51
|
Kawashima H, Obayashi A, Kawamura M, Masaki S, Tamada S, Iguchi T, Uchida J, Kuratsukuri K, Tanaka T, Nakatani T. Galectin 9 and PINCH, novel immunotherapy targets of renal cell carcinoma: a rationale to find potential tumour antigens and the resulting cytotoxic T lymphocytes induced by the derived peptides. BJU Int 2014; 113:320-32. [PMID: 24895689 DOI: 10.1111/bju.12499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To analyse and then generalize the mechanism by which partial or complete response is achieved among a limited number of patients with metastatic renal cell carcinoma (RCC) treated with interferon or interleukin-2. MATERIALS AND METHODS An expression library of RCC (clear-cell carcinoma) was screened using the sera of patients with metastatic RCC who benefited from partial or complete response to cytokine therapy, the postulation being that those remarkable responders obtained specific cellular immunity against RCC with the antibodies to react with the cancer antigen. Peripheral blood mononuclear-cells (PBMCs) from healthy volunteers were stimulated with the antigen-derived peptides to induce specific cytotoxic T lymphocytes (CTLs). Specific activities of CTLs were measured by ⁵¹Cr-releasing assay. RESULTS Among 15 positive clones isolated, two novel genes, galectin 9 and PINCH, were expressed at much higher levels in cancerous lesions than in normal tissues in all the patients with clear-cell carcinoma who were examined. Both HLA-A*2402-restricted and HLA-A*0201-restricted CTLs were induced by each antigen-derived peptide to exhibit specific and highly cytotoxic activities towards RCC cells. Specific CTLs were induced abundantly, as shown by flow cytometry analysis of the CTLs labelled with fluorescein isothiocyanate anti-CD107a and APC anti-CD8. The clonal expansion of the CTLs was shown by the clonality of T-cell receptor Vβ repertoires. CONCLUSION A novel approach based on clinical observations yielded promising tumour antigens as immunotherapy targets of RCC.
Collapse
|
52
|
Chen J, Chen Y, Luo Y, Gui D, Huang J, He D. Astragaloside IV ameliorates diabetic nephropathy involving protection of podocytes in streptozotocin induced diabetic rats. Eur J Pharmacol 2014; 736:86-94. [PMID: 24809932 DOI: 10.1016/j.ejphar.2014.04.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/21/2022]
Abstract
Podocyte loss and dysfunction play key role during the development of diabetic nephropathy (DN). The aim of this study was to observe the protective effects of astragaloside IV on podocyte in diabetic rats and explore its mechanisms preliminary. Healthy male Sprague-Dawley (SD) rats were randomized into normal control group, diabetic nephropathy group and diabetic nephropathy with AS-IV treatment group. DN was induced by intraperitoneal injection of streptozotocin (STZ). AS-IV treatment started 2 weeks before STZ injection and lasted 14 weeks. 24h Urinary proteins were measured 4, 8 and 12 weeks after STZ injection. Body weight, blood glucose, blood urea nitrogen (BUN), creatinine (Cr), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured 12 weeks after STZ injection. Renal pathology, podocyte morphological changes, podocyte density, protein and mRNA expression of integrin α3, integrin β1 and integrin-linked kinase (ILK) were detected by histopathology, electron microscopy, immunohistochemistry, western blot and real-time PCR, respectively. Hyperglycemia, proteinuria, mesangial expansion and podocyte loss, increased protein expression of ILK and decreased protein expression of integrin α3 and integrin β1 were detected in diabetic rats. AS-IV treatment ameliorated podocyte loss, renal histopathology and podocyte foot process effacement, decreased proteinuria, partially restored protein expression of integrin α3, integrin β1 and ILK. These findings suggested that AS-IV may protect podocyte and ameliorate diabetic nephropathy by inhibiting the expression of ILK and restoring the expression of integrin α3β1 in diabetic rats.
Collapse
Affiliation(s)
- Jianguo Chen
- Department of Nephrology, ZheJiang Hospital, HangZhou, PR China.
| | - Yifang Chen
- Department of Nephrology, ZheJiang Hospital, HangZhou, PR China
| | - Yunling Luo
- Department of Nephrology, ZheJiang Hospital, HangZhou, PR China
| | - Dingkun Gui
- Department of Nephrology, Shanghai Sixth People׳s Hospital, Shanghai, PR China
| | - Jianhua Huang
- Institute of Integrated Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Dongyuan He
- Department of Nephrology, ZheJiang Hospital, HangZhou, PR China.
| |
Collapse
|
53
|
Eskova A, Knapp B, Matelska D, Reusing S, Arjonen A, Lisauskas T, Pepperkok R, Russell R, Eils R, Ivaska J, Kaderali L, Erfle H, Starkuviene V. An RNAi screen identifies KIF15 as a novel regulator of the endocytic trafficking of integrin. J Cell Sci 2014; 127:2433-47. [PMID: 24659801 DOI: 10.1242/jcs.137281] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
α2β1 integrin is one of the most important collagen-binding receptors, and it has been implicated in numerous thrombotic and immune diseases. α2β1 integrin is a potent tumour suppressor, and its downregulation is associated with increased metastasis and poor prognosis in breast cancer. Currently, very little is known about the mechanism that regulates the cell-surface expression and trafficking of α2β1 integrin. Here, using a quantitative fluorescence-microscopy-based RNAi assay, we investigated the impact of 386 cytoskeleton-associated or -regulatory genes on α2 integrin endocytosis and found that 122 of these affected the intracellular accumulation of α2 integrin. Of these, 83 were found to be putative regulators of α2 integrin trafficking and/or expression, with no observed effect on the internalization of epidermal growth factor (EGF) or transferrin. Further interrogation and validation of the siRNA screen revealed a role for KIF15, a microtubule-based molecular motor, as a significant inhibitor of the endocytic trafficking of α2 integrin. Our data suggest a novel role for KIF15 in mediating plasma membrane localization of the alternative clathrin adaptor Dab2, thus impinging on pathways that regulate α2 integrin internalization.
Collapse
Affiliation(s)
| | - Bettina Knapp
- Medical Faculty, Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Dorota Matelska
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Susanne Reusing
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Antti Arjonen
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | | | | | - Robert Russell
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Roland Eils
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany Integrative Bioinformatics and Systems Biology, DKFZ, BioQuant and Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Johanna Ivaska
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Lars Kaderali
- Medical Faculty, Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Holger Erfle
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
54
|
Lennon R, Randles MJ, Humphries MJ. The importance of podocyte adhesion for a healthy glomerulus. Front Endocrinol (Lausanne) 2014; 5:160. [PMID: 25352829 PMCID: PMC4196579 DOI: 10.3389/fendo.2014.00160] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/21/2014] [Indexed: 12/23/2022] Open
Abstract
Podocytes are specialized epithelial cells that cover the outer surfaces of glomerular capillaries. Unique cell junctions, known as slit diaphragms, which feature nephrin and Neph family proteins in addition to components of adherens, tight, and gap junctions, connect adjacent podocyte foot processes. Single gene disorders affecting the slit diaphragm result in nephrotic syndrome in humans, characterized by massive loss of protein across the capillary wall. In addition to specialized cell junctions, interconnecting podocytes also adhere to the glomerular basement membrane (GBM) of the capillary wall. The GBM is a dense network of secreted, extracellular matrix (ECM) components and contains tissue-restricted isoforms of collagen IV and laminin in addition to other structural proteins and ECM regulators such as proteases and growth factors. The specialized niche of the GBM provides a scaffold for endothelial cells and podocytes to support their unique functions and human genetic mutations in GBM components lead to renal failure, thus highlighting the importance of cell-matrix interactions in the glomerulus. Cells adhere to ECM via adhesion receptors, including integrins, syndecans, and dystroglycan and in particular the integrin heterodimer α3β1 is required to maintain barrier integrity. Therefore, the sophisticated function of glomerular filtration relies on podocyte adhesion both at cell junctions and at the interface with the ECM. In health, the podocyte coordinates signals from cell junctions and cell-matrix interactions, in response to environmental cues in order to regulate filtration and as our understanding of mechanisms that control cell adhesion in the glomerulus develops, then insight into the effects of disease will improve. The ultimate goal will be to develop targeted therapies to prevent or repair defects in the filtration barrier and to restore glomerular function.
Collapse
Affiliation(s)
- Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
- Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
- Department of Paediatric Nephrology, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- *Correspondence: Rachel Lennon, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Manchester M13 9PT, UK e-mail:
| | - Michael J. Randles
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
- Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
55
|
Honda S, Shirotani-Ikejima H, Tadokoro S, Tomiyama Y, Miyata T. The integrin-linked kinase-PINCH-parvin complex supports integrin αIIbβ3 activation. PLoS One 2013; 8:e85498. [PMID: 24376884 PMCID: PMC3871693 DOI: 10.1371/journal.pone.0085498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 12/05/2013] [Indexed: 12/22/2022] Open
Abstract
Integrin-linked kinase (ILK) is an important signaling regulator that assembles into the heteroternary complex with adaptor proteins PINCH and parvin (termed the IPP complex). We recently reported that ILK is important for integrin activation in a Chinese hamster ovary (CHO) cell system. We previously established parental CHO cells expressing a constitutively active chimeric integrin (αIIbα6Bβ3) and mutant CHO cells expressing inactive αIIbα6Bβ3 due to ILK deficiency. In this study, we further investigated the underlying mechanisms for ILK-dependent integrin activation. ILK-deficient mutant cells had trace levels of PINCH and α-parvin, and transfection of ILK cDNA into the mutant cells increased not only ILK but also PINCH and α-parvin, resulting in the restoration of αIIbα6Bβ3 activation. In the parental cells expressing active αIIbα6Bβ3, ILK, PINCH, and α-parvin were co-immunoprecipitated, indicating the formation of the IPP complex. Moreover, short interfering RNA (siRNA) experiments targeting PINCH-1 or both α- and β-parvin mRNA in the parent cells impaired the αIIbα6Bβ3 activation as well as the expression of the other components of the IPP complex. In addition, ILK mutants possessing defects in either PINCH or parvin binding failed to restore αIIbα6Bβ3 activation in the mutant cells. Kindlin-2 siRNA in the parental cells impaired αIIbα6Bβ3 activation without disturbing the expression of ILK. For CHO cells stably expressing wild-type αIIbβ3 that is an inactive form, overexpression of a talin head domain (THD) induced αIIbβ3 activation and the THD-induced αIIbβ3 activation was impaired by ILK siRNA through a significant reduction in the expression of the IPP complex. In contrast, overexpression of all IPP components in the αIIbβ3-expressing CHO cells further augmented THD-induced αIIbβ3 activation, whereas they did not induce αIIbβ3 activation without THD. These data suggest that the IPP complex rather than ILK plays an important role and supports integrin activation probably through stabilization of the active conformation.
