51
|
Balavenkatraman KK, Jandt E, Friedrich K, Kautenburger T, Pool-Zobel BL, Ostman A, Böhmer FD. DEP-1 protein tyrosine phosphatase inhibits proliferation and migration of colon carcinoma cells and is upregulated by protective nutrients. Oncogene 2006; 25:6319-24. [PMID: 16682945 DOI: 10.1038/sj.onc.1209647] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transmembrane protein-tyrosine phosphatase (PTP) DEP-1 (density-enhanced phosphatase) is a candidate tumor suppressor in the colon epithelium. We have explored the function of DEP-1 in colon epithelial cells by inducible re-expression in a DEP-1-deficient human colon cancer cell line. Density-enhanced phosphatase-1 re-expression led to profound inhibition of cell proliferation and cell migration, and was associated with cytoskeletal rearrangements. These effects were dependent on the PTP activity of DEP-1 as they were not observed with cells expressing the catalytically inactive DEP-1 C1239S variant. shRNA-mediated suppression of DEP-1 in a colon epithelial cell line with high endogenous DEP-1 levels enhanced proliferation, further supporting the antiproliferative function of DEP-1. Nutrients, which are considered to be chemoprotective with respect to colon cancer development, including butyrate, green tea and apple polyphenols, had the capacity to elevate transcription of endogenous DEP-1 mRNA and expression of DEP-1 protein. Upregulation of DEP-1 expression, and in turn inhibition of cell growth and migration may present a previously unrecognized mechanism of chemoprevention by nutrients.
Collapse
MESH Headings
- Adenocarcinoma/enzymology
- Adenocarcinoma/pathology
- Adenoma/enzymology
- Adenoma/pathology
- Anticarcinogenic Agents/pharmacology
- Butyrates/pharmacology
- Cell Division/drug effects
- Cell Line, Tumor/cytology
- Cell Line, Tumor/drug effects
- Cell Line, Tumor/enzymology
- Cell Movement/drug effects
- Cells, Cultured/cytology
- Cells, Cultured/drug effects
- Cells, Cultured/enzymology
- Chemokine CXCL12
- Chemokines, CXC/pharmacology
- Colon/cytology
- Colon/enzymology
- Colonic Neoplasms/enzymology
- Colonic Neoplasms/pathology
- Down-Regulation
- Enzyme Induction/drug effects
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/enzymology
- Flavonoids/pharmacology
- Humans
- Lysophospholipids/pharmacology
- Malus/chemistry
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Phenols/pharmacology
- Plant Extracts/pharmacology
- Polyphenols
- Protein Phosphatase 1
- Protein Tyrosine Phosphatases/biosynthesis
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/physiology
- RNA Interference
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RNA, Small Interfering/pharmacology
- Receptor-Like Protein Tyrosine Phosphatases, Class 3
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Tea/chemistry
- Transcription, Genetic/drug effects
- Transfection
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- K K Balavenkatraman
- Institute of Molecular Cell Biology, Medical Faculty, Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
52
|
Takahashi T, Takahashi K, Mernaugh RL, Tsuboi N, Liu H, Daniel TO. A monoclonal antibody against CD148, a receptor-like tyrosine phosphatase, inhibits endothelial-cell growth and angiogenesis. Blood 2006; 108:1234-42. [PMID: 16597593 PMCID: PMC1895872 DOI: 10.1182/blood-2005-10-4296] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Angiogenesis contributes to a wide range of neoplastic, ischemic, and inflammatory disorders. Definition of the intrinsic molecular controls in angiogenic vessel growth promises novel therapeutic approaches for angiogenesis-related diseases. CD148 (also named DEP-1/PTP eta) is a receptor-like protein tyrosine phosphatase that is abundantly expressed in vascular endothelial cells. To explore a role of CD148 in endothelial vessel formation, we generated a monoclonal antibody, Ab1, against the ectodomain sequence of CD148 and examined its effects on endothelial-cell growth and vessel formation. Here we report that a bivalent, but not a monovalent, form of the Ab1 antibody inhibits endothelial-cell growth and blocks angiogenesis in mouse cornea in vivo. We further demonstrate that (1) bivalent Ab1 arrests cell-cycle progression of CD148-transfected CHO cells at G(0)/G(1) phase, (2) coexpression of catalytically inactive CD148 mutants attenuates the Ab1-cell growth inhibition, and (3) bivalent Ab1 suppresses phosphorylation of ERK1/2 kinases and Met tyrosine kinase as activated CD148 does, with an increase in CD148-associated tyrosine phosphatase activity. Taken together, these findings demonstrate that Ab1-induced ectodomain oligomerization arrests endothelial-cell growth through catalytic activity of the CD148 cytoplasmic domain. The present study defines CD148 as a valuable molecular target for antiangiogenesis therapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- CHO Cells
- Cornea/blood supply
- Cornea/immunology
- Cornea/metabolism
- Cornea/pathology
- Cricetinae
- Cricetulus
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Enzyme Inhibitors/immunology
- Enzyme Inhibitors/pharmacology
- G1 Phase/drug effects
- G1 Phase/genetics
- G1 Phase/immunology
- Humans
- Inflammation/drug therapy
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/immunology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/immunology
- Mitogen-Activated Protein Kinase 3/metabolism
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/metabolism
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Protein Processing, Post-Translational/genetics
- Protein Processing, Post-Translational/immunology
- Protein Structure, Tertiary/genetics
- Protein Tyrosine Phosphatases/antagonists & inhibitors
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/immunology
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/immunology
- Proto-Oncogene Proteins c-met/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 3
- Resting Phase, Cell Cycle/drug effects
- Resting Phase, Cell Cycle/genetics
- Resting Phase, Cell Cycle/immunology
Collapse
Affiliation(s)
- Takamune Takahashi
- Vanderbilt University Medical Center, Division of Nephrology, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
53
|
Abstract
Tyrosine phosphorylation is an important signalling mechanism in eukaryotic cells. In cancer, oncogenic activation of tyrosine kinases is a common feature, and novel anticancer drugs have been introduced that target these enzymes. Tyrosine phosphorylation is also controlled by protein-tyrosine phosphatases (PTPs). Recent evidence has shown that PTPs can function as tumour suppressors. In addition, some PTPs, including SHP2, positively regulate the signalling of growth-factor receptors, and can be oncogenic. An improved understanding of how these enzymes function and how they are regulated might aid the development of new anticancer agents.
Collapse
Affiliation(s)
- Arne Ostman
- Cancer Center Karolinska, Department of Pathology and Oncology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
54
|
Bäumer S, Keller L, Holtmann A, Funke R, August B, Gamp A, Wolburg H, Wolburg-Buchholz K, Deutsch U, Vestweber D. Vascular endothelial cell-specific phosphotyrosine phosphatase (VE-PTP) activity is required for blood vessel development. Blood 2006; 107:4754-62. [PMID: 16514057 DOI: 10.1182/blood-2006-01-0141] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
VE-PTP, a receptor-type phosphotyrosine phosphatase, associates with the tyrosine kinase receptor Tie-2 and VE-cadherin and enhances the adhesive function of the latter. Here, VE-PTP was found to be restricted to endothelial cells, with a preference for arterial endothelium. Mutant mice expressing a truncated, secreted form of VE-PTP lacking the cytoplasmic and transmembrane domains and the most membrane-proximal extracellular fibronectin type III repeat, showed severe vascular malformations causing lethality at 10 days of gestation. Although blood vessels were initially formed, the intraembryonic vascular system soon deteriorated. Blood vessels in the yolk sac developed into dramatically enlarged cavities. In explant cultures of mutant allantoides, endothelial cells were found next to vessel structures growing as cell layers. No signs for enhanced endothelial apoptosis or proliferation were observed. Thus, the activity of VE-PTP is not required for the initial formation of blood vessels, yet it is essential for their maintenance and remodeling.
