51
|
Cruet-Hennequart S, Gallagher K, Sokòl AM, Villalan S, Prendergast AM, Carty MP. DNA polymerase eta, a key protein in translesion synthesis in human cells. Subcell Biochem 2010; 50:189-209. [PMID: 20012583 DOI: 10.1007/978-90-481-3471-7_10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genomic DNA is constantly damaged by exposure to exogenous and endogenous agents. Bulky adducts such as UV-induced cyclobutane pyrimidine dimers (CPDs) in the template DNA present a barrier to DNA synthesis by the major eukaryotic replicative polymerases including DNA polymerase delta. Translesion synthesis (TLS) carried out by specialized DNA polymerases is an evolutionarily conserved mechanism of DNA damage tolerance. The Y family of DNA polymerases, including DNA polymerase eta (Pol eta), the subject of this chapter, play a key role in TLS. Mutations in the human POLH gene encoding Pol eta underlie the genetic disease xeroderma pigmentosum variant (XPV), characterized by sun sensitivity, elevated incidence of skin cancer, and at the cellular level, by delayed replication and hypermutability after UV-irradiation. Pol eta is a low fidelity enzyme when copying undamaged DNA, but can carry out error-free TLS at sites of UV-induced dithymine CPDs. The active site of Pol eta has an open conformation that can accommodate CPDs, as well as cisplatin-induced intrastrand DNA crosslinks. Pol eta is recruited to sites of replication arrest in a tightly regulated process through interaction with PCNA. Pol eta-deficient cells show strong activation of downstream DNA damage responses including ATR signaling, and accumulate strand breaks as a result of replication fork collapse. Thus, Pol eta plays an important role in preventing genome instability after UV- and cisplatin-induced DNA damage. Inhibition of DNA damage tolerance pathways in tumors might also represent an approach to potentiate the effects of DNA damaging agents such as cisplatin.
Collapse
Affiliation(s)
- Séverine Cruet-Hennequart
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
52
|
Liu Y, Fang Y, Shao H, Lindsey-Boltz L, Sancar A, Modrich P. Interactions of human mismatch repair proteins MutSalpha and MutLalpha with proteins of the ATR-Chk1 pathway. J Biol Chem 2009; 285:5974-82. [PMID: 20029092 PMCID: PMC2820822 DOI: 10.1074/jbc.m109.076109] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
At clinically relevant doses, chemotherapeutic SN1 DNA methylating agents induce an ATR-mediated checkpoint response in human cells that is dependent on functional MutSα and MutLα. Deficiency of either mismatch repair activity renders cells highly resistant to this class of drug, but the mechanisms linking mismatch repair to checkpoint activation have remained elusive. In this study we have systematically examined the interactions of human MutSα and MutLα with proteins of the ATR-Chk1 pathway using both nuclear extracts and purified proteins. Using nuclear co-immunoprecipitation, we have detected interaction of MutSα with ATR, TopBP1, Claspin, and Chk1 and interaction of MutLα with TopBP1 and Claspin. We were unable to detect interaction of MutSα or MutLα with Rad17, Rad9, or replication protein A in the extract system. Use of purified proteins confirmed direct interaction of MutSα with ATR, TopBP1, and Chk1 and of MutLα with TopBP1. MutSα-Claspin and MutLα-Claspin interactions were not demonstrable with purified proteins, suggesting that extract interactions are indirect or depend on post-translational modification. Use of a modified chromatin immunoprecipitation assay showed that proliferating cell nuclear antigen, ATR, TopBP1, and Chk1 are recruited to chromatin in a MutLα- and MutSα-dependent fashion after N-methyl-N′-nitro-N-nitrosoguanidine treatment. However, chromatin enrichment of replication protein A, Claspin, Rad17-RFC, and Rad9-Rad1-Hus1 was not detected in these experiments. Although our failure to observe enrichment of the latter activities could be due to sensitivity limitations, these observations may indicate a novel mechanism for ATR activation.
Collapse
Affiliation(s)
- Yiyong Liu
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
53
|
Auerbach PA, Demple B. Roles of Rev1, Pol zeta, Pol32 and Pol eta in the bypass of chromosomal abasic sites in Saccharomyces cerevisiae. Mutagenesis 2009; 25:63-9. [PMID: 19901007 DOI: 10.1093/mutage/gep045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Translesion synthesis (TLS) on DNA is a process by which potentially cytotoxic replication-blocking lesions are bypassed, but at the risk of increased mutagenesis. The exact in vivo role of the individual TLS enzymes in Saccharomyces cerevisiae has been difficult to determine from previous studies due to differing results from the variety of systems used. We have generated a series of S.cerevisiae strains in which each of the TLS-related genes REV1, REV3, REV7, RAD30 and POL32 was deleted, and in which chromosomal apyrimidinic sites were generated during normal cell growth by the activity of altered forms of human uracil-DNA glycosylase that remove undamaged cytosines or thymines. Deletion of REV1, REV3 or REV7 resulted in slower growth dependent on (rev3Delta and rev7Delta) or enhanced by (rev1Delta) expression of the mutator glycosylases and a nearly complete abolition of glycosylase-induced mutagenesis. Deletion of POL32 resulted in cell death when the mutator glycosylases were expressed and, in their absence, diminished spontaneous mutagenesis. RAD30 appeared to be unnecessary for mutagenesis in response to abasic sites, as deleting this gene caused no significant change in either the mutation rates or the mutational spectra due to glycosylase expression.
Collapse
Affiliation(s)
- Paul A Auerbach
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
54
|
Waters LS, Minesinger BK, Wiltrout ME, D'Souza S, Woodruff RV, Walker GC. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 2009; 73:134-54. [PMID: 19258535 PMCID: PMC2650891 DOI: 10.1128/mmbr.00034-08] [Citation(s) in RCA: 457] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA repair and DNA damage tolerance machineries are crucial to overcome the vast array of DNA damage that a cell encounters during its lifetime. In this review, we summarize the current state of knowledge about the eukaryotic DNA damage tolerance pathway translesion synthesis (TLS), a process in which specialized DNA polymerases replicate across from DNA lesions. TLS aids in resistance to DNA damage, presumably by restarting stalled replication forks or filling in gaps that remain in the genome due to the presence of DNA lesions. One consequence of this process is the potential risk of introducing mutations. Given the role of these translesion polymerases in mutagenesis, we discuss the significant regulatory mechanisms that control the five known eukaryotic translesion polymerases: Rev1, Pol zeta, Pol kappa, Pol eta, and Pol iota.
Collapse
Affiliation(s)
- Lauren S Waters
- Department of Biology, Massachusetts Institute of Technology, Building 68, Room 653, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
55
|
Komori K, Takagi Y, Sanada M, Lim TH, Nakatsu Y, Tsuzuki T, Sekiguchi M, Hidaka M. A novel protein, MAPO1, that functions in apoptosis triggered by O6-methylguanine mispair in DNA. Oncogene 2009; 28:1142-50. [PMID: 19137017 DOI: 10.1038/onc.2008.462] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
O(6)-Methylguanine produced in DNA induces mutation due to its ambiguous base-pairing properties during DNA replication. To suppress such an outcome, organisms possess a mechanism to eliminate cells carrying O(6)-methylguanine by inducing apoptosis that requires the function of mismatch repair proteins. To identify other factors involved in this apoptotic process, we performed retrovirus-mediated gene-trap mutagenesis and isolated a mutant that acquired resistance to a simple alkylating agent, N-methyl-N-nitrosourea (MNU). However, it was still sensitive to methyl methanesulfonate, 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea, etoposide and ultraviolet irradiation. Moreover, the mutant exhibited an increased mutant frequency after exposure to MNU. The gene responsible was identified and designated Mapo1 (O(6)-methylguanine-induced apoptosis 1). When the expression of the gene was inhibited by small interfering RNA, MNU-induced apoptosis was significantly suppressed. In the Mapo1-defective mutant cells treated with MNU, the mitochondrial membrane depolarization and caspase-3 activation were severely suppressed, although phosphorylation of p53, CHK1 and histone H2AX was observed. The orthologs of the Mapo1 gene are present in various organisms from nematode to humans. Both mouse and human MAPO1 proteins expressed in cells localize in the cytoplasm. We therefore propose that MAPO1 may play a role in the signal-transduction pathway of apoptosis induced by O(6)-methylguanine-mispaired lesions.
Collapse
Affiliation(s)
- K Komori
- Department of Molecular Biology, Biomolecular Engineering Research Institute, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Xeroderma Pigmentosum Variant, XP-V: Its Product and Biological Roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 637:93-102. [DOI: 10.1007/978-0-387-09599-8_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
57
|
Mojas N, Lopes M, Jiricny J. Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Genes Dev 2008; 21:3342-55. [PMID: 18079180 DOI: 10.1101/gad.455407] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
O(6)-Methylguanine ((Me)G) is a highly cytotoxic DNA modification generated by S(N)1-type methylating agents. Despite numerous studies implicating DNA replication, mismatch repair (MMR), and homologous recombination (HR) in (Me)G toxicity, its mode of action has remained elusive. We studied the molecular transactions in the DNA of yeast and mammalian cells treated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Although replication fork progression was unaffected in the first cell cycle after treatment, electron microscopic analysis revealed an accumulation of (Me)G- and MMR-dependent single-stranded DNA (ssDNA) gaps in newly replicated DNA. Progression into the second cell cycle required HR, while the following G(2) arrest required the continued presence of (Me)G. Yeast cells overcame this block, while mammalian cells generally failed to recover, and those that did contained multiple sister chromatid exchanges. Notably, the arrest could be abolished by removal of (Me)G after the first S phase. These new data provide compelling support for the hypothesis that MMR attempts to correct (Me)G/C or (Me)G/T mispairs arising during replication. Due to the persistence of (Me)G in the exposed template strand, repair synthesis cannot take place, which leaves single-stranded gaps behind the replication fork. During the subsequent S phase, these gaps cause replication fork collapse and elicit recombination and cell cycle arrest.
