51
|
Kim AR, Sung JY, Rho SB, Kim YN, Yoon K. Suppressor of Variegation 3-9 Homolog 2, a Novel Binding Protein of Translationally Controlled Tumor Protein, Regulates Cancer Cell Proliferation. Biomol Ther (Seoul) 2019; 27:231-239. [PMID: 30763986 PMCID: PMC6430221 DOI: 10.4062/biomolther.2019.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/23/2022] Open
Abstract
Suppressor of Variegation 3-9 Homolog 2 (SUV39H2) methylates the lysine 9 residue of histone H3 and induces heterochromatin formation, resulting in transcriptional repression or silencing of target genes. SUV39H1 and SUV39H2 have a role in embryonic development, and SUV39H1 was shown to suppress cell cycle progression associated with Rb. However, the function of human SUV39H2 has not been extensively studied. We observed that forced expression of SUV39H2 decreased cell proliferation by inducing G1 cell cycle arrest. In addition, SUV39H2 was degraded through the ubiquitin-proteasomal pathway. Using yeast two-hybrid screening to address the degradation mechanism and function of SUV39H2, we identified translationally controlled tumor protein (TCTP) as an SUV39H2-interacting molecule. Mapping of the interacting regions indicated that the N-terminal 60 amino acids (aa) of full-length SUV39H2 and the C-terminus of TCTP (120-172 aa) were critical for binding. The interaction of SUV39H2 and TCTP was further confirmed by co-immunoprecipitation and immunofluorescence staining for colocalization. Moreover, depletion of TCTP by RNAi led to up-regulation of SUV39H2 protein, while TCTP overexpression reduced SUV39H2 protein level. The half-life of SUV39H2 protein was significantly extended upon TCTP depletion. These results clearly indicate that TCTP negatively regulates the expression of SUV39H2 post-translationally. Furthermore, SUV39H2 induced apoptotic cell death in TCTP-knockdown cells. Taken together, we identified SUV39H2, as a novel target protein of TCTP and demonstrated that SUV39H2 regulates cell proliferation of lung cancer cells.
Collapse
Affiliation(s)
- A-Reum Kim
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Jee Young Sung
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Seung Bae Rho
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yong-Nyun Kim
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Kyungsil Yoon
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
52
|
Elevated SUV39H2 attributes to the progression of nasopharyngeal carcinoma via regulation of NRIP1. Biochem Biophys Res Commun 2019; 510:290-295. [PMID: 30709585 DOI: 10.1016/j.bbrc.2019.01.092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 01/02/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a prevalent tumor in southern China and southeast Asia. Recent studies have demonstrated that viral infection, somatic genetic changes, and epigenetic changes synergistically contribute to NPC pathogenesis. Genome-wide studies show that epigenetic aberrations likely drive nasopharyngeal carcinoma development and progression. This work is aimed at investigating the effect of histone methyltransferase SUV39H2 in NPC. The elevated expression of SUV39H2 in NPC is observed by analyzing GSE53819 and GSE12452 downloaded from the Gene Expression Omnibus (GEO) database. SUV39H2 knockdown inhibits NPC proliferation and induces the apoptosis of cancer cells. At last, RNaseq analysis identifies a variety of SUV39H2 downstream genes related with cancer, in which, NRIP1 is identified as a critical downstream target of SUV39H2 in NPC. Taken together, these findings provide a theoretical basis for understating the biological roles of SUV39H2 in NPC.
Collapse
|
53
|
Li B, Zheng Y, Yang L. The Oncogenic Potential of SUV39H2: A Comprehensive and Perspective View. J Cancer 2019; 10:721-729. [PMID: 30719171 PMCID: PMC6360419 DOI: 10.7150/jca.28254] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications at the histone level have attracted significant attention because of their roles in tumorigenesis. Suppressor of variegation 3-9 homolog 2 (SUV39H2, also known as KMT1B) is a member of the SUV39 subfamily of lysine methyltransferases (KMTs) that plays a significant role in histone H3-K9 di-/tri-methylation, transcriptional regulation and cell cycle. Overexpressions of SUV39H2 at gene, mRNA and protein levels are known to be associated with a range of cancers: leukemia, lymphomas, lung cancer, breast cancer, colorectal cancer, gastric cancer, hepatocellular cancer and so on. Accumulating evidence indicates that SUV39H2 acts as an oncogene and contributes to the initiation and progression of cancers. It could, therefore, be a promising target for anti-cancer treatment. In this review, we focus on the dysregulation of SUV39H2 in cancers, including its clinical prognostic predictor role, molecular mechanism involved in cancer occurrence and development, relevant inhibitors against cancer, and its epigenetic modification interaction with immunotherapy. A better understanding of the SUV39H2 will be beneficial to the development of molecular-targeted therapies in cancer.
Collapse
Affiliation(s)
- Baihui Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yu Zheng
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
54
|
Orouji E, Utikal J. Tackling malignant melanoma epigenetically: histone lysine methylation. Clin Epigenetics 2018; 10:145. [PMID: 30466474 PMCID: PMC6249913 DOI: 10.1186/s13148-018-0583-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
Post-translational histone modifications such as acetylation and methylation can affect gene expression. Histone acetylation is commonly associated with activation of gene expression whereas histone methylation is linked to either activation or repression of gene expression. Depending on the site of histone modification, several histone marks can be present throughout the genome. A combination of these histone marks can shape global chromatin architecture, and changes in patterns of marks can affect the transcriptomic landscape. Alterations in several histone marks are associated with different types of cancers, and these alterations are distinct from marks found in original normal tissues. Therefore, it is hypothesized that patterns of histone marks can change during the process of tumorigenesis. This review focuses on histone methylation changes (both removal and addition of methyl groups) in malignant melanoma, a deadly skin cancer, and the implications of specific inhibitors of these modifications as a combinatorial therapeutic approach.
Collapse
Affiliation(s)
- Elias Orouji
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, 1901 East Rd. South Campus Research Building 4, Houston, TX, 77054, USA. .,Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
55
|
Abstract
The timely and precise repair of DNA damage, or more specifically DNA double-strand breaks (DSBs) - the most deleterious DNA lesions, is crucial for maintaining genome integrity and cellular homeostasis. An appropriate cellular response to DNA DSBs requires the integration of various factors, including the post-translational modifications (PTMs) of chromatin and chromatin-associated proteins. Notably, the PTMs of histones have been shown to play a fundamental role in initiating and regulating cellular responses to DNA DSBs. Here we review the role of the major histone PTMs, including phosphorylation, ubiquitination, methylation and acetylation, and their interactions during DNA DSB-induced responses.
Collapse
Affiliation(s)
- Hieu T Van
- a Department of Epigenetics and Molecular Carcinogenesis , University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Margarida A Santos
- a Department of Epigenetics and Molecular Carcinogenesis , University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
56
|
Zheng Y, Li B, Wang J, Xiong Y, Wang K, Qi Y, Sun H, Wu L, Yang L. Identification of SUV39H2 as a potential oncogene in lung adenocarcinoma. Clin Epigenetics 2018; 10:129. [PMID: 30348215 PMCID: PMC6198372 DOI: 10.1186/s13148-018-0562-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND SUV39H2 (suppressor of variegation 3-9 homolog 2), which introduces H3K9me3 to induce transcriptional repression, has been reported to play critical roles in heterochromatin maintenance, DNA repair, and recently, carcinogenesis. Dysregulation of SUV39H2 expression has been observed in several types of cancers. However, neither the genomic landscape nor the clinical significance of SUV39H2 in lung adenocarcinoma has been probed comprehensively. METHODS In this research, we conducted bioinformatics analysis to primarily sort out potential genes with dysregulated expressions. After we identified SUV39H2, RNA-seq was performed for a high-throughput evaluation of altered gene expression and dysregulated pathways, followed by a series of validations via RT-qPCR and bioinformatics analyses. Finally, to assess the potential oncogenic role of SUV39H2, we employed the invasion assay and clone formation assay in vitro and tumorigenesis assays in mouse models in vivo. RESULTS Through bioinformatics analyses, we found that SUV39H2 underwent a severe upregulation in the tumor tissue, which was also confirmed in the surgically removed tissues. Overexpression of SUV39H2 was mainly associated with its amplification and with shorter patient overall survival. Then, the RNA-seq demonstrated that TPM4, STOM, and OPTN might be affected by the loss of function of SUV39H2. Finally, in vitro and in vivo experiments with SUV39H2 knockdown all suggested a potential role of SUV39H2 in both carcinogenesis and metastasis. CONCLUSIONS SUV39H2 expression was elevated in lung adenocarcinoma. TPM4, OPTN, and STOM were potentially regulated by SUV39H2. SUV39H2 might be a potential oncogene in lung adenocarcinoma, mediating tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Baihui Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yanjuan Xiong
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Kaiyuan Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Ying Qi
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Houfang Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lei Wu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China. .,National Clinical Research Center for Cancer, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, China. .,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
| |
Collapse
|
57
|
Abstract
Constitutive heterochromatin is a major component of the eukaryotic nucleus and is essential for the maintenance of genome stability. Highly concentrated at pericentromeric and telomeric domains, heterochromatin is riddled with repetitive sequences and has evolved specific ways to compartmentalize, silence, and repair repeats. The delicate balance between heterochromatin epigenetic maintenance and cellular processes such as mitosis and DNA repair and replication reveals a highly dynamic and plastic chromatin domain that can be perturbed by multiple mechanisms, with far-reaching consequences for genome integrity. Indeed, heterochromatin dysfunction provokes genetic turmoil by inducing aberrant repeat repair, chromosome segregation errors, transposon activation, and replication stress and is strongly implicated in aging and tumorigenesis. Here, we summarize the general principles of heterochromatin structure and function, discuss the importance of its maintenance for genome integrity, and propose that more comprehensive analyses of heterochromatin roles in tumorigenesis will be integral to future innovations in cancer treatment.