Collapse
Affiliation(s)
- Shigenori Honda
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Japan
- * E-mail:
| | | | - Seiji Tadokoro
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshiaki Tomiyama
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Blood Transfusion, Osaka University Hospital, Suita, Osaka, Japan
| | - Toshiyuki Miyata
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
56
|
ILK: a pseudokinase with a unique function in the integrin-actin linkage. Biochem Soc Trans 2013; 41:995-1001. [PMID: 23863169 DOI: 10.1042/bst20130062] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ILK (integrin-linked kinase) is a central component of cell-matrix adhesions and an important regulator of integrin function. It forms a ternary complex with two other adaptor proteins, PINCH (particularly interesting cysteine- and histidine-rich protein) and parvin, forming the IPP (ILK-PINCH-parvin) complex that regulates the integrin-actin linkage as well as microtubule dynamics. These functions are essential for processes such as cell migration and matrix remodelling. The present review discusses the recent advances on the structural and functional characterization of ILK and the long-standing debate regarding its reported kinase activity.
Collapse
|
57
|
Roura S, Gálvez-Montón C, Pujal JM, Casani L, Fernández MA, Astier L, Gastelurrutia P, Domingo M, Prat-Vidal C, Soler-Botija C, Llucià-Valldeperas A, Llorente-Cortés V, Bayes-Genis A. New insights into lipid raft function regulating myocardial vascularization competency in human idiopathic dilated cardiomyopathy. Atherosclerosis 2013; 230:354-64. [DOI: 10.1016/j.atherosclerosis.2013.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 07/26/2013] [Accepted: 08/06/2013] [Indexed: 12/15/2022]
|
58
|
Overexpression of FXYD-3 is involved in the tumorigenesis and development of esophageal squamous cell carcinoma. DISEASE MARKERS 2013; 35:195-202. [PMID: 24167366 PMCID: PMC3774971 DOI: 10.1155/2013/740201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/13/2013] [Accepted: 07/16/2013] [Indexed: 01/03/2023]
Abstract
Objective. To investigate the association of FXYD-3 expression with clinicopathological variables and PINCH in patients with ESCC. Patients and Methods. Expression of FXYD-3 protein was immunohistochemically examined in normal esophageal mucous (n = 20) and ESCC (n = 64). Results. Expression of FXYD-3 in the cytoplasm markedly increased from normal esophageal epithelial cells to primary ESCC (P = 0.001). The expression of FXYD-3 was correlated with TNM stages and depth of tumor invasion. Furthermore, the cases with lymph node metastasis tended to show a higher frequency of positive expression than those without metastasis (P = 0.086), and FXYD-3 expression tended to be positively related to the expression of PINCH (P = 0.063). Moreover, the cases positive for both proteins had the highest frequency of lymph node metastasis (P = 0.001). However, FXYD-3 expression was not correlated with patient's gender (P = 0.847), age (P = 0.876), tumor location (P = 0.279), size (P = 0.771), grade of differentiation (P = 0.279), and survival (P = 0.113). Conclusion. Overexpression of FXYD-3 in the cytoplasm may play an important role in the tumorigenesis and development in the human ESCC, particularly in combination with PINCH expression.
Collapse
|
59
|
Gonzalez-Nieves R, Desantis AI, Cutler ML. Rsu1 contributes to regulation of cell adhesion and spreading by PINCH1-dependent and - independent mechanisms. J Cell Commun Signal 2013; 7:279-93. [PMID: 23765260 PMCID: PMC3889256 DOI: 10.1007/s12079-013-0207-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 05/28/2013] [Indexed: 01/29/2023] Open
Abstract
Cell adhesion and migration are complex processes that require integrin activation, the formation and dissolution of focal adhesion (FAs), and linkage of actin cytoskeleton to the FAs. The IPP (ILK, PINCH, Parvin) complex regulates FA formation via binding of the adaptor protein ILK to β1 integrin, PINCH and parvin. The signaling protein Rsu1 is linked to the complex via binding PINCH1. The role of Rsu1 and PINCH1 in adhesion and migration was examined in non-transformed mammary epithelial cells. Confocal microscopy revealed that the depletion of either Rsu1 or PINCH1 by siRNA in MCF10A cells decreased the number of focal adhesions and altered the distribution and localization of β1 integrin, vinculin, talin and paxillin without affecting the levels of FA protein expression. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. In addition, constitutive phosphorylation of actin regulatory proteins occurred in the absence of PINCH1. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function by regulating levels of PINCH1. However, while both Rsu1- or PINCH1-depleted cells retained the ability to activate adhesion signaling in response to EGF stimulation, only Rsu1 was required for EGF-induced p38 Map Kinase phosphorylation and ATF2 activation, suggesting an Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with an Rsu1 mutant that does not bind to PINCH1 failed to restore FAs or migration but did promote spreading and constitutive p38 activation. These data show that Rsu1-PINCH1 association with ILK and the IPP complex is required for regulation of adhesion and migration but that Rsu1 has a critical role in linking integrin-induced adhesion to activation of p38 Map kinase signaling and cell spreading. Moreover, it suggests that Rsu1 may regulate p38 signaling from the IPP complex affecting other functions including survival.
Collapse
Affiliation(s)
- Reyda Gonzalez-Nieves
- Department of Pathology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | | | | |
Collapse
|
60
|
Yoshigi M, Pronovost SM, Kadrmas JL. Interactions by 2D Gel Electrophoresis Overlap (iGEO): a novel high fidelity approach to identify constituents of protein complexes. Proteome Sci 2013; 11:21. [PMID: 23663728 PMCID: PMC3688448 DOI: 10.1186/1477-5956-11-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/08/2013] [Indexed: 01/29/2023] Open
Abstract
Background Here we describe a novel approach used to identify the constituents of protein complexes with high fidelity, using the integrin-associated scaffolding protein PINCH as a test case. PINCH is comprised of five LIM domains, zinc-finger protein interaction modules. In Drosophila melanogaster, PINCH has two known high-affinity binding partners—Integrin-linked kinase (ILK) that binds to LIM1 and Ras Suppressor 1 (RSU1) that binds to LIM5—but has been postulated to bind additional proteins as well. Results To purify PINCH complexes, in parallel we fused different affinity tags (Protein A and Flag) to different locations within the PINCH sequence (N- and C-terminus). We expressed these tagged versions of PINCH both in cell culture (overexpressed in Drosophila S2 cell culture in the presence of endogenous PINCH) and in vivo (at native levels in Drosophila lacking endogenous PINCH). After affinity purification, we analyzed PINCH complexes by a novel 2D-gel electrophoresis analysis, iGEO (interactions by 2D Gel Electrophoresis Overlap), with mass spectrometric identification of individual spots of interest. iGEO allowed the identification of protein partners that associate with PINCH under two independent purification strategies, providing confidence in the significance of the interaction. Proteins identified by iGEO were validated against a highly inclusive list of candidate PINCH interacting proteins identified in previous analyses by MuDPIT mass spectrometry. Conclusions The iGEO strategy confirmed a core complex comprised of PINCH, RSU1, ILK, and ILK binding partner Parvin. Our iGEO method also identified five novel protein partners that specifically interacted with PINCH in Drosophila S2 cell culture. Because of the improved reproducibility of 2D-GE methodology and the increasing affordability of the required labeling reagents, iGEO is a method that is accessible to most moderately well-equipped biological laboratories. The biochemical co-purifications inherent in iGEO allow for rapid and unambiguous identification of the constituents of protein complexes, without the need for extensive follow-up experiments.
Collapse
Affiliation(s)
- Masaaki Yoshigi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
| | | | | |
Collapse
|
61
|
Boscher C, Nabi IR. Galectin-3- and phospho-caveolin-1-dependent outside-in integrin signaling mediates the EGF motogenic response in mammary cancer cells. Mol Biol Cell 2013; 24:2134-45. [PMID: 23657817 PMCID: PMC3694797 DOI: 10.1091/mbc.e13-02-0095] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Galectin-3 binding to N-glycans promotes EGF receptor signaling to integrin in mammary cancer cells. This leads to phospho-caveolin-1–, Src-, and ILK-dependent activation of RhoA, resulting in actin reorganization in circular dorsal ruffles, cell migration, and fibronectin remodeling. In murine mammary epithelial cancer cells, galectin-3 binding to β1,6-acetylglucosaminyltransferase V (Mgat5)–modified N-glycans restricts epidermal growth factor (EGF) receptor mobility in the plasma membrane and acts synergistically with phospho-caveolin-1 to promote integrin-dependent matrix remodeling and cell migration. We show that EGF signaling to RhoA is galectin-3 and phospho-caveolin-1 dependent and promotes the formation of transient, actin-rich, circular dorsal ruffles (CDRs), cell migration, and fibronectin fibrillogenesis via Src- and integrin-linked kinase (ILK)–dependent signaling. ILK, Src, and galectin-3 also mediate EGF stimulation of caveolin-1 phosphorylation. Direct activation of integrin with Mn2+ induces galectin-3, ILK, and Src-dependent RhoA activation and caveolin-1 phosphorylation. This suggests that in response to EGF, galectin-3 enables outside-in integrin signaling stimulating phospho-caveolin-1–dependent RhoA activation, actin reorganization in CDRs, cell migration, and fibronectin remodeling. Similarly, caveolin-1/galectin-3–dependent EGF signaling induces motility, peripheral actin ruffling, and RhoA activation in MDA-MB-231 human breast carcinoma cells, but not HeLa cells. These studies define a galectin-3/phospho-caveolin-1/RhoA signaling module that mediates integrin signaling downstream of growth factor activation, leading to actin and matrix remodeling and tumor cell migration in metastatic cancer cells.