Collapse
Affiliation(s)
- Sebastian Bäumer
- Max-Planck-Institute of Molecular Biomedicine, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Motiwala T, Jacob ST. Role of protein tyrosine phosphatases in cancer. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:297-329. [PMID: 16891175 PMCID: PMC3077959 DOI: 10.1016/s0079-6603(06)81008-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein phosphorylation and dephosphorylation are complex enzymatic reactions that are performed by the concerted action of protein kinases and phosphatases, respectively. Deregulation of such coordination due to loss or gain of a single component of the process can result in disease conditions that include, but are not limited to, neoplastic transformation, developmental, autoimmune, and metabolic disorders. Unlike many protein tyrosine kinases that function as oncoproteins, protein tyrosine phosphatases (PTPs) could impart positive or negative effect on cell proliferation. Although past studies have suggested a potential role for PTPs in cancer, the molecular mechanisms of the altered activity/level of these enzymes and the pathological manifestations of these modifications in diseases, particularly in cancer, have not been critically analyzed. This chapter is a comprehensive survey of the alterations of PTPs and the implications of the growth, proliferation, and apoptosis phenotypes attributable to the altered function of this family of phosphatases in cancer. Further, the potential applications of different therapeutic approaches to rectify the adverse effects of alterations in expression of the phosphatase genes and of the phosphatase activity in cancer are discussed.
Collapse
Affiliation(s)
- Tasneem Motiwala
- Department of Molecular and Cellular Biochemistry, The Ohio State University, College of Medicine, Columbus, Ohio 43210, USA
| | | |
Collapse
|
56
|
Doumont G, Martoriati A, Beekman C, Bogaerts S, Mee PJ, Bureau F, Colombo E, Alcalay M, Bellefroid E, Marchesi F, Scanziani E, Pelicci PG, Marine JC. G1 checkpoint failure and increased tumor susceptibility in mice lacking the novel p53 target Ptprv. EMBO J 2005; 24:3093-103. [PMID: 16107883 PMCID: PMC1201350 DOI: 10.1038/sj.emboj.7600769] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Accepted: 07/13/2005] [Indexed: 11/09/2022] Open
Abstract
In response to DNA damage, p53 activates a G1 cell cycle checkpoint, in part through induction of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). Here we report the identification of a new direct p53 target, Ptprv (or ESP), encoding a transmembrane tyrosine phosphatase. Ptprv transcription is dramatically and preferentially increased in cultured cells undergoing p53-dependent cell cycle arrest, but not in cells undergoing p53-mediated apoptosis. This observation was further confirmed in vivo using a Ptprv null-reporter mouse line. A p53-responsive element is present in the Ptprv promoter and p53 is recruited to this site in vivo. Importantly, while p53-dependent apoptosis is intact in mice lacking Ptprv, Ptprv-null fibroblasts and epithelial cells of the small intestine are defective in G1 checkpoint control. Thus, Ptprv is a new direct p53 target and a key mediator of p53-induced cell cycle arrest. Finally, Ptprv loss enhances the formation of epidermal papillomas after exposure to chemical carcinogens, suggesting that Ptprv acts to suppress tumor formation in vivo.
Collapse
Affiliation(s)
- Gilles Doumont
- Laboratory for Molecular Cancer Biology, Flanders Interuniversity Institute for Biotechnology (VIB), University of Ghent, Ghent, Belgium
- Unit of Molecular Embryology, Free University of Brussels (ULB-IBMM), Gosselies, Belgium
| | - Alain Martoriati
- Laboratory for Molecular Cancer Biology, Flanders Interuniversity Institute for Biotechnology (VIB), University of Ghent, Ghent, Belgium
- Unit of Molecular Embryology, Free University of Brussels (ULB-IBMM), Gosselies, Belgium
| | - Chantal Beekman
- Laboratory for Molecular Cancer Biology, Flanders Interuniversity Institute for Biotechnology (VIB), University of Ghent, Ghent, Belgium
| | - Sven Bogaerts
- Laboratory for Molecular Cancer Biology, Flanders Interuniversity Institute for Biotechnology (VIB), University of Ghent, Ghent, Belgium
| | - Patrick J Mee
- Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | - Fabrice Bureau
- Unit of Immunology, Free University of Brussels (ULB-IBMM), Gosselies, Belgium
| | - Emanuela Colombo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- FIRC Institute of Molecular Oncology, Milan, Italy
| | - Myriam Alcalay
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- FIRC Institute of Molecular Oncology, Milan, Italy
| | - Eric Bellefroid
- Unit of Molecular Embryology, Free University of Brussels (ULB-IBMM), Gosselies, Belgium
| | | | - Eugenio Scanziani
- Department of Veterinary Pathology, University of Milan, Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- FIRC Institute of Molecular Oncology, Milan, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Flanders Interuniversity Institute for Biotechnology (VIB), University of Ghent, Ghent, Belgium
- Laboratory for Molecular Cancer Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Technologiepark, 927, 9052 Ghent, Belgium. Tel.: +32 9 3313640; Fax: +32 9 331360; E-mail:
| |
Collapse
|
57
|
Lesueur F, Pharoah PD, Laing S, Ahmed S, Jordan C, Smith PL, Luben R, Wareham NJ, Easton DF, Dunning AM, Ponder BAJ. Allelic association of the human homologue of the mouse modifier Ptprj with breast cancer. Hum Mol Genet 2005; 14:2349-56. [PMID: 16000320 DOI: 10.1093/hmg/ddi237] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human homologues of mouse cancer modifier genes may play a role in cancer risk and prognosis. A proportion of the familial risk of common cancers may be attributable to variants in such genes, each contributing to a small effect. The protein tyrosine phosphatase receptor type J (PTPRJ) has been recently identified as being the protein encoded by the Scc1 mouse gene (susceptibility to colon cancer-1). In addition, the PTPRJ gene has been shown to be somatically altered in several human cancer types such as colon, lung and breast cancers and to have the characteristics of a tumour-suppressor gene. The purpose of this study was to determine whether common variants in the PTPRJ gene represent low penetrance breast cancer susceptibility alleles. To test this hypothesis, we assessed single nucleotide polymorphisms (SNPs) tagging the common SNPs and haplotypes of the gene in 4512 cases and 4554 controls from the East Anglian population. We observed a difference in the haplotype frequency distributions between cases and controls (P = 0.0023, OR = 0.81 [0.72-0.92]). Thus, carrying a specific PTPRJ haplotype confers a protective effect on the risk of breast cancer. This result establishes the principle that mouse cancer modifier genes are candidates for low penetrance human breast cancer susceptibility genes.
