliation(s)
- Suman Kanji
- Cardiovascular Stem Cell Research Laboratory, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Vincent J. Pompili
- Cardiovascular Stem Cell Research Laboratory, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Hiranmoy Das
- Cardiovascular Stem Cell Research Laboratory, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
82
|
Defined culture medium for stem cell differentiation: applicability of serum-free conditions in the mouse embryonic stem cell test. Toxicol In Vitro 2011; 25:914-21. [PMID: 21376803 DOI: 10.1016/j.tiv.2011.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 11/22/2022]
Abstract
The embryonic stem cell test (EST) is a validated method to assess the developmental toxicity potency of chemicals. It was developed to reduce animal use and allow faster testing for hazard assessment. The cells used in this method are maintained and differentiated in media containing foetal calf serum. This animal product is of considerable variation in quality, and individual batches require extensive testing for their applicability in the EST. Moreover, its production involves a large number of foetuses and possible animal suffering. We demonstrate the serum-free medium and feeder cell-free maintenance of the mouse embryonic stem cell line D3 and investigate the use of specific growth factors for induction of cardiac differentiation. Using a combination of bone morphogenetic protein-2, bone morphogenetic protein-4, activin A and ascorbic acid, embryoid bodies efficiently differentiated into contracting myocardium. Additionally, examining levels of intracellular marker proteins by flow cytometry not only confirmed differentiation into cardiomyocytes, but demonstrated significant differentiation into neuronal cells in the same time frame. Thus, this approach might allow for simultaneous detection of developmental effects on both early mesodermal and neuroectodermal differentiation. The serum-free conditions for maintenance and differentiation of D3 cells described here enhance the transferability and standardisation and hence the performance of the EST.
Collapse
|
83
|
Peters A, Burridge PW, Pryzhkova MV, Levine MA, Park TS, Roxbury C, Yuan X, Péault B, Zambidis ET. Challenges and strategies for generating therapeutic patient-specific hemangioblasts and hematopoietic stem cells from human pluripotent stem cells. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2011; 54:965-90. [PMID: 20563986 DOI: 10.1387/ijdb.093043ap] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent characterization of hemangioblasts differentiated from human embryonic stem cells (hESC) has further confirmed evidence from murine, zebrafish and avian experimental systems that hematopoietic and endothelial lineages arise from a common progenitor. Such progenitors may provide a valuable resource for delineating the initial developmental steps of human hemato-endotheliogenesis, which is a process normally difficult to study due to the very limited accessibility of early human embryonic/fetal tissues. Moreover, efficient hemangioblast and hematopoietic stem cell (HSC) generation from patient-specific pluripotent stem cells has enormous potential for regenerative medicine, since it could lead to strategies for treating a multitude of hematologic and vascular disorders. However, significant scientific challenges remain in achieving these goals, and the generation of transplantable hemangioblasts and HSC derived from hESC currently remains elusive. Our previous work has suggested that the failure to derive engraftable HSC from hESC is due to the fact that current methodologies for differentiating hESC produce hematopoietic progenitors developmentally similar to those found in the human yolk sac, and are therefore too immature to provide adult-type hematopoietic reconstitution. Herein, we outline the nature of this challenge and propose targeted strategies for generating engraftable human pluripotent stem cell-derived HSC from primitive hemangioblasts using a developmental approach. We also focus on methods by which reprogrammed somatic cells could be used to derive autologous pluripotent stem cells, which in turn could provide unlimited sources of patient-specific hemangioblasts and HSC.
Collapse
Affiliation(s)
- Ann Peters
- Institute for Cell Engineering, Stem Cell Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Noseda M, Peterkin T, Simões FC, Patient R, Schneider MD. Cardiopoietic factors: extracellular signals for cardiac lineage commitment. Circ Res 2011; 108:129-52. [PMID: 21212394 DOI: 10.1161/circresaha.110.223792] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/01/2010] [Indexed: 11/16/2022]
Abstract
Cardiac muscle creation during embryogenesis requires extracellular instructive signals that are regulated precisely in time and space, intersecting with intracellular genetic programs that confer or fashion the ability of the cells to respond. Unmasking the essential signals for cardiac lineage decisions has paramount importance for cardiac development and regenerative medicine, including the directed differentiation of progenitor and stem cells to a cardiac muscle fate.