Collapse
Affiliation(s)
- Aniek Janssen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Serafin U. Colmenares
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Gary H. Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
58
|
Tsusaka T, Kikuchi M, Shimazu T, Suzuki T, Sohtome Y, Akakabe M, Sodeoka M, Dohmae N, Umehara T, Shinkai Y. Tri-methylation of ATF7IP by G9a/GLP recruits the chromodomain protein MPP8. Epigenetics Chromatin 2018; 11:56. [PMID: 30286792 PMCID: PMC6172828 DOI: 10.1186/s13072-018-0231-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND G9a and the related enzyme GLP were originally identified as histone lysine methyltransferases and then shown to also methylate several other non-histone proteins. RESULTS Here, we performed a comprehensive screen to identify their substrates in mouse embryonic stem cells (mESCs). We identified 59 proteins, including histones and other known substrates. One of the identified substrates, activating transcriptional factor 7-interacting protein 1 (ATF7IP), is tri-methylated at a histone H3 lysine 9 (H3K9)-like mimic by the G9a/GLP complex, although this complex mainly introduces di-methylation on H3K9 and DNA ligase 1 (LIG1) K126 in cells. The catalytic domain of G9a showed a higher affinity for di-methylated lysine on ATF7IP than LIG1, which may create different methylation levels of different substrates in cells. Furthermore, we found that M-phase phosphoprotein 8 (MPP8), known as a H3K9me3-binding protein, recognizes methylated ATF7IP via its chromodomain. MPP8 is also a known component of the human silencing hub complex that mediates silencing of transgenes via SETDB1 recruitment, which is a binding partner of ATF7IP. Although the interaction between ATF7IP and SETDB1 does not depend on ATF7IP methylation, we found that induction of SETDB1/MPP8-mediated reporter-provirus silencing is delayed in mESCs expressing only an un-methylatable mutant of ATF7IP. CONCLUSIONS Our findings provide new insights into the roles of lysine methylation in non-histone substrates which are targeted by the G9a/GLP complex and suggest a potential function of ATF7IP methylation in SETDB1/MPP8-mediated transgene silencing.
Collapse
Affiliation(s)
- Takeshi Tsusaka
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan.,Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masaki Kikuchi
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | - Tadahiro Shimazu
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Japan
| | - Yoshihiro Sohtome
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama, 230-0045, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan.
| |
Collapse
|
59
|
Romero MR, Pérez-Figueroa A, Carrera M, Swanson WJ, Skibinski DOF, Diz AP. RNA-seq coupled to proteomic analysis reveals high sperm proteome variation between two closely related marine mussel species. J Proteomics 2018; 192:169-187. [PMID: 30189323 DOI: 10.1016/j.jprot.2018.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/10/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
Speciation mechanisms in marine organisms have attracted great interest because of the apparent lack of substantial barriers to genetic exchange in marine ecosystems. Marine mussels of the Mytilus edulis species complex provide a good model to study mechanisms underlying species formation. They hybridise extensively at many localities and both pre- and postzygotic isolating mechanisms may be operating. Mussels have external fertilisation and sperm cells should show specific adaptations for survival and successful fertilisation. Sperm thus represent key targets in investigations of the molecular mechanisms underlying reproductive isolation. We undertook a deep transcriptome sequencing (RNA-seq) of mature male gonads and a 2DE/MS-based proteome analysis of sperm from Mytilus edulis and M. galloprovincialis raised in a common environment. We provide evidence of extensive expression differences between the two mussel species, and general agreement between the transcriptomic and proteomic results in the direction of expression differences between species. Differential expression is marked for mitochondrial genes and for those involved in spermatogenesis, sperm motility, sperm-egg interactions, the acrosome reaction, sperm capacitation, ATP reserves and ROS production. Proteins and their corresponding genes might thus be good targets in further genomic analysis of reproductive barriers between these closely related species. SIGNIFICANCE: Model systems for the study of fertilization include marine invertebrates with external fertilisation, such as abalones, sea urchins and mussels, because of the ease with which large quantities of gametes released into seawater can be collected after induced spawning. Unlike abalones and sea urchins, hybridisation has been reported between mussels of different Mytilus spp., which thus makes them very appealing for the study of reproductive isolation at both pre- and postzygotic levels. There is a lack of empirical proteomic studies on sperm samples comparing different Mytilus species, which could help to advance this study. A comparative analysis of sperm proteomes across different taxa may provide important insights into the fundamental molecular processes and mechanisms involved in reproductive isolation. It might also contribute to a better understanding of sperm function and of the adaptive evolution of sperm proteins in different taxa. There is now growing evidence from genomics studies that multiple protein complexes and many individual proteins might have important functions in sperm biology and the fertilisation process. From an applied perspective, the identification of sperm-specific proteins could also contribute to the improved understanding of fertility problems and as targets for fertility control.
Collapse
Affiliation(s)
- Mónica R Romero
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain; Marine Research Centre, University of Vigo (CIM-UVIGO), Isla de Toralla, Vigo, Spain
| | - Andrés Pérez-Figueroa
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | | | - Willie J Swanson
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, USA
| | - David O F Skibinski
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - Angel P Diz
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain; Marine Research Centre, University of Vigo (CIM-UVIGO), Isla de Toralla, Vigo, Spain.
| |
Collapse
|
60
|
Ohtani H, Liu M, Zhou W, Liang G, Jones PA. Switching roles for DNA and histone methylation depend on evolutionary ages of human endogenous retroviruses. Genome Res 2018; 28:1147-1157. [PMID: 29970451 PMCID: PMC6071641 DOI: 10.1101/gr.234229.118] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/29/2018] [Indexed: 12/15/2022]
Abstract
We provide a comprehensive genomic and epigenomic map of the more than 500,000 endogenous retroviruses (ERVs) and fragments that populate the intergenic regions of the human genome. The repressive epigenetic marks associated with the ERVs, particularly long terminal repeats (LTRs), show a remarkable switch in silencing mechanisms, depending on the evolutionary age of the LTRs. Young LTRs tend to be CpG rich and are mainly suppressed by DNA methylation, whereas intermediate age LTRs are associated predominantly with histone modifications, particularly histone H3 lysine 9 (H3K9) methylation. Young LTRs can be reactivated by treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) alone, but their level of expression is much increased by 5-aza-CdR treatment plus knockdown of one of several H3K9 methyltransferases or of the H3K27 methyltransferase EZH2. The removal of cytosine methylation led to rapid, widespread increases in H3K9me3 in the LTRs. Intermediate age LTRs had lower CpG densities and were not up-regulated by 5-aza-CdR treatment, but they were sensitive to knockdown of H3K9 methyltransferases. Unlike the situation in embryonic stem cells, the polycomb repressive complex (PRC2) has a minor role in LTR suppression by itself and is only a player after removal of cytosine methylation in the analyzed cancer cell line. Up-regulation of LTRs and induction of "viral mimicry" is rapidly becoming of interest for predicting cancer patient response to epigenetic therapies. Understanding the mechanism for LTR suppression is of major importance in order to improve patient treatment strategies.