Collapse
Affiliation(s)
- Cecile Boscher
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | |
Collapse
|
62
|
Purification and SAXS analysis of the integrin linked kinase, PINCH, parvin (IPP) heterotrimeric complex. PLoS One 2013; 8:e55591. [PMID: 23383235 PMCID: PMC3561323 DOI: 10.1371/journal.pone.0055591] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/27/2012] [Indexed: 01/29/2023] Open
Abstract
The heterotrimeric protein complex containing the integrin linked kinase (ILK), parvin, and PINCH proteins, termed the IPP complex, is an essential component of focal adhesions, where it interacts with many proteins to mediate signaling from integrin adhesion receptors. Here we conduct a biochemical and structural analysis of the minimal IPP complex, comprising full-length human ILK, the LIM1 domain of PINCH1, and the CH2 domain of α-parvin. We provide a detailed purification protocol for IPP and show that the purified IPP complex is stable and monodisperse in solution. Using small-angle X-ray scattering (SAXS), we also conduct the first structural characterization of IPP, which reveals an elongated shape with dimensions 120×60×40 Å. Flexibility analysis using the ensemble optimization method (EOM) is consistent with an IPP complex structure with limited flexibility, raising the possibility that inter-domain interactions exist. However, our studies suggest that the inter-domain linker in ILK is accessible and we detect no inter-domain contacts by gel filtration analysis. This study provides a structural foundation to understand the conformational restraints that govern the IPP complex.
Collapse
|
63
|
Integrins and small GTPases as modulators of phagocytosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:321-54. [PMID: 23351714 DOI: 10.1016/b978-0-12-407699-0.00006-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phagocytosis is the mechanism whereby cells engulf large particles. This process has long been recognized as a critical component of the innate immune response, which constitutes the organism's defense against microorganisms. In addition, phagocytic internalization of apoptotic cells or cell fragments plays important roles in tissue homeostasis and remodeling. Phagocytosis requires target interactions with receptors on the plasma membrane of the phagocytic cell. Integrins have been identified as important mediators of particle clearance, in addition to their well-established roles in cell adhesion, migration and mechanotransduction. Indeed, these ubiquitously expressed proteins impart phagocytic capacity to epithelial, endothelial and mesenchymal cell types. The importance of integrins in particle internalization is emphasized by the ability of microbial and viral pathogens to exploit their signaling pathways to invade host cells, and by the wide variety of disorders that arise from abnormalities in integrin-dependent phagocytic uptake.
Collapse
|
64
|
Zhu ZL, Yan BY, Zhang Y, Yang YH, Wang ZM, Zhang HZ, Wang MW, Zhang XH, Sun XF. Cytoplasmic expression of p33(ING1b) is correlated with tumorigenesis and progression of human esophageal squamous cell carcinoma. Oncol Lett 2012; 5:161-166. [PMID: 23255913 DOI: 10.3892/ol.2012.983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/05/2012] [Indexed: 01/17/2023] Open
Abstract
p33(ING1b), a newly discovered candidate tumor suppressor gene and a nuclear protein, belongs to the inhibitor of growth gene family. Previous studies have shown that p33(ING1b) is involved in the restriction of cell growth and proliferation, apoptosis, tumor anchorage-independent growth, cellular senescence, maintenance of genomic stability and modulation of cell cycle checkpoints. Loss of nuclear p33(ING1b) has been observed in melanoma, seminoma, papillary thyroid carcinoma, oral squamous cell carcinoma, breast ductal cancer and acute lymphoblastic leukemia. Inactivation and/or decreased expression of p33(ING1b) have been reported in various types of cancer, including head and neck squamous cell, breast, lung, stomach, blood and brain malignancies. Since little is known about the clinicopathological significance of p33(ING1b) in esophageal squamous cell carcinoma (ESCC), this study aimed to investigate the association of p33(ING1b) expression with clinicopathological variables and particularly interesting new cysteine-histidine rich protein (PINCH) in patients with ESCC. p33(ING1b) expression was examined by immunohistochemistry in 20 normal esophageal mucosa and in 64 ESCC specimens. The results revealed that the positive expression of p33(ING1b) protein in normal squamous cells was localized in the nucleus alone and the positive rate was 95%, while in ESCCs, the positive expression was mainly in the cytoplasm, together with nuclear expression, and the positive rate was 36% (P<0.0001). Furthermore, the cases with lymph node metastasis showed a higher frequency of positive cytoplasmic expression than those without metastasis (P=0.001). The cytoplasmic expression of p33(ING1b) was positively related to PINCH expression (P<0.0001) in ESCC, and the cases positive for both proteins had a high lymph node metastasis rate (P=0.001). In conclusion, p33(ING1b) cellular compartmental shift from the nucleus to the cytoplasm may cause loss of normal cellular function and play a central role in the tumorigenesis and metastasis of ESCC.
Collapse
Affiliation(s)
- Zhen-Long Zhu
- Department of Pathology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031; ; Graduate School of Hebei Medical University, Shijiazhuang, Hebei 050017
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Liang CH, Chiu SY, Hsu IL, Wu YY, Tsai YT, Ke JY, Pan SH, Hsu YC, Li KC, Yang PC, Chen YL, Hong TM. α-Catulin drives metastasis by activating ILK and driving an αvβ3 integrin signaling axis. Cancer Res 2012; 73:428-38. [PMID: 23047866 DOI: 10.1158/0008-5472.can-12-2095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
α-Catulin is an oncoprotein that helps sustain proliferation by preventing cellular senescence. Here, we report that α-catulin also drives malignant invasion and metastasis. α-Catulin was upregulated in highly invasive non-small cell lung cancer (NSCLC) cell lines, where its ectopic expression or short-hairpin RNA-mediated attenuation enhanced or limited invasion or metastasis, respectively. α-Catulin interacted with integrin-linked kinase (ILK), a serine/threonine protein kinase implicated in cancer cell proliferation, antiapoptosis, invasion, and angiogenesis. Attenuation of ILK or α-catulin reciprocally blocked cell migration and invasion induced by the other protein. Mechanistic investigations revealed that α-catulin activated Akt-NF-κB signaling downstream of ILK, which in turn led to increased expression of fibronectin and integrin αvβ3. Pharmacologic or antibody-mediated blockade of NF-κB or αvβ3 was sufficient to inhibit α-catulin-induced cell migration and invasion. Clinically, high levels of expression of α-catulin and ILK were associated with poor overall survival in patients with NSCLC. Taken together, our study shows that α-catulin plays a critical role in cancer metastasis by activating the ILK-mediated Akt-NF-κB-αvβ3 signaling axis.
Collapse
Affiliation(s)
- Chen-Hsien Liang
- Institute of Basic Medical Sciences, Institute of Oral Medicine, and Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Choi YP, Kim BG, Gao MQ, Kang S, Cho NH. Targeting ILK and β4 integrin abrogates the invasive potential of ovarian cancer. Biochem Biophys Res Commun 2012; 427:642-8. [PMID: 23026047 DOI: 10.1016/j.bbrc.2012.09.114] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 01/22/2023]
Abstract
Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of β1 and β4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of β1 and β4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of β4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of β4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting β4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.
Collapse
Affiliation(s)
- Yoon Pyo Choi
- BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
67
|
Qin J, Wu C. ILK: a pseudokinase in the center stage of cell-matrix adhesion and signaling. Curr Opin Cell Biol 2012; 24:607-13. [PMID: 22763012 DOI: 10.1016/j.ceb.2012.06.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/23/2012] [Accepted: 06/11/2012] [Indexed: 01/18/2023]
Abstract
Integrin-linked kinase (ILK) is a widely expressed and evolutionally conserved component of cell-extracellular matrix (ECM) adhesions. Although initially named as a kinase, ILK contains an unusual pseudoactive site that is incapable of catalyzing phosphorylation. Instead, ILK acts as a central component of a heterotrimer (the PINCH-ILK-parvin complex) at ECM adhesions mediating interactions with a large number of proteins via multiple sites including its pseudoactive site. Through higher level protein-protein interactions, this scaffold links integrins to the actin cytoskeleton and catalytic proteins and thereby regulates focal adhesion assembly, cytoskeleton organization and signaling. This review summarizes recent advances in our understanding of the structure and functions of the PINCH-ILK-parvin complex, and discusses emerging new features of the molecular mechanisms by which it regulates diverse cellular, physiological and pathological processes.
Collapse
Affiliation(s)
- Jun Qin
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
68
|
Elias MC, Pronovost SM, Cahill KJ, Beckerle MC, Kadrmas JL. A crucial role for Ras suppressor-1 (RSU-1) revealed when PINCH and ILK binding is disrupted. J Cell Sci 2012; 125:3185-94. [PMID: 22467865 DOI: 10.1242/jcs.101386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PINCH, integrin-linked kinase (ILK) and Ras suppressor-1 (RSU-1) are molecular scaffolding proteins that form a physical complex downstream of integrins, and have overlapping roles in cellular adhesion. In Drosophila, PINCH and ILK colocalize in cells and have indistinguishable functions in maintaining wing adhesion and integrin to actin linkage in the muscle. We sought to determine whether the direct physical interaction between PINCH and ILK was essential for their functions using transgenic flies expressing a version of PINCH with a point mutation that disrupts ILK binding (PINCH(Q38A)). We demonstrate that the PINCH-ILK interaction is not required for viability, for integrin-mediated adhesion of the wing or muscle, or for maintaining appropriate localization or levels of either PINCH or ILK. These results suggest alternative modes for PINCH localization, stabilization and linkage to the actin cytoskeleton that are independent of a direct interaction with ILK. Furthermore, we identified a synthetic lethality in flies carrying both the PINCH(Q38A) mutation and a null mutation in the gene encoding RSU-1. This lethality does not result from PINCH mislocalization or destabilization, and illustrates a novel compensatory role for RSU-1 in maintaining viability in flies with compromised PINCH-ILK binding. Taken together, this work highlights the existence of redundant mechanisms in adhesion complex assembly that support integrin function in vivo.
Collapse
Affiliation(s)
- Maria C Elias
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
69
|
Howe GA, Addison CL. β1 integrin: an emerging player in the modulation of tumorigenesis and response to therapy. Cell Adh Migr 2012; 6:71-7. [PMID: 22568952 DOI: 10.4161/cam.20077] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Historically, a hallmark of tumorigenesis was the ability to grow in an anchorage-independent manner. Hence, tumors were thought to proliferate and survive independently of integrin attachment to the substratum. However, recent data suggest that integrins regulate not only tumor cell proliferation, survival and migration, but may also influence their response to anti-cancer agents. Interestingly, these influences are largely masked by growth of tumor cells in the standard, yet artificial, environment of 2D cell culture, but are readily apparent under 3D in vitro culture conditions and in tumor growth in vivo. We, and others, have recently demonstrated that the β1 integrin subunit controls the growth and invasion of prostate tumor cells in 3D culture conditions. Recently, the importance of integrins has also been demonstrated using tissue specific conditional knockout strategies in transgenic mouse tumor models, where they control primary tumor growth and dictate the site of metastatic spread. Furthermore, integrin-extracellular matrix interactions may modulate the response of tumors to standard chemotherapy agents or radiation. Taken together, these results highlight the important role of integrins in regulating tumor growth and metastasis; however, point out that the evaluation of their contribution to these processes requires appropriate contextual modeling.