Collapse
Affiliation(s)
- Fabienne Lesueur
- Cancer Research UK Human Cancer Genetics Research Group, Department of Oncology, University of Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Berset TA, Hoier EF, Hajnal A. The C. elegans homolog of the mammalian tumor suppressor Dep-1/Scc1 inhibits EGFR signaling to regulate binary cell fate decisions. Genes Dev 2005; 19:1328-40. [PMID: 15901674 PMCID: PMC1142556 DOI: 10.1101/gad.333505] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation by kinases and the subsequent dephosphorylation by phosphatases are key mechanisms that regulate intracellular signal transduction during development. Here, we report the identification of the receptor protein tyrosine phosphatase DEP-1 as a negative regulator of the Caenorhabditis elegans EGF receptor. DEP-1 amplifies in the developing vulva and the excretory system the small differences in the amount of EGF signal received by equivalent precursor cells to achieve binary cell fate decisions. During vulval development, DEP-1 inhibits EGFR signaling in the secondary cell lineage in parallel with the NOTCH-mediated lateral inhibition, while EGFR signaling simultaneously down-regulates DEP-1 and NOTCH expression in the primary cell lineage. This regulatory network of inhibitors results in the full activation of the EGFR/RAS/MAPK pathway in the primary vulval cells and at the same time keeps the EGFR/RAS/MAPK pathway inactive in the adjacent secondary cells. Mammalian Dep-1/Scc1 functions as a tumor-suppressor gene in the intestinal epithelium. Thus, mutations in human Dep-1 may promote tumor formation through a hyperactivation of the EGF receptor.
Collapse
|
59
|
Santos MAM, Santos SM, Matozo HC, Portugal RV, Iuliano R, Fusco A, Polikarpov I. Expression, purification, and characterization of rat protein tyrosine phosphatase η catalytic domain. Protein Expr Purif 2005; 41:113-20. [PMID: 15802228 DOI: 10.1016/j.pep.2005.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 01/23/2005] [Indexed: 02/07/2023]
Abstract
Receptor-like protein tyrosine phosphatases generally contain one or two conserved intracellular catalytic domains with a conserved sequence motif ([I/V]HCXAGXXR[S/T]G), a single transmembrane domain, and an external highly variable part. Here, we describe cloning of the intracellular catalytic domain of the rat protein tyrosine phosphatase eta (rPTPetaCD) into pET28a(+) vector, its expression in Escherichia coli, purification and initial characterization. The purification of His6-tagged rPTPetaCD to near homogeneity was achieved by a combination of affinity and size exclusion chromatography. The His-tag was subsequently removed by thrombin digestion. PhastGel IEF electrophoresis demonstrated that the isoelectric point of this 41 kDa His6-tag free recombinant protein was 7.3, which is just slightly higher than the theoretically predicted value of 7.2. To assess the functionality of the rPTPetaCD we used the pNPP hydrolysis assay and observed that the enzyme has a specific activity of 9 nmol/min/mug. The secondary structure and stability of the recombinant protein was also analyzed by circular dichroism and fluorescence spectroscopy. In summary, the rPTPetaCD is stable at 18 degrees C, properly folded, and fully active, which makes it a suitable candidate for structural and functional studies.
Collapse
Affiliation(s)
- Maria A M Santos
- Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, Avenida Trabalhador São Carlense, 400, CEP 13566-590 São Carlos, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
60
|
Pera IL, Iuliano R, Florio T, Susini C, Trapasso F, Santoro M, Chiariotti L, Schettini G, Viglietto G, Fusco A. The rat tyrosine phosphatase η increases cell adhesion by activating c-Src through dephosphorylation of its inhibitory phosphotyrosine residue. Oncogene 2005; 24:3187-95. [PMID: 15735685 DOI: 10.1038/sj.onc.1208510] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The expression of the receptor protein tyrosine phosphatase r-PTPeta is drastically reduced in rat and human malignant thyroid cells, whereas its restoration reverts the neoplastic phenotype of retrovirally transformed rat thyroid cells. Moreover, reduced levels and loss of heterozygosity of DEP-1, the human homolog of r-PTPeta, have been found in many human neoplasias. Here, we report that the r-PTPeta protein binds to c-Src in living cells and dephosphorylates the c-Src inhibitory tyrosine phosphorylation site (Tyr 529), thereby increasing c-Src tyrosine kinase activity in malignant rat thyroid cells stably transfected with r-PTPeta. Tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin was enhanced in r-PTPeta-expressing cells. This was associated with increased adhesion of malignant r-PTPeta-transfected thyroid cells vs both untransfected cells and cells stably transfected with an inactive r-PTPeta mutant. Treatment of rat thyroid cells with the c-Src inhibitor PP2 decreased cell adhesion to a higher extent in r-PTPeta-transfected cells than in mock-transfected or stably transfected cells with the inactive r-PTPeta mutant, indicating that r-PTPeta regulates cell-substratum adhesion by activating c-Src. Interestingly, the extent of both c-Src dephosphorylation at Tyr 529, FAK and paxillin phosphorylation, and the increased cell adhesion were associated with the degree of r-PTPeta expression.
Collapse
Affiliation(s)
- Ilaria Le Pera
- Department of Experimental and Clinical Medicine, Medical School of Catanzaro, 'Magna Graecia' University of Catanzaro, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Iuliano R, Le Pera I, Cristofaro C, Baudi F, Arturi F, Pallante P, Martelli ML, Trapasso F, Chiariotti L, Fusco A. The tyrosine phosphatase PTPRJ/DEP-1 genotype affects thyroid carcinogenesis. Oncogene 2004; 23:8432-8. [PMID: 15378013 DOI: 10.1038/sj.onc.1207766] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We recently isolated the r-PTPeta gene, which encodes a receptor-type tyrosine phosphatase protein that suppresses the neoplastic phenotype of retrovirally transformed rat thyroid cells. The human homologue gene PTPRJ/DEP-1 is deleted in various tumors. Moreover, the Gln276Pro polymorphism, located in the extracellular region of the gene, seems to play a critical role in susceptibility to some human neoplasias. Here we report the loss of heterozygosity (LOH) of PTPRJ in 11/76 (14.5%) informative thyroid tumors (including adenomas and carcinomas). We also looked for the Gln276Pro, Arg326Gln and Asp872Glu polymorphisms in exons 5, 6 and 13 of PTPRJ in 88 patients with thyroid tumors and in 54 healthy individuals. We found that the PTPRJ genotypes homozygous for the Gln276Pro and Arg326Gln polymorphisms, and the Asp872 allele were more frequent in thyroid carcinoma patients than in healthy individuals (P=0.032). In addition, PTPRJ LOH was more frequent in thyroid carcinomas of heterozygotes for Gln276Pro and Arg326Gln compared with homozygotes (P=0.006). This suggests that the presence of hemizygosity for these polymorphisms in the tumor facilitates tumor progression. These results indicate that the genotypic profile of PTPRJ affects susceptibility to thyroid carcinomas, and that allelic loss of this gene is involved in thyroid carcinogenesis.