Collapse
Affiliation(s)
- Nina Mojas
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
58
|
Fernandes PH, Lloyd RS. Mutagenic bypass of the butadiene-derived 2'-deoxyuridine adducts by polymerases eta and zeta. Mutat Res 2007; 625:40-9. [PMID: 17586533 PMCID: PMC2180188 DOI: 10.1016/j.mrfmmm.2007.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 05/08/2007] [Accepted: 05/10/2007] [Indexed: 01/13/2023]
Abstract
Butadiene is a ubiquitous environmental chemical carcinogen that when activated to its monoepoxide intermediate can react with the N3 position of cytosine, resulting in two stereoisomeric adducted bases that rapidly deaminate to N3 2'-deoxyuridine lesions. We have previously shown that replication of DNAs containing these adducts through mammalian cells resulted in approximately 97% mutagenicity, predominantly C to T transitions. Since replicative DNA polymerases were blocked by these lesions in vitro, translesional polymerases were assessed for their ability to bypass these adducts. While polymerases iota, kappa and zeta were significantly blocked one nucleotide prior to the lesion, pol eta incorporated nucleotides opposite the adducts with a preference for insertion of a G or A. Following polymerase dissociation and reassociation, pol eta was also able to extend primers with mispaired termini opposite the lesions, with extensions from the A and T mismatched primer termini being the most efficient. Pol zeta was also able to extend primers containing all mismatched nucleotides opposite the lesions, with the most efficient extension occurring off of the A mismatched primer.
Collapse
Affiliation(s)
- Priscilla H. Fernandes
- Center for Research on Occupational and Environmental Toxicology and the Department of Molecular and Medical Genetics, Portland, Oregon 97239
| | - R. Stephen Lloyd
- Center for Research on Occupational and Environmental Toxicology and the Department of Molecular and Medical Genetics, Portland, Oregon 97239
| |
Collapse
|
59
|
Picher AJ, Blanco L. Human DNA polymerase lambda is a proficient extender of primer ends paired to 7,8-dihydro-8-oxoguanine. DNA Repair (Amst) 2007; 6:1749-56. [PMID: 17686665 DOI: 10.1016/j.dnarep.2007.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 11/24/2022]
Abstract
Pol lambda is a DNA repair enzyme with a high affinity for dNTPs, an intrinsic dRP lyase activity, a BRCT domain involved in interactions with NHEJ factors, and also capable to interact with the PCNA processivity factor. Based on this potential, Pol lambda could play a role in BER, V(D)J recombination, NHEJ and TLS. Here we show that human Pol lambda uses a templating 7,8-dihydro-8-oxoguanine (8oxoG) base, a common mutagenic form of oxidative damage, as efficiently as an undamaged dG, but giving rise to the alternative insertion of either dAMP or dCMP. However, Pol lambda strongly discriminated against the extension of the mutagenic 8oxoG:dAMP pair. Conversely, Pol lambda readily extended the non-mutagenic 8oxoG:dCMP pair with an efficiency that was even higher than that displayed on undamaged dG:dCMP pair. A similar capacity for non-mutagenic extension was also shown to occur in the case of O6-methylguanine (m6G), a mutagenic and cytotoxic DNA adduct. A comparison of these novel properties of human Pol lambda with those of other DNA polymerases involved in TLS will be discussed. Interestingly, when double-strand breaks are associated to base damage, modifications as 8oxoG could be eventually part of the synapsis required to join ends, and therefore, the capacity of Pol lambda either to insert opposite 8oxoG or to extend correct base pairs containing such a damage could be beneficial for its role in NHEJ.
Collapse
Affiliation(s)
- Angel J Picher
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, 28049 Madrid, Spain
| | | |
Collapse
|
60
|
Eoff RL, Angel KC, Egli M, Guengerich FP. Molecular basis of selectivity of nucleoside triphosphate incorporation opposite O6-benzylguanine by sulfolobus solfataricus DNA polymerase Dpo4: steady-state and pre-steady-state kinetics and x-ray crystallography of correct and incorrect pairing. J Biol Chem 2007; 282:13573-84. [PMID: 17337730 DOI: 10.1074/jbc.m700656200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work has shown that Sulfolobus solfataricus DNA polymerase Dpo4-catalyzed bypass of O(6)-methylguanine (O(6)-MeG) proceeds largely in an accurate but inefficient manner with a "wobble" base pairing between C and O(6)-MeG (Eoff, R. L., Irimia, A., Egli, M., and Guengerich, F. P. (2007) J. Biol. Chem. 282, 1456-1467). We considered here the bulky lesion O(6)-benzylguanine (O(6)-BzG) in DNA and catalysis by Dpo4. Mass spectrometry analysis of polymerization products revealed that the enzyme bypasses and extends across from O(6)-BzG, with C the major product ( approximately 70%) and some T and A ( approximately 15% each) incorporated opposite the lesion. Steady-state kinetic parameters indicated that Dpo4 was 7-, 5-, and 27-fold more efficient at C incorporation opposite O(6)-BzG than T, A, or G, respectively. In transient state kinetic analysis, the catalytic efficiency was decreased 62-fold for C incorporation opposite O(6)-BzG relative to unmodified DNA. Crystal structures reveal wobble pairing between C and O(6)-BzG. Pseudo-"Watson-Crick" pairing was observed between T and O(6)-BzG. Two other structures illustrate a possible mechanism for the accommodation of a +1 frameshift in the Dpo4 active site. The overall effect of O(6)-BzG is to decrease the efficiency of bypass by roughly an order of magnitude in every case except correct bypass, where the effect is not as pronounced. By comparison, Dpo4 is more accurate but no more efficient than model replicative polymerases, such as bacteriophage T7(-) DNA polymerase and human immunodeficiency virus-1 reverse transcriptase in the polymerization past O(6)-MeG and O(6)-BzG.
Collapse
Affiliation(s)
- Robert L Eoff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | |
Collapse
|
61
|
Eoff RL, Irimia A, Egli M, Guengerich FP. Sulfolobus solfataricus DNA Polymerase Dpo4 Is Partially Inhibited by “Wobble” Pairing between O6-Methylguanine and Cytosine, but Accurate Bypass Is Preferred. J Biol Chem 2007; 282:1456-67. [PMID: 17105728 DOI: 10.1074/jbc.m609661200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the effect of a single O6-methylguanine (O6-MeG) template residue on catalysis by a model Y family polymerase, Dpo4 from Sulfolobus solfataricus. Mass spectral analysis of Dpo4-catalyzed extension products revealed that the enzyme accurately bypasses O6-MeG, with C being the major product (approximately 70%) and T or A being the minor species (approximately 20% or approximately 10%, respectively), consistent with steady-state kinetic parameters. Transient-state kinetic experiments revealed that kpol, the maximum forward rate constant describing polymerization, for dCTP incorporation opposite O6-MeG was approximately 6-fold slower than observed for unmodified G, and no measurable product was observed for dTTP incorporation in the pre-steady state. The lack of any structural information regarding how O6-MeG paired in a polymerase active site led us to perform x-ray crystallographic studies, which show that "wobble" pairing occurs between C and O6-MeG. A structure containing T opposite O6-MeG was solved, but much of the ribose and pyrimidine base density was disordered, in accordance with a much higher Km,dTTP that drives the difference in efficiency between C and T incorporation. The more stabilized C:O6-MeG pairing reinforces the importance of hydrogen bonding with respect to nucleotide selection within a geometrically tolerant polymerase active site.
Collapse
Affiliation(s)
- Robert L Eoff
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | |
Collapse
|
62
|
Warren JJ, Forsberg LJ, Beese LS. The structural basis for the mutagenicity of O(6)-methyl-guanine lesions. Proc Natl Acad Sci U S A 2006; 103:19701-6. [PMID: 17179038 PMCID: PMC1750904 DOI: 10.1073/pnas.0609580103] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Indexed: 11/18/2022] Open
Abstract
Methylating agents are widespread environmental carcinogens that generate a broad spectrum of DNA damage. Methylation at the guanine O(6) position confers the greatest mutagenic and carcinogenic potential. DNA polymerases insert cytosine and thymine with similar efficiency opposite O(6)-methyl-guanine (O6MeG). We combined pre-steady-state kinetic analysis and a series of nine x-ray crystal structures to contrast the reaction pathways of accurate and mutagenic replication of O6MeG in a high-fidelity DNA polymerase from Bacillus stearothermophilus. Polymerases achieve substrate specificity by selecting for nucleotides with shape and hydrogen-bonding patterns that complement a canonical DNA template. Our structures reveal that both thymine and cytosine O6MeG base pairs evade proofreading by mimicking the essential molecular features of canonical substrates. The steric mimicry depends on stabilization of a rare cytosine tautomer in C.O6MeG-polymerase complexes. An unusual electrostatic interaction between O-methyl protons and a thymine carbonyl oxygen helps stabilize T.O6MeG pairs bound to DNA polymerase. Because DNA methylators constitute an important class of chemotherapeutic agents, the molecular mechanisms of replication of these DNA lesions are important for our understanding of both the genesis and treatment of cancer.