Collapse
Affiliation(s)
- Grant A Howe
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | | |
Collapse
|
70
|
Holmqvist A, Gao J, Holmlund B, Adell G, Carstensen J, Langford D, Sun XF. PINCH is an independent prognostic factor in rectal cancer patients without preoperative radiotherapy--a study in a Swedish rectal cancer trial of preoperative radiotherapy. BMC Cancer 2012; 12:65. [PMID: 22325464 PMCID: PMC3299656 DOI: 10.1186/1471-2407-12-65] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 02/10/2012] [Indexed: 01/04/2023] Open
Abstract
Background The clinical significance between particularly interesting new cysteine-histidine rich protein (PINCH) expression and radiotherapy (RT) in tumours is not known. In this study, the expression of PINCH and its relationship to RT, clinical, pathological and biological factors were studied in rectal cancer patients. Methods PINCH expression determined by immunohistochemistry was analysed at the invasive margin and inner tumour area in 137 primary rectal adenocarcinomas (72 cases without RT and 65 cases with RT). PINCH expression in colon fibroblast cell line (CCD-18 Co) was determined by western blot. Results In patients without RT, strong PINCH expression at the invasive margin of primary tumours was related to worse survival, compared to patients with weak expression, independent of TNM stage and differentiation (P = 0.03). No survival relationship in patients with RT was observed (P = 0.64). Comparing the non-RT with RT subgroup, there was no difference in PINCH expression in primary tumours (invasive margin (P = 0.68)/inner tumour area (P = 0.49). In patients with RT, strong PINCH expression was related to a higher grade of LVD (lymphatic vessel density) (P = 0.01) Conclusions PINCH expression at the invasive margin was an independent prognostic factor in patients without RT. RT does not seem to directly affect the PINCH expression.
Collapse
Affiliation(s)
- Annica Holmqvist
- Department of Medical Oncology, Institute of Clinical and Experimental Medicine, Linköping University, S-58185 Linköping, Sweden.
| | | | | | | | | | | | | |
Collapse
|
71
|
Zeng D, Hao L, Xu W, Li Z, Li W, Li J, Zhang X, Chen X, Kong P. Pinch-1 was up-regulated in leukemia BMSC and its possible effect. Clin Exp Med 2012; 13:21-7. [PMID: 22310984 DOI: 10.1007/s10238-012-0176-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/12/2012] [Indexed: 01/29/2023]
Abstract
Pinch-1, a widely expressed focal adhesion protein, has been demonstrated to be up-regulated in multiple solid tumor-associated stromal cells, particularly at invasive edges. It was supposed that Pinch-1 was intimately associated with development and progression of tumors. The expression of Pinch-1 in hematopoietic microenvironment in patients with leukemia remains unclear. This study focused on the expression of Pinch-1 in bone marrow stromal cells (BMSCs) from leukemia patients and its possible effect. BMSC was isolated and cultured from bone marrow in leukemia patients and normal healthy donors. RT-PCR and Western blot analysis were performed to determine Pinch-1 mRNA and protein level in BMSC, respectively. Lentiviral vector containing Pinch-1 siRNA was constructed, and the recombinant lentivirus particle was packaged in 293 cells. Effectiveness of Pinch-1 siRNA was determined by Western blot. The proliferation, apoptosis and motility of leukemia BMSC subjected to Pinch-1 knockdown using siRNA were tested by flow cytometry, TUNEL assay and Transwell system, respectively. Pinch-1 mRNA and protein were significantly up-regulated in ALL and AML BMSC compared to normal BMSC (p<0.01). Although there was no difference in Pinch-1 mRNA between ALL and AML BMSC, cellular levels of Pinch-1 protein in ALL BMSC were significantly higher than that in AML BMSC (p<0.01). Overexpressed Pinch-1 was significantly reduced in leukemia BMSC transfected with Pinch-1 siRNA evidenced by Western blot. Flow cytometry analysis showed that the percentage of cells in S+G2 phases in leukemia BMSC transfected with Pinch-1 siRNA was significantly lower than control (p<0.01). The percentage of apoptotic cells in leukemia BMSC transfected with Pinch-1 siRNA was 19.8±1.0%, significantly higher than controls (p<0.01). The number of leukemia BMSC transfected with Pinch-1 siRNA that migrated to the lower chamber after culturing for 24 h was 8.4±1.1 per field, significantly lower than controls (p<0.01). Pinch-1 mRNA and protein in leukemia BMSC were up-regulated drastically compared with BMSC from healthy donors. Leukemia BMSC displayed hypoproliferation, decreased migration and increased apoptosis after transfecting Pinch-1 siRNA.
Collapse
Affiliation(s)
- Dongfeng Zeng
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Montanez E, Karaköse E, Tischner D, Villunger A, Fässler R. PINCH-1 promotes Bcl-2-dependent survival signalling and inhibits JNK-mediated apoptosis in the primitive endoderm. J Cell Sci 2012; 125:5233-40. [DOI: 10.1242/jcs.112029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The focal adhesion (FA) protein PINCH-1 is required for the survival of primitive endoderm (PrE) cells. How PINCH-1 regulates this fundamental process is not known. Here, we use embryoid bodies (EBs) and isolated EB-derived PrE cells to investigate the mechanisms by which PINCH-1 promotes PrE survival. We report that loss of PINCH-1 in PrE cells leads to a sustained activity of JNK and the pro-apoptotic factor Bax. Mechanistically, the sustained JNK activation was due to diminished levels of the JNK inhibitory factor Ras suppressor protein-1 (RSU-1), whose stability was severely reduced upon loss of PINCH-1. Chemical inhibition of JNK attenuated apoptosis of PrE cells but failed to reduce Bax activity. The increased Bax activity was associated with reduced integrin signalling and diminished Bcl-2 levels, which were shown to inhibit Bax. Altogether our findings show that PINCH-1 is a pro-survival factor that prevents apoptosis of PrE cells by modulating two independent signalling pathways; PINCH-1 inhibits JNK-mediated apoptosis by stabilizing the PINCH-1 binding protein RSU-1, and promotes Bcl-2-dependent pro-survival signalling downstream of integrins.
Collapse
|
73
|
Labelle-Côté M, Dusseault J, Ismaïl S, Picard-Cloutier A, Siegel PM, Larose L. Nck2 promotes human melanoma cell proliferation, migration and invasion in vitro and primary melanoma-derived tumor growth in vivo. BMC Cancer 2011; 11:443. [PMID: 21992144 PMCID: PMC3198724 DOI: 10.1186/1471-2407-11-443] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/12/2011] [Indexed: 12/19/2022] Open
Abstract
Background Nck1 and Nck2 adaptor proteins are involved in signaling pathways mediating proliferation, cytoskeleton organization and integrated stress response. Overexpression of Nck1 in fibroblasts has been shown to be oncogenic. Through the years this concept has been challenged and the consensus is now that overexpression of either Nck cooperates with strong oncogenes to transform cells. Therefore, variations in Nck expression levels in transformed cells could endorse cancer progression. Methods Expression of Nck1 and Nck2 proteins in various cancer cell lines at different stages of progression were analyzed by western blots. We created human primary melanoma cell lines overexpressing GFP-Nck2 and investigated their ability to proliferate along with metastatic characteristics such as migration and invasion. By western blot analysis, we compared levels of proteins phosphorylated on tyrosine as well as cadherins and integrins in human melanoma cells overexpressing or not Nck2. Finally, in mice we assessed tumor growth rate of human melanoma cells expressing increasing levels of Nck2. Results We found that expression of Nck2 is consistently increased in various metastatic cancer cell lines compared with primary counterparts. Particularly, we observed significant higher levels of Nck2 protein and mRNA, as opposed to no change in Nck1, in human metastatic melanoma cell lines compared with non-metastatic melanoma and normal melanocytes. We demonstrated the involvement of Nck2 in proliferation, migration and invasion in human melanoma cells. Moreover, we discovered that Nck2 overexpression in human primary melanoma cells correlates with higher levels of proteins phosphorylated on tyrosine residues, assembly of Nck2-dependent pY-proteins-containing molecular complexes and downregulation of cadherins and integrins. Importantly, we uncovered that injection of Nck2-overexpressing human primary melanoma cells into mice increases melanoma-derived tumor growth rate. Conclusions Collectively, our data indicate that Nck2 effectively influences human melanoma phenotype progression. At the molecular level, we propose that Nck2 in human primary melanoma promotes the formation of molecular complexes regulating proliferation and actin cytoskeleton dynamics by modulating kinases or phosphatases activities that results in increased levels of proteins phosphorylated on tyrosine residues. This study provides new insights regarding cancer progression that could impact on the therapeutic strategies targeting cancer.
Collapse
Affiliation(s)
- Mélissa Labelle-Côté
- 1Programmes de biologie moléculaire, Faculté de Médecine, Université deMontréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
74
|
Zervas CG, Psarra E, Williams V, Solomon E, Vakaloglou KM, Brown NH. A central multifunctional role of integrin-linked kinase at muscle attachment sites. J Cell Sci 2011; 124:1316-27. [PMID: 21444757 DOI: 10.1242/jcs.081422] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Integrin-linked kinase (ILK) is an essential component of a multiprotein complex that links actin to the plasma membrane. Here, we have used a genetic approach to examine the molecular interactions that are essential for the assembly of this ILK-containing complex at Drosophila muscle attachment sites (MASs). We show that, downstream of integrins, talin plays a decisive role in the recruitment of three proteins: ILK, PINCH and paxillin. The accumulation of ILK at MASs appears to follow an amplification mechanism, suggesting that numerous binding sites are generated by minimal levels of the upstream integrin and talin effectors. This property suggests that ILK functions as an essential hub in the assembly of its partner proteins at sites of integrin adhesion. We found that PINCH stability, and its subcellular localization at MASs, depends upon ILK function, but that ILK stability and localization is not dependent upon PINCH. An in vivo structure-function analysis of ILK demonstrated that each ILK domain has sufficient information for its independent recruitment at embryonic MASs, whereas at later developmental stages only the kinase domain was effectively recruited. Our data strengthen the view that the ILK complex is assembled sequentially at sites of integrin adhesion by employing multiple molecular interactions, which collectively stabilize the integrin-actin link.