Collapse
Affiliation(s)
- Michela Noseda
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, United Kingdom
| | | | | | | | | |
Collapse
|
85
|
Waese EY, Stanford WL. One-step generation of murine embryonic stem cell-derived mesoderm progenitors and chondrocytes in a serum-free monolayer differentiation system. Stem Cell Res 2011; 6:34-49. [DOI: 10.1016/j.scr.2010.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 08/23/2010] [Accepted: 08/27/2010] [Indexed: 01/21/2023] Open
|
86
|
Galvin-Burgess KE, Vivian JL. Transforming growth factor-beta superfamily in mouse embryonic stem cell self-renewal. VITAMINS AND HORMONES 2011; 87:341-65. [PMID: 22127250 DOI: 10.1016/b978-0-12-386015-6.00035-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Embryonic stem (ES) cells are pluripotent cells that maintain the capability of undifferentiated self-renewal in culture. As mouse ES cells have the capacity to give rise to all the tissues of the body, they are an excellent developmental biology model system and a model for regenerative therapies. The extracellular cues and the intracellular signaling cascades that regulate ES cell self-renewal and cell-fate choices are complex and actively studied. Many developmental signaling pathways regulate the ES cell phenotype, and their intracellular programs interact to modulate the gene networks controlling ES cell pluripotency. This review focuses on the current understanding and outstanding questions of the roles of the transforming growth factor-beta-related signaling pathways in regulating pluripotency and differentiation of mouse ES cells. The complex dichotomic roles of bone morphogenetic protein signaling in maintaining the undifferentiated state and also inducing specific cell fates will be reviewed. The emerging roles of Nodal signaling in ES cell self-renewal will also be discussed.
Collapse
Affiliation(s)
- Katherine E Galvin-Burgess
- Department of Pathology and Laboratory Medicine, Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, USA
| | | |
Collapse
|
87
|
Direct reprogramming of fibroblasts into epiblast stem cells. Nat Cell Biol 2010; 13:66-71. [DOI: 10.1038/ncb2136] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 10/28/2010] [Indexed: 01/16/2023]
|
88
|
Uroić DS, Baudouin G, Ferguson LA, Docherty HM, Vallier L, Docherty K. A factor(s) secreted from MIN-6 beta-cells stimulates differentiation of definitive endoderm enriched embryonic stem cells towards a pancreatic lineage. Mol Cell Endocrinol 2010; 328:80-6. [PMID: 20674663 DOI: 10.1016/j.mce.2010.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 06/03/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
Abstract
In the mouse the developing pancreas is controlled by contact with, and signalling molecules secreted from, surrounding cells. These factors are best studied using explant cultures of embryonic tissue. The present study was undertaken to determine whether embryonic stem (ES) cells could be used as an alternative model in vitro system to investigate the role of cell-cell interactions in the developing pancreas. Transwell culture experiments showed that MIN-6 beta-cells secreted a factor or factors that promoted differentiation of ES cell derived definitive endoderm enriched cells towards a pancreatic fate. Further studies using MIN-6 condition medium showed that the factor(s) involved was restricted to MIN-6 cells, could be concentrated with ammonium sulphate, and was sensitive to heat treatment, suggesting that it was a protein or peptide. Further analyses showed that insulin or proinsulin failed to mimic the effects of the conditioned media. Collectively, these results suggest that beta-cells secrete a factor(s) capable of controlling their own differentiation and maturation. The culture system described here presents unique advantages in the identification and characterisation of these factors.