Collapse
Affiliation(s)
- Hitoshi Ohtani
- Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Minmin Liu
- Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Wanding Zhou
- Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Peter A Jones
- Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| |
Collapse
|
61
|
Wang L, Xu Z, Khawar MB, Liu C, Li W. The histone codes for meiosis. Reproduction 2018; 154:R65-R79. [PMID: 28696245 DOI: 10.1530/rep-17-0153] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/10/2017] [Accepted: 06/19/2017] [Indexed: 12/28/2022]
Abstract
Meiosis is a specialized process that produces haploid gametes from diploid cells by a single round of DNA replication followed by two successive cell divisions. It contains many special events, such as programmed DNA double-strand break (DSB) formation, homologous recombination, crossover formation and resolution. These events are associated with dynamically regulated chromosomal structures, the dynamic transcriptional regulation and chromatin remodeling are mainly modulated by histone modifications, termed 'histone codes'. The purpose of this review is to summarize the histone codes that are required for meiosis during spermatogenesis and oogenesis, involving meiosis resumption, meiotic asymmetric division and other cellular processes. We not only systematically review the functional roles of histone codes in meiosis but also discuss future trends and perspectives in this field.
Collapse
Affiliation(s)
- Lina Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhiliang Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | | | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
62
|
Liu Y, Liu S, Yuan S, Yu H, Zhang Y, Yang X, Xie G, Chen Z, Li W, Xu B, Sun L, Shang Y, Liang J. Chromodomain protein CDYL is required for transmission/restoration of repressive histone marks. J Mol Cell Biol 2018; 9:178-194. [PMID: 28402439 DOI: 10.1093/jmcb/mjx013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/02/2017] [Indexed: 12/22/2022] Open
Abstract
Faithful transmission or restoration of epigenetic information such as repressive histone modifications through generations is critical for the maintenance of cell identity. We report here that chromodomain Y-like protein (CDYL), a chromodomain-containing transcription corepressor, is physically associated with chromatin assembly factor 1 (CAF-1) and the replicative helicase MCM complex. We showed that CDYL bridges CAF-1 and MCM, facilitating histone transfer and deposition during DNA replication. We demonstrated that CDYL recruits histone-modifying enzymes G9a, SETDB1, and EZH2 to replication forks, leading to the addition of H3K9me2/3 and H3K27me2/3 on newly deposited histone H3. Significantly, depletion of CDYL impedes early S phase progression and sensitizes cells to DNA damage. Our data indicate that CDYL plays an important role in the transmission/restoration of repressive histone marks, thereby preserving the epigenetic landscape for the maintenance of cell identity.
Collapse
Affiliation(s)
- Yongqing Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shumeng Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shuai Yuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Huajing Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yu Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaohan Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guojia Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhe Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wanjin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Bosen Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
63
|
Prini P, Rusconi F, Zamberletti E, Gabaglio M, Penna F, Fasano M, Battaglioli E, Parolaro D, Rubino T. Adolescent THC exposure in female rats leads to cognitive deficits through a mechanism involving chromatin modifications in the prefrontal cortex. J Psychiatry Neurosci 2018; 43. [PMID: 29481316 PMCID: PMC5837889 DOI: 10.1503/jpn.170082] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Increasing cannabis consumption among adolescents, studies that link its early use with mental illnesses, and the political debate on cannabis legalization together call for an urgent need to study molecular underpinnings of adolescent brain vulnerability. The emerging role of epigenetic mechanisms in psychiatric diseases led us to hypothesize that epigenetic alterations could play a role in causes and subsequent development of the depressive/psychotic-like phenotype induced by adolescent, but not adult, Δ9-tetrahydrocannabinol (THC) exposure in female rats. METHODS We performed a time-course analysis of histone modifications, chromatin remodelling enzymes and gene expression in the prefrontal cortex of female rats after adolescent and adult THC exposure. We also administered a specific epigenetic drug (chaetocin) with THC to investigate its impact on THC-induced behavioural alterations. RESULTS Adolescent THC exposure induced alterations of selective histone modifications (mainly H3K9me3), impacting the expression of genes closely associated with synaptic plasticity. Changes in both histone modifications and gene expression were more widespread and intense after adolescent treatment, suggesting specific adolescent susceptibility. Adolescent THC exposure significantly increased Suv39H1 levels, which could account for the enhanced H3K9me3. Pharmacological blockade of H3K9me3 during adolescent THC treatment prevented THC-induced cognitive deficits, suggesting the relevant role played by H3K9me3 in THC-induced effects. LIMITATIONS Only female rats were investigated, and the expression studies were limited to a specific subset of genes. CONCLUSION Through a mechanism involving SUV39H1, THC modifies histone modifications and, thereby, expression of plasticity genes. This pathway appears to be relevant for the development of cognitive deficits.
Collapse
Affiliation(s)
- Pamela Prini
- From the Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Penna, Parolaro, Rubino); the Neuroscience Center, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Fasano, Parolaro, Rubino); the Department of Medical Biotecnology and Translational Medicine, University of Milan, Milano, Segrate MI, Italy (Rusconi, Battaglioli); and the Department of Science and High Technology, University of Insubria, Busto Arsizio VA, Italy (Fasano)
| | - Franceso Rusconi
- From the Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Penna, Parolaro, Rubino); the Neuroscience Center, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Fasano, Parolaro, Rubino); the Department of Medical Biotecnology and Translational Medicine, University of Milan, Milano, Segrate MI, Italy (Rusconi, Battaglioli); and the Department of Science and High Technology, University of Insubria, Busto Arsizio VA, Italy (Fasano)
| | - Erica Zamberletti
- From the Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Penna, Parolaro, Rubino); the Neuroscience Center, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Fasano, Parolaro, Rubino); the Department of Medical Biotecnology and Translational Medicine, University of Milan, Milano, Segrate MI, Italy (Rusconi, Battaglioli); and the Department of Science and High Technology, University of Insubria, Busto Arsizio VA, Italy (Fasano)
| | - Marina Gabaglio
- From the Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Penna, Parolaro, Rubino); the Neuroscience Center, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Fasano, Parolaro, Rubino); the Department of Medical Biotecnology and Translational Medicine, University of Milan, Milano, Segrate MI, Italy (Rusconi, Battaglioli); and the Department of Science and High Technology, University of Insubria, Busto Arsizio VA, Italy (Fasano)
| | - Federica Penna
- From the Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Penna, Parolaro, Rubino); the Neuroscience Center, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Fasano, Parolaro, Rubino); the Department of Medical Biotecnology and Translational Medicine, University of Milan, Milano, Segrate MI, Italy (Rusconi, Battaglioli); and the Department of Science and High Technology, University of Insubria, Busto Arsizio VA, Italy (Fasano)
| | - Mauro Fasano
- From the Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Penna, Parolaro, Rubino); the Neuroscience Center, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Fasano, Parolaro, Rubino); the Department of Medical Biotecnology and Translational Medicine, University of Milan, Milano, Segrate MI, Italy (Rusconi, Battaglioli); and the Department of Science and High Technology, University of Insubria, Busto Arsizio VA, Italy (Fasano)
| | - Elena Battaglioli
- From the Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Penna, Parolaro, Rubino); the Neuroscience Center, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Fasano, Parolaro, Rubino); the Department of Medical Biotecnology and Translational Medicine, University of Milan, Milano, Segrate MI, Italy (Rusconi, Battaglioli); and the Department of Science and High Technology, University of Insubria, Busto Arsizio VA, Italy (Fasano)
| | - Daniela Parolaro
- From the Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Penna, Parolaro, Rubino); the Neuroscience Center, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Fasano, Parolaro, Rubino); the Department of Medical Biotecnology and Translational Medicine, University of Milan, Milano, Segrate MI, Italy (Rusconi, Battaglioli); and the Department of Science and High Technology, University of Insubria, Busto Arsizio VA, Italy (Fasano)
| | - Tiziana Rubino
- From the Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Penna, Parolaro, Rubino); the Neuroscience Center, University of Insubria, Busto Arsizio VA, Italy (Prini, Zamberletti, Gabaglio, Fasano, Parolaro, Rubino); the Department of Medical Biotecnology and Translational Medicine, University of Milan, Milano, Segrate MI, Italy (Rusconi, Battaglioli); and the Department of Science and High Technology, University of Insubria, Busto Arsizio VA, Italy (Fasano)
| |
Collapse
|
64
|
SUV39H2 promotes colorectal cancer proliferation and metastasis via tri-methylation of the SLIT1 promoter. Cancer Lett 2018; 422:56-69. [PMID: 29458143 DOI: 10.1016/j.canlet.2018.02.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/12/2018] [Indexed: 01/01/2023]
Abstract
Suppressor of variegation 3-9 homolog 2 (SUV39H2) is a member of the SUV39H subfamily of lysine methyltransferases. Its role in colorectal cancer (CRC) proliferation and metastasis has remained unexplored. Here, we determined that SUV39H2 was upregulated in CRC tissues compared with that in adjacent non-neoplastic tissues. Further statistical analysis revealed that high SUV39H2 expression was strongly associated with distant metastasis (P = 0.016) and TNM stage (P = 0.038) and predicted a shorter overall survival (OS; P = 0.018) and progression-free survival (PFS; P = 0.018) time for CRC patients. Both in vitro and in vivo assays demonstrated that ectopically expressed SUV39H2 enhanced CRC proliferation and metastasis, while SUV39H2 knockdown inhibited CRC proliferation and metastasis. A molecular screen of SUV39H2 targets found that SUV39H2 negatively regulated the expression of SLIT guidance ligand 1 (SLIT1). Moreover, rescue assays suggested that SLIT1 could antagonize the function of SUV39H2 in CRC. Mechanistic studies indicated that SUV39H2 can directly bind to the SLIT1 promoter, suppressing SLIT1 transcription by catalyzing histone H3 lysine 9 (H3K9) tri-methylation. In summary, we propose that SUV39H2 can predict CRC patient prognosis and stimulate CRC malignant phenotypes via SLIT1 promoter tri-methylation.