Collapse
Affiliation(s)
- Rodolfo Iuliano
- Dipartimento di Medicina Sperimentale e Clinica, Facoltà di Medicina e Chirurgia di Catanzaro, Università degli Studi di Catanzaro Magna Graecia, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Kuroki T, Yendamuri S, Trapasso F, Matsuyama A, Aqeilan RI, Alder H, Rattan S, Cesari R, Nolli ML, Williams NN, Mori M, Kanematsu T, Croce CM. The tumor suppressor gene WWOX at FRA16D is involved in pancreatic carcinogenesis. Clin Cancer Res 2004; 10:2459-65. [PMID: 15073125 DOI: 10.1158/1078-0432.ccr-03-0096] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE WWOX (WW domain containing oxidoreductase) is a tumor suppressor gene that maps to the common fragile site FRA16D. We showed previously that WWOX is frequently altered in human lung and esophageal cancers. The purpose of this study was to delineate more precisely the role of WWOX in pancreatic carcinogenesis. EXPERIMENTAL DESIGN We analyzed 15 paired pancreatic adenocarcinoma samples and 9 pancreatic cancer cell lines for WWOX alterations. Colony assay and cell cycle analysis were also performed to evaluate the role of the WWOX as a tumor suppressor gene. RESULTS Loss of heterozygosity at the WWOX locus was observed in 4 primary tumors (27%). Methylation analysis showed that site-specific promoter hypermethylation was detected in 2 cell lines (22%) and treatment with the demethylating agent 5-aza-2'-deoxycytidine demonstrated an increase in the expression of WWOX. In addition, 2 primary tumor samples (13%) showed promoter hypermethylation including the position of site-specific methylation. Transcripts missing WWOX exons were detected in 4 cell lines (44%) and in 2 tumor samples (13%). Real-time reverse transcription PCR revealed a significant reduction of WWOX expression in all of the cell lines and in 6 primary tumors (40%). Western blot analysis showed a significant reduction of the WWOX protein in all of the cell lines. Furthermore, transfection with WWOX inhibited colony formation of pancreatic cancer cell lines by triggering apoptosis. CONCLUSION These results indicate that the WWOX gene may play an important role in pancreatic tumor development.
Collapse
Affiliation(s)
- Tamotsu Kuroki
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Massa A, Barbieri F, Aiello C, Iuliano R, Arena S, Pattarozzi A, Corsaro A, Villa V, Fusco A, Zona G, Spaziante R, Schettini G, Florio T. The Phosphotyrosine Phosphatase η Mediates Somatostatin Inhibition of Glioma Proliferation via the Dephosphorylation of ERK1/2. Ann N Y Acad Sci 2004; 1030:264-74. [PMID: 15659806 DOI: 10.1196/annals.1329.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Somatostatin (SST) controls the proliferation of a variety of cell types. Its effects are mediated by five G protein-coupled receptors (SSTR1-SSTR5), variably expressed in normal and cancer tissues. SST inhibition of cell proliferation can be exploited by both direct and indirect mechanisms: the main direct pathway involves the modulation of phosphotyrosine phosphatase (PTP) activity. Here we show that SST cytostatic activity is mediated by the activation of a receptor-like PTP, named PTPeta. The role of this PTP in the antiproliferative activity of SST in five glioma cell lines (C6, U87MG, U373MG, DBTRG05MG, and CAS1) and in four postsurgical human glioblastoma specimens, has been studied. SST inhibited growth only in C6 and U87MG that express PTPeta. In C6 cells, SST antiproliferative effects were reverted by pretreatment with pertussis toxin and vanadate, indicating the involvement of G proteins and PTPs. The role of PTPeta in the SST inhibitory effects was demonstrated by testing the PTPeta activity: it was increased by SST treatment and paralleled by inhibition of ERK1/2 activation. Since basic fibroblast growth factor-dependent MEK phosphorylation was not affected by SST, we propose a direct effect of SST-activated PTPeta on ERK1/2 phosphorylation. Finally, the SSTR mRNAs were identified in all of the 36 gliomas analyzed, whereas PTPeta expression was found in 33% of cases. Culturing four gliomas, a precise correlation between the expression of PTPeta and the SST antiproliferative effects was identified. In conclusion, in glioma cells, SST antiproliferative activity requires the expression and activation of PTPeta, which directly dephosphorylates ERK1/2.
Collapse
Affiliation(s)
- Alessandro Massa
- Section of Pharmacology, Department of Oncology, Biology, and Genetics, University of Genova, Largo R. Benzi 10, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Lin J, Zhu JW, Baker JE, Weiss A. Regulated Expression of the Receptor-Like Tyrosine Phosphatase CD148 on Hemopoietic Cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:2324-30. [PMID: 15294945 DOI: 10.4049/jimmunol.173.4.2324] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD148 is a receptor-like protein tyrosine phosphatase expressed on a wide variety of cell types. Through the use flow cytometry and immunofluorescence microscopy on tissue sections, we examined the expression of CD148 on multiple murine hemopoietic cell lineages. We found that CD148 is moderately expressed during all stages of B cell development in the bone marrow, as well as peripheral mature B cells. In contrast, CD148 expression on thymocytes and mature T cells is substantially lower. However, stimulation of peripheral T cells through the TCR leads to an increase of CD148 expression. This up-regulation on T cells can be partially inhibited by reagents that block the activity of src family kinases, calcineurin, MEK, or PI3K. Interestingly, CD148 levels are elevated on freshly isolated T cells from MRL lpr/lpr and CTLA-4-deficient mice, two murine models of autoimmunity. Together, these expression data along with previous biochemical data suggest that CD148 may play an important regulatory role to control an immune response.
Collapse
Affiliation(s)
- Joseph Lin
- Department of Medicine, University of California, San Francisco 94143, USA
| | | | | | | |
Collapse
|
65
|
Massa A, Barbieri F, Aiello C, Arena S, Pattarozzi A, Pirani P, Corsaro A, Iuliano R, Fusco A, Zona G, Spaziante R, Florio T, Schettini G. The Expression of the Phosphotyrosine Phosphatase DEP-1/PTPη Dictates the Responsivity of Glioma Cells to Somatostatin Inhibition of Cell Proliferation. J Biol Chem 2004; 279:29004-12. [PMID: 15123617 DOI: 10.1074/jbc.m403573200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we characterize the intracellular effectors of the antiproliferative activity of somatostatin in glioma cell lines and post-surgical specimens. The responsiveness to somatostatin correlated with the expression of the phosphotyrosine phosphatase DEP-1/PTPeta, identified in C6 and U87MG cells, in which somatostatin inhibited cell growth. The expression of a dominant negative mutant of DEP-1/PTPeta in C6 cells abolished somatostatin effects, confirming the involvement of this phosphotyrosine phosphatase in such effects. Somatostatin treatment increased the activity of DEP-1/PTPeta and inhibited ERK1/2 activation. Conversely, basic fibroblast growth factor-dependent MEK phosphorylation was not affected, suggesting a direct effect on ERK1/2. In vitro experiments showed that PTPeta was able to interact and dephosphorylate ERK1/2 activated by basic fibroblast growth factor. Furthermore, by transfecting PTPeta in the somatostatin-unresponsive, DEP-1/PTPeta-deficient U373MG cells, the somatostatin-dependent control of cell proliferation was recovered. Finally we evaluated the requirement for DEP-1/PTPeta in somatostatin inhibition of cell proliferation in post-surgical specimens derived from different grade human gliomas. Although all of the glioma analyzed expressed somatostatin receptor mRNA, DEP-1/PTPeta expression was limited to 8 of 22 of the tumors. Culturing seven gliomas, a correlation between the expression of DEP-1/PTPeta and the somatostatin antiproliferative effects was identified. In conclusion we propose that the expression and activation of DEP-1/PTPeta is required for somatostatin inhibition of glioma proliferation.