Collapse
Affiliation(s)
- Daniela S Uroić
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | |
Collapse
|
89
|
Knöspel F, Schindler RK, Lübberstedt M, Petzolt S, Gerlach JC, Zeilinger K. Optimization of a serum-free culture medium for mouse embryonic stem cells using design of experiments (DoE) methodology. Cytotechnology 2010; 62:557-71. [PMID: 20859764 DOI: 10.1007/s10616-010-9307-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 09/04/2010] [Indexed: 11/24/2022] Open
Abstract
The in vitro culture behaviour of embryonic stem cells (ESC) is strongly influenced by the culture conditions. Current culture media for expansion of ESC contain some undefined substances. Considering potential clinical translation work with such cells, the use of defined media is desirable. We have used Design of Experiments (DoE) methods to investigate the composition of a serum-free chemically defined culture medium for expansion of mouse embryonic stem cells (mESC). Factor screening analysis according to Plackett-Burman revealed that insulin and leukaemia inhibitory factor (LIF) had a significant positive influence on the proliferation activity of the cells, while zinc and L: -cysteine reduced the cell growth. Further analysis using minimum run resolution IV (MinRes IV) design indicates that following factor adjustment LIF becomes the main factor for the survival and proliferation of mESC. In conclusion, DoE screening assays are applicable to develop and to refine culture media for stem cells and could also be employed to optimize culture media for human embryonic stem cells (hESC).
Collapse
Affiliation(s)
- Fanny Knöspel
- Division of Experimental Surgery, Biomedical Research Center, Berlin-Brandenburg Center for Regenerative Therapies, Charité Campus Virchow-Klinikum, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany,
| | | | | | | | | | | |
Collapse
|
90
|
Muguruma K, Nishiyama A, Ono Y, Miyawaki H, Mizuhara E, Hori S, Kakizuka A, Obata K, Yanagawa Y, Hirano T, Sasai Y. Ontogeny-recapitulating generation and tissue integration of ES cell–derived Purkinje cells. Nat Neurosci 2010; 13:1171-80. [DOI: 10.1038/nn.2638] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/13/2010] [Indexed: 11/09/2022]
|
91
|
Zheng Z, de Iongh RU, Rathjen PD, Rathjen J. A requirement for FGF signalling in the formation of primitive streak-like intermediates from primitive ectoderm in culture. PLoS One 2010; 5:e12555. [PMID: 20838439 PMCID: PMC2933233 DOI: 10.1371/journal.pone.0012555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 08/06/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Embryonic stem (ES) cells hold considerable promise as a source of cells with therapeutic potential, including cells that can be used for drug screening and in cell replacement therapies. Differentiation of ES cells into the somatic lineages is a regulated process; before the promise of these cells can be realised robust and rational methods for directing differentiation into normal, functional and safe cells need to be developed. Previous in vivo studies have implicated fibroblast growth factor (FGF) signalling in lineage specification from pluripotent cells. Although FGF signalling has been suggested as essential for specification of mesoderm and endoderm in vivo and in culture, the exact role of this pathway remains unclear. METHODOLOGY/PRINCIPAL FINDINGS Using a culture model based on early primitive ectoderm-like (EPL) cells we have investigated the role of FGF signalling in the specification of mesoderm. We were unable to demonstrate any mesoderm inductive capability associated with FGF1, 4 or 8 signalling, even when the factors were present at high concentrations, nor any enhancement in mesoderm formation induced by exogenous BMP4. Furthermore, there was no evidence of alteration of mesoderm sub-type formed with addition of FGF1, 4 or 8. Inhibition of endogenous FGF signalling, however, prevented mesoderm and favoured neural differentiation, suggesting FGF signalling was required but not sufficient for the differentiation of primitive ectoderm into primitive streak-like intermediates. The maintenance of ES cell/early epiblast pluripotent marker expression was also observed in cultures when FGF signalling was inhibited. CONCLUSIONS/SIGNIFICANCE FGF signalling has been shown to be required for the differentiation of primitive ectoderm to neurectoderm. This, coupled with our observations, suggest FGF signalling is required for differentiation of the primitive ectoderm into the germ lineages at gastrulation.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Department of Zoology, University of Melbourne, Parkville, Australia