Collapse
Affiliation(s)
- Christos G Zervas
- Biomedical Research Foundation, Academy of Athens, Division of Genetics, Soranou Efessiou 4, 11527 Athens, Greece.
| | | | | | | | | | | |
Collapse
|
75
|
Desai LP, Wu Y, Tepper RS, Gunst SJ. Mechanical stimuli and IL-13 interact at integrin adhesion complexes to regulate expression of smooth muscle myosin heavy chain in airway smooth muscle tissue. Am J Physiol Lung Cell Mol Physiol 2011; 301:L275-84. [PMID: 21642449 PMCID: PMC3174741 DOI: 10.1152/ajplung.00043.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/31/2011] [Indexed: 01/13/2023] Open
Abstract
Airway smooth muscle phenotype may be modulated in response to external stimuli under physiological and pathophysiological conditions. The effect of mechanical forces on airway smooth muscle phenotype were evaluated in vitro by suspending weights of 0.5 or 1 g from the ends of canine tracheal smooth muscle tissues, incubating the weighted tissues for 6 h, and then measuring the expression of the phenotypic marker protein, smooth muscle myosin heavy chain (SmMHC). Incubation of the tissues at a high load significantly increased expression of SmMHC compared with incubation at low load. Incubation of the tissues at a high load also decreased activation of PKB/Akt, as indicated by its phosphorylation at Ser 473. Inhibition of Akt or phosphatidylinositol-3,4,5 triphosphate-kinase increased SmMHC expression in tissues at low load but did not affect SmMHC expression at high load. IL-13 induced a significant increase in Akt activation and suppressed the expression of SmMHC protein at both low and high loads. The role of integrin signaling in mechanotransduction was evaluated by expressing a PINCH (LIM1-2) fragment in the muscle tissues that prevents the membrane localization of the integrin-binding IPP complex (ILK/PINCH/α-parvin), and also by expressing an inactive integrin-linked kinase mutant (ILK S343A) that inhibits endogenous ILK activity. Both mutants inhibited Akt activation and increased expression of SmMHC protein at low load but had no effect at high load. These results suggest that mechanical stress and IL-13 both act through an integrin-mediated signaling pathway to oppositely regulate the expression of phenotypic marker proteins in intact airway smooth muscle tissues. The stimulatory effects of mechanical stress on contractile protein expression oppose the suppression of contractile protein expression mediated by IL-13; thus the imposition of mechanical strain may inhibit changes in airway smooth muscle phenotype induced by inflammatory mediators.
Collapse
Affiliation(s)
- Leena P Desai
- Dept. of Cellular & Integrative Physiology, Indiana Univ. School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
76
|
Jatiani A, Pannizzo P, Gualco E, Del-Valle L, Langford D. Neuronal PINCH is regulated by TNF-α and is required for neurite extension. J Neuroimmune Pharmacol 2011; 6:330-40. [PMID: 20689998 PMCID: PMC3107369 DOI: 10.1007/s11481-010-9236-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 07/18/2010] [Indexed: 12/18/2022]
Abstract
During HIV infection of the CNS, neurons are damaged by viral proteins, such as Tat and gp120, or by inflammatory factors, such as TNF-α, that are released from infected and/or activated glial cells. Host responses to this damage may include the induction of survival or repair mechanisms. In this context, previous studies report robust expression of a protein called particularly interesting new cysteine histidine-rich protein (PINCH), in the neurons of HIV patients' brains, compared with nearly undetectable levels in HIV-negative individuals (Rearden et al., J Neurosci Res 86:2535-2542, 2008), suggesting PINCH's involvement in neuronal signaling during HIV infection of the brain. To address potential triggers for PINCH induction in HIV patients' brains, an in vitro system mimicking some aspects of HIV infection of the CNS was utilized. We investigated neuronal PINCH expression, subcellular distribution, and biological consequences of PINCH sequestration upon challenge with Tat, gp120, and TNF-α. Our results indicate that in neurons, TNF-α stimulation increases PINCH expression and changes its subcellular localization. Furthermore, PINCH mobility is required to maintain neurite extension upon challenge with TNF-α. PINCH may function as a neuron-specific host-mediated response to challenge by HIV-related factors in the CNS.
Collapse
Affiliation(s)
- Asavari Jatiani
- Department of Neuroscience, Temple University School of Medicine, 3500 N. Broad St., MERB 750, Philadelphia, PA, USA
| | - Paola Pannizzo
- Department of Neuroscience, Temple University School of Medicine, 3500 N. Broad St., MERB 750, Philadelphia, PA, USA
| | - Elisa Gualco
- Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy
| | - Luis Del-Valle
- Department of Pathology, Louisiana State University, New Orleans, LA, USA
| | - Dianne Langford
- Department of Neuroscience, Temple University School of Medicine, 3500 N. Broad St., MERB 750, Philadelphia, PA, USA,
| |
Collapse
|
77
|
Liang X, Sun Y, Chen J. Particularly interesting cysteine- and histidine-rich protein in cardiac development and remodeling. J Investig Med 2011; 57:842-8. [PMID: 19952891 DOI: 10.2310/jim.0b013e3181c5e31d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Integrin-mediated cell-extracellular matrix interaction plays key roles in tissue morphogenesis and integrity. The Lin11-Isl-1-Mec-3 (LIM) domain-only particularly interesting cysteine- and histidine-rich (PINCH) protein functions as an adaptor essential for the assembly and function of the focal adhesion complex that links integrin signaling to the cytoskeleton and other intracellular signaling pathways and regulates diverse cellular processes such as cell adhesion, migration, growth, differentiation, and survival. Recent biochemical and genetic studies have greatly advanced our knowledge surrounding the molecular interactions and functions of each component of the focal adhesion complex and revealed a requirement for PINCH in early embryogenesis, in morphogenesis of the neural crest and cardiac outflow, and in myocardial growth and remodeling. In this review article, we will provide an overview of the current knowledge of the molecular interactions of PINCH with other components of focal adhesions, highlighting recent discoveries of the in vivo role of PINCH and discuss its potential implication for human heart disease.
Collapse
Affiliation(s)
- Xingqun Liang
- Department of Medicine, University of California at San Diego (UCSD), La Jolla, CA 92093-0613C, USA
| | | | | |
Collapse
|
78
|
PINCH proteins regulate cardiac contractility by modulating integrin-linked kinase-protein kinase B signaling. Mol Cell Biol 2011; 31:3424-35. [PMID: 21670146 DOI: 10.1128/mcb.05269-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrin-linked kinase (ILK) is an essential component of the cardiac mechanical stretch sensor and is bound in a protein complex with parvin and PINCH proteins, the so-called ILK-PINCH-parvin (IPP) complex. We have recently shown that inactivation of ILK or β-parvin activity leads to heart failure in zebrafish via reduced protein kinase B (PKB/Akt) activation. Here, we show that PINCH proteins localize at sarcomeric Z disks and costameres in the zebrafish heart and skeletal muscle. To investigate the in vivo role of PINCH proteins for IPP complex stability and PKB signaling within the vertebrate heart, we inactivated PINCH1 and PINCH2 in zebrafish. Inactivation of either PINCH isoform independently leads to instability of ILK, loss of stretch-responsive anf and vegf expression, and progressive heart failure. The predominant cause of heart failure in PINCH morphants seems to be loss of PKB activity, since PKB phosphorylation at serine 473 is significantly reduced in PINCH-deficient hearts and overexpression of constitutively active PKB reconstitutes cardiac function in PINCH morphants. These findings highlight the essential function of PINCH proteins in controlling cardiac contractility by granting IPP/PKB-mediated signaling.
Collapse
|
79
|
Rooney N, Streuli CH. How integrins control mammary epithelial differentiation: a possible role for the ILK-PINCH-Parvin complex. FEBS Lett 2011; 585:1663-72. [PMID: 21570968 DOI: 10.1016/j.febslet.2011.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 01/15/2023]
Abstract
Differentiation into tissue-specific cell types occurs in response to numerous external signals. Integrins impart signals from the extracellular matrix microenvironment that are required for cell differentiation. However, the precise cytoplasmic transducers of these signals are yet to be understood properly. In lactating mammary epithelial cells, integrin-linked kinase has been identified as an indispensable integrin-signalling adaptor that enables the activation of Rac1, which is necessary for prolactin-induced milk protein expression. Here we use examples from various tissues to summarise possible mechanisms by which ILK and its binding partners PINCH and Parvin (ILK-PINCH-Parvin complex) could be required for Rac activation and mammary epithelial differentiation.
Collapse
Affiliation(s)
- Nicholas Rooney
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences and Manchester Breast Centre, University of Manchester, Manchester, UK
| | | |
Collapse
|
80
|
Lööf J, Rosell J, Bratthäll C, Doré S, Starkhammar H, Zhang H, Sun XF. Impact of PINCH expression on survival in colorectal cancer patients. BMC Cancer 2011; 11:103. [PMID: 21426571 PMCID: PMC3071339 DOI: 10.1186/1471-2407-11-103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 03/22/2011] [Indexed: 01/26/2023] Open
Abstract
Background The adaptor protein PINCH is overexpressed in the stroma of several types of cancer, and is an independent prognostic marker in colorectal cancer. In this study we further investigate the relationship of PINCH and survival regarding the response to chemotherapy in colorectal cancer. Results Paraffin-embedded tissue sections from 251 primary adenocarcinomas, 149 samples of adjacent normal mucosa, 57 samples of distant normal mucosa and 75 lymph node metastases were used for immunohistochemical staining. Stromal staining for PINCH increased from normal mucosa to primary tumour to metastasis. Strong staining in adjacent normal mucosa was related to worse survival independently of sex, age, tumour location, differentiation and stage (p = 0.044, HR, 1.60, 95% CI, 1.01-2.52). PINCH staining at the invasive margin tended to be related to survival (p = 0.051). In poorly differentiated tumours PINCH staining at the invasive margin was related to survival independently of sex, age and stage (p = 0.013, HR, 1.90, 95% CI, 1.14-3.16), while in better differentiated tumours it was not. In patients with weak staining, adjuvant chemotherapy was related to survival (p = 0.010, 0.013 and 0.013 in entire tumour area, invasive margin and inner tumour area, respectively), but not in patients with strong staining. However, in the multivariate analysis no such relationship was seen. Conclusions PINCH staining in normal adjacent mucosa was related to survival. Further, PINCH staining at the tumour invasive margin was related to survival in poorly differentiated tumours but not in better differentiated tumours, indicating that the impact of PINCH on prognosis was dependent on differentiation status.