Collapse
Affiliation(s)
- Joshua J. Warren
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, NC 27710
| | - Lawrence J. Forsberg
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, NC 27710
| | - Lorena S. Beese
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, NC 27710
| |
Collapse
|
63
|
Wyatt MD, Pittman DL. Methylating agents and DNA repair responses: Methylated bases and sources of strand breaks. Chem Res Toxicol 2006; 19:1580-94. [PMID: 17173371 PMCID: PMC2542901 DOI: 10.1021/tx060164e] [Citation(s) in RCA: 334] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chemical methylating agents methylmethane sulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) have been used for decades as classical DNA damaging agents. These agents have been utilized to uncover and explore pathways of DNA repair, DNA damage response, and mutagenesis. MMS and MNNG modify DNA by adding methyl groups to a number of nucleophilic sites on the DNA bases, although MNNG produces a greater percentage of O-methyl adducts. There has been substantial progress elucidating direct reversal proteins that remove methyl groups and base excision repair (BER), which removes and replaces methylated bases. Direct reversal proteins and BER, thus, counteract the toxic, mutagenic, and clastogenic effects of methylating agents. Despite recent progress, the complexity of DNA damage responses to methylating agents is still being discovered. In particular, there is growing understanding of pathways such as homologous recombination, lesion bypass, and mismatch repair that react when the response of direct reversal proteins and BER is insufficient. Furthermore, the importance of proper balance within the steps in BER has been uncovered with the knowledge that DNA structural intermediates during BER are deleterious. A number of issues complicate the elucidation of the downstream responses when direct reversal is insufficient or BER is imbalanced. These include inter-species differences, cell-type-specific differences within mammals and between cancer cell lines, and the type of methyl damage or BER intermediate encountered. MMS also carries a misleading reputation of being a radiomimetic, that is, capable of directly producing strand breaks. This review focuses on the DNA methyl damage caused by MMS and MNNG for each site of potential methylation to summarize what is known about the repair of such damage and the downstream responses and consequences if the damage is not repaired.
Collapse
Affiliation(s)
- Michael D Wyatt
- Department of Basic Pharmaceutical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | |
Collapse
|
64
|
York SJ, Modrich P. Mismatch repair-dependent iterative excision at irreparable O6-methylguanine lesions in human nuclear extracts. J Biol Chem 2006; 281:22674-83. [PMID: 16772289 PMCID: PMC2234603 DOI: 10.1074/jbc.m603667200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The response of mammalian cells to Sn1 DNA methylators depends on functional MutSalpha and MutLalpha. Cells deficient in either of these activities are resistant to the cytotoxic effects of this class of chemotherapeutic drug. Because killing by Sn1 methylators has been attributed to O6-methylguanine (MeG), we have constructed nicked circular heteroduplexes that contain a single MeG-T mispair, and we have examined processing of these molecules by mismatch repair in nuclear extracts of human cells. Excision provoked by MeG-T is restricted to the incised heteroduplex strand, leading to removal of the MeG when it resides on this strand. However, when the MeG is located on the continuous strand, the heteroduplex is irreparable. MeG-T-dependent repair DNA synthesis is observed on both reparable and irreparable 3' and 5' heteroduplexes as judged by [32P]dAMP incorporation. Labeling with [alpha-32P]dATP followed by a cold dATP chase has demonstrated that newly synthesized DNA on irreparable molecules is subject to re-excision in a reaction that is MutLalpha-dependent, an effect attributable to the presence of MeG on the template strand. Processing of the irreparable 3' heteroduplex is also associated with incision of the discontinuous strand of a few percent of molecules near the thymidylate of the MeG-T base pair. These results provide the first direct evidence for mismatch repair-mediated iterative processing of DNA methylator damage, an effect that may be relevant to damage signaling events triggered by this class of chemotherapeutic agent.
Collapse
Affiliation(s)
- Sally J. York
- Howard Hughes Medical Institute and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
- Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Paul Modrich
- Howard Hughes Medical Institute and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
65
|
Krutyakov VM. Eukaryotic error-prone DNA polymerases: The presumed roles in replication, repair, and mutagenesis. Mol Biol 2006. [DOI: 10.1134/s0026893306010018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
66
|
Choi JY, Guengerich FP. Adduct size limits efficient and error-free bypass across bulky N2-guanine DNA lesions by human DNA polymerase eta. J Mol Biol 2005; 352:72-90. [PMID: 16061253 DOI: 10.1016/j.jmb.2005.06.079] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 06/29/2005] [Accepted: 06/30/2005] [Indexed: 11/20/2022]
Abstract
The N2 position of guanine (G) is one of the major sites for DNA modification by various carcinogens. Eight oligonucleotides with varying adduct bulk at guanine N2 were analyzed for catalytic efficiency and fidelity with human DNA polymerase (pol) eta, which is involved in translesion synthesis (TLS). Pol eta effectively bypassed N2-methyl(Me)G, N2-ethyl(Et)G, N2-isobutyl(Ib)G, N2-benzyl(Bz)G, and N2-CH2(2-naphthyl)G but was severely blocked at N2-CH2(9-anthracenyl)G (N2-AnthG) and N2-CH2(6-benzo[a]pyrenyl)G (N2-BPG). Steady-state kinetic analysis showed proportional decreases of kcat/Km in dCTP insertion opposite N2-AnthG and N2-BPG (73 and 320-fold) and also kcat/Km in next-base extension from a C paired with each adduct (15 and 51-fold relative to G). Frequencies of dATP misinsertion and extension beyond mispairs were also proportionally increased (70 and 450-fold; 12 and 44-fold) with N2-AnthG and N2-BPG, indicating the effect of adduct bulk on blocking and misincorporation in TLS by pol eta. N2-AnthG and N2-BPG also greatly decreased the pre-steady-state kinetic burst rate (25 and 125-fold) compared to unmodified G. N2-AnthG decreased dCTP binding affinity (2.6-fold) and increased DNA substrate binding affinity. These results and the small kinetic thio effects (S(p)-dCTPalphaS) suggest that the early steps, possibly conformational change, are interfered with by the bulky adducts. In contrast, human pol delta bypassed adducts effectively up to N2-EtG but was strongly blocked by N2-IbG and larger adducts. We conclude that TLS DNA polymerases may be required for the efficient bypass of pol delta-blocking N2-G adducts bulkier than N2-EtG in human cells, and the bulk size can be a major factor for efficient and error-free bypass at these adducts by TLS DNA polymerases.
Collapse
Affiliation(s)
- Jeong-Yun Choi
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
67
|
Prakash S, Johnson RE, Prakash L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 2005; 74:317-53. [PMID: 15952890 DOI: 10.1146/annurev.biochem.74.082803.133250] [Citation(s) in RCA: 806] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on eukaryotic translesion synthesis (TLS) DNA polymerases, and the emphasis is on Saccharomyces cerevisiae and human Y-family polymerases (Pols) eta, iota, kappa, and Rev1, as well as on Polzeta, which is a member of the B-family polymerases. The fidelity, mismatch extension ability, and lesion bypass efficiencies of these different polymerases are examined and evaluated in the context of their structures. One major conclusion is that, despite the overall similarity of basic structural features among the Y-family polymerases, there is a high degree of specificity in their lesion bypass properties. Some are able to bypass a particular DNA lesion, whereas others are efficient at only the insertion step or the extension step of lesion bypass. This functional divergence is related to the differences in their structures. Polzeta is a highly specialized polymerase specifically adapted for extending primer termini opposite from a diverse array of DNA lesions, and depending upon the DNA lesion, it contributes to lesion bypass in a mutagenic or in an error-free manner. Proliferating cell nuclear antigen (PCNA) provides the central scaffold to which TLS polymerases bind for access to the replication ensemble stalled at a lesion site, and Rad6-Rad18-dependent protein ubiquitination is important for polymerase exchange.
Collapse
Affiliation(s)
- Satya Prakash
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555-1061, USA.
| | | | | |
Collapse
|
68
|
King NM, Nikolaishvili-Feinberg N, Bryant MF, Luche DD, Heffernan TP, Simpson DA, Hanaoka F, Kaufmann WK, Cordeiro-Stone M. Overproduction of DNA polymerase eta does not raise the spontaneous mutation rate in diploid human fibroblasts. DNA Repair (Amst) 2005; 4:714-24. [PMID: 15886068 DOI: 10.1016/j.dnarep.2005.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/31/2005] [Accepted: 04/01/2005] [Indexed: 11/22/2022]
Abstract
Telomerase-immortalized lines of diploid xeroderma pigmentosum variant (XP-V) fibroblasts (XP115LO and XP4BE) were complemented for constitutive or regulated expression of wild-type human DNA polymerase eta (hpol eta). The ectopic gene was expressed from a retroviral LTR at a population average of 34- to 59-fold above the endogenous (mutated) mRNA and high levels of hpol eta were detected by immunoblotting. The POLH cDNA was also cloned downstream from an ecdysone-regulated promoter and transduced into the same recipient cells. Abundance of the wild-type mRNA increased approximately 10-fold by addition of ponasterone to the culture medium. Complemented cell lines acquired normal resistance to the cytotoxic effects of UVC, even in the presence of 1mM caffeine. They also tolerated higher levels of UVC-induced template lesions during nascent DNA elongation when compared to normal fibroblasts (NHF). UVC-induced mutation frequencies at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus were measured in the XP115LO+XPV cell line overproducing hpol eta constitutively (E. Bassett, N.M. King, M.F. Bryant, S. Hector, L. Pendyala, S.G. Chaney, M. Cordeiro-Stone, The role of DNA polymerase eta in translesion synthesis past platinum-DNA adducts in human fibroblasts, Cancer Res. 64 (2004) 6469-6475). Induced mutation frequencies were significantly reduced, even below those observed in NHF; however, the average mutation frequency in untreated cultures was about three-fold higher than in the isogenic vector-control cell line. In this study, spontaneous HPRT mutation frequencies were measured at regular intervals, as isogenic fibroblasts either lacking or overproducing hpol eta were expanded for 100 population doublings. The mutation rates estimated from these results were not significantly increased in XP115LO cells expressing abnormal levels of hpol eta, relative to the cells lacking this specialized polymerase. These findings suggest that diploid human fibroblasts with normal DNA repair capacities and intact checkpoints are well protected against the potential mutagenic outcome of overproducing hpol eta, while still benefiting from accurate translesion synthesis of UV-induced pyrimidine dimers.