Collapse
Affiliation(s)
- Alessandro Massa
- Department of Oncology Biology and Genetics, University of Genova, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Lund IK, Andersen HS, Iversen LF, Olsen OH, Møller KB, Pedersen AK, Ge Y, Holsworth DD, Newman MJ, Axe FU, Møller NPH. Structure-based Design of Selective and Potent Inhibitors of Protein-tyrosine Phosphatase β. J Biol Chem 2004; 279:24226-35. [PMID: 15024017 DOI: 10.1074/jbc.m313027200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protein-tyrosine phosphatases (PTPs) are considered important therapeutic targets because of their pivotal role as regulators of signal transduction and thus their implication in several human diseases such as diabetes, cancer, and autoimmunity. In particular, PTP1B has been the focus of many academic and industrial laboratories because it was found to be an important negative regulator of insulin and leptin signaling, and hence a potential therapeutic target in diabetes and obesity. As a result, significant progress has been achieved in the design of highly selective and potent PTP1B inhibitors. In contrast, little attention has been given to other potential drug targets within the PTP family. Guided by x-ray crystallography, molecular modeling, and enzyme kinetic analyses with wild type and mutant PTPs, we describe the development of a general, low molecular weight, non-peptide, non-phosphorus PTP inhibitor into an inhibitor that displays more than 100-fold selectivity for PTPbeta over PTP1B. Of note, our structure-based design principles, which are based on extensive bioinformatics analyses of the PTP family, are general in nature. Therefore, we anticipate that this strategy, here applied to PTPbeta, in principle can be used in the design and development of selective inhibitors of many, if not most PTPs.
Collapse
Affiliation(s)
- Ida Katrine Lund
- Signal Transduction, Protein Science, Novo Nordisk A/S, DK-2880 Bagsvaerd, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Powell N, Dudley E, Morishita M, Bogdanova T, Tronko M, Thomas G. Single nucleotide polymorphism analysis in the human phosphatase PTPrj gene using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2004; 18:2249-2254. [PMID: 15384144 DOI: 10.1002/rcm.1617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Data derived from analysis of single nucleotide polymorphisms (SNPs) are being applied in many diverse fields, from medical studies of disease mechanisms and individual drug response, to population genetics for tracking migration and mixing of ancestral groups and also in forensic science for the identification of human remains and identification of individuals from bodily samples. All these applications have in common the need to generate data for multiple loci from large numbers of samples. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) is a promising platform for the generation of such data and we present a simple, flexible and robust technique for SNP determination. We demonstrate these features by typing two SNPs (Q276P and R326Q) in the human phosphatase gene PTPrj, which has been implicated in the aetiology of colon, lung, breast and thyroid cancers. A nucleotide depletion primer extension assay using no commercial kits or dideoxyNTPs was used to genotype a panel of DNAs derived from thyroid cancer patients and normal volunteers. The results obtained were in perfect agreement with those generated via restriction fragment length polymorphism analysis. No significant association was noted between possession of either allelic variant and a disease state, but the technique was validated as simple, flexible and appropriate for application in this context. Furthermore, it was highly cost-effective and required minimal optimisation, rendering it ideal for this type of pilot study.
Collapse
Affiliation(s)
- Ned Powell
- Human Cancer Studies Group, Swansea Medical School, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, Wales, UK.
| | | | | | | | | | | |
Collapse
|
68
|
Chen JS, Faller DV. Histone deacetylase inhibition-mediated post-translational elevation of p27KIP1 protein levels is required for G1 arrest in fibroblasts. J Cell Physiol 2004; 202:87-99. [PMID: 15389542 DOI: 10.1002/jcp.20094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Butyrate, a non-toxic short-chain fatty acid (SCFA) and inhibitor of histone deacetylase (HDAC), has potential as an anti-tumor agent because it imposes a reversible G1 block in normal cells yet induces apoptosis in tumor lines. As a potent reactivator of fetal globin transcription, butyrate is used clinically in the treatment of hemoglobinopathies. The anti-proliferative effect of butyrate and its derivatives on in vivo erythroid cell maturation, however, has limited their utility. The molecular mechanisms underlying the G1 arrest induced by butyrate and related SCFAs remain unclear. One model, drawing on tumor cell data, proposes that HDAC inhibition and subsequent transcriptional induction of cyclin-dependent kinase inhibitor (CKI) p21CIP are required. However, because of potentially confounding genetic mutations present in tumor models, we examined SCFA effects on CKIs in a non-transformed growth control model. Using murine 3T3 fibroblasts, we find p27KIP1 is also strongly induced. Unlike previously described effects of butyrate and HDAC inhibition on p21CIP, p27KIP1 induction did not occur at the transcriptional level; instead, the stability of the p27KIP1 protein increased. Other structurally unrelated HDAC inhibitors, including trichostatin A (TSA), induced p27KIP1 similarly. p27KIP1 was found in cyclin E/Cdk2 complexes, concomitant with suppression of cdk2 activity. Elevation of p27KIP1 is required for the observed G1 blockade, as p27KIP1-deficient fibroblasts were resistant to HDAC inhibition-induced arrest. These data suggest a novel activity for HDAC inhibitors and demonstrate a critical role for p27KIP1 in mediating G1 arrest in response to these drugs.
Collapse
Affiliation(s)
- James S Chen
- Cancer Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
69
|
Motiwala T, Ghoshal K, Das A, Majumder S, Weichenhan D, Wu YZ, Holman K, James SJ, Jacob ST, Plass C. Suppression of the protein tyrosine phosphatase receptor type O gene (PTPRO) by methylation in hepatocellular carcinomas. Oncogene 2003; 22:6319-31. [PMID: 14508512 PMCID: PMC3020652 DOI: 10.1038/sj.onc.1206750] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Revised: 04/23/2003] [Accepted: 04/26/2003] [Indexed: 11/09/2022]
Abstract
A diet lacking folic acid and choline and low in methionine (folate/methyl deficient diet, FMD diet) fed to rats is known to produce preneoplastic nodules (PNNs) after 36 weeks and hepatocellular carcinomas (tumors) after 54 weeks. FMD diet-induced tumors exhibit global hypomethylation and regional hypermethylation. Restriction landmark genome scanning analysis with methylation-sensitive enzyme NotI (RLGS-M) of genomic DNA isolated from control livers, PNNs and tumor tissues was performed to identify the genes that are differentially methylated or amplified during multistage hepatocarcinogenesis. Out of the 1250 genes analysed, 2 to 5 genes were methylated in the PNNs, whereas 5 to 45 genes were partially or completely methylated in the tumors. This analysis also showed amplification of 3 to 12 genes in the primary tumors. As a first step towards identifying the genes methylated in the PNNs and primary hepatomas, we generated a rat NotI-EcoRV genomic library in the pBluescriptKS vector. Here, we describe identification of one methylated and downregulated gene as the rat protein tyrosine phosphatase receptor type O (PTPRO) and one amplified gene as rat C-MYC. Methylation of PTPRO at the NotI site located immediate upstream of the trancription start site in the PNNs and tumors, and amplification of C-MYC gene in the tumors were confirmed by Southern blot analyses. Bisulfite genomic sequencing of the CpG island encompassing exon 1 of the PTPRO gene revealed dense methylation in the PNNs and tumors, whereas it was methylation free in the livers of animals on normal diet. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed significant decrease in the expression of PTPRO in the tumors and in a transplanted rat hepatoma. The expression of PTPRO mRNA in the transplanted hepatoma after demethylation with 5-azacytidine, a potent inhibitor of DNA methyltransferases, further confirmed the role of methylation in PTPRO gene expression. These results demonstrate alteration in methylation profile and expression of specific genes during tumor progression in the livers of rats in response to folate/methyl deficiency, and further implicate the potential role of PTPRO as a novel growth regulatory gene at least in the hepatocellular carcinomas.