Collapse
|
65
|
Bauer A, Nimmo J, Newman R, Brunner M, Welle MM, Jagannathan V, Leeb T. A splice site variant in the SUV39H2 gene in Greyhounds with nasal parakeratosis. Anim Genet 2018; 49:137-140. [PMID: 29423952 DOI: 10.1111/age.12643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2017] [Indexed: 11/27/2022]
Abstract
Hereditary nasal parakeratosis (HNPK), described in the Labrador Retriever breed, is a monogenic autosomal recessive disorder that causes crusts and fissures on the nasal planum of otherwise healthy dogs. Our group previously showed that this genodermatosis may be caused by a missense variant located in the SUV39H2 gene encoding a histone 3 lysine 9 methyltransferase, a chromatin modifying enzyme with a potential role in keratinocyte differentiation. In the present study, we investigated a litter of Greyhounds in which six out of eight puppies were affected with parakeratotic lesions restricted to the nasal planum. Clinically and histologically, the lesions were comparable to HNPK in Labrador Retrievers. Whole genome sequencing of one affected Greyhound revealed a 4-bp deletion at the 5'-end of intron 4 of the SUV39H2 gene that was absent in 188 control dog and three wolf genomes. The variant was predicted to disrupt the 5'-splice site with subsequent loss of SUV39H2 function. The six affected puppies were homozygous for the variant, whereas the two non-affected littermates were heterozygous. Genotyping of a larger cohort of Greyhounds revealed that the variant is segregating in the breed and that this breed might benefit from genetic testing to avoid carrier × carrier matings.
Collapse
Affiliation(s)
- A Bauer
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,DermFocus, University of Bern, 3001, Bern, Switzerland
| | - J Nimmo
- ASAP Laboratory, Mulgrave, Vic., 3170, Australia
| | - R Newman
- Mobile Vet Services and Supplies, Warwick, Qld, 4370, Australia
| | - M Brunner
- DermFocus, University of Bern, 3001, Bern, Switzerland.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - M M Welle
- DermFocus, University of Bern, 3001, Bern, Switzerland.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - V Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,DermFocus, University of Bern, 3001, Bern, Switzerland
| | - T Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,DermFocus, University of Bern, 3001, Bern, Switzerland
| |
Collapse
|
66
|
Lu C, Yang D, Sabbatini ME, Colby AH, Grinstaff MW, Oberlies NH, Pearce C, Liu K. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. BMC Cancer 2018; 18:149. [PMID: 29409480 PMCID: PMC5801751 DOI: 10.1186/s12885-018-4061-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 01/29/2018] [Indexed: 01/18/2023] Open
Abstract
Background Pancreas ductal adenocarcinoma (PDAC) has the most dismal prognosis among all human cancers since it is highly resistant to chemotherapy, radiotherapy and immunotherapy. The anticipated consequence of all therapies is induction of tumor apoptosis. The highly resistance nature of PDACs to all therapies suggests that the intrinsic tumor cell factors, likely the deregulated apoptosis pathway, are key mechanisms underlying PDAC non-response to these therapies, rather than the therapeutic agents themselves. The aim of this study is to test the hypothesis that epigenetic dysregulation of apoptosis mediators underlies PDAC resistance to gemcitabine, the standard chemotherapy for human PDAC. Methods PDAC cells were analyzed for apoptosis sensitivity in the presence of a selective epigenetic inhibitor. The epigenetic regulation of apoptosis regulators was determined by Western Blotting and quantitative PCR. The specific epigenetic modification of apoptosis regulator promoter chromatin was determined by chromatin immunoprecipitation in PDAC cells. Results Inhibition of histone methyltransferase (HMTase) by a selective HMTase inhibitor, verticillin A, significantly increased human PDAC cell sensitivity to gemcitabine-induced growth suppression. Verticillin A treatment decreased FLIP, Mcl-1, Bcl-x and increased Bak, Bax and Bim protein level in the tumor cells, resulting in activation of caspases, elevated cytochrome C release and increased apoptosis as determined by upregulated PARP cleavage in tumor cells. Analysis of human PDAC specimens indicated that the expression levels of anti-apoptotic mediators Bcl-x, Mcl-1, and FLIP were significantly higher, whereas the expression levels of pro-apoptotic mediators Bim, Bak and Bax were dramatically lower in human PDAC tissues as compared to normal pancreas. Verticillin A downregulated H3K4me3 levels at the BCL2L1, CFLAR and MCL-1 promoter to decrease Bcl-x, FLIP and Mcl-1 expression level, and inhibited H3K9me3 levels at the BAK1, BAX and BCL2L11 promoter to upregulate Bak, Bax and Bim expression level. Conclusion We determined that PDAC cells use H3K4me3 to activate Bcl-x, FLIP and Mcl-1, and H3K9me3 to silence Bak, Bax and Bim to acquire an apoptosis-resistant phenotype. Therefore, selective inhibition of H3K4me3 and H3K9me3 is potentially an effective approach to overcome PDAC cells resistance to gemcitabine.
Collapse
Affiliation(s)
- Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA. .,Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Maria E Sabbatini
- Department of Biological Sciences, Augusta University, Augusta, GA, 30904, USA
| | - Aaron H Colby
- Ionic Pharmaceuticals, Brookline, MA, 02445, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | | | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| |
Collapse
|
67
|
Guo Q, Xu L, Bi Y, Qiu L, Chen Y, Kong L, Pan R, Chang G. piRNA-19128 regulates spermatogenesis by silencing of KIT in chicken. J Cell Biochem 2018; 119:7998-8010. [PMID: 29384219 DOI: 10.1002/jcb.26695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/22/2018] [Indexed: 11/09/2022]
Abstract
Spermatogenesis is a complex process. Some studies have shown that Piwi-interacting RNAs (piRNAs) play an important role in spermatogenesis. To verify the evaluate between piRNAs and PIWI proteins in chicken and its possible role in spermatogenesis and reproductive stem cell proliferation and differentiation, we performed immunoprecipitation and deep sequencing analyses and determined the expression profiles of small RNAs in primordial germ cells (PGCs), spermatogonial stem cells (SSCs), spermatogonia (Sa) cells, and spermatozoa. Length analysis showed that piRNAs bound to PIWIL1 mainly contained 23-30 nt. Base preference analysis showed "1U-10A"; moreover, base preference of piRNAs was obvious in all of germline cells. Here we reported the TE family of gallus gallus, and targeted by piRNA. Target gene of piRNA annotation enrichment analysis identified candidate genes KIT, SRC, WNT4, and HMGB2. Kyoto Encyclopedia of Genes and Genomes analysis showed that these genes were associated with steroid hormone biosynthesis, Notch signaling pathway, and melanogenesis. These results indicate that chicken piRNAs perform important regulatory roles during spermatogenesis similar to mice piRNAs. Chicken piRNAs interacted with PIWI proteins and regulated spermatogenesis and germ cell proliferation and differentiation. Further, we observed a negative correlation between piRNA-19128 and KIT expression. Results of dual-luciferase reporter assay confirmed that piRNA-19128 directly interacted with KIT, suggesting that it plays a key role in the regulation spermatogenesis by inhibiting KIT expression. Thus, the present study provides information on the length and base preference of chicken piRNAs and suggests that piRNA-19128 regulates spermatogenesis in chicken by silencing KIT.