Collapse
Affiliation(s)
- Nicole M King
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7525, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Affiliation(s)
- Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA
| | | | | |
Collapse
|
70
|
Guo Y, Breeden LL, Zarbl H, Preston BD, Eaton DL. Expression of a human cytochrome p450 in yeast permits analysis of pathways for response to and repair of aflatoxin-induced DNA damage. Mol Cell Biol 2005; 25:5823-33. [PMID: 15988000 PMCID: PMC1168797 DOI: 10.1128/mcb.25.14.5823-5833.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/11/2005] [Accepted: 04/25/2005] [Indexed: 01/21/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In humans, AFB1 is primarily bioactivated by cytochrome P450 1A2 (CYP1A2) and 3A4 to a genotoxic epoxide that forms N7-guanine DNA adducts. A series of yeast haploid mutants defective in DNA repair and cell cycle checkpoints were transformed with human CYP1A2 to investigate how these DNA adducts are repaired. Cell survival and mutagenesis following aflatoxin B1 treatment was assayed in strains defective in nucleotide excision repair (NER) (rad14), postreplication repair (PRR) (rad6, rad18, mms2, and rad5), homologous recombinational repair (HRR) (rad51 and rad54), base excision repair (BER) (apn1 apn2), nonhomologous end-joining (NHEJ) (yku70), mismatch repair (MMR) (pms1), translesion synthesis (TLS) (rev3), and checkpoints (mec1-1, mec1-1 rad53, rad9, and rad17). Together our data suggest the involvement of homologous recombination and nucleotide excision repair, postreplication repair, and checkpoints in the repair and/or tolerance of AFB1-induced DNA damage in the yeast model. Rev3 appears to mediate AFB1-induced mutagenesis when error-free pathways are compromised. The results further suggest unique roles for Rad5 and abasic endonuclease-dependent DNA intermediates in regulating AFB1-induced mutagenicity.
Collapse
Affiliation(s)
- Yingying Guo
- Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105-6099, USA
| | | | | | | | | |
Collapse
|
71
|
Minesinger BK, Jinks-Robertson S. Roles of RAD6 epistasis group members in spontaneous polzeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 2005; 169:1939-55. [PMID: 15687278 PMCID: PMC1449579 DOI: 10.1534/genetics.104.033894] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 01/14/2005] [Indexed: 11/18/2022] Open
Abstract
DNA lesions that arise during normal cellular metabolism can block the progress of replicative DNA polymerases, leading to cell cycle arrest and, in higher eukaryotes, apoptosis. Alternatively, such blocking lesions can be temporarily tolerated using either a recombination- or a translesion synthesis-based bypass mechanism. In Saccharomyces cerevisiae, members of the RAD6 epistasis group are key players in the regulation of lesion bypass by the translesion DNA polymerase Polzeta. In this study, changes in the reversion rate and spectrum of the lys2DeltaA746 -1 frameshift allele have been used to evaluate how the loss of members of the RAD6 epistasis group affects Polzeta-dependent mutagenesis in response to spontaneous damage. Our data are consistent with a model in which Polzeta-dependent mutagenesis relies on the presence of either Rad5 or Rad18, which promote two distinct error-prone pathways that partially overlap with respect to lesion specificity. The smallest subunit of Poldelta, Pol32, is also required for Polzeta-dependent spontaneous mutagenesis, suggesting a cooperative role between Poldelta and Polzeta for the bypass of spontaneous lesions. A third error-free pathway relies on the presence of Mms2, but may not require PCNA.
Collapse
Affiliation(s)
- Brenda K Minesinger
- Biochemistry, Cell and Developmental Biology Program of the Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
72
|
Pessoa-Brandão L, Sclafani RA. CDC7/DBF4 functions in the translesion synthesis branch of the RAD6 epistasis group in Saccharomyces cerevisiae. Genetics 2005; 167:1597-610. [PMID: 15342501 PMCID: PMC1471023 DOI: 10.1534/genetics.103.021675] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CDC7 and DBF4 encode the essential Cdc7-Dbf4 protein kinase required for DNA replication in eukaryotes from yeast to human. Cdc7-Dbf4 is also required for DNA damage-induced mutagenesis, one of several postreplicational DNA damage tolerance mechanisms mediated by the RAD6 epistasis group. Several genes have been determined to function in separate branches within this group, including RAD5, REV3/REV7 (Pol zeta), RAD30 (Pol eta), and POL30 (PCNA). An extensive genetic analysis of the interactions between CDC7 and REV3, RAD30, RAD5, or POL30 in response to DNA damage was done to determine its role in the RAD6 pathway. CDC7, RAD5, POL30, and RAD30 were found to constitute four separate branches of the RAD6 epistasis group in response to UV and MMS exposure. CDC7 is also shown to function separately from REV3 in response to MMS. However, they belong in the same pathway in response to UV. We propose that the Cdc7-Dbf4 kinase associates with components of the translesion synthesis pathway and that this interaction is dependent upon the type of DNA damage. Finally, activation of the DNA damage checkpoint and the resulting cell cycle delay is intact in cdc7Delta mcm5-bob1 cells, suggesting a direct role for CDC7 in DNA repair/damage tolerance.
Collapse
Affiliation(s)
- Luis Pessoa-Brandão
- Molecular Biology Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
73
|
Schürer KA, Rudolph C, Ulrich HD, Kramer W. Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from Homologous recombination, but not from postreplicative repair. Genetics 2005; 166:1673-86. [PMID: 15126389 PMCID: PMC1470801 DOI: 10.1534/genetics.166.4.1673] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The MPH1 gene from Saccharomyces cerevisiae, encoding a member of the DEAH family of proteins, had been identified by virtue of the spontaneous mutator phenotype of respective deletion mutants. Genetic analysis suggested that MPH1 functions in a previously uncharacterized DNA repair pathway that protects the cells from damage-induced mutations. We have now analyzed genetic interactions of mph1 with a variety of mutants from different repair systems with respect to spontaneous mutation rates and sensitivities to different DNA-damaging agents. The dependence of the mph1 mutator phenotype on REV3 and REV1 and the synergy with mutations in base and nucleotide excision repair suggest an involvement of MPH1 in error-free bypass of lesions. However, although we observed an unexpected partial suppression of the mph1 mutator phenotype by rad5, genetic interactions with other mutations in postreplicative repair imply that MPH1 does not belong to this pathway. Instead, mutations from the homologous recombination pathway were found to be epistatic to mph1 with respect to both spontaneous mutation rates and damage sensitivities. Determination of spontaneous mitotic recombination rates demonstrated that mph1 mutants are not deficient in homologous recombination. On the contrary, in an sgs1 background we found a pronounced hyperrecombination phenotype. Thus, we propose that MPH1 is involved in a branch of homologous recombination that is specifically dedicated to error-free bypass.
Collapse
Affiliation(s)
- K Anke Schürer
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
74
|
Washington MT, Minko IG, Johnson RE, Haracska L, Harris TM, Lloyd RS, Prakash S, Prakash L. Efficient and error-free replication past a minor-groove N2-guanine adduct by the sequential action of yeast Rev1 and DNA polymerase zeta. Mol Cell Biol 2004; 24:6900-6. [PMID: 15282292 PMCID: PMC479736 DOI: 10.1128/mcb.24.16.6900-6906.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rev1, a member of the Y family of DNA polymerases, functions in lesion bypass together with DNA polymerase zeta (Pol zeta). Rev1 is a highly specialized enzyme in that it incorporates only a C opposite template G. While Rev1 plays an indispensable structural role in Pol zeta-dependent lesion bypass, the role of its DNA synthetic activity in lesion bypass has remained unclear. Since interactions of DNA polymerases with the DNA minor groove contribute to the nearly equivalent efficiencies and fidelities of nucleotide incorporation opposite each of the four template bases, here we examine the possibility that unlike other DNA polymerases, Rev1 does not come into close contact with the minor groove of the incipient base pair, and that enables it to incorporate a C opposite the N(2)-adducted guanines in DNA. To test this idea, we examined whether Rev1 could incorporate a C opposite the gamma-hydroxy-1,N(2)-propano-2'deoxyguanosine DNA minor-groove adduct, which is formed from the reaction of acrolein with the N(2) of guanine. Acrolein, an alpha,beta-unsaturated aldehyde, is generated in vivo as the end product of lipid peroxidation and from other oxidation reactions. We show here that Rev1 efficiently incorporates a C opposite this adduct from which Pol zeta subsequently extends, thereby completing the lesion bypass reaction. Based upon these observations, we suggest that an important role of the Rev1 DNA synthetic activity in lesion bypass is to incorporate a C opposite the various N(2)-guanine DNA minor-groove adducts that form in DNA.
