51
|
Abstract
The GT1-7 cell line, derived from gonadotropin-releasing hormone (GnRH) neurons of the mouse hypothalamus, has provided a useful system for the analysis of GnRH gene regulation. We have used these cells to examine the mechanism of glucocorticoid repression of GnRH gene transcription. One GnRH negative glucocorticoid response element (nGRE) that contributes to glucocorticoid repression is not bound directly by the glucocorticoid receptor (GR). Rather, GR is tethered to this nGRE by virtue of its interaction with a DNA-bound POU domain transcription factor (i.e. Oct-1). DNA-dependent conformational changes in Oct-1 play a major role in recruiting GR to the distal nGRE and impacts transcriptional repression brought about by either glucocorticoids or tumor-promoting phorbol esters. GT1-7 cell-specific transcription of the mouse GnRH gene is controlled by an enhancer element that shares a high degree of sequence homology with the rat GnRH gene enhancer. As in the rat gene, Oct-1 is important for mGnRH enhancer activity. Furthermore, enhancer activity appears to be influenced by the DNA-dependent conformation adopted by bound Oct-1. Thus, the precise sequence recognized by Oct-1 appears to play a important role in both cell-specific and hormonal regulation of GnRH gene transcription.
Collapse
Affiliation(s)
- U R Chandran
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | | |
Collapse
|
52
|
Kiiveri S, Siltanen S, Rahman N, Bielinska M, Lehto VP, Huhtaniemi IT, Muglia LJ, Wilson DB, Heikinheimo M. Reciprocal changes in the expression of transcription factors GATA-4 and GATA-6 accompany adrenocortical tumorigenesis in mice and humans. Mol Med 1999; 5:490-501. [PMID: 10449810 PMCID: PMC2230442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
While certain genetic changes are frequently found in adrenocortical carcinoma cells, the molecular basis of adrenocortical tumorigenesis remains poorly understood. Given that the transcription factors GATA-4 and GATA-6 have been implicated in gene expression and cellular differentiation in a variety of tissues, including endocrine organs such as testis, we have now examined their expression in the developing adrenal gland, as well as in adrenocortical cell lines and tumors from mice and humans. Northern blot analysis and in situ hybridization revealed abundant GATA-6 mRNA in the fetal and postnatal adrenal cortex of the mouse. In contrast, little or no GATA-4 expression was detected in adrenal tissue during normal development. In vivo stimulation with ACTH or suppression with dexamethasone did not affect the expression of GATA-4 or GATA-6 in the murine adrenal gland. To assess whether changes in the expression of GATA-4 or GATA-6 accompany adrenocortical tumorigenesis, we employed an established mouse model. When gonadectomized, inhibin alpha/SV40 T-antigen transgenic mice develop adrenocortical tumors in a gonadotropin-dependent fashion. In striking contrast to the normal adrenal glands, GATA-6 mRNA was absent from adrenocortical tumors or tumor-derived cell lines, while GATA-4 mRNA and protein were abundantly expressed in the tumors and tumor cell lines. Analogous results were obtained with human tissue samples; GATA-4 expression was detected in human adrenocortical carcinomas but not in normal tissue, adenomas, or pheochromocytomas. Taken together these results suggest different roles for GATA-4 and GATA-6 in the adrenal gland, and implicate GATA-4 in adrenal tumorigenesis. Immunohistochemical detection of GATA-4 may serve as a useful marker in the differential diagnosis of human adrenal tumors.
Collapse
Affiliation(s)
- S Kiiveri
- Children's Hospital, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Reciprocal Changes in the Expression of Transcription Factors GATA-4 and GATA-6 Accompany Adrenocortical Tumorigenesis in Mice and Humans. Mol Med 1999. [DOI: 10.1007/bf03403542] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
54
|
Lu JR, McKinsey TA, Xu H, Wang DZ, Richardson JA, Olson EN. FOG-2, a heart- and brain-enriched cofactor for GATA transcription factors. Mol Cell Biol 1999; 19:4495-502. [PMID: 10330188 PMCID: PMC104407 DOI: 10.1128/mcb.19.6.4495] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the GATA family of zinc finger transcription factors have been shown to play important roles in the control of gene expression in a variety of cell types. GATA-1, -2, and -3 are expressed primarily in hematopoietic cell lineages and are required for proliferation and differentiation of multiple hematopoietic cell types, whereas GATA-4, -5, and -6 are expressed in the heart, where they activate cardiac muscle structural genes. Friend of GATA-1 (FOG) is a multitype zinc finger protein that interacts with GATA-1 and serves as a cofactor for GATA-1-mediated transcription. FOG is coexpressed with GATA-1 in developing erythroid and megakaryocyte cell lineages and cooperates with GATA-1 to control erythropoiesis. We describe a novel FOG-related factor, FOG-2, that is expressed predominantly in the developing and adult heart, brain, and testis. FOG-2 interacts with GATA factors, and interaction of GATA-4 and FOG-2 results in either synergistic activation or repression of GATA-dependent cardiac promoters, depending on the specific promoter and the cell type in which they are tested. The properties of FOG-2 suggest its involvement in the control of cardiac and neural gene expression by GATA transcription factors.