Collapse
Affiliation(s)
- Qixin Guo
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lu Xu
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China.,College of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Yulin Bi
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lingling Qiu
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yin Chen
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lingling Kong
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rui Pan
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guobin Chang
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
68
|
Dumasia K, Kumar A, Deshpande S, Balasinor NH. Estrogen, through estrogen receptor 1, regulates histone modifications and chromatin remodeling during spermatogenesis in adult rats. Epigenetics 2017; 12:953-963. [PMID: 28949791 DOI: 10.1080/15592294.2017.1382786] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptors (ESR1 and ESR2) play crucial roles in various processes during spermatogenesis. To elucidate individual roles of ESRs in male fertility, we developed in vivo selective ESR agonist administration models. Adult male rats treated with ESR1 and ESR2 agonist for 60 days show spermatogenic defects leading to reduced sperm counts and fertility. While studying epigenetic changes in the male germ line that could have affected fertility, we earlier observed a decrease in DNA methylation and its machinery upon ESR2 agonist treatment. Here, we explored the effects on histone modifications, which could contribute to decreased male fertility upon ESR agonist administration. ESR1 agonist treatment affected testicular levels of histone modifications associated with active and repressed chromatin states, along with heterochromatin marks. This was concomitant with deregulation of corresponding histone modifying enzymes in the testis. In addition, there was increased retention of histones along with protamine deficiency in the caudal spermatozoa after ESR1 agonist treatment. This could be due to the observed decrease in several chromatin remodeling proteins implicated in mediating histone-to-protamine exchange during spermiogenesis. The activating and repressing histone marks in spermatozoa, which play a critical role in early embryo development, were deregulated after both the ESR agonist treatments. Together, these epigenetic defects in the male germ line could affect the spermatozoa quality and lead to the observed decrease in fertility. Our results thus highlight the importance of ESRs in regulating different epigenetic processes during spermatogenesis, which are crucial for male fertility.
Collapse
Affiliation(s)
- Kushaan Dumasia
- a Department of Neuroendocrinology , National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel , Mumbai , India
| | - Anita Kumar
- a Department of Neuroendocrinology , National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel , Mumbai , India
| | - Sharvari Deshpande
- a Department of Neuroendocrinology , National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel , Mumbai , India
| | - Nafisa H Balasinor
- a Department of Neuroendocrinology , National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel , Mumbai , India
| |
Collapse
|
69
|
Piao L, Nakakido M, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R. Automethylation of SUV39H2, an oncogenic histone lysine methyltransferase, regulates its binding affinity to substrate proteins. Oncotarget 2017; 7:22846-56. [PMID: 26988914 PMCID: PMC5008405 DOI: 10.18632/oncotarget.8072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
We previously reported that the histone lysine methyltransferase SUV39H2, which is overexpressed in various types of human cancer, plays a critical role in the DNA repair after double strand breakage, and possesses oncogenic activity. Although its biological significance in tumorigenesis has been elucidated, the regulatory mechanism of SUV39H2 activity through post-translational modification is not well known. In this study, we demonstrate in vitro and in vivo automethylation of SUV39H2 at lysine 392. Automethylation of SUV39H2 led to impairment of its binding affinity to substrate proteins such as histone H3 and LSD1. Furthermore, we observed that hyper-automethylated SUV39H2 reduced methylation activities to substrates through affecting the binding affinity to substrate proteins. Our finding unveils a novel autoregulatory mechanism of SUV39H2 through lysine automethylation.
Collapse
Affiliation(s)
- Lianhua Piao
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Makoto Nakakido
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.,Division of Molecular Modification and Cancer Biology, National Cancer Center, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
70
|
Yaseen I, Choudhury M, Sritharan M, Khosla S. Histone methyltransferase SUV39H1 participates in host defense by methylating mycobacterial histone-like protein HupB. EMBO J 2017; 37:183-200. [PMID: 29170282 DOI: 10.15252/embj.201796918] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 09/25/2017] [Accepted: 10/18/2017] [Indexed: 12/22/2022] Open
Abstract
Host cell defense against an invading pathogen depends upon various multifactorial mechanisms, several of which remain undiscovered. Here, we report a novel defense mechanism against mycobacterial infection that utilizes the histone methyltransferase, SUV39H1. Normally, a part of the host chromatin, SUV39H1, was also found to be associated with the mycobacterial bacilli during infection. Its binding to bacilli was accompanied by trimethylation of the mycobacterial histone-like protein, HupB, which in turn reduced the cell adhesion capability of the bacilli. Importantly, SUV39H1-mediated methylation of HupB reduced the mycobacterial survival inside the host cell. This was also true in mice infection experiments. In addition, the ability of mycobacteria to form biofilms, a survival strategy of the bacteria dependent upon cell-cell adhesion, was dramatically reduced in the presence of SUV39H1. Thus, this novel defense mechanism against mycobacteria represents a surrogate function of the epigenetic modulator, SUV39H1, and operates by interfering with their cell-cell adhesion ability.
Collapse
Affiliation(s)
- Imtiyaz Yaseen
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal University, Manipal, India
| | - Mitali Choudhury
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| | - Manjula Sritharan
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| | - Sanjeev Khosla
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
71
|
Kuroki S, Okashita N, Baba S, Maeda R, Miyawaki S, Yano M, Yamaguchi M, Kitano S, Miyachi H, Itoh A, Yoshida M, Tachibana M. Rescuing the aberrant sex development of H3K9 demethylase Jmjd1a-deficient mice by modulating H3K9 methylation balance. PLoS Genet 2017; 13:e1007034. [PMID: 28949961 PMCID: PMC5630185 DOI: 10.1371/journal.pgen.1007034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/06/2017] [Accepted: 09/19/2017] [Indexed: 12/29/2022] Open
Abstract
Histone H3 lysine 9 (H3K9) methylation is a hallmark of heterochromatin. H3K9 demethylation is crucial in mouse sex determination; The H3K9 demethylase Jmjd1a deficiency leads to increased H3K9 methylation at the Sry locus in embryonic gonads, thereby compromising Sry expression and causing male-to-female sex reversal. We hypothesized that the H3K9 methylation level at the Sry locus is finely tuned by the balance in activities between the H3K9 demethylase Jmjd1a and an unidentified H3K9 methyltransferase to ensure correct Sry expression. Here we identified the GLP/G9a H3K9 methyltransferase complex as the enzyme catalyzing H3K9 methylation at the Sry locus. Based on this finding, we tried to rescue the sex-reversal phenotype of Jmjd1a-deficient mice by modulating GLP/G9a complex activity. A heterozygous GLP mutation rescued the sex-reversal phenotype of Jmjd1a-deficient mice by restoring Sry expression. The administration of a chemical inhibitor of GLP/G9a enzyme into Jmjd1a-deficient embryos also successfully rescued sex reversal. Our study not only reveals the molecular mechanism underlying the tuning of Sry expression but also provides proof on the principle of therapeutic strategies based on the pharmacological modulation of epigenetic balance. In eukaryotes, DNA wraps an octamer of the core histones. Covalent modifications on the histones have diverse biological functions including transcriptional regulation. Histone H3 lysine 9 (H3K9) methylation is a hallmark of transcriptionally silenced chromatin. In mammals, the sex-determining gene Sry initiates testis differentiation in embryonic gonads. Sry expression in gonads is fine-tuned in both space and time. Here, we demonstrated that fine-tuning of Sry expression is achieved by the balance in activities between H3K9 demethylase and H3K9 methyltransferase. We found that the GLP/G9a complex is the enzyme catalyzing H3K9 methylation of Sry. Based on this finding, we tried to rescue the sex-reversal phenotype of the mutant mice by modulating the H3K9 methylation balance of Sry. We succeeded by modulating the H3K9 methylation balance not only with a genetic approach but also with a chemical approach using an inhibitor of GLP/G9a enzyme. Aberrant histone methylation levels are associated with diseases, including cancer, and intellectual disability. Our study provides proof for the principle of therapeutic strategies based on the pharmacological modulation of histone methylation balance.