| | - Robb U. de Iongh
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| | - Peter D. Rathjen
- Department of Zoology, University of Melbourne, Parkville, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Parkville, Australia
| |
Collapse
|
92
|
Schneider MD. Making muscle: overview to "Cardiovascular lineage commitment during development and regeneration" series. Circ Res 2010; 107:575-8. [PMID: 20814027 DOI: 10.1161/circresaha.110.223784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michael D Schneider
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
93
|
Enhanced effects of secreted soluble factor preserve better pluripotent state of embryonic stem cell culture in a membrane-based compartmentalized micro-bioreactor. Biomed Microdevices 2010; 12:1097-105. [DOI: 10.1007/s10544-010-9464-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
94
|
A major role of TGF-β1 in the homing capacities of murine hematopoietic stem cell/progenitors. Blood 2010; 116:1244-53. [DOI: 10.1182/blood-2009-05-221093] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Transforming growth factor-β1 (TGF-β1) is a pleiotropic cytokine with major in vitro effects on hematopoietic stem cells (HSCs) and lymphocyte development. Little is known about hematopoiesis from mice with constitutive TGF-β1 inactivation largely because of important embryonic lethality and development of a lethal inflammatory disorder in TGF-β1−/− pups, making these studies difficult. Here, we show that no sign of the inflammatory disorder was detectable in 8- to 10-day-old TGF-β1−/− neonates as judged by both the number of T-activated and T-regulator cells in secondary lymphoid organs and the level of inflammatory cytokines in sera. After T-cell depletion, the inflammatory disease was not transplantable in recipient mice. Bone marrow cells from 8- to 10-day-old TGF-β1−/− neonates showed strikingly impaired short- and long-term reconstitutive activity associated with a parallel decreased in vivo homing capacity of lineage negative (Lin−) cells. In addition an in vitro–reduced survival of immature progenitors (Lin− Kit+ Sca+) was observed. Similar defects were found in liver cells from TGF-β1−/− embryos on day 14 after vaginal plug. These data indicate that TGF-β1 is a critical regulator for in vivo homeostasis of the HSCs, especially for their homing potential.
Collapse
|
95
|
Toh YC, Blagović K, Voldman J. Advancing stem cell research with microtechnologies: opportunities and challenges. Integr Biol (Camb) 2010; 2:305-25. [PMID: 20593104 DOI: 10.1039/c0ib00004c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stem cells provide unique opportunities for understanding basic biology, for developing tissue models for drug testing, and for clinical applications in regenerative medicine. Despite the promise, the field faces significant challenges in identifying stem cell populations, controlling their fate, and characterizing their phenotype. These challenges arise because stem cells are ultimately functionally defined, and thus can often be identified only retrospectively. New technologies are needed that can provide surrogate markers of stem cell identity, can maintain stem cell state in vitro, and can better direct differentiation. In this review, we discuss the opportunities that microtechnologies, in particular, can provide to the unique qualities of stem cell biology. Microtechnology, by allowing organization and manipulation of cells and molecules at biologically relevant length scales, enables control of the cellular environment and assessment of cell functions and phenotypes with cellular resolution. This provides opportunities to, for instance, create more realistic stem cell niches, perform multi-parameter profiling of single cells, and direct the extracellular signals that control cell fate. All these features take place in an environment whose small size naturally conserves reagent and allows for multiplexing of experiments. By appropriately applying micro-scale engineering principles to stem cell research, we believe that significant breakthroughs can be made in stem cell research.