Collapse
Affiliation(s)
- Tasneem Motiwala
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Kalpana Ghoshal
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Anindita Das
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Sarmila Majumder
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Dieter Weichenhan
- Medizinische Universität zu Lübeck, Institut für Biologie, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Yue-Zhong Wu
- Division of Human Cancer Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kristen Holman
- Division of Human Cancer Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - S Jill James
- Division of Biochemical Toxicology, Food and Drug administration, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Samson T Jacob
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Christoph Plass
- Division of Human Cancer Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
70
|
Demant P. Cancer susceptibility in the mouse: genetics, biology and implications for human cancer. Nat Rev Genet 2003; 4:721-34. [PMID: 12951573 DOI: 10.1038/nrg1157] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Growing evidence that a large proportion of apparently non-hereditary sporadic cancers occur in genetically predisposed individuals has emphasized the need to identify the underlying susceptibility genes. Increasingly, it seems that the best approach to define the numerous genes that have small but cumulative effects is to first identify and map them in mice, and subsequently to study the role of their homologues in humans. Development of new gene-mapping resources and strategies in mice has, for the first time, allowed some of these genes to be identified. In future, this unique approach is likely to provide important insights into the pathways of tumour development and might ultimately lead to more effective individually targeted cancer-prevention strategies.
Collapse
Affiliation(s)
- Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| |
Collapse
|
71
|
Ruivenkamp C, Hermsen M, Postma C, Klous A, Baak J, Meijer G, Demant P. LOH of PTPRJ occurs early in colorectal cancer and is associated with chromosomal loss of 18q12-21. Oncogene 2003; 22:3472-4. [PMID: 12776199 DOI: 10.1038/sj.onc.1206246] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recently, the gene PTPRJ (protein tyrosine phosphatase receptor type J) was identified as the candidate gene for the mouse colon cancer susceptibility locus Scc1. Its human homologue PTPRJ is frequently deleted in several cancer types, including colorectal cancer. To elucidate the role of PTPRJ loss in different stages of colorectal cancer and in its pathways of progression, we expanded the previously published comparative genomic hybridization results with novel data on loss of heterozygosity (LOH) at the PTPRJ locus. We identified a strong association between the LOH of PTPRJ and the loss of chromosomal region 18q12-21 (P=0.009). This observation is specific for progressed colorectal adenomas, suggesting that an interaction between LOH of PTPRJ and loss of 18q12-21 may be involved in the development of a more progressed form of adenomas.
Collapse
Affiliation(s)
- Claudia Ruivenkamp
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
72
|
Grazia Lampugnani M, Zanetti A, Corada M, Takahashi T, Balconi G, Breviario F, Orsenigo F, Cattelino A, Kemler R, Daniel TO, Dejana E. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J Cell Biol 2003; 161:793-804. [PMID: 12771128 PMCID: PMC2199373 DOI: 10.1083/jcb.200209019] [Citation(s) in RCA: 310] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Confluent endothelial cells respond poorly to the proliferative signals of VEGF. Comparing isogenic endothelial cells differing for vascular endothelial cadherin (VE-cadherin) expression only, we found that the presence of this protein attenuates VEGF-induced VEGF receptor (VEGFR) 2 phosphorylation in tyrosine, p44/p42 MAP kinase phosphorylation, and cell proliferation. VE-cadherin truncated in beta-catenin but not p120 binding domain is unable to associate with VEGFR-2 and to induce its inactivation. beta-Catenin-null endothelial cells are not contact inhibited by VE-cadherin and are still responsive to VEGF, indicating that this protein is required to restrain growth factor signaling. A dominant-negative mutant of high cell density-enhanced PTP 1 (DEP-1)//CD148 as well as reduction of its expression by RNA interference partially restore VEGFR-2 phosphorylation and MAP kinase activation. Overall the data indicate that VE-cadherin-beta-catenin complex participates in contact inhibition of VEGF signaling. Upon stimulation with VEGF, VEGFR-2 associates with the complex and concentrates at cell-cell contacts, where it may be inactivated by junctional phosphatases such as DEP-1. In sparse cells or in VE-cadherin-null cells, this phenomenon cannot occur and the receptor is fully activated by the growth factor.
Collapse
|
73
|
Harrod TR, Justement LB. Evaluating function of transmembrane protein tyrosine phosphatase CD148 in lymphocyte biology. Immunol Res 2003; 26:153-66. [PMID: 12403354 DOI: 10.1385/ir:26:1-3:153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The transmembrane protein tyrosine phosphatase CD148 is expressed on numerous cell types, including most cells of the hematopoietic lineage. CD148 has been shown to regulate density-dependent inhibition of cell growth as well as cellular differentiation in nonhematopoietic cells and has been shown to regulate signal transduction processes in several nonlymphoid hematopoietic cell types. Analysis of CD148 expression on lymphoid cells has demonstrated that CD148 is expressed at low levels on T cells and that it is upregulated in response to activation. Several groups have observed that CD148 negatively regulates T cell activation in response to crosslinking of the T cell antigen receptor, suggesting that it may play a role in feedback inhibition of the T cell immune response. In the B cell compartment, CD 148 expression appears to be restricted to the memory subpopulation, raising the possibility that it serves a unique function in these cells, which has yet to be determined. Recent studies have shown that CD148 interacts with the PDZ domain-containing protein syntenin, raising the possibility that its function or its localization with substrates in T and B cells may be controlled through this or a related interaction with another PDZ domain protein.