Collapse
Affiliation(s)
- Shunsuke Kuroki
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Naoki Okashita
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Shoko Baba
- Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Ryo Maeda
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Shingo Miyawaki
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Masashi Yano
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Miyoko Yamaguchi
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Satsuki Kitano
- Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hitoshi Miyachi
- Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Akihiro Itoh
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Makoto Tachibana
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- * E-mail:
| |
Collapse
|
72
|
Velazquez Camacho O, Galan C, Swist-Rosowska K, Ching R, Gamalinda M, Karabiber F, De La Rosa-Velazquez I, Engist B, Koschorz B, Shukeir N, Onishi-Seebacher M, van de Nobelen S, Jenuwein T. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation. eLife 2017; 6. [PMID: 28760199 PMCID: PMC5538826 DOI: 10.7554/elife.25293] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/09/2017] [Indexed: 12/19/2022] Open
Abstract
The Suv39h1 and Suv39h2 histone lysine methyltransferases are hallmark enzymes at mammalian heterochromatin. We show here that the mouse Suv39h2 enzyme differs from Suv39h1 by containing an N-terminal basic domain that facilitates retention at mitotic chromatin and provides an additional affinity for major satellite repeat RNA. To analyze an RNA-dependent interaction with chromatin, we purified native nucleosomes from mouse ES cells and detect that Suv39h1 and Suv39h2 exclusively associate with poly-nucleosomes. This association was attenuated upon RNaseH incubation and entirely lost upon RNaseA digestion of native chromatin. Major satellite repeat transcripts remain chromatin-associated and have a secondary structure that favors RNA:DNA hybrid formation. Together, these data reveal an RNA-mediated mechanism for the stable chromatin interaction of the Suv39h KMT and suggest a function for major satellite non-coding RNA in the organization of an RNA-nucleosome scaffold as the underlying structure of mouse heterochromatin.
Collapse
Affiliation(s)
- Oscar Velazquez Camacho
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Carmen Galan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Kalina Swist-Rosowska
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Reagan Ching
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Gamalinda
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | - Bettina Engist
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Birgit Koschorz
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Nicholas Shukeir
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
73
|
Shao J, Li L, Xu H, Yang L, Bian Y, Fang M, Xu Y. Suv39h2 deficiency ameliorates diet-induced steatosis in mice. Biochem Biophys Res Commun 2017; 485:658-664. [PMID: 28232186 DOI: 10.1016/j.bbrc.2017.02.093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 02/18/2017] [Indexed: 11/30/2022]
Abstract
Steatosis is a prototypical metabolic disorder characterized by accumulation of lipid droplets in the liver, extensive hepatic inflammation, and, in advanced stages, accelerated liver fibrogenesis. The molecular mechanism underlying steatosis is not completely understood. In the present study we investigated the involvement of the histone methyltransferase Suv39h2 in the pathogenesis of steatosis. Expression of Suv39h2 was up-regulated in the liver in two different mouse models of steatosis. Suv39h2 knockout (KO) mice developed a less severe form of steatosis fed on a methione-and-choline deficient (MCD) diet, compared to wild type (WT) littermates, as evidenced by reduced levels of plasma ALT, down-regulated expression of pro-inflammatory mediators, and decreased infiltration of macrophages. In addition, Masson's trichrome staining as well as qPCR measurements of fibrogenic genes suggested that liver fibrosis was attenuated in MCD diet-fed KO mice compared to WT mice. Further analysis found that Suv39h2 repressed SIRT1 expression in the liver by stimulating histone H3K9 trimethylation surrounding the SIRT1 promoter and that Suv39h2 deficiency alleviated SIRT1 expression in MCD diet-fed mice. Therefore, our data support a role of Suv39h2 in promoting steatosis in mice likely through contributing to SIRT1 trans-reperssion.
Collapse
Affiliation(s)
- Jing Shao
- College of Basic Medical Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Luyang Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Huihui Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Lili Yang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaoyao Bian
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingming Fang
- Department of Nursing, Jiangsu Jiankang Vocational College, Nanjing, China.
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
74
|
Clr4 specificity and catalytic activity beyond H3K9 methylation. Biochimie 2017; 135:83-88. [DOI: 10.1016/j.biochi.2017.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022]
|
75
|
Yang G, Weng X, Zhao Y, Zhang X, Hu Y, Dai X, Liang P, Wang P, Ma L, Sun X, Hou L, Xu H, Fang M, Li Y, Jenuwein T, Xu Y, Sun A. The histone H3K9 methyltransferase SUV39H links SIRT1 repression to myocardial infarction. Nat Commun 2017; 8:14941. [PMID: 28361889 PMCID: PMC5381011 DOI: 10.1038/ncomms14941] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 02/15/2017] [Indexed: 12/27/2022] Open
Abstract
Myocardial infarction (MI) dampens heart function and poses a great health risk. The class III deacetylase sirtuin 1 (SIRT1) is known to confer cardioprotection. SIRT1 expression is downregulated in the heart by a number of stress stimuli that collectively drive the pathogenesis of MI, although the underlying mechanism remains largely obscure. Here we show that in primary rat neonatal ventricular myocytes (NRVMs), ischaemic or oxidative stress leads to a rapid upregulation of SUV39H, the mammalian histone H3K9 methyltransferase, paralleling SIRT1 downregulation. Compared to wild-type littermates, SUV39H knockout mice are protected from MI. Likewise, suppression of SUV39H activity with chaetocin attenuates cardiac injury following MI. Mechanistically, SUV39H cooperates with heterochromatin protein 1 gamma (HP1γ) to catalyse H3K9 trimethylation on the SIRT1 promoter and represses SIRT1 transcription. SUV39H augments intracellular ROS levels in a SIRT1-dependent manner. Our data identify a previously unrecognized role for SUV39H linking SIRT1 trans-repression to myocardial infarction. The molecular pathways regulating the cardioprotective activity of deacetylase sirtuin-1 are unknown. Here, Yang et al. show that histone H3K9 methyltransferase SUV39H and HP1gamma cooperatively methylate H3K9 on the sirtuin-1 promoter and inhibit sirtuin-1 transcription, and show that inhibition of SUV39H in mice is cardioprotective.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Xinyu Weng
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China.,Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuhao Zhao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Xinjian Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Yuanping Hu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Xin Dai
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Peng Liang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Peng Wang
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - LeiLei Ma
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaolei Sun
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Hou
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Huihui Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Mingming Fang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China.,Department of Nursing, Jiangsu Jiankang Vocational College, Nanjing 210029, china
| | - Yuehua Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Thomas Jenuwein
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
76
|
Askew EB, Bai S, Parris AB, Minges JT, Wilson EM. Androgen receptor regulation by histone methyltransferase Suppressor of variegation 3-9 homolog 2 and Melanoma antigen-A11. Mol Cell Endocrinol 2017; 443:42-51. [PMID: 28042025 PMCID: PMC5303141 DOI: 10.1016/j.mce.2016.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/13/2016] [Accepted: 12/28/2016] [Indexed: 11/22/2022]
Abstract
Androgen receptor (AR) transcriptional activity depends on interactions between the AR NH2-terminal region and transcriptional coregulators. A yeast two-hybrid screen of a human testis library using predicted α-helical NH2-terminal fragment AR-(370-420) as bait identified suppressor of variegation 3-9 homolog 2 (SUV39H2) histone methyltransferase as an AR interacting protein. SUV39H2 interaction with AR and the AR coregulator, melanoma antigen-A11 (MAGE-A11), was verified in two-hybrid, in vitro glutathione S-transferase affinity matrix and coimmunoprecipitation assays. Fluorescent immunocytochemistry colocalized SUV39H2 and AR in the cytoplasm without androgen, in the nucleus with androgen, and with MAGE-A11 in the nucleus independent of androgen. Chromatin immunoprecipitation using antibodies raised against SUV39H2 demonstrated androgen-dependent recruitment of AR and SUV39H2 to the androgen-responsive upstream enhancer of the prostate-specific antigen gene. SUV39H2 functioned cooperatively with MAGE-A11 to increase androgen-dependent AR transcriptional activity. SUV39H2 histone methyltransferase is an AR coactivator that increases androgen-dependent transcriptional activity through interactions with AR and MAGE-A11.