Collapse
Affiliation(s)
- Yi-Chin Toh
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
96
|
Canonical BMP signaling is dispensable for hematopoietic stem cell function in both adult and fetal liver hematopoiesis, but essential to preserve colon architecture. Blood 2010; 115:4689-98. [DOI: 10.1182/blood-2009-05-220988] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Numerous publications have described the importance of bone morphogenetic protein (BMP) signaling in the specification of hematopoietic tissue in developing embryos. Here we investigate the full role of canonical BMP signaling in both adult and fetal liver hematopoiesis using conditional knockout strategies because conventional disruption of components of the BMP signaling pathway result in early death of the embryo. By targeting both Smad1 and Smad5, we have generated a double-knockout mouse with complete disruption of canonical BMP signaling. Interestingly, concurrent deletion of Smad1 and Smad5 results in death because of extrahematopoietic pathologic changes in the colon. However, Smad1/Smad5-deficient bone marrow cells can compete normally with wild-type cells and display unaffected self-renewal and differentiation capacity when transplanted into lethally irradiated recipients. Moreover, although BMP receptor expression is increased in fetal liver, fetal liver cells deficient in both Smad1 and Smad5 remain competent to long-term reconstitute lethally irradiated recipients in a multilineage manner. In conclusion, canonical BMP signaling is not required to maintain either adult or fetal liver hematopoiesis, despite its crucial role in the initial patterning of hematopoiesis in early embryonic development.
Collapse
|
97
|
Abstract
Cardiovascular disease is the number one cause of death and disability in the US. Understanding the biological activity of stem and progenitor cells, and their ability to contribute to the repair, regeneration and remodeling of the heart and blood vessels affected by pathological processes is an essential part of the paradigm in enabling us to achieve a reduction in related deaths. Both human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are promising sources of cells for clinical cardiovascular therapies. Additional in vitro studies are needed, however, to understand their relative phenotypes and molecular regulation toward cardiovascular cell fates. Further studies in translational animal models are also needed to gain insights into the potential and function of both human ES- and iPS-derived cardiovascular cells, and enable translation from experimental and preclinical studies to human trials.
Collapse
Affiliation(s)
- Ionela Iacobas
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Division of Hematology-Oncology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Archana Vats
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Children’s Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Karen K. Hirschi
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Children’s Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| |
Collapse
|
98
|
Jackson SA, Schiesser J, Stanley EG, Elefanty AG. Differentiating embryonic stem cells pass through 'temporal windows' that mark responsiveness to exogenous and paracrine mesendoderm inducing signals. PLoS One 2010; 5:e10706. [PMID: 20502661 PMCID: PMC2873409 DOI: 10.1371/journal.pone.0010706] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 04/26/2010] [Indexed: 01/19/2023] Open
Abstract
Background Mesendoderm induction during embryonic stem cell (ESC) differentiation in vitro is stimulated by the Transforming Growth Factor and Wingless (Wnt) families of growth factors. Principal Findings We identified the periods during which Bone Morphogenetic Protein (BMP) 4, Wnt3a or Activin A were able to induce expression of the mesendoderm marker, Mixl1, in differentiating mouse ESCs. BMP4 and Wnt3a were required between differentiation day (d) 1.5 and 3 to most effectively induce Mixl1, whilst Activin A induced Mixl1 expression in ESC when added between d2 and d4, indicating a subtle difference in the requirement for Activin receptor signalling in this process. Stimulation of ESCs with these factors at earlier or later times resulted in little Mixl1 induction, suggesting that the differentiating ESCs passed through ‘temporal windows’ in which they sequentially gained and lost competence to respond to each growth factor. Inhibition of either Activin or Wnt signalling blocked Mixl1 induction by any of the three mesendoderm-inducing factors. Mixing experiments in which chimeric EBs were formed between growth factor-treated and untreated ESCs revealed that BMP, Activin and Wnt signalling all contributed to the propagation of paracrine mesendoderm inducing signals between adjacent cells. Finally, we demonstrated that the differentiating cells passed through ‘exit gates’ after which point they were no longer dependent on signalling from inducing molecules for Mixl1 expression. Conclusions These studies suggest that differentiating ESCs are directed by an interconnected network of growth factors similar to those present in early embryos and that the timing of growth factor activity is critical for mesendoderm induction.