Collapse
Affiliation(s)
- J R Lu
- Departments of Molecular Biology and Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9148, USA
| | | | | | | | | | | |
Collapse
|
55
|
Skala H, Porteu A, Thomas M, Szajnert MF, Okazawa H, Kahn A, Phan-Dinh-Tuy F. Upstream elements involved in vivo in activation of the brain-specific rat aldolase C gene. Role of binding sites for POU and winged helix proteins. J Biol Chem 1998; 273:31806-14. [PMID: 9822647 DOI: 10.1074/jbc.273.48.31806] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rat aldolase C gene encodes a glycolytic enzyme strongly expressed in adult brain. We previously reported that a 115-base pair (bp) promoter fragment was able to ensure the brain-specific expression of the chloramphenicol acetyltransferase (CAT) reporter gene in transgenic mice, but only at a low level (Thomas, M., Makeh, I., Briand, P., Kahn, A., and Skala, H. (1993) Eur. J. Biochem. 218, 143-151). Here we show that in vivo activation of this promoter at a high level requires cooperation between an upstream 0.6-kilobase pair (kb) fragment and far upstream sequences. In the 0.6-kb region, a 28-bp DNA element is shown to include overlapping in vitro binding sites for POU domain regulatory proteins and for the Winged Helix hepatocyte nuclear factor-3beta factor. An hepatocyte nuclear factor-3beta-binding site previously described in the short proximal promoter fragment is also shown to interact in vitro with POU proteins, although with a lower affinity than the 28-bp motif. Additional binding sites for POU factors were detected in the upstream 0.6-kb sequences. Progressive deletion in this region resulted in decreased expression levels of the transgenes in mice, suggesting synergistic interactions between these multiple POU-binding sites. We propose that DNA elements characterized by a dual binding specificity for both POU domain and Winged Helix transcription factors could play an essential role in the brain-specific expression of the aldolase C gene and other neuronal genes.
Collapse
Affiliation(s)
- H Skala
- Institut Cochin de Génétique Moléculaire, INSERM U129, Université René Descartes, 75014 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
The hypothalamic gonadotropin-releasing hormone (GnRH) neurons are important regulators of reproductive function. During development, these cells arise in the olfactory placode and migrate to the central nervous system, where they form a diffuse population of neurosecretory cells that mediate central nervous system control of reproduction. Little is known of the mechanisms regulating the differentiation of these cells. Studies of the transcriptional regulation of the GnRH gene have demonstrated the importance of the GATA family of zinc-finger transcription factors in gene expression. Although GATA factors are not highly expressed in mature GnRH-secreting neurons, we report that GATA-4 is highly expressed in migrating GnRH neurons in the developing mouse. We also report that a second DNA binding activity regulating GnRH gene expression at the site of GATA-factor action persists in mature hypothalamus and may also play a role in gene expression in the differentiated GnRH neuron.
Collapse
Affiliation(s)
- M A Lawson
- Department of Reproductive Medicine, The Center for Molecular Medicine University of California, San Diego, La Jolla 92093-0674, USA.
| | | |
Collapse
|
57
|
Nelson SB, Eraly SA, Mellon PL. The GnRH promoter: target of transcription factors, hormones, and signaling pathways. Mol Cell Endocrinol 1998; 140:151-5. [PMID: 9722183 DOI: 10.1016/s0303-7207(98)00043-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is essential for normal reproductive maturation and function. We present a review of the known mechanisms of hypothalamic GnRH transcriptional control through the conserved GnRH promoter. Understanding this promoter region will allow us to comprehend better the complexities of the hypothalamic pituitary-gonadal axis.