Collapse
Affiliation(s)
- M Todd Washington
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, 77555-1061, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Washington MT, Minko IG, Johnson RE, Wolfle WT, Harris TM, Lloyd RS, Prakash S, Prakash L. Efficient and error-free replication past a minor-groove DNA adduct by the sequential action of human DNA polymerases iota and kappa. Mol Cell Biol 2004; 24:5687-93. [PMID: 15199127 PMCID: PMC480884 DOI: 10.1128/mcb.24.13.5687-5693.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 03/25/2004] [Accepted: 04/01/2004] [Indexed: 01/21/2023] Open
Abstract
DNA polymerase iota (Poliota) is a member of the Y family of DNA polymerases, which promote replication through DNA lesions. The role of Poliota in lesion bypass, however, has remained unclear. Poliota is highly unusual in that it incorporates nucleotides opposite different template bases with very different efficiencies and fidelities. Since interactions of DNA polymerases with the DNA minor groove provide for the nearly equivalent efficiencies and fidelities of nucleotide incorporation opposite each of the four template bases, we considered the possibility that Poliota differs from other DNA polymerases in not being as sensitive to distortions of the minor groove at the site of the incipient base pair and that this enables it to incorporate nucleotides opposite highly distorting minor-groove DNA adducts. To check the validity of this idea, we examined whether Poliota could incorporate nucleotides opposite the gamma-HOPdG adduct, which is formed from an initial reaction of acrolein with the N(2) of guanine. We show here that Poliota incorporates a C opposite this adduct with nearly the same efficiency as it does opposite a nonadducted template G residue. The subsequent extension step, however, is performed by Polkappa, which efficiently extends from the C incorporated opposite the adduct. Based upon these observations, we suggest that an important biological role of Poliota and Polkappa is to act sequentially to carry out the efficient and accurate bypass of highly distorting minor-groove DNA adducts of the purine bases.
Collapse
Affiliation(s)
- M Todd Washington
- University of Texas Medical Branch, Sealy Center for Molecular Science, 6.104 Blocker Medical Research Building, 11th and Mechanic St., Galveston, TX 77555-1061, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Xeroderma pigmentosum (XP) is an autosomal recessive disease characterized by sun sensitivity, early onset of freckling and subsequent neoplastic changes on sun-exposed skin. Skin abnormalities result from an inability to repair UV-damaged DNA because of defects in the nucleotide excision repair (NER) machinery. Xeroderma pigmentosum is genetically heterogeneous and is classified into seven complementation groups (XPA-XPG) that correspond to genetic alterations in one of seven genes involved in NER. The variant type of XP (XPV), first described in 1970 by Ernst G. Jung as 'pigmented xerodermoid', is caused by defects in the post replication repair machinery while NER is not impaired. Identification of the XPV gene was only achieved in 1999 by biochemical purification and sequencing of a protein from HeLa cell extracts complementing the PRR defect in XPV cells. The XPV protein, polymerase (pol)eta, represents a novel member of the Y family of bypass DNA polymerases that facilitate DNA translesion synthesis. The major function of (pol)eta is to allow DNA translesion synthesis of UV-induced TT-dimers in an error-free manner; it also possesses the capability to bypass other DNA lesions in an error-prone manner. Xeroderma pigmentosum V is caused by molecular alterations in the POLH gene, located on chromosome 6p21.1-6p12. Affected individuals are homozygous or compound heterozygous for a spectrum of genetic lesions, including nonsense mutations, deletions or insertions, confirming the autosomal recessive nature of the condition. Identification of POLH as the XPV gene provides an important instrument for improving molecular diagnostics in XPV families.
Collapse
Affiliation(s)
- Alexei Gratchev
- Department of Dermatology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany.
| | | | | | | |
Collapse
|
77
|
Schürer KA, Rudolph C, Ulrich HD, Kramer W. Yeast MPH1 Gene Functions in an Error-Free DNA Damage Bypass Pathway That Requires Genes From Homologous Recombination, but Not From Postreplicative Repair. Genetics 2004. [DOI: 10.1093/genetics/166.4.1673] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
The MPH1 gene from Saccharomyces cerevisiae, encoding a member of the DEAH family of proteins, had been identified by virtue of the spontaneous mutator phenotype of respective deletion mutants. Genetic analysis suggested that MPH1 functions in a previously uncharacterized DNA repair pathway that protects the cells from damage-induced mutations. We have now analyzed genetic interactions of mph1 with a variety of mutants from different repair systems with respect to spontaneous mutation rates and sensitivities to different DNA-damaging agents. The dependence of the mph1 mutator phenotype on REV3 and REV1 and the synergy with mutations in base and nucleotide excision repair suggest an involvement of MPH1 in error-free bypass of lesions. However, although we observed an unexpected partial suppression of the mph1 mutator phenotype by rad5, genetic interactions with other mutations in postreplicative repair imply that MPH1 does not belong to this pathway. Instead, mutations from the homologous recombination pathway were found to be epistatic to mph1 with respect to both spontaneous mutation rates and damage sensitivities. Determination of spontaneous mitotic recombination rates demonstrated that mph1 mutants are not deficient in homologous recombination. On the contrary, in an sgs1 background we found a pronounced hyperrecombination phenotype. Thus, we propose that MPH1 is involved in a branch of homologous recombination that is specifically dedicated to error-free bypass.
Collapse
Affiliation(s)
- K Anke Schürer
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany
| | - Christian Rudolph
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany
| | - Helle D Ulrich
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Wilfried Kramer
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
78
|
Lawrence CW. Cellular functions of DNA polymerase zeta and Rev1 protein. ADVANCES IN PROTEIN CHEMISTRY 2004; 69:167-203. [PMID: 15588843 DOI: 10.1016/s0065-3233(04)69006-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Christopher W Lawrence
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
79
|
Haracska L, Prakash L, Prakash S. A mechanism for the exclusion of low-fidelity human Y-family DNA polymerases from base excision repair. Genes Dev 2003; 17:2777-85. [PMID: 14630940 PMCID: PMC280626 DOI: 10.1101/gad.1146103] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Accepted: 09/24/2003] [Indexed: 11/24/2022]
Abstract
The human Y-family DNA polymerases, Poliota, Poleta, and Polkappa, function in promoting replication through DNA lesions. However, because of their low fidelity, any involvement of these polymerases in DNA synthesis during base excision repair (BER) would be highly mutagenic. Mechanisms, therefore, must exist to exclude their participation in BER. Here, we show that although Poliota, Poleta, and Polkappa are all able to form a covalent Schiff base intermediate with the 5'-deoxyribose phosphate (5'-dRP) residue that results from the incision of DNA at an abasic site by an AP endonuclease, they all lack the ability for the subsequent catalytic removal of the 5'-dRP group. Instead, the covalent trapping of these polymerases by the 5'-dRP residue inhibits their DNA synthetic activity during BER. The unprecedented ability of these polymerases for robust Schiff base formation without the release of the 5'-dRP product provides a means of preventing their participation in the DNA synthetic step of BER, thereby avoiding the high incidence of mutagenesis and carcinogenesis that would otherwise occur.
Collapse
Affiliation(s)
- Lajos Haracska
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1061, USA
| | | | | |
Collapse
|
80
|
Bunting KA, Roe SM, Pearl LH. Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the beta-clamp. EMBO J 2003; 22:5883-92. [PMID: 14592985 PMCID: PMC275425 DOI: 10.1093/emboj/cdg568] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 09/15/2003] [Accepted: 09/16/2003] [Indexed: 11/14/2022] Open
Abstract
Y-family DNA polymerases can extend primer strands across template strand lesions that stall replicative polymerases. The poor processivity and fidelity of these enzymes, key to their biological role, requires that their access to the primer-template junction is both facilitated and regulated in order to minimize mutations. These features are believed to be provided by interaction with processivity factors, beta-clamp or proliferating cell nuclear antigen (PCNA), which are also essential for the function of replicative DNA polymerases. The basis for this interaction is revealed by the crystal structure of the complex between the 'little finger' domain of the Y-family DNA polymerase Pol IV and the beta-clamp processivity factor, both from Escherichia coli. The main interaction involves a C-terminal peptide of Pol IV, and is similar to interactions seen between isolated peptides and other processivity factors. However, this first structure of an entire domain of a binding partner with an assembled clamp reveals a substantial secondary interface, which maintains the polymerase in an inactive orientation, and may regulate the switch between replicative and Y-family DNA polymerases in response to a template strand lesion.
Collapse
Affiliation(s)
- Karen A Bunting
- The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
81
|
Washington MT, Johnson RE, Prakash L, Prakash S. The mechanism of nucleotide incorporation by human DNA polymerase eta differs from that of the yeast enzyme. Mol Cell Biol 2003; 23:8316-22. [PMID: 14585988 PMCID: PMC262418 DOI: 10.1128/mcb.23.22.8316-8322.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Accepted: 08/11/2003] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase eta (Poleta) catalyzes the efficient and accurate synthesis of DNA opposite cyclobutane pyrimidine dimers, and inactivation of Poleta in humans causes the cancer-prone syndrome, the variant form of xeroderma pigmentosum. Pre-steady-state kinetic studies of yeast Poleta have indicated that the low level of fidelity of this enzyme results from a poorly discriminating induced-fit mechanism. Here we examine the mechanistic basis of the low level of fidelity of human Poleta. Because the human and yeast enzymes behave similarly under steady-state conditions, we expected these enzymes to utilize similar mechanisms of nucleotide incorporation. Surprisingly, however, we find that human Poleta differs from the yeast enzyme in several important respects. The human enzyme has a 50-fold-faster rate of nucleotide incorporation than the yeast enzyme but binds the nucleotide with an approximately 50-fold-lower level of affinity. This lower level of binding affinity might provide a means of regulation whereby the human enzyme remains relatively inactive except when the cellular deoxynucleoside triphosphate concentrations are high, as may occur during DNA damage, thereby avoiding the mutagenic consequences arising from the inadvertent action of this enzyme during normal DNA replication.