Collapse
Affiliation(s)
- Steven A. Jackson
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Jacqueline Schiesser
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Edouard G. Stanley
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Andrew G. Elefanty
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
99
|
Touboul T, Hannan NRF, Corbineau S, Martinez A, Martinet C, Branchereau S, Mainot S, Strick-Marchand H, Pedersen R, Di Santo J, Weber A, Vallier L. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 2010; 51:1754-65. [PMID: 20301097 DOI: 10.1002/hep.23506] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Generation of hepatocytes from human embryonic stem cells (hESCs) could represent an advantageous source of cells for cell therapy approaches as an alternative to orthotopic liver transplantation. However, the generation of differentiated hepatocytes from hESCs remains a major challenge, especially using a method compatible with clinical applications. We report a novel approach to differentiate hESCs into functional hepatic cells using fully defined culture conditions, which recapitulate essential stages of liver development. hESCs were first differentiated into a homogenous population of endoderm cells using a combination of activin, fibroblast growth factor 2, and bone morphogenetic protein 4 together with phosphoinositide 3-kinase inhibition. The endoderm cells were then induced to differentiate further into hepatic progenitors using fibroblast growth factor 10, retinoic acid, and an inhibitor of activin/nodal receptor. After further maturation, these cells expressed markers of mature hepatocytes, including asialoglycoprotein receptor, tyrosine aminotransferase, alpha1-antitrypsin, Cyp7A1, and hepatic transcription factors such as hepatocyte nuclear factors 4alpha and 6. Furthermore, the cells generated under these conditions exhibited hepatic functions in vitro, including glycogen storage, cytochrome activity, and low-density lipoprotein uptake. After transduction with a green fluorescent protein-expressing lentivector and transplantation into immunodeficient uPA transgenic mice, differentiated cells engrafted into the liver, grew, and expressed human albumin and alpha1-antitrypsin as well as green fluorescent protein for at least 8 weeks. In addition, we showed that hepatic cells could be generated from human-induced pluripotent cells derived from reprogrammed fibroblasts, demonstrating the efficacy of this approach with pluripotent stem cells of diverse origins. CONCLUSION We have developed a robust and efficient method to differentiate pluripotent stem cells into hepatic cells, which exhibit characteristics of human hepatocytes. Our approach should facilitate the development of clinical grade hepatocytes for transplantation and for research on drug discovery.
Collapse
Affiliation(s)
- Thomas Touboul
- Institut National de la Santé et de la Recherche Médicale, INSERM, Unite 972, IFR 93, Bicêtre Hospital, Kremlin-Bicêtre, France. [corrected]
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Hughes JN, Dodge N, Rathjen PD, Rathjen J. A novel role for gamma-secretase in the formation of primitive streak-like intermediates from ES cells in culture. Stem Cells 2010; 27:2941-51. [PMID: 19750540 DOI: 10.1002/stem.218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
gamma-Secretase is a membrane-associated protease with multiple intracellular targets, a number of which have been shown to influence embryonic development and embryonic stem (ES) cell differentiation. This paper describes the use of the gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) to evaluate the role of gamma-secretase in the differentiation of pluripotent stem cells to the germ lineages. The addition of DAPT did not prevent the formation of primitive ectoderm-like cells from ES cells in culture. In contrast, the addition of DAPT during primitive ectoderm-like cell differentiation interfered with the ability of both serum and BMP4 to induce a primitive streak-like intermediate and resulted in the preferential formation of neurectoderm. Similarly, DAPT reduced the formation of primitive streak-like intermediates from differentiating human ES cells; the culture conditions used resulted in a population enriched in human surface ectoderm. These data suggest that gamma-secretase may form part of the general pathway by which mesoderm is specified within the primitive streak. The addition of an E-cadherin neutralizing antibody was able to partially reverse the effect of DAPT, suggesting that DAPT may be preventing the formation of primitive streak-like intermediates and promoting neurectoderm differentiation by stabilizing E-cadherin and preventing its proteolysis.
Collapse
Affiliation(s)
- James N Hughes
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | | | |
Collapse
|