Collapse
Affiliation(s)
- Emily B Askew
- Laboratories for Reproductive Biology, Department of Pediatrics, Lineberger Comprehensive Cancer Center, and Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Suxia Bai
- Laboratories for Reproductive Biology, Department of Pediatrics, Lineberger Comprehensive Cancer Center, and Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Amanda B Parris
- Laboratories for Reproductive Biology, Department of Pediatrics, Lineberger Comprehensive Cancer Center, and Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, United States
| | - John T Minges
- Laboratories for Reproductive Biology, Department of Pediatrics, Lineberger Comprehensive Cancer Center, and Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Elizabeth M Wilson
- Laboratories for Reproductive Biology, Department of Pediatrics, Lineberger Comprehensive Cancer Center, and Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
77
|
Kochin V, Kanaseki T, Tokita S, Miyamoto S, Shionoya Y, Kikuchi Y, Morooka D, Hirohashi Y, Tsukahara T, Watanabe K, Toji S, Kokai Y, Sato N, Torigoe T. HLA-A24 ligandome analysis of colon and lung cancer cells identifies a novel cancer-testis antigen and a neoantigen that elicits specific and strong CTL responses. Oncoimmunology 2017; 6:e1293214. [PMID: 28533942 DOI: 10.1080/2162402x.2017.1293214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/01/2017] [Accepted: 02/04/2017] [Indexed: 01/05/2023] Open
Abstract
This study focused on HLA-A24 and comprehensively analyzed the ligandome of colon and lung cancer cells without the use of MHC-binding in silico prediction algorithms. Affinity purification using the antibody specific to HLA-A24 followed by LC-MS/MS sequencing was used to detect peptides, which harbored the known characteristics of HLA-A24 peptides in terms of length and anchor motifs. Ligandome analysis demonstrated the natural presentation of two different types of novel tumor-associated antigens. The ligandome contained a peptide derived from SUV39H2, a gene found to be expressed in a variety of cancers but not in normal tissues (except for the testis). The SUV39H2 peptide is immunogenic and elicits cytotoxic CD8+ T-cell (CTL) responses against cancer cells and is thus a novel cancer-testis antigen. Moreover, we found that microsatellite instability (MSI)-colon cancer cells displayed a neoepitope with an amino-acid substitution, while microsatellite stable (MSS)-colon and lung cancer cells displayed its counterpart peptide without the substitution. Structure modeling of peptide-HLA-A24 complexes predicted that the mutated residue at P8 was accessible to T-cell receptors. The neoepitope readily elicited CTL responses, which discriminated it from its wild-type counterpart, and the CTLs exhibited considerably high cytotoxicity against MSS-colon cancer cells carrying the responsible gene mutation. The specific and strong CTL lysis observed in this study fosters our understanding of immune surveillance against neoantigens.
Collapse
Affiliation(s)
- Vitaly Kochin
- Department of Pathology, Sapporo Medical University, Sapporo, Japan.,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Serina Tokita
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Sho Miyamoto
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Yosuke Shionoya
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Yasuhiro Kikuchi
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Daichi Morooka
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | | | | | - Kazue Watanabe
- Department of Pathology, Sapporo Medical University, Sapporo, Japan.,Research and Development Division, Medical and Biological Laboratories Company, Limited, Ina, Japan
| | - Shingo Toji
- Research and Development Division, Medical and Biological Laboratories Company, Limited, Ina, Japan
| | - Yasuo Kokai
- Department of Biomedical Engineering, Sapporo Medical University, Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | | |
Collapse
|
78
|
Abstract
Progression of cells through distinct phases of the cell cycle, and transition into out-of-cycling states, such as terminal differentiation and senescence, is accompanied by specific patterns of gene expression. These cell fate decisions are mediated not only by distinct transcription factors, but also chromatin modifiers that establish heritable epigenetic patterns. Lysine methyltransferases (KMTs) that mediate methylation marks on histone and non-histone proteins are now recognized as important regulators of gene expression in cycling and non-cycling cells. Among these, the SUV39 sub-family of KMTs, which includes SUV39H1, SUV39H2, G9a, GLP, SETDB1, and SETDB2, play a prominent role. In this review, we discuss their biochemical properties, sub-cellular localization and function in cell cycle, differentiation programs, and cellular senescence. We also discuss their aberrant expression in cancers, which exhibit de-regulation of cell cycle and differentiation.
Collapse
Affiliation(s)
- Vinay Kumar Rao
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Ananya Pal
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
79
|
Abstract
Recent studies from a number of model organisms have indicated chromatin structure and its remodeling as a major contributory agent for aging. Few recent experiments also demonstrate that modulation in the chromatin modifying agents also affect the life span of an organism and even in some cases the change is inherited epigenetically to subsequent generations. Hence, in the present report we discuss the chromatin organization and its changes during aging.
Collapse
Affiliation(s)
- Pramod C. Rath
- School of Life Sciences, Molecular Biology Laboratory, Jawaharlal Nehru University, New Delhi, Delhi India
| | - Ramesh Sharma
- Department of Biochemistry, North Eastern Hill University, Shillong, Megalaya India
| | - S. Prasad
- Biochemistry & Molecular Biology Lab, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh India
| |
Collapse
|
80
|
Guo S, Jiang F, Yang P, Liu Q, Wang X, Kang L. Characteristics and expression patterns of histone-modifying enzyme systems in the migratory locust. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:18-28. [PMID: 27343382 DOI: 10.1016/j.ibmb.2016.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
The density-dependent phase polyphenism in locusts offers an excellent model to investigate the epigenetic regulatory mechanisms underlying phenotypic plasticity. In this study, we identified histone-modifying enzymes mediating histone post-translational modifications, which serve as a major regulatory mechanism of epigenetic processes, on the basis of the whole genome sequence of the migratory locust, Locusta migratoria. We confirmed the existence of various functional histone modifications in the locusts. Compared with other sequenced insect genomes, the locust genome contains a richer repertoire of histone-modifying enzymes. Several locust histone-modifying enzymes display vertebrate-like characteristics, such as the presence of a Sirt3-like gene and multiple alternative splicing of GCN5 gene. Most histone-modifying enzymes are highly expressed in the eggs or in the testis tissues of male adults. Several histone deacetylases and H3K4-specific methyltransferases exhibit differential expression patterns in brain tissues between solitarious and gregarious locusts. These results reveal the main characteristics of histone-modifying enzymes and provide important cues for understanding the epigenetic mechanisms underlying phase polyphenism in locusts.
Collapse
Affiliation(s)
- Siyuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Jiang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengcheng Yang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
81
|
Zhang X, Liu X, Zhao Y, Cheng J, Xie J, Fu Y, Jiang D, Chen T. Histone H3 Lysine 9 Methyltransferase DIM5 Is Required for the Development and Virulence of Botrytis cinerea. Front Microbiol 2016; 7:1289. [PMID: 27597848 PMCID: PMC4992730 DOI: 10.3389/fmicb.2016.01289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/04/2016] [Indexed: 12/31/2022] Open
Abstract
Histone methylation is widely present in animals, plants and fungi, and the methylation modification of histone H3 has important biological functions. Methylation of Lys9 of histone H3 (H3K9) has been proven to regulate chromatin structure, gene silencing, transcriptional activation, plant metabolism, and other processes. In this work, we investigated the functions of a H3K9 methyltransferase gene BcDIM5 in Botrytis cinerea, which contains a PreSET domain, a SET domain and a PostSET domain. Characterization of BcDIM5 knockout transformants showed that the hyphal growth rate and production of conidiophores and sclerotia were significantly reduced, while complementary transformation of BcDIM5 could restore the phenotypes to the levels of wild type. Pathogenicity assays revealed that BcDIM5 was essential for full virulence of B. cinerea. BcDIM5 knockout transformants exhibited decreased virulence, down-regulated expression of some pathogenic genes and drastically decreased H3K9 trimethylation level. However, knockout transformants of other two genes heterochromatin protein 1 (HP1) BcHP1 and DNA methyltransferase (DIM2) BcDIM2 did not exhibit significant change in the growth phenotype and virulence compared with the wild type. Our results indicate that H3K9 methyltransferase BcDIM5 is required for H3K9 trimethylation to regulate the development and virulence of B. cinerea.
Collapse
Affiliation(s)
- Xiaoli Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xinqiang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanli Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
82
|
Maison C, Bailly D, Quivy JP, Almouzni G. The methyltransferase Suv39h1 links the SUMO pathway to HP1α marking at pericentric heterochromatin. Nat Commun 2016; 7:12224. [PMID: 27426629 PMCID: PMC4960310 DOI: 10.1038/ncomms12224] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/10/2016] [Indexed: 02/03/2023] Open
Abstract
The trimethylation of histone H3 on lysine 9 (H3K9me3) – a mark recognized by HP1 that depends on the Suv39h lysine methyltransferases (KMTs) – has provided a basis for the reader/writer model to explain HP1 accumulation at pericentric heterochromatin in mammals. Here, we identify the Suv39h1 paralog, as a unique enhancer of HP1α sumoylation both in vitro and in vivo. The region responsible for promoting HP1α sumoylation (aa1–167) is distinct from the KMT catalytic domain and mediates binding to Ubc9. Tethering the 1–167 domain of Suv39h1 to pericentric heterochromatin, but not mutants unable to bind Ubc9, accelerates the de novo targeting of HP1α to these domains. Our results establish an unexpected feature of Suv39h1, distinct from the KMT activity, with a major role for heterochromatin formation. We discuss how linking Suv39h1 to the SUMO pathway provides conceptual implications for our general view on nuclear domain organization and physiological functions. The Suv39h histone methyltransferases promote trimethylation of histone H3 on lysine 9 (H3K9me3). Here, in the Suv39h1 paralog, the authors identify an enhancer of HP1a sumoylation activity that impacts heterochromatin.