Collapse
Affiliation(s)
- Jasmine Lööf
- Department of Oncology, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | |
Collapse
|
81
|
Kovalevich J, Tracy B, Langford D. PINCH: More than just an adaptor protein in cellular response. J Cell Physiol 2011; 226:940-7. [PMID: 20945343 DOI: 10.1002/jcp.22437] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Particularly interesting new cysteine-histidine-rich protein (PINCH) is a LIM-domain-only adaptor protein involved in protein recruitment, subsequent assembly of multi-protein complexes, and subcellular localization of these complexes. PINCH is developmentally regulated and its expression is critical for proper cytoskeletal organization and extracellular matrix adhesion. Although PINCH has no catalytic abilities, the PIP (PINCH-ILK-parvin) complex serves as a link between integrins and components of growth factor receptor kinase and GTPase signaling pathways. Accordingly, PINCH-mediated signaling induces cell migration, spreading, and survival. Further research on the signaling cascades affected by PINCH is key to appreciating its biological significance in cell fate and systems maintenance, as the developmental functions of PINCH may extend to disease states and the cellular response to damage. PINCH is implicated in a diverse array of diseases including renal failure, cardiomyopathy, nervous system degeneration and demyelination, and tumorigenesis. This review presents evidence for PINCH's structural and functional importance in normal cellular processes and in pathogenesis. The current data for PINCH expression in nervous system disease is substantial, but due to the complex and ubiquitous nature of this protein, our understanding of its function in pathology remains unclear. In this review, an overview of studies identifying PINCH binding partners, their molecular interactions, and the potentially overlapping role(s) of PINCH in cancer and in nervous system diseases will be discussed. Many questions remain regarding PINCH's role in cells. What induces cell-specific PINCH expression? How does PINCH expression contribute to cell fate in the central nervous system? More broadly, is PINCH expression in disease a good thing? Clarifying the ambiguous functions of PINCH expression in the central nervous system and other systems is important to understand more clearly signaling events both in health and disease.
Collapse
Affiliation(s)
- Jane Kovalevich
- Temple University School of Medicine, Department of Neuroscience, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
82
|
Phipps LE, Hino S, Muschel RJ. Targeting cell spreading: a method of sensitizing metastatic tumor cells to TRAIL-induced apoptosis. Mol Cancer Res 2011; 9:249-58. [PMID: 21296861 DOI: 10.1158/1541-7786.mcr-11-0021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a current focus for the development of new cancer therapies, because of its selective induction of apoptosis in cancer cells. TRAIL has previously been shown to be important for tumor cell clearance from the liver; however, many cancer cell lines show some resistance toward TRAIL, posing a problem for the future use of TRAIL therapies. In this study, we show that interfering with a cell's ability to attach and spread onto a matrix can sensitize tumor cells to TRAIL-induced apoptosis in vitro. We targeted different members of the integrin signaling pathway using siRNA or inhibitors, including β-integrins, talin, Src, and downstream survival pathways PI3K and MAPK. Targeting any of these molecules could sensitize both MDA-MB-231 human breast cancer cells and TRAIL-resistant 1205Lu melanoma cells to TRAIL-induced apoptosis in vitro. Transcriptionally targeting the cytoskeleton, using myocardin-related transcription factor depletion to disrupt the transcription of cytoskeletal proteins, also caused TRAIL sensitization in MDA-MB-231 cells. We showed that this sensitivity to TRAIL correlated with increased activation of the intrinsic pathway of apoptosis. Manipulation of cell spreading therefore presents a potential method by which disseminated tumor cells could be sensitized to TRAIL therapies in vivo.
Collapse
Affiliation(s)
- Laura E Phipps
- Gray Institute for Radiation Oncology and Biology, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | | | | |
Collapse
|
83
|
Wang D, Li Y, Wu C, Liu Y. PINCH1 is transcriptional regulator in podocytes that interacts with WT1 and represses podocalyxin expression. PLoS One 2011; 6:e17048. [PMID: 21390327 PMCID: PMC3044754 DOI: 10.1371/journal.pone.0017048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/17/2011] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND PINCH1, an adaptor protein containing five LIM domains, plays an important role in regulating the integrin-mediated cell adhesion, migration and epithelial-mesenchymal transition. PINCH1 is induced in the fibrotic kidney after injury, and it primarily localizes at the sites of focal adhesion. Whether it can translocate to the nucleus and directly participate in gene regulation is completely unknown. METHODOLOGY/PRINCIPAL FINDINGS Using cultured glomerular podocytes as a model system, we show that PINCH1 expression was induced by TGF-β1, a fibrogenic cytokine that promotes podocyte dysfunction. Interestingly, increased PINCH1 not only localized at the sites of focal adhesions, but also underwent nuclear translocation after TGF-β1 stimulation. This nuclear translocation of PINCH1 was apparently dependent on the putative nuclear export/localization signals (NES/NLS) at its C-terminus, as deletion or site-directed mutations abolished its nuclear shuttling. Co-immunoprecipitation and pull-down experiments revealed that PINCH1 interacted with Wilms tumor 1 protein (WT1), a nuclear transcription factor that is essential for regulating podocyte-specific gene expression in adult kidney. Interaction of PINCH1 and WT1 was mediated by the LIM1 domain of PINCH1 and C-terminal zinc-finger domain of WT1, which led to the suppression of the WT1-mediated podocalyxin expression in podocytes. PINCH1 also repressed podocalyxin gene transcription in a promoter-luciferase reporter assay. CONCLUSION/SIGNIFICANCE These results indicate that PINCH1 can shuttle into the nucleus from cytoplasm in podocytes, wherein it interacts with WT1 and suppresses podocyte-specific gene expression. Our studies reveal a previously unrecognized, novel function of PINCH1, in which it acts as a transcriptional regulator through controlling specific gene expression.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yingjian Li
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
84
|
Abstract
The development of multicellular organisms, as well as maintenance of organ architecture and function, requires robust regulation of cell fates. This is in part achieved by conserved signaling pathways through which cells process extracellular information and translate this information into changes in proliferation, differentiation, migration, and cell shape. Gene deletion studies in higher eukaryotes have assigned critical roles for components of the extracellular matrix (ECM) and their cellular receptors in a vast number of developmental processes, indicating that a large proportion of this signaling is regulated by cell-ECM interactions. In addition, genetic alterations in components of this signaling axis play causative roles in several human diseases. This review will discuss what genetic analyses in mice and lower organisms have taught us about adhesion signaling in development and disease.
Collapse
Affiliation(s)
- Sara A Wickström
- Paul Gerson Una Group, Skin Homeostasis and Ageing, Max Planck Institute for Biology of Ageing, 50937 Cologne, Germany.
| | | | | |
Collapse
|
85
|
Cortez V, Nair BC, Chakravarty D, Vadlamudi RK. Integrin-linked kinase 1: role in hormonal cancer progression. Front Biosci (Schol Ed) 2011; 3:788-96. [PMID: 21196412 PMCID: PMC3243948 DOI: 10.2741/s187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Integrin-linked kinase 1 (ILK1) is a serine/threonine kinase that plays important roles in a variety of cellular functions including cell survival, migration and angiogenesis. ILK1 is normally expressed in numerous tissues and activated by growth factors, cytokines and hormones. Dysregulation of ILK1 expression or function is found in several hormonal tumors including breast, ovary and prostate. Emerging evidence suggests that ILK overexpression promotes cellular transformation, cell survival, epithelial mesenchymal transition (EMT), and metastasis of hormonal cancer cells while inhibition of ILK1 reduces tumor growth and progression. The recent development of ILK1 inhibitors has provided novel mechanisms for blocking ILK1 signaling to curb metastasis and therapy resistance of hormonal tumors. This review will focus on recent advances made towards understanding the role of ILK signaling axis in progression of hormonal cancer.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
86
|
Liu Y, Liu J, Chen J, Cheng L, Cao Q, Zhu L, Sun Y, Liu Q, Li J. Molecular cloning and characterization of a novel splice variant of the LIM domain family gene, PINCH 2, in human testis. Mol Biotechnol 2010; 35:109-18. [PMID: 17435276 DOI: 10.1007/bf02686105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/29/2023]
Abstract
By hybridizing human adult testis cDNA microarrays with human adult and embryo testis cDNA probes, we identified a novel human testis gene, PINCH 2. PINCH 2 expression was 3.4-fold higher in adult than in fetal testis. The full length of its cDNA was 963 bp, with a 354-bp open reading frame (ORF), encoding a 117-amino acid protein. PINCH 2 was a splicing isoform of PINCH. It shared one exon, which encoded the LIM domain, with PINCH gene in human genome. Multitissue reverse transcriptase-polymerase chain reaction (RTPCR) analysis revealed that this gene was expressed variably in a wide range of tissues, with high expression levels in human adult testis. These results suggest that PINCH 2, a novel LIM domain-containing gene, may play an important role in testicular development/spermatogenesis.
Collapse
Affiliation(s)
- Yun Liu
- Institute of Stomatology, Nanjing Medical University, 140 Han Zhong Road, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Ito S, Takahara Y, Hyodo T, Hasegawa H, Asano E, Hamaguchi M, Senga T. The roles of two distinct regions of PINCH-1 in the regulation of cell attachment and spreading. Mol Biol Cell 2010; 21:4120-9. [PMID: 20926685 PMCID: PMC2993741 DOI: 10.1091/mbc.e10-05-0459] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PINCH-1, which comprises five LIM domains and the C-terminal region, is crucial for the regulation of cell–ECM adhesion. The LIM1 domain is essential for cell attachment, whereas C-terminal region is required for cell spreading by mediating the association with Rsu-1. PINCH-1–Rsu-1 pathway activates Rac to promote cell spreading. Cells attach to the extracellular matrix (ECM) through integrins to form focal adhesion complexes, and this process is followed by the extension of lamellipodia to enable cell spreading. PINCH-1, an adaptor protein essential for the regulation of cell–ECM adhesion, consists of five tandem LIM domains and a small C-terminal region. PINCH-1 is known to interact with integrin-linked kinase (ILK) and Ras suppressor protein 1 (Rsu-1); however, the precise mechanism by which this complex regulates cell–ECM adhesion is not fully understood. We report here that the LIM1 domain of PINCH-1, which associates with ILK to stabilize the expression of this protein, is sufficient for cell attachment but not for cell spreading. In contrast, the C-terminal region of PINCH-1, which binds to Rsu-1, plays a pivotal role in cell spreading but not in cell attachment. We also show that PINCH-1 associates with Rsu-1 to activate Rac1 and that Rac1 activation is necessary for cell spreading. Thus, these data reveal how specific domains of PINCH-1 direct two independent pathways: one utilizing ILK to allow cell attachment, and the other recruiting Rsu-1 to activate Rac1 in order to promote cell spreading.