Collapse
Affiliation(s)
- M Todd Washington
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, 6.104 Blocker Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555-1061, USA
| | | | | | | |
Collapse
|
82
|
Wolfle WT, Washington MT, Prakash L, Prakash S. Human DNA polymerase kappa uses template-primer misalignment as a novel means for extending mispaired termini and for generating single-base deletions. Genes Dev 2003; 17:2191-9. [PMID: 12952891 PMCID: PMC196459 DOI: 10.1101/gad.1108603] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Accepted: 06/26/2003] [Indexed: 11/24/2022]
Abstract
Human DNA polymerase kappa (hPolkappa) is a proficient extender of mispaired primer termini on undamaged DNA, wherein it extends directly by incorporating the next correct nucleotide, generating single-base substitutions in the process. Biochemical and genetic studies, however, have indicated that, in addition to single-base substitutions, Polkappa generates single-base deletions. Here we show that hPolkappa is very adept at using template-primer misalignment as a novel means for extending mispaired termini and for generating single-base deletions. The proficient ability of hPolkappa to extend mispaired primer termini either directly or by misalignment could be important for the continued and efficient progression of the replication fork when mismatches introduced by the replicative polymerase are not proofread. In extending from nucleotides opposite DNA lesions, hPolkappa uses the direct and misalignment modes of mispair extension to different extents, depending on whether the template base is present or not at the primer terminus; thus, although hPolkappa can extend directly from nucleotides opposite damaged bases, it can use only the misalignment mechanism to extend from nucleotides opposite an abasic site. A particularly unconstrained active site at the template-primer junction could afford hPolkappa the ability to tolerate the geometric distortions of mismatched base pairs or those resulting from template-primer misalignment, thereby enabling it to use both of these modes of mispair extension.
Collapse
Affiliation(s)
- William T Wolfle
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, Galveston, TX 77555-1061, USA
| | | | | | | |
Collapse
|
83
|
Washington MT, Wolfle WT, Spratt TE, Prakash L, Prakash S. Yeast DNA polymerase eta makes functional contacts with the DNA minor groove only at the incoming nucleoside triphosphate. Proc Natl Acad Sci U S A 2003; 100:5113-8. [PMID: 12692307 PMCID: PMC154307 DOI: 10.1073/pnas.0837578100] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Indexed: 11/18/2022] Open
Abstract
DNA polymerase eta (Pol eta) functions in the proficient bypass of a variety of DNA lesions. Relative to the replicative polymerases, Pol eta has a greater tolerance for distorted DNA geometries and possesses a low fidelity. X-ray crystal structures and studies with nucleotide analogs have implicated interactions with the DNA minor groove as being crucial for the high fidelity of replicative DNA polymerases. To determine whether Pol eta also makes such functionally important contacts with the DNA minor groove, here we examine the effects on Pol eta-catalyzed nucleotide incorporation when 3-deazaguanine, a base analog that lacks the ability to form minor-groove hydrogen bonds with the protein, is substituted for guanine at various positions in the DNA. From these studies, we conclude that Pol eta makes only a single functional contact with the DNA minor groove at the position of the incoming nucleotide; in this regard, Pol eta differs from high-fidelity DNA polymerases that are unable to replicate through DNA lesions. These results help explain the proficient ability of Pol eta for bypassing distorting DNA lesions.
Collapse
Affiliation(s)
- M Todd Washington
- Sealy Center for Molecular Science, University of Texas Medical Branch, 6.104 Blocker Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555-1061, USA
| | | | | | | | | |
Collapse
|
84
|
Chabes A, Georgieva B, Domkin V, Zhao X, Rothstein R, Thelander L. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 2003; 112:391-401. [PMID: 12581528 DOI: 10.1016/s0092-8674(03)00075-8] [Citation(s) in RCA: 354] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In eukaryotes, DNA damage elicits a multifaceted response that includes cell cycle arrest, transcriptional activation of DNA repair genes, and, in multicellular organisms, apoptosis. We demonstrate that in Saccharomyces cerevisiae, DNA damage leads to a 6- to 8-fold increase in dNTP levels. This increase is conferred by an unusual, relaxed dATP feedback inhibition of ribonucleotide reductase (RNR). Complete elimination of dATP feedback inhibition by mutation of the allosteric activity site in RNR results in 1.6-2 times higher dNTP pools under normal growth conditions, and the pools increase an additional 11- to 17-fold during DNA damage. The increase in dNTP pools dramatically improves survival following DNA damage, but at the same time leads to higher mutation rates. We propose that increased survival and mutation rates result from more efficient translesion DNA synthesis at elevated dNTP concentrations.
Collapse
Affiliation(s)
- Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, SE 901 87 Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
85
|
Haracska L, Prakash S, Prakash L. Yeast DNA polymerase zeta is an efficient extender of primer ends opposite from 7,8-dihydro-8-Oxoguanine and O6-methylguanine. Mol Cell Biol 2003; 23:1453-9. [PMID: 12556503 PMCID: PMC141155 DOI: 10.1128/mcb.23.4.1453-1459.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2002] [Revised: 10/31/2002] [Accepted: 11/18/2002] [Indexed: 11/20/2022] Open
Abstract
Genetic studies in Saccharomyces cerevisiae have indicated the requirement of DNA polymerase (Pol) zeta for mutagenesis induced by UV light and by other DNA damaging agents. However, on its own, Pol zeta is highly inefficient at replicating through DNA lesions; rather, it promotes their mutagenic bypass by extending from the nucleotide inserted opposite the lesion by another DNA polymerase. So far, such a role for Pol zeta has been established for cyclobutane pyrimidine dimers, (6-4) dipyrimidine photoproducts, and abasic sites. Here, we examine whether Pol zeta can replicate through the 7,8-dihydro-8-oxoguanine (8-oxoG) and O(6)-methylguanine (m6G) lesions. We chose these two lesions for this study because the replicative polymerase, Pol delta, can replicate through them, albeit weakly. We found that Pol zeta is very inefficient at inserting nucleotides opposite both these lesions, but it can efficiently extend from the nucleotides inserted opposite them by Pol delta. Also, the most efficient bypass of 8-oxoG and m6G lesions occurs when Pol delta is combined with Pol zeta, indicating a role for Polzeta in extending from the nucleotides inserted opposite these lesions by Pol delta. Thus, Pol zeta is a highly specialized polymerase that can proficiently extend from the primer ends opposite DNA lesions, irrespective of their degree of geometric distortion. Pol zeta, however, is unusually sensitive to geometric distortion of the templating residue, as it is highly inefficient at incorporating nucleotides even opposite the moderately distorting 8-oxoG and m6G lesions.
Collapse
Affiliation(s)
- Lajos Haracska
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555-1061, USA
| | | | | |
Collapse
|
86
|
Minko IG, Washington MT, Kanuri M, Prakash L, Prakash S, Lloyd RS. Translesion synthesis past acrolein-derived DNA adduct, gamma -hydroxypropanodeoxyguanosine, by yeast and human DNA polymerase eta. J Biol Chem 2003; 278:784-90. [PMID: 12401796 DOI: 10.1074/jbc.m207774200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gamma-Hydroxy-1,N(2)-propano-2'deoxyguanosine (gamma-HOPdG) is a major deoxyguanosine adduct derived from acrolein, a known mutagen. In vitro, this adduct has previously been shown to pose a severe block to translesion synthesis by a number of polymerases (pol). Here we show that both yeast and human pol eta can incorporate a C opposite gamma-HOPdG at approximately 190- and approximately 100-fold lower efficiency relative to the control deoxyguanosine and extend from a C paired with the adduct at approximately 8- and approximately 19-fold lower efficiency. Although DNA synthesis past gamma-HOPdG by yeast pol eta was relatively accurate, the human enzyme misincorporated nucleotides opposite the lesion with frequencies of approximately 10(-1) to 10(-2). Because gamma-HOPdG can adopt both ring closed and ring opened conformations, comparative replicative bypass studies were also performed with two model adducts, propanodeoxyguanosine and reduced gamma-HOPdG. For both yeast and human pol eta, the ring open reduced gamma-HOPdG adduct was less blocking than gamma-HOPdG, whereas the ring closed propanodeoxyguanosine adduct was a very strong block. Replication of DNAs containing gamma-HOPdG in wild type and xeroderma pigmentosum variant cells revealed a somewhat decreased mutation frequency in xeroderma pigmentosum variant cells. Collectively, the data suggest that pol eta might potentially contribute to both error-free and mutagenic bypass of gamma-HOPdG.