Collapse
Affiliation(s)
- Thomas R Harrod
- Department of Microbiology, University of Alabama at Birmingham, 35294-3300, USA
| | | |
Collapse
|
74
|
Takahashi T, Takahashi K, St John PL, Fleming PA, Tomemori T, Watanabe T, Abrahamson DR, Drake CJ, Shirasawa T, Daniel TO. A mutant receptor tyrosine phosphatase, CD148, causes defects in vascular development. Mol Cell Biol 2003; 23:1817-31. [PMID: 12588999 PMCID: PMC151692 DOI: 10.1128/mcb.23.5.1817-1831.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vascularization defects in genetic recombinant mice have defined critical roles for a number of specific receptor tyrosine kinases. Here we evaluated whether an endothelium-expressed receptor tyrosine phosphatase, CD148 (DEP-1/PTPeta), participates in developmental vascularization. A mutant allele, CD148(DeltaCyGFP), was constructed to eliminate CD148 phosphatase activity by in-frame replacement of cytoplasmic sequences with enhanced green fluorescent protein sequences. Homozygous mutant mice died at midgestation, before embryonic day 11.5 (E11.5), with vascularization failure marked by growth retardation and disorganized vascular structures. Structural abnormalities were observed as early as E8.25 in the yolk sac, prior to the appearance of intraembryonic defects. Homozygous mutant mice displayed enlarged vessels comprised of endothelial cells expressing markers of early differentiation, including VEGFR2 (Flk1), Tal1/SCL, CD31, ephrin-B2, and Tie2, with notable lack of endoglin expression. Increased endothelial cell numbers and mitotic activity indices were demonstrated. At E9.5, homozygous mutant embryos showed homogeneously enlarged primitive vessels defective in vascular remodeling and branching, with impaired pericyte investment adjacent to endothelial structures, in similarity to endoglin-deficient embryos. Developing cardiac tissues showed expanded endocardial projections accompanied by defective endocardial cushion formation. These findings implicate a member of the receptor tyrosine phosphatase family, CD148, in developmental vascular organization and provide evidence that it regulates endothelial proliferation and endothelium-pericyte interactions.
Collapse
Affiliation(s)
- Takamune Takahashi
- Nephrology Division and Center for Vascular Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Palka HL, Park M, Tonks NK. Hepatocyte growth factor receptor tyrosine kinase met is a substrate of the receptor protein-tyrosine phosphatase DEP-1. J Biol Chem 2003; 278:5728-35. [PMID: 12475979 DOI: 10.1074/jbc.m210656200] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The receptor protein-tyrosine phosphatase (PTP) DEP-1 (CD148/PTP-eta) has been implicated in the regulation of cell growth, differentiation, and transformation, and most recently has been identified as a potential tumor suppressor gene mutated in colon, lung, and breast cancers. We have generated constructs comprising the cytoplasmic segment of DEP-1 fused to the maltose-binding protein to identify potential substrates and thereby suggest a physiological function for DEP-1. We have shown that the substrate-trapping mutant form of DEP-1 interacted with a small subset of tyrosine-phosphorylated proteins from lysates of the human breast tumor cell lines MDA-MB-231, T-47D, and T-47D/Met and have identified the hepatocyte growth factor/scatter factor receptor Met, the adapter protein Gab1, and the junctional component p120 catenin as potential substrates. Following ligand stimulation, phosphorylation of specific tyrosyl residues in Met induces mitogenic, motogenic, and morphogenic responses. When co-expressed in 293 cells, the full-length substrate-trapping mutant form of DEP-1 formed a stable complex with the chimeric receptor colony stimulating factor 1 (CSF)-Met and wild type DEP-1 dephosphorylated CSF-Met. Furthermore, we observed that DEP-1 preferentially dephosphorylated a Gab1 binding site (Tyr(1349)) and a COOH-terminal tyrosine implicated in morphogenesis (Tyr(1365)), whereas tyrosine residues in the activation loop of Met (Tyr(1230), Tyr(1234), and Tyr(1235)) were not preferred targets of the PTP. The ability of DEP-1 preferentially to dephosphorylate particular tyrosine residues that are required for Met-induced signaling suggests that DEP-1 may function in controlling the specificity of signals induced by this PTK, rather than as a simple "off-switch" to counteract PTK activity.
Collapse
Affiliation(s)
- Helena L Palka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
76
|
Ruivenkamp CAL, van Wezel T, Zanon C, Stassen APM, Vlcek C, Csikós T, Klous AM, Tripodis N, Perrakis A, Boerrigter L, Groot PC, Lindeman J, Mooi WJ, Meijjer GA, Scholten G, Dauwerse H, Paces V, van Zandwijk N, van Ommen GJB, Demant P. Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nat Genet 2002; 31:295-300. [PMID: 12089527 DOI: 10.1038/ng903] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Only a small proportion of cancers result from familial cancer syndromes with Mendelian inheritance. Nonfamilial, 'sporadic' cancers, which represent most cancer cases, also have a significant hereditary component, but the genes involved have low penetrance and are extremely difficult to detect. Therefore, mapping and cloning of quantitative trait loci (QTLs) for cancer susceptibility in animals could help identify homologous genes in humans. Several cancer-susceptibility QTLs have been mapped in mice and rats, but none have been cloned so far. Here we report the positional cloning of the mouse gene Scc1 (Susceptibility to colon cancer 1) and the identification of Ptprj, encoding a receptor-type protein tyrosine phosphatase, as the underlying gene. In human colon, lung and breast cancers, we show frequent deletion of PTPRJ, allelic imbalance in loss of heterozygosity (LOH) and missense mutations. Our data suggest that PTPRJ is relevant to the development of several different human cancers.
Collapse
Affiliation(s)
- Claudia A L Ruivenkamp
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Persson C, Engström U, Mowbray SL, Ostman A. Primary sequence determinants responsible for site-selective dephosphorylation of the PDGF beta-receptor by the receptor-like protein tyrosine phosphatase DEP-1. FEBS Lett 2002; 517:27-31. [PMID: 12062403 DOI: 10.1016/s0014-5793(02)02570-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Site-selective dephosphorylation of receptor tyrosine kinases contributes to receptor regulation. The receptor-like protein tyrosine phosphatase DEP-1 site-selectively dephosphorylates the PDGF beta-receptor. DEP-1 dephosphorylation of original and chimeric phospho-peptides spanning the preferred pY1021 and the less preferred pY857 and pY562 sites was analyzed. Double substitutions of basic residues at -4 and +3 of pY857 and pY562 peptides improved affinity. Substitutions of single amino acids indicated preference for an acidic residue at position -1 and a preference against a basic residue at position +3. DEP-1 site-selective dephosphorylation of PDGF beta-receptor is thus determined by the primary sequence surrounding phosphorylation sites and involves interactions with residues spanning at least between positions -1 and +3.