Collapse
Affiliation(s)
- Satoko Ito
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
88
|
Sandfort V, Eke I, Cordes N. The role of the focal adhesion protein PINCH1 for the radiosensitivity of adhesion and suspension cell cultures. PLoS One 2010; 5. [PMID: 20927395 PMCID: PMC2946922 DOI: 10.1371/journal.pone.0013056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/06/2010] [Indexed: 11/19/2022] Open
Abstract
Focal adhesion (FA) signaling mediated by adhesion to extracellular matrix and growth factor receptors contributes to the regulation of the cellular stress response to external stimuli. Critical to focal adhesion assembly and signaling is the adapter protein PINCH1. To evaluate whether the prosurvival function of PINCH1 in radiation cell survival depends on cell adhesion, we examined PINCH1fl/fl and PINCH1−/− mouse embryonic fibroblasts and human cancer cell lines. Here, we found that the enhanced cellular radiosensitivity mediated by PINCH1 depletion observed under adhesion conditions is conserved when cells are irradiated under suspension conditions. This unsuspected finding could not be explained by the observed modification of adhesion and growth factor associated signaling involving FAK, Paxillin, p130CAS, Src, AKT, GSK3β and ERK1/2 under suspension and serum withdrawal relative to adhesion conditions with serum. Our data suggest that the adapter protein PINCH1 critically participates in the regulation of the cellular radiosensitivity of normal and malignant cells similarly under adhesion and suspension conditions.
Collapse
Affiliation(s)
- Veit Sandfort
- OncoRay - Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Department of Medicine and Cardiology, Heart Center Dresden University Hospital, Dresden University of Technology, Dresden, Germany
| | - Iris Eke
- OncoRay - Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Nils Cordes
- OncoRay - Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- * E-mail:
| |
Collapse
|
89
|
Expression of parvin-beta is a prognostic factor for patients with urothelial cell carcinoma of the upper urinary tract. Br J Cancer 2010; 103:852-60. [PMID: 20736946 PMCID: PMC2966628 DOI: 10.1038/sj.bjc.6605835] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Parvin-β (ParvB), a potential tumour suppressor gene, is a focal adhesion protein. We evaluated the role of ParvB in the upper urinary tract urothelial cell carcinoma (UUT-UC). Methods: ParvB mRNA and proteins levels in UUT-UC tissue were investigated by quantitative real-time polymerase chain reaction and western blot analysis, respectively. In addition, the expression of ParvB in tissues from patients with UUT-UC at different stages was evaluated by immunohistochemistry. Furthermore, biological functions of ParvB in urothelial cancer cells were investigated using a doxycycline-inducible overexpression system and siRNA. Results: Western blot and mRNA analysis showed downregulation of ParvB expression in frozen UUT-UC tissue. Immunohistochemistry revealed high staining intensity of ParvB in normal urothelium, which decreased markedly at advanced stages of UUT-UC (P=0.0000). Moreover, ParvB was an independent prognostic indicator for disease-specific survival of patients with UUT-UC. Functional assays indicated that overexpression of ParvB in an urothelial cancer cell line resulted in decreased cell growth rate and ability to migrate. In contrast, knockdown of ParvB expression increased cell migration ability. Conclusions: Downregulation of ParvB expression significantly increased urothelial cancer cell growth and migration. Downexpression of ParvB level in UUT-UC correlated with tumour stage, and was an independent unfavourable prognostic factor for disease-specific survival of patients with UUT-UC.
Collapse
|
90
|
Pontier SM, Huck L, White DE, Rayment J, Sanguin-Gendreau V, Hennessy B, Zuo D, St-Arnaud R, Mills GB, Dedhar S, Marshall CJ, Muller WJ. Integrin-linked kinase has a critical role in ErbB2 mammary tumor progression: implications for human breast cancer. Oncogene 2010; 29:3374-85. [PMID: 20305688 DOI: 10.1038/onc.2010.86] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Elevated expression of the integrin-linked kinase (ILK) has been observed in a variety of cancers and has been further correlated with poor clinical outcome. Here, we show that mammary epithelial disruption of ILK results in a profound block in mammary tumor induction. Consistent with these observations, inhibition of ILK function in ErbB2-expressing cells with small molecule inhibitor or RNA interference resulted in profound block in their in vitro invasive properties due to the induction of apoptotic cell death. The rare ILK-deficient tumors that eventually arose overcame this block in tumor induction by an upregulation of ErB3 phosphorylation. These observations provide direct evidence that ILK has a critical role in the initiation phase of ErbB2 tumor induction.
Collapse
Affiliation(s)
- S M Pontier
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Esfandiarei M, Yazdi SA, Gray V, Dedhar S, van Breemen C. Integrin-linked kinase functions as a downstream signal of platelet-derived growth factor to regulate actin polymerization and vascular smooth muscle cell migration. BMC Cell Biol 2010; 11:16. [PMID: 20178627 PMCID: PMC2838830 DOI: 10.1186/1471-2121-11-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 02/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background Vascular smooth muscle cell migration and accumulation in response to growth factors extensively contribute to the development of intimal thickening within the vessel wall. Cumulative evidence has shown that actin cytoskeleton polymerization and rearrangement are critical steps during cellular spreading and migration. Integrin-linked kinase, an intracellular serine/threonine kinase, is a cytoplasmic interactor of integrin beta-1 and beta-3 receptors regulating cell-cell and/or cell-extracellular matrix interaction, cell contraction, extracellular matrix modification, and cell spreading and migration in response to various stimuli. However, the regulatory role of ILK during vascular smooth muscle cell migration and the importance of integrin signaling in occlusive vascular diseases are not yet fully elucidated. Results In the present study, we report that integrin-linked kinase controls mouse aortic smooth muscle cell migration in response to platelet-derived growth factor. We have also identified p38 mitogen activated protein kinase as a downstream signaling pathway of the integrin-linked kinase that regulates platelet-derived growth factor-induced actin polymerization and smooth muscle cell migration. Conclusion This study will provide new insights into the potential therapeutic value of modulating integrin signaling in an attempt to block or delay smooth muscle cell migration and the progression of vascular diseases.
Collapse
Affiliation(s)
- Mitra Esfandiarei
- Child & Family Research Institute, Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | |
Collapse
|
92
|
The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! EMBO J 2009; 29:281-91. [PMID: 20033063 DOI: 10.1038/emboj.2009.376] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 11/23/2009] [Indexed: 12/29/2022] Open
Abstract
Dynamic interactions of cells with their environment regulate multiple aspects of tissue morphogenesis and function. Integrins are the major class of cell surface receptors that recognize and bind extracellular matrix proteins, resulting in the engagement and organization of the cytoskeleton as well as activation of signalling pathways to regulate cell behaviour and morphogenetic processes. The ternary complex of integrin-linked kinase (ILK), PINCH, and parvin (IPP complex), which was identified more than a decade ago, interacts with the cytoplasmic tail of beta integrins and couples them to the actin cytoskeleton. In addition, ILK has been shown to act as a serine/threonine kinase and to directly activate several signalling pathways downstream of integrins. However, the kinase activity of ILK and the precise functions of the IPP complex have remained elusive and controversial. This review focuses on the recent advances made towards understanding the specialized roles this complex and its individual components have acquired during evolution.
Collapse
|
93
|
Petricca G, Leppilampi M, Jiang G, Owen GR, Wiebe C, Tu Y, Koivisto L, Häkkinen L, Wu C, Larjava H. Localization and potential function of kindlin-1 in periodontal tissues. Eur J Oral Sci 2009; 117:518-27. [PMID: 19758247 DOI: 10.1111/j.1600-0722.2009.00651.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Kindlin-1 is an intracellular focal adhesion protein that regulates the actin cytoskeleton. Patients suffering from Kindler syndrome have a homologous mutation of the kindlin-1 gene and develop skin blisters, periodontal disease, and intestinal complications because of deficient adhesion of the basal epithelial cells. We investigated kindlin-1 localization in periodontal tissue and its functions in cultured keratinocytes and showed that kindlin-1 co-localizes with migfilin and paxillin in the basal epithelial cells of oral mucosa and in cultured keratinocytes. The kindlin-1-deficient oral mucosal tissue from a patient with Kindler syndrome showed a complete lack of paxillin and reduced migfilin immunostaining in the basal keratinocytes. Co-immunoprecipitation showed that migfilin directly interacted with kindlin-1. RNA interference-induced kindlin-1 deficiency in keratinocytes led to an altered distribution of migfilin-containing focal adhesions, reduced cell spreading, decreased cell proliferation, and decelerated cell migration. Disruption of microtubules in the kindlin-1-deficient cells further reduced cell spreading, suggesting that microtubules can partially compensate for kindlin-1 deficiency. Kindlin-1 supported mature cell-extracellular matrix adhesions of keratinocytes, as downregulation of kindlin-1 expression significantly reduced the cell-adhesion strength. In summary, kindlin-1 interacts with migfilin and plays a crucial role in actin-dependent keratinocyte cell adhesion essential for epidermal and periodontal health.
Collapse
Affiliation(s)
- Giorgio Petricca
- Laboratory of Periodontal Biology, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Chiswell BP, Stiegler AL, Razinia Z, Nalibotski E, Boggon TJ, Calderwood DA. Structural basis of competition between PINCH1 and PINCH2 for binding to the ankyrin repeat domain of integrin-linked kinase. J Struct Biol 2009; 170:157-63. [PMID: 19963065 DOI: 10.1016/j.jsb.2009.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 11/30/2009] [Accepted: 12/02/2009] [Indexed: 11/16/2022]
Abstract
Formation of a heterotrimeric IPP complex composed of integrin-linked kinase (ILK), the LIM domain protein PINCH, and parvin is important for signaling through integrin adhesion receptors. Mammals possess two PINCH genes that are expressed simultaneously in many tissues. PINCH1 and PINCH2 have overlapping functions and can compensate for one another in many settings; however, isoform-specific functions have been reported and it is proposed that association with a PINCH1- or PINCH2-containing IPP complex may provide a bifurcation point in integrin signaling promoting different cellular responses. Here we report that the LIM1 domains of PINCH1 and PINCH2 directly compete for the same binding site on the ankyrin repeat domain (ARD) of ILK. We determined the 1.9A crystal structure of the PINCH2 LIM1 domain complexed with the ARD of ILK, and show that disruption of this interface by point mutagenesis reduces binding in vitro and alters localization of PINCH2 in cells. These studies provide further evidence for the role of the PINCH LIM1 domain in association with ILK and highlight direct competition as one mechanism for regulating which PINCH isoform predominates in IPP complexes. Differential regulation of PINCH1 and PINCH2 expression may therefore provide a means for altering cellular integrin signaling pathways.