Collapse
Affiliation(s)
- S B Nelson
- Department of Reproductive Medicine, The Center for Cellular and Molecular Medicine, University of California, San Diego, La Jolla 92093-0674, USA
| | | | | |
Collapse
|
58
|
Lawson MA, Buhain AR, Jovenal JC, Mellon PL. Multiple factors interacting at the GATA sites of the gonadotropin-releasing hormone neuron-specific enhancer regulate gene expression. Mol Endocrinol 1998; 12:364-77. [PMID: 9514154 DOI: 10.1210/mend.12.3.0082] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuron-specific expression of the GnRH gene is dependent on an upstream multicomponent enhancer. This enhancer is functional in a small population of GnRH-producing hypothalamic neurons which, through the secretion of GnRH, mediates central nervous system control of reproductive function. GnRH enhancer function requires activation by the GATA family of transcription factors that act through tandem consensus GATA-binding motifs, GATA-A and GATA-B. Here we show that two newly identified DNA-binding factors, termed GBF-A1/A2 and GBF-B1, bind the GnRH enhancer at sites overlapping the GATA factor-binding motifs. In vitro bindings of GATA, GBF-A1/A2, and GBF-B1 to the GnRH enhancer sequences are independent. Specific mutation of either the consensus GATA motif or the GBF-B1 site of GATA-B does not alter binding of the overlapping factor in vitro. Utilizing a GnRH-expressing neuronal cell line as a model system, we show by transient transfection that GBF-B1 is necessary for enhancer activity and independently activates the GnRH promoter. Transactivation of the GnRH enhancer in GT1 cells and in NIH 3T3 cells by GATA-4 is modulated by GBF-B1 binding, suggesting GBF-B1 interferes with GATA factor binding through a steric mechanism.
Collapse
Affiliation(s)
- M A Lawson
- Department of Reproductive Medicine, Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0674, USA.
| | | | | | | |
Collapse
|
59
|
Boylan MO, Jepeal LI, Jarboe LA, Wolfe MM. Cell-specific expression of the glucose-dependent insulinotropic polypeptide gene in a mouse neuroendocrine tumor cell line. J Biol Chem 1997; 272:17438-43. [PMID: 9211887 DOI: 10.1074/jbc.272.28.17438] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a 42-amino acid gastrointestinal regulatory peptide that, in the presence of glucose, stimulates insulin secretion. GIP is expressed in K cells of the small intestine and in cells of the submandibular salivary gland. Using a rat GIP cDNA as a specific probe, we screened a number of established cell lines for the expression of GIP mRNA. STC-1 cells, a cell line derived from a mouse neuroendocrine tumor, were found to express high levels of GIP mRNA. GIP-specific transcripts were not detected in other cell lines tested, which included cells of intestinal, salivary, and endocrine origin. Analysis of GIP-luciferase fusions identified two promoters, a distal and a proximal promoter, upstream of the translation initiation codon for GIP. The distal promoter, located upstream of position +1, corresponds to the principal promoter of the GIP gene and can promote cell-specific transcription. Sequential deletion and site-directed mutational analysis of the distal promoter demonstrated that the sequence between -193 and -182 determines cell-specific expression of GIP. Contained in this region is a consensus GATA motif, suggesting that a member of the GATA family of DNA-binding proteins is involved in the cell-specific regulation of the GIP gene.
Collapse
Affiliation(s)
- M O Boylan
- Section of Gastroenterology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
60
|
Meng A, Tang H, Ong BA, Farrell MJ, Lin S. Promoter analysis in living zebrafish embryos identifies a cis-acting motif required for neuronal expression of GATA-2. Proc Natl Acad Sci U S A 1997; 94:6267-72. [PMID: 9177206 PMCID: PMC21038 DOI: 10.1073/pnas.94.12.6267] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/1997] [Accepted: 04/10/1997] [Indexed: 02/04/2023] Open
Abstract
We have used zebrafish embryos to dissect the promoter activity of a gene with a complex expression pattern during embryogenesis. GATA-2 is a transcription factor required for hematopoiesis and is dynamically expressed in hematopoietic tissues and in the central nervous system. Using constructs containing zebrafish GATA-2 genomic flanking sequences and the green fluorescent protein (GFP) reporter gene, we demonstrate that distinct regulatory domains are required for hematopoietic, enveloping layer (EVL), and neuronal expression of GATA-2. During gastrulation, GFP expression is confined to the ventral ectoderm and lateral mesoderm and is lacking in the dorsal shield. Cells derived from the regions expressing GFP give rise to hematopoietic progenitors, EVL cells, and neurons. Deletion analysis of the 7.3-kb GATA-2 promoter region revealed that a 1.1-kb DNA sequence is critical for expression of GATA-2 in neurons. Fine mapping revealed that a 31-bp region is required for neuron enhancer activity, and mutagenesis showed that the DNA motif CCCTCCT is essential for GATA-2 promoter activity in the central nervous system of zebrafish. Our use of zebrafish embryos can be exploited as a whole animal system for the dissection of any developmentally regulated vertebrate promoter.
Collapse
Affiliation(s)
- A Meng
- Institute of Molecular Medicine and Genetics, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
61
|
|