Collapse
Affiliation(s)
- Camilla Persson
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | | | | | |
Collapse
|
78
|
Florio T, Arena S, Thellung S, Iuliano R, Corsaro A, Massa A, Pattarozzi A, Bajetto A, Trapasso F, Fusco A, Schettini G. The activation of the phosphotyrosine phosphatase eta (r-PTP eta) is responsible for the somatostatin inhibition of PC Cl3 thyroid cell proliferation. Mol Endocrinol 2001; 15:1838-52. [PMID: 11579215 DOI: 10.1210/mend.15.10.0713] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was the characterization of the intracellular effectors of the antiproliferative activity of somatostatin in PC Cl3 thyroid cells. Somatostatin inhibited PC Cl3 cell proliferation through the activation of a membrane phosphotyrosine phosphatase. Conversely, PC Cl3 cells stably expressing the v-mos oncogene (PC mos) were completely insensitive to the somatostatin antiproliferative effects since somatostatin was unable to stimulate a phosphotyrosine phosphatase activity. In PC mos cells basal phosphotyrosine phosphatase activity was also reduced, suggesting that the expression of a specific phosphotyrosine phosphatase was impaired in these transformed cells. We suggested that this phosphotyrosine phosphatase could be r-PTP eta whose expression was abolished in the PC mos cells. To directly prove the involvement of r-PTP eta in somatostatin's effect, we stably transfected this phosphatase in PC mos cells. This new cell line (PC mos/PTP eta) recovered somatostatin's ability to inhibit cell proliferation, showing dose-dependence and time course similar to those observed in PC Cl3 cells. Conversely, the transfection of a catalytically inactive mutant of r-PTP eta did not restore the antiproliferative effects of somatostatin. PC mos/PTP eta cells showed a high basal phosphotyrosine phosphatase activity which, similarly to PC Cl3 cells, was further increased after somatostatin treatment. The specificity of the role of r-PTP eta in somatostatin receptor signal transduction was demonstrated by measuring its specific activity after somatostatin treatment in an immunocomplex assay. Somatostatin highly increased r-PTP eta activity in PCCl3 and PC mos/PTP eta (+300%, P < 0.01) but not in PCmos cells. Conversely, no differences in somatostatin-stimulated SHP-2 activity, (approximately +50%, P < 0.05), were observed among all the cell lines. The activation of r-PTP eta by somatostatin caused, acting downstream of MAPK kinase, an inhibition of insulin-induced ERK1/2 activation with the subsequent blockade of the phosphorylation, ubiquitination, and proteasome degradation of the cyclin-dependent kinase inhibitor p27(kip1). Ultimately, high levels of p27(kip1) lead to cell proliferation arrest. In conclusion, somatostatin inhibition of PC Cl3 cell proliferation requires the activation of r-PTP eta which, through the inhibition of MAPK activity, causes the stabilization of the cell cycle inhibitor p27(kip1).
Collapse
Affiliation(s)
- T Florio
- Pharmacology and Neuroscience, National Institute for Cancer Research (IST) and Advanced Biotechnology Center (CBA) Genova 16132, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Choudhury GG. Akt serine threonine kinase regulates platelet-derived growth factor-induced DNA synthesis in glomerular mesangial cells: regulation of c-fos AND p27(kip1) gene expression. J Biol Chem 2001; 276:35636-43. [PMID: 11470779 DOI: 10.1074/jbc.m100946200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proliferation of mesangial cells requires platelet-derived growth factor receptor beta (PDGFR)-mediated signal transduction. We have previously shown that activation of phosphatidylinositol (PI) 3-kinase is necessary for PDGFR-induced DNA synthesis in these cells. The mechanism by which PI 3-kinase stimulates DNA synthesis is not known. One target of PI 3-kinase, Akt serine threonine kinase, regulates survival of many cells by inhibiting the actions of certain proapoptotic proteins. In this study, we investigated the role of Akt in PDGF-induced DNA synthesis in mesangial cells. PDGF increased Akt serine threonine kinase activity in a time- and PI 3-kinase-dependent manner. Expression of dominant negative Akt by adenovirus-mediated gene transfer blocked PDGF-induced activation of endogenous Akt in mesangial cells, resulting in complete inhibition of DNA synthesis. On the other hand, inhibition of MAPK attenuated PDGF-induced DNA synthesis only partially. Inhibition of Akt also attenuated PDGF-induced c-fos gene transcription, with concomitant inhibition of Elk-1-dependent transcription, indicating positive regulation of this early response gene by Akt. To further determine the role of Akt in PDGF-induced DNA synthesis, we investigated its effect on cyclin-dependent kinase 2 (CDK2). PDGF stimulated CDK2 activity in mesangial cells and decreased the level of p27(kip1) cyclin kinase inhibitor protein. Expression of dominant negative Akt increased p27(kip1) protein and resulted in inhibition of CDK2 activity. The increase in p27(kip1) expression in response to Akt kinase inhibition was due to increased transcription of the p27(kip1) gene. p27(kip1) transcription similarly was decreased by expression of constitutively active Akt kinase in mesangial cells. These data provide the first evidence that Akt kinase regulates PDGF-induced DNA synthesis by regulating CDK2 activity and define Akt-mediated inhibition of transcription of p27(kip1) as one of the mechanisms for PDGF-induced DNA synthesis in mesangial cells.
Collapse
Affiliation(s)
- G G Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, 78229-3900, USA.
| |
Collapse
|
80
|
Sörby M, Sandström J, Ostman A. An extracellular ligand increases the specific activity of the receptor-like protein tyrosine phosphatase DEP-1. Oncogene 2001; 20:5219-24. [PMID: 11526512 DOI: 10.1038/sj.onc.1204581] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2001] [Revised: 04/12/2001] [Accepted: 04/30/2001] [Indexed: 01/06/2023]
Abstract
Cellular growth, differentiation and migration is regulated by protein tyrosine phosphorylation. Receptor-like protein tyrosine phosphatases are thus likely to be key regulators of vital cellular processes. The regulation of these enzymes is in general poorly understood. Ligands have been identified only for a small subset of the receptor-like protein tyrosine phosphatases and in no case has upregulation of the specific activity by extracellular ligands been demonstrated. Prompted by earlier findings of ligands for receptor-like protein tyrosine phosphatases in extracellular matrix we investigated if Matrigel, a preparation of extracellular matrix proteins, contained modulators of the specific activity of the receptor-like protein tyrosine phosphatase DEP-1. Matrigel stimulation of cells increased the specific activity of immunoprecipitated DEP-1. Also, incubation of immunoprecipitated DEP-1 with Matrigel led to an increase in DEP-1 activity, which was blocked by soluble DEP-1 extracellular domain. Finally, immunoprecipitated DeltaECD-DEP-1, a mutant form of DEP-1 lacking most of the extracellular domain, failed to respond to Matrigel stimulation. These experiments identify Matrigel as a source of DEP-1 agonist(s) and provide the first evidence for upregulation of the specific activity of receptor-like protein tyrosine phosphatases by extracellular ligands.
Collapse
Affiliation(s)
- M Sörby
- Ludwig Institute for Cancer Research, Box 595, S-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
81
|
Iuliano R, Trapasso F, Samà I, Le Pera I, Martelli ML, Lembo F, Santoro M, Viglietto G, Chiariotti L, Fusco A. Rat protein tyrosine phosphatase eta physically interacts with the PDZ domains of syntenin. FEBS Lett 2001; 500:41-4. [PMID: 11434923 DOI: 10.1016/s0014-5793(01)02580-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The tyrosine phosphatase r-PTPeta is able to suppress the malignant phenotype of rat thyroid tumorigenic cell lines. To identify r-PTPeta interacting proteins, a yeast two-hybrid screening was performed and an insert corresponding to the full-length syntenin cDNA was isolated. It encodes a protein containing two PDZ domains that mediates the binding of syntenin to proteins such as syndecan, proTGF-alpha, beta-ephrins and neurofascin. We show that r-PTPeta is able to interact with syntenin also in mammalian cells, and although syntenin is a tyrosine-phosphorylated protein it is not a substrate of r-PTPeta. The integrity of both PDZ domains of syntenin and the carboxy-terminal region of r-PTPeta are required for the interaction between syntenin and r-PTPeta.
Collapse
Affiliation(s)
- R Iuliano
- Dipartimento di Medicina Sperimentale i Clinica, Università degli Studi di Catanzaro Magna Graecia, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|