Collapse
Affiliation(s)
- Brian P Chiswell
- Department of Pharmacology, 333 Cedar Street, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
95
|
Li Y, Tan X, Dai C, Stolz DB, Wang D, Liu Y. Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis. J Am Soc Nephrol 2009; 20:1907-1918. [PMID: 19541809 PMCID: PMC2736781 DOI: 10.1681/asn.2008090930] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 04/16/2009] [Indexed: 01/28/2023] Open
Abstract
Integrin-linked kinase (ILK) is an intracellular serine/threonine protein kinase that regulates cell adhesion, survival, and epithelial-to-mesenchymal transition (EMT). In this study, we investigated the kinase activity of ILK during tubular EMT induced by TGF-beta1 and examined the therapeutic potential of an ILK inhibitor in obstructive nephropathy. TGF-beta1 induced a biphasic activation of ILK in renal tubular epithelial cells, with rapid activation starting at 5 min and the second wave of activation peaking at 24 h; the latter paralleled the induction of ILK protein expression. Pharmacologic inhibition of ILK with small-molecule inhibitor QLT-0267 abolished TGF-beta1-induced phosphorylation of Akt and glycogen synthase kinase-3beta, suppressed cyclin D1 expression, and largely restored the expression of E-cadherin and zonula occludens 1. Inhibition of ILK also blocked TGF-beta1-mediated induction of fibronectin, Snail1, plasminogen activator inhibitor 1, and matrix metalloproteinase 2. In a mouse model of obstructive nephropathy, administration of QLT-0267 inhibited beta-catenin accumulation; suppressed Snail1, alpha-smooth muscle actin, fibronectin, vimentin, and type I and type III collagen expression; and reduced total tissue collagen content. Inhibition of ILK did not affect kidney structure or function in normal mice. These findings suggest that increased ILK activity mediates EMT and the progression of renal fibrosis. Pharmacologic inhibition of ILK signaling may hold therapeutic potential for fibrotic kidney diseases.
Collapse
Affiliation(s)
| | | | | | - Donna B. Stolz
- Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
96
|
Tucker KL, Kaiser WJ, Bergeron AL, Hu H, Dong JF, Tan TH, Gibbins JM. Proteomic analysis of resting and thrombin-stimulated platelets reveals the translocation and functional relevance of HIP-55 in platelets. Proteomics 2009; 9:4340-54. [PMID: 19725075 DOI: 10.1002/pmic.200900024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 06/25/2009] [Indexed: 11/08/2022]
Abstract
The platelet surface is a dynamic interface that changes rapidly in response to stimuli to co-ordinate the formation of thrombi at sites of vascular injury. Tight control is essential as loss of organisation may result in the inappropriate formation of thrombi (thrombosis) or excessive bleeding. In this paper we describe the comparative analysis of resting and thrombin-stimulated platelet membrane proteomes and associated proteins to identify proteins important to platelet function. Surface proteins were labelled using a biotin tag and isolated by NeurtrAvidin affinity chromatography. Liquid phase IEF and SDS-PAGE were used to separate proteins, and bands of increased intensity in the stimulated platelet fractions were digested and identified by FT-ICR mass spectrometry. Novel proteins were identified along with proteins known to be translocated to the platelet surface. Furthermore, many platelet proteins revealed changes in location associated with function, including G6B and Hip-55. HIP-55 is an SH3-binding protein important in T-cell receptor signalling. Further analysis of HIP-55 revealed that this adaptor protein becomes increasingly associated with both Syk and integrin beta3 upon platelet activation. Analysis of HIP-55 deficient platelets revealed reduced fibrinogen binding upon thrombin stimulation, suggesting HIP-55 to be an important regulator of platelet function.
Collapse
Affiliation(s)
- Katherine L Tucker
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, The University of Reading, Whiteknights, Reading, UK.
| | | | | | | | | | | | | |
Collapse
|
97
|
Wang J, Zuo X, Yu P, Byeon IJL, Jung J, Wang X, Dyba M, Seifert S, Schwieters CD, Qin J, Gronenborn AM, Wang YX. Determination of multicomponent protein structures in solution using global orientation and shape restraints. J Am Chem Soc 2009; 131:10507-15. [PMID: 19722627 PMCID: PMC2873192 DOI: 10.1021/ja902528f] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Determining architectures of multicomponent proteins or protein complexes in solution is a challenging problem. Here we report a methodology that simultaneously uses residual dipolar couplings (RDC) and the small-angle X-ray scattering (SAXS) restraints to mutually orient subunits and define the global shape of multicomponent proteins and protein complexes. Our methodology is implemented in an efficient algorithm and demonstrated using five examples. First, we demonstrate the general approach with simulated data for the HIV-1 protease, a globular homodimeric protein. Second, we use experimental data to determine the structures of the two-domain proteins L11 and gammaD-Crystallin, in which the linkers between the domains are relatively rigid. Finally, complexes with K(d) values in the high micro- to millimolar range (weakly associating proteins), such as a homodimeric GB1 variant, and with K(d) values in the nanomolar range (tightly bound), such as the heterodimeric complex of the ILK ankyrin repeat domain (ARD) and PINCH LIM1 domain, respectively, are evaluated. Furthermore, the proteins or protein complexes that were determined using this method exhibit better solution structures than those obtained by either NMR or X-ray crystallography alone as judged based on the pair-distance distribution functions (PDDF) calculated from experimental SAXS data and back-calculated from the structures.
Collapse
Affiliation(s)
- Jinbu Wang
- Protein Nucleic Acid Interaction Section, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - Xiaobing Zuo
- Protein Nucleic Acid Interaction Section, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - Ping Yu
- Protein Nucleic Acid Interaction Section, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
- SAIC-Frederick, Inc., National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - In-Ja L. Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1050 BST3, Pittsburg, PA 15261
| | - Jinwon Jung
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1050 BST3, Pittsburg, PA 15261
| | - Xiaoxia Wang
- Structural Biology Program, Department of Molecular Cardiology, Lerner Research Institute, NB20, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Marzena Dyba
- Biophysics Resource, Structural Biophysics Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
- SAIC-Frederick, Inc., National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - Soenke Seifert
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Charles D. Schwieters
- Division of Computational Bioscience, Building 12A, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892-5624
| | - Jun Qin
- Structural Biology Program, Department of Molecular Cardiology, Lerner Research Institute, NB20, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Angela M. Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1050 BST3, Pittsburg, PA 15261
| | - Yun-Xing Wang
- Protein Nucleic Acid Interaction Section, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
98
|
Schotman H, Karhinen L, Rabouille C. Integrins mediate their unconventional, mechanical-stress-induced secretion via RhoA and PINCH in Drosophila. J Cell Sci 2009; 122:2662-72. [PMID: 19584096 DOI: 10.1242/jcs.039347] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the epithelium remodelling such as the flattening of the Drosophila follicular epithelium, the alpha-integrin subunits are unconventionally secreted through a dGRASP-dependent route that is built de novo. The biogenetic process starts with the upregulation of a small subset of targeted mRNAs, including dgrasp. Here, we show that dgrasp mRNA upregulation is triggered by the tension of the underlying oocyte and by applied external forces at the basal side of the follicular epithelium. We show that integrins are also involved in dgrasp mRNA upregulation and the epithelium remodelling. Tension leads to the recruitment of RhoA to the plasma membrane, where it participates in its remodelling. The LIM protein PINCH can cycle to the nucleus and is involved in dgrasp mRNA upregulation. We propose that integrins are involved in triggering the biogenesis of their own unconventional secretion route that they use to strengthen adhesion and ensure epithelial integrity at the next stages of development, perhaps by acting as mechanosensors of the underlying tension through RhoA and PINCH.
Collapse
Affiliation(s)
- Hans Schotman
- The Cell Microscopy Centre, Department of Cell Biology and Institute of Biomembrane, University Medical Centre Utrecht, AZU Rm G02.525, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | | | | |
Collapse
|
99
|
Yam JWP, Tse EYT, Ng IOL. Role and significance of focal adhesion proteins in hepatocellular carcinoma. J Gastroenterol Hepatol 2009; 24:520-30. [PMID: 19368632 DOI: 10.1111/j.1440-1746.2009.05813.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Focal adhesions are structural links between the extracellular matrix and actin cytoskeleton. They are important sites where dynamic alterations of proteins in the focal contacts are involved during cell movement. Focal adhesions are composed of diverse molecules, for instance, receptors, structural proteins, adaptors, GTPase, kinases and phosphatases. These molecules play critical roles in normal physiological events such as cellular adhesion, movement, cytoskeletal structure and intracellular signaling pathways. In cancers, aberrant expression and altered functions of focal adhesion proteins contribute to adverse tumor behavior. It is evident that these proteins do not function alone, but rather associate and work together in the process of tumor development and cancer metastasis. Focal adhesion proteins have been shown to play critical roles in hepatocellular carcinoma. Understanding the molecular interactions and mechanisms of the interconnected focal adhesion proteins is of particular importance in understanding mechanisms underlying hepatocellular carcinoma progression and development of potential effective treatment.
Collapse
Affiliation(s)
- Judy Wai Ping Yam
- Liver Cancer and Hepatitis Research Laboratory, Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | |
Collapse
|
100
|
Yamazaki T, Masuda J, Omori T, Usui R, Akiyama H, Maru Y. EphA1 interacts with integrin-linked kinase and regulates cell morphology and motility. J Cell Sci 2009; 122:243-55. [PMID: 19118217 DOI: 10.1242/jcs.036467] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Eph-ephrin receptor-ligand system is implicated in cell behavior and morphology. EphA1 is the founding member of the Eph receptors, but little is known about its function. Here, we show that activation of EphA1 kinase inhibits cell spreading and migration in a RhoA-ROCK-dependent manner. We also describe a novel interaction between EphA1 and integrin-linked kinase (ILK), a mediator of interactions between integrin and the actin cytoskeleton. The C-terminal sterile alpha motif (SAM) domain of EphA1 is required and the ankyrin region of ILK is sufficient for the interaction between EphA1 and ILK. The interaction is independent of EphA1 kinase activity but dependent on stimulation of the EphA1 ligand ephrin-A1. Activation of EphA1 kinase resulted in a decrease of ILK activity. Finally, we demonstrated that expression of a kinase-active form of ILK (S343D) rescued the EphA1-mediated spreading defect, and attenuated RhoA activation. These results suggest that EphA1 regulates cell morphology and motility through the ILK-RhoA-ROCK pathway.
Collapse
Affiliation(s)
- Tohru Yamazaki
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | | | | | |
Collapse
|