Collapse
Affiliation(s)
- Irina G Minko
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston 77555, USA
| | | | | | | | | | | |
Collapse
|
87
|
Abstract
Based upon phylogenetic relationships, the broad Y-family of DNA polymerases can be divided into various subfamilies consisting of UmuC (polV)-like; DinB (polIV/polkappa)-like; Rev1-like, Rad30A (poleta)-like and Rad30B (poliota)-like polymerases. The polIV/polkappa-like polymerases are most ubiquitous, having been identified in bacteria, archaea and eukaryotes. In contrast, the polV-like polymerases appear restricted to bacteria (both Gram positive and Gram negative). Rev1 and poleta-like polymerases are found exclusively in eukaryotes, and to date, poliota-like polymerases have only been identified in higher eukaryotes. In general, the in vitro properties of polymerases characterized within each sub-family are quite similar. An exception to this rule occurs with the poliota-like polymerases, where the enzymatic properties of Drosophila melanogaster poliota are more similar to that of Saccharomyces cerevisiae and human poleta than to the related human poliota. For example, like poleta, Drosophila poliota can bypass a cis-syn thymine-thymine dimer both accurately and efficiently, while human poliota bypasses the same lesion inefficiently and with low-fidelity. Even in cases where human poliota can efficiently insert a base opposite a lesion (such as a synthetic abasic site, the 3'T of a 6-4-thymine-thymine pyrimidine-pyrimidone photoproduct or opposite benzo[a]pyrene diol epoxide deoxyadenosine adducts), further extension is often limited. Thus, although poliota most likely arose from a genetic duplication of poleta millions of years ago as eukaryotes evolved, it would appear that poliota from humans (and possibly all mammals) has been further subjected to evolutionary pressures that have "tailored" its enzymatic properties away from lesion bypass and towards other function(s) specific for higher eukaryotes. The identification of such functions and the role that mammalian poliota plays in lesion bypass in vivo, should hopefully be forthcoming with the construction of human cell lines deleted for poliota and the identification of mice deficient in poliota.
Collapse
Affiliation(s)
- Alexandra Vaisman
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Building 6, Room 1A13, 9000 Rockville Pike, Bethesda, MD 20892-2725, USA
| | | | | | | | | |
Collapse
|
88
|
Haracska L, Prakash L, Prakash S. Role of human DNA polymerase kappa as an extender in translesion synthesis. Proc Natl Acad Sci U S A 2002; 99:16000-5. [PMID: 12444249 PMCID: PMC138554 DOI: 10.1073/pnas.252524999] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Indexed: 11/18/2022] Open
Abstract
Human DNA polymerase (Pol)kappa is a member of the Y family of DNA polymerases. Unlike Poleta, another member of this family, which carries out efficient translesion synthesis through various DNA lesions, the role of Polkappa in lesion bypass has remained unclear. Recent studies, however, have indicated that Polkappa is a proficient extender of mispaired primer termini on undamaged DNAs and also on cis-syn thymine-thymine (T-T) dimer-containing DNA. Here we determine whether Polkappa can promote the efficient bypass of DNA lesions by extending from the nucleotides inserted opposite the lesion site by another DNA polymerase. From steady-state kinetic analyses, we find that Polkappa is highly inefficient at incorporating nucleotides opposite an O(6)-methyl guanine (m6G) lesion, but it efficiently extends from the T or C nucleotide incorporated opposite this lesion by Poldelta. Opposite an 8-oxoguanine (8-oxoG) lesion, Polkappa efficiently inserts an A and then proficiently extends from it. Importantly, for both these DNA lesions, however, the most efficient bypass occurs when Poldelta is combined with Polkappa; in this reaction, Polkappa performs the extension step after the incorporation of nucleotides opposite these lesion sites by Poldelta. These studies reveal a role for Polkappa in the extension phase of lesion bypass.
Collapse
Affiliation(s)
- Lajos Haracska
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, 6.104 Blocker Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555-1061 USA
| | | | | |
Collapse
|
89
|
Abstract
All cells need not only to remove damage from their DNA, but also to be able to replicate DNA containing unrepaired damage. In mammalian cells, the major process by which cells are able to replicate damaged templates is translesion synthesis, the direct synthesis of DNA past altered bases. Crucial to this process is a series of recently discovered DNA polymerases. Most of them belong to a new family of polymerases designated the Y-family, which have conserved sequences in the catalytic N-terminal half of the proteins. These polymerases have different efficiencies and specificities in vitro depending on the type of damage in the template.One of them, DNA polymerase eta, is defective in xeroderma pigmentosum variants, and overwhelming evidence suggests that this is the polymerase that carries out translesion synthesis past UV-induced cyclobutane pyrimidine dimers in vivo. DNA polymerase eta is localised in replication factories during DNA replication and accumulates at sites of stalled replication forks. Many studies have been carried out on the properties of the other polymerases in vitro, but there is as yet very little evidence for their specific roles in vivo.
Collapse
Affiliation(s)
- Alan R Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
90
|
Abstract
Various physicochemical factors influence DNA replication fidelity. Since it is now known that Watson-Crick hydrogen bonds are not necessary for efficient and selective replication of a base pair by DNA polymerase enzymes, a number of alternative physical factors have been examined to explain the efficiency of these enzymes. Among these factors are minor groove hydrogen bonding, base stacking, solvation, and steric effects. We discuss the concept of active site tightness in DNA polymerases, and consider how it might influence steric (size and shape) effects of nucleotide selection in synthesis of a base pair. A high level of active site tightness is expected to lead to higher fidelity relative to proteins with looser active sites. We review the current data on what parts and dimensions of active sites are most affected by size and shape, based on data with modified nucleotides that have been examined as polymerase substrates. We also discuss recent data on nucleotide analogs displaying higher fidelity than the natural ones. The published data are discussed with a view toward testing this sterically based hypothesis and unifying existing observations into a narrowly defined range of effects.
Collapse
Affiliation(s)
- Eric T Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
91
|
Abstract
DNA repair is crucial to the well-being of all organisms from unicellular life forms to humans. A rich tapestry of mechanistic studies on DNA repair has emerged thanks to the recent discovery of Y-family DNA polymerases. Many Y-family members carry out aberrant DNA synthesis-poor replication accuracy, the favored formation of non-Watson-Crick base pairs, efficient mismatch extension, and most importantly, an ability to replicate through DNA damage. This review is devoted primarily to a discussion of Y-family polymerase members that exhibit error-prone behavior. Roles for these remarkable enzymes occur in widely disparate DNA repair pathways, such as UV-induced mutagenesis, adaptive mutation, avoidance of skin cancer, and induction of somatic cell hypermutation of immunoglobulin genes. Individual polymerases engaged in multiple repair pathways pose challenging questions about their roles in targeting and trafficking. Macromolecular assemblies of replication-repair "factories" could enable a cell to handle the complex logistics governing the rapid migration and exchange of polymerases.
Collapse
Affiliation(s)
- Myron F Goodman
- Department of Biological Sciences and Chemistry, Hedco Molecular Biology Laboratory, University of Southern California, Los Angeles, California 90089-1340, USA.
| |
Collapse
|
92
|
Abstract
Any living cell is faced with the fundamental task of keeping the genome intact in order to develop in an organized manner, to function in a complex environment, to divide at the right time, and to die when it is appropriate. To achieve this goal, an efficient machinery is required to maintain the genetic information encoded in DNA during cell division, DNA repair, DNA recombination, and the bypassing of damage in DNA. DNA polymerases (pols) alpha, beta, gamma, delta, and epsilon are the key enzymes required to maintain the integrity of the genome under all these circumstances. In the last few years the number of known pols, including terminal transferase and telomerase, has increased to at least 19. A particular pol might have more than one functional task in a cell and a particular DNA synthetic event may require more than one pol, which suggests that nature has provided various safety mechanisms. This multi-functional feature is especially valid for the variety of novel pols identified in the last three years. These are the lesion-replicating enzymes pol zeta, pol eta, pol iota, pol kappa, and Rev1, and a group of pols called pol theta;, pol lambda, pol micro, pol sigma, and pol phi that fulfill a variety of other tasks.
Collapse
Affiliation(s)
- Ulrich Hubscher
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | |
Collapse
|
93
|
Prakash S, Prakash L. Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev 2002; 16:1872-83. [PMID: 12154119 DOI: 10.1101/gad.1009802] [Citation(s) in RCA: 270] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Satya Prakash
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555-1061, USA
| | | |
Collapse
|
94
|
Bresson A, Fuchs RP. Lesion bypass in yeast cells: Pol eta participates in a multi-DNA polymerase process. EMBO J 2002; 21:3881-7. [PMID: 12110599 PMCID: PMC126109 DOI: 10.1093/emboj/cdf363] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2002] [Revised: 04/18/2002] [Accepted: 05/22/2002] [Indexed: 11/13/2022] Open
Abstract
Replication through (6-4)TT and G-AAF lesions was compared in Saccharomyces cerevisiae strains proficient and deficient for the RAD30-encoded DNA polymerase eta (Pol eta). In the RAD30 strain, the (6-4)TT lesion is replicated both inaccurately and accurately 60 and 40% of the time, respectively. Surprisingly, in a rad30 Delta strain, the level of mutagenic bypass is essentially suppressed, while error-free bypass remains unchanged. Therefore, Pol eta is responsible for mutagenic replication through the (6-4)TT photoproduct, while another polymerase mediates its error-free bypass. Deletion of the RAD30 gene also reduces the levels of both accurate and inaccurate bypass of AAF lesions within two different sequence contexts up to 8-fold. These data show that, in contrast to the accurate bypass by Pol eta of TT cyclobutane dimers, it is responsible for the mutagenic bypass of other lesions. In conclusion, this paper shows that, in yeast, translesion synthesis involves the combined action of several polymerases.
Collapse
Affiliation(s)
| | - Robert P.P. Fuchs
- UPR 9003 du CNRS, Cancérogenèse et Mutagenèse Moléculaire et Structurale, UPR conventionnée avec l’Université Louis Pasteur de Strasbourg, ESBS, Blvd S.Brant, 67400 Illkirch, France
Corresponding author e-mail:
| |
Collapse
|
95
|
Haracska L, Prakash S, Prakash L. Yeast Rev1 protein is a G template-specific DNA polymerase. J Biol Chem 2002; 277:15546-51. [PMID: 11850424 DOI: 10.1074/jbc.m112146200] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rev1 protein of Saccharomyces cerevisiae functions with DNA polymerase zeta in mutagenic trans-lesion synthesis. Because of the reported preferential incorporation of a C residue opposite an abasic site, Rev1 has been referred to as a deoxycytidyltransferase. Here, we use steady-state kinetics to examine nucleotide incorporation by Rev1 opposite undamaged and damaged template residues. We show that Rev1 specifically inserts a C residue opposite template G, and it is approximately 25-, 40-, and 400-fold less efficient at inserting a C residue opposite an abasic site, an O(6)-methylguanine, and an 8-oxoguanine lesion, respectively. Rev1 misincorporates G, A, and T residues opposite template G with a frequency of approximately 10(-3) to 10(-4). Consistent with this finding, Rev1 replicates DNA containing a string of Gs in a template-specific manner, but it has a low processivity incorporating 1.6 nucleotides per DNA binding event on the average. From these observations, we infer that Rev1 is a G template-specific DNA polymerase.
Collapse
Affiliation(s)
- Lajos Haracska
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555-1061, USA
| | | | | |
Collapse
|
96
|
Huang ME, Rio AG, Galibert MD, Galibert F. Pol32, a subunit of Saccharomyces cerevisiae DNA polymerase delta, suppresses genomic deletions and is involved in the mutagenic bypass pathway. Genetics 2002; 160:1409-22. [PMID: 11973297 PMCID: PMC1462066 DOI: 10.1093/genetics/160.4.1409] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Pol32 subunit of S. cerevisiae DNA polymerase (Pol) delta plays an important role in replication and mutagenesis. Here, by measuring the CAN1 forward mutation rate, we found that either POL32 or REV3 (which encodes the Pol zeta catalytic subunit) inactivation produces overlapping antimutator effects against rad mutators belonging to three epistasis groups. In contrast, the msh2Delta pol32Delta double mutant exhibits a synergistic mutator phenotype. Can(r) mutation spectrum analysis of pol32Delta strains revealed a substantial increase in the frequency of deletions and duplications (primarily deletions) of sequences flanked by short direct repeats, which appears to be RAD52 and RAD10 independent. To better understand the pol32Delta and rev3Delta antimutator effects in rad backgrounds and the pol32Delta mutator effect in a msh2Delta background, we determined Can(r) mutation spectra for rad5Delta, rad5Delta pol32Delta, rad5Delta rev3Delta, msh2Delta, msh2Delta pol32Delta, and msh2Delta rev3Delta strains. Both rad5Delta pol32Delta and rad5Delta rev3Delta mutants exhibit a reduction in frameshifts and base substitutions, attributable to antimutator effects conferred by the pol32Delta and rev3Delta mutations. In contrast, an increase in these two types of alterations is attributable to a synergistic mutator effect between the pol32Delta and msh2Delta mutations. Taken together, these observations indicate that Pol32 is important in ensuring genome stability and in mutagenesis.
Collapse
Affiliation(s)
- Meng-Er Huang
- UMR6061 CNRS, "Génétique et Développement," Faculté de Médecine, 35043 Rennes, France.
| | | | | | | |
Collapse
|
97
|
Zhang H, Siede W. UV-induced T-->C transition at a TT photoproduct site is dependent on Saccharomyces cerevisiae polymerase eta in vivo. Nucleic Acids Res 2002; 30:1262-7. [PMID: 11861920 PMCID: PMC101249 DOI: 10.1093/nar/30.5.1262] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2001] [Revised: 12/21/2001] [Accepted: 01/10/2002] [Indexed: 11/13/2022] Open
Abstract
UV-induced reversion of the arg4-17 ochre allele in Saccharomyces cerevisiae is largely dependent on translesion polymerase eta (Rad30p), known to bypass cyclobutane-type TT dimers in an error-free fashion. arg4-17 locus reversion was predominantly due to T-->C transition of T127, the 3' T of a TT photoproduct site. This event was at least 20-fold reduced in a rad30 deletion mutant, irrespective of the status of nucleotide excision repair. These data correlate with known properties of 6-4 TT photoproducts and in vitro characteristics of polymerase eta and suggest that polymerase eta plays an important in vivo role in inserting G opposite the 3' T of 6-4 TT photoproducts at this site. Alternatively, an unprecedented error-prone processing of cyclobutane-type photoproducts at this site by polymerase eta must be assumed as the critical mechanism. Whereas photoreactivation results indeed hint at the latter possibility, a possible regulatory influence of reducing the overall UV damage load on the bypass probability of non-cyclobutane-type pyrimidine dimer photoproducts should not be dismissed.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Radiation Oncology and Winship Cancer Institute, B5111, Emory University School of Medicine, 1365 B Clifton Road NE, Atlanta, GA 30322, USA
| | | |
Collapse
|
98
|
Haracska L, Unk I, Johnson RE, Phillips BB, Hurwitz J, Prakash L, Prakash S. Stimulation of DNA synthesis activity of human DNA polymerase kappa by PCNA. Mol Cell Biol 2002; 22:784-91. [PMID: 11784855 PMCID: PMC133560 DOI: 10.1128/mcb.22.3.784-791.2002] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2001] [Revised: 10/19/2001] [Accepted: 10/23/2001] [Indexed: 11/20/2022] Open
Abstract
Humans have three DNA polymerases, Poleta, Polkappa, and Poliota, which are able to promote replication through DNA lesions. However, the mechanism by which these DNA polymerases are targeted to the replication machinery stalled at a lesion site has remained unknown. Here, we provide evidence for the physical interaction of human Polkappa (hPolkappa) with proliferating cell nuclear antigen (PCNA) and show that PCNA, replication factor C (RFC), and replication protein A (RPA) act cooperatively to stimulate the DNA synthesis activity of hPolkappa. The processivity of hPolkappa, however, is not significantly increased in the presence of these protein factors. The efficiency (V(max)/K(m)) of correct nucleotide incorporation by hPolkappa is enhanced approximately 50- to 200-fold in the presence of PCNA, RFC, and RPA, and this increase in efficiency is achieved by a reduction in the apparent K(m) for the nucleotide. Although in the presence of these protein factors, the efficiency of the insertion of an A nucleotide opposite an abasic site is increased approximately 40-fold, this reaction still remains quite inefficient; thus, it is unlikely that hPolkappa would bypass an abasic site by inserting a nucleotide opposite the site.
Collapse
Affiliation(s)
- Lajos Haracska
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555-1061, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Washington MT, Prakash L, Prakash S. Yeast DNA polymerase eta utilizes an induced-fit mechanism of nucleotide incorporation. Cell 2001; 107:917-27. [PMID: 11779467 DOI: 10.1016/s0092-8674(01)00613-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
DNA polymerase eta (Poleta) is unique among eukaryotic DNA polymerases in its proficient ability to replicate through distorting DNA lesions, and Poleta synthesizes DNA with a low fidelity. Here, we use pre-steady-state kinetics to investigate the mechanism of nucleotide incorporation by Poleta and show that it utilizes an induced-fit mechanism to selectively incorporate the correct nucleotide. Poleta discriminates poorly between the correct and incorrect nucleotide at both the initial nucleotide binding step and at the subsequent induced-fit conformational change step, which precedes the chemical step of phosphodiester bond formation. This property enables Poleta to bypass lesions with distorted DNA geometries, and it bestows upon the enzyme a low fidelity.
Collapse
Affiliation(s)
- M T Washington
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, 6.104 Blocker Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555, USA
| | | | | |
Collapse
|
100
|
Glick E, Vigna KL, Loeb LA. Mutations in human DNA polymerase eta motif II alter bypass of DNA lesions. EMBO J 2001; 20:7303-12. [PMID: 11743006 PMCID: PMC125802 DOI: 10.1093/emboj/20.24.7303] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2001] [Revised: 10/31/2001] [Accepted: 11/02/2001] [Indexed: 11/14/2022] Open
Abstract
Human DNA polymerase eta (hPol eta) is one of the newly identified Y-family of DNA polymerases. These polymerases synthesize past template lesions that are postulated to block replication fork progression. hPol eta accurately bypasses UV-associated cis-syn cyclobutane thymine dimers in vitro and contributes to normal resistance to sunlight-induced skin cancer. We describe here mutational analysis of motif II, a highly conserved sequence, recently reported to reside in the fingers domain and to form part of the active site in Y-family DNA polymerases. We used a yeast-based complementation system to isolate biologically active mutants created by random sequence mutagenesis, synthesized the mutant proteins in vitro and assessed their ability to bypass thymine dimers. The mutability of motif II in 210 active mutants has parallels with natural evolution and identifies Tyr52 and Ala54 as prime candidates for involvement in catalytic activity or bypass. We describe the ability of hPol eta S62G, a mutant polymerase with enhanced activity, to bypass five other site-specific lesions. Our results may serve as a prototype for studying other members of the Y-family DNA polymerases.
Collapse
Affiliation(s)
| | | | - Lawrence A. Loeb
- The Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, Box 357705, University of Washington, Seattle, WA 98195-357705, USA
Corresponding author e-mail:
| |
Collapse
|