Collapse
Affiliation(s)
- Christèle Maison
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Delphine Bailly
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Jean-Pierre Quivy
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR3664, F-75005 Paris, France
| |
Collapse
|
83
|
Samanta L, Swain N, Ayaz A, Venugopal V, Agarwal A. Post-Translational Modifications in sperm Proteome: The Chemistry of Proteome diversifications in the Pathophysiology of male factor infertility. Biochim Biophys Acta Gen Subj 2016; 1860:1450-65. [DOI: 10.1016/j.bbagen.2016.04.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/26/2016] [Accepted: 04/04/2016] [Indexed: 12/18/2022]
|
84
|
Gelato KA, Adler D, Ocker M, Haendler B. Targeting epigenetic regulators for cancer therapy: modulation of bromodomain proteins, methyltransferases, demethylases, and microRNAs. Expert Opin Ther Targets 2016; 20:783-799. [PMID: 26799480 DOI: 10.1517/14728222.2016.1134490] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/17/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Histone deacetylases (HDACs) and DNA methyltransferases (DNMTs) were the first epigenetic targets to be successfully addressed for cancer treatment, but more recently additional families of epigenetic modulators have been the subject of intense research. Potent inhibitors have been identified in several instances and have proven to be invaluable tools for studying these proteins in normal physiology and in disease. Some have now progressed to clinical studies in hematological and solid tumors, and encouraging early results have been reported. AREAS COVERED This article reviews recent advances regarding the roles of new epigenetic players beyond HDACs and DNMTs in cancer, and discusses the impact of selective chemical probes on unravelling their function. The emerging field of non-coding RNAs (ncRNAs) and ongoing clinical studies with epigenetic drugs and microRNAs (miRNAs) are also addressed. EXPERT OPINION The roles of different epigenetic factors in numerous cancers have been unraveled recently, leading to the initiation of clinical studies. With inhibitors of BET bromodomain proteins, the histone methyltransferases EZH2 and DOT1L, and the histone demethylase LSD1 progressing through clinical trials, and the recognition of the importance of ncRNAs as potential biomarkers and therapeutics, this bears the hope that novel epigenetic therapies will be approved soon.
Collapse
Affiliation(s)
- Kathy A Gelato
- a Global Drug Discovery , Bayer Pharma AG , Berlin , Germany
| | - David Adler
- a Global Drug Discovery , Bayer Pharma AG , Berlin , Germany
| | - Matthias Ocker
- a Global Drug Discovery , Bayer Pharma AG , Berlin , Germany
- b Department of Gastroenterology/Campus Benjamin Franklin , Charité-Universitätsmedizin Berlin , Berlin , Germany
| | | |
Collapse
|
85
|
Schuhmacher MK, Kudithipudi S, Jeltsch A. Investigation of H2AX methylation by the SUV39H2 protein lysine methyltransferase. FEBS Lett 2016; 590:1713-9. [PMID: 27177470 DOI: 10.1002/1873-3468.12216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 12/21/2022]
Abstract
The H3K9 protein lysine methyltransferase SUV39H2 was reported to methylate K134 of H2AX and stimulate H2AX phosphorylation during DNA damage response [Sone K et al. (2014) Nat Commun 5, 5691]. However, the sequence context of H2AX-K134 differs from the specificity of SUV39H2. We performed in vitro methylation reactions with SUV39H2 (and its homolog SUV39H1) using H2AX protein and peptides, but no methylation at K134 or any other lysine in H2AX was detected. Positive controls demonstrated the functionality of the assays. While our data cannot finally exclude H2AX methylation of SUV39H2 in cells, additional experimental evidence is required to validate this claim.
Collapse
Affiliation(s)
| | | | - Albert Jeltsch
- Institute of Biochemistry, Stuttgart University, Germany
| |
Collapse
|
86
|
Piao L, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R. SUV39H2 methylates and stabilizes LSD1 by inhibiting polyubiquitination in human cancer cells. Oncotarget 2016; 6:16939-50. [PMID: 26183527 PMCID: PMC4627283 DOI: 10.18632/oncotarget.4760] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/26/2015] [Indexed: 11/25/2022] Open
Abstract
LSD1 is a histone lysine demethylase, which is highly expressed in multiple types of human cancer. Although its roles in transcriptional regulation have been well-studied, functional regulation of LSD1 by post-translational modifications still remains unknown. Here, we demonstrate that the histone lysine methyltransferase SUV39H2 trimethylated LSD1 on lysine 322. Knockdown of SUV39H2 resulted in a decrease of LSD1 protein even though the mRNA levels were unchanged. SUV39H2-induced LSD1 methylation suppresses LSD1 polyubiquitination and subsequent degradation. In addition, we also observed indirect effect of SUV39H2 overexpression on LSD1-target genes. Our results reveal the regulatory mechanism of LSD1 protein through its lysine methylation by SUV39H2 in human cancer cells.
Collapse
Affiliation(s)
- Lianhua Piao
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Takehiro Suzuki
- Biomolecular Characterizaion Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterizaion Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
87
|
Lin X, Huang Y, Zou Y, Chen X, Ma X. Depletion of G9a gene induces cell apoptosis in human gastric carcinoma. Oncol Rep 2016; 35:3041-9. [PMID: 27081761 DOI: 10.3892/or.2016.4692] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/12/2016] [Indexed: 11/06/2022] Open
Abstract
G9a is a mammalian histone methyltransferase that contributes to the epigenetic silencing of tumor suppressor genes. Evidence suggests that G9a is required to maintain the malignant phenotype, but little documentation show the role of G9a function in mediating tumor growth. We retrospectively analyzed the protein of G9a and monomethylated histone H3 lysine 9 (H3K9 me1), and dimethylated histone H3 lysine 9 (H3K9 me2) in 175 cases of gastric carcinoma by immunohistochemistry. RNAi-based inhibition of G9a in MGC803 cancer cell line was studied. G9a depletion was done by transient transfection using Lipofectamine 2000. Depletion efficiency of G9a was tested using real-time PCR and western blot analysis. Cell apoptosis and proliferation were detected by TUNEL assay and MTT, respectively. The proteins of H3K9 me1, me2, trimethylation of H3K9 (H3K9 me3), monomethylated histone H3 lysine 27 (H3K27 me1), dimethylated histone H3 lysine 27 (H3K27 me2) and histone acetylated H3, apoptotic proteins were studied by western blot analysis. G9a and H3K9 me2 expression was higher in gastric cancer cells compared to the control (p<0.05). Both G9a and H3K9 me2 were positively correlated with the degree of differentiation, depth of infiltration, lymphatic invasions and tumor-node-metastasis stage in gastric carcinoma, (p<0.05). RNAi-mediated knockdown of G9a induced cell apoptosis and inhibited cell proliferation. Depletion of G9a reduced the levels of H3K9 me1 and me2, H3K27 me1 and me2. Nonetheless, it did not activate acetylation of H3 and H3K9 me3. These data suggest that G9a is required in tumorigenesis, and correlated with prognosis. Furthermore, G9a plays a critical role in regulating epigenetics. Depletion of G9a inhibits cell growth and induces cells apoptosis in gastric cancer. It might be of therapeutic benefit in gastric cancers.
Collapse
Affiliation(s)
- Xiaolei Lin
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Yiqun Huang
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Yong Zou
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Xingsheng Chen
- United Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xudong Ma
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| |
Collapse
|
88
|
Li J, Zhu S, Ke XX, Cui H. Role of several histone lysine methyltransferases in tumor development. Biomed Rep 2016; 4:293-299. [PMID: 26998265 PMCID: PMC4774316 DOI: 10.3892/br.2016.574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/31/2015] [Indexed: 12/17/2022] Open
Abstract
The field of cancer epigenetics has been evolving rapidly in recent decades. Epigenetic mechanisms include DNA methylation, histone modifications and microRNAs. Histone modifications are important markers of function and chromatin state. Aberrant histone methylation frequently occurs in tumor development and progression. Multiple studies have identified that histone lysine methyltransferases regulate gene transcription through the methylation of histone, which affects cell proliferation and differentiation, cell migration and invasion, and other biological characteristics. Histones have variant lysine sites for different levels of methylation, catalyzed by different lysine methyltransferases, which have numerous effects on human cancers. The present review focused on the most recent advances, described the key function sites of histone lysine methyltransferases, integrated significant quantities of data to introduce several compelling histone lysine methyltransferases in various types of human cancers, summarized their role in tumor development and discussed their potential mechanisms of action.
Collapse
Affiliation(s)
- Jifu Li
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Shunqin Zhu
- School of Life Science, Southwest University, Chongqing 400716, P.R. China
| | - Xiao-Xue Ke
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Hongjuan Cui
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| |
Collapse
|
89
|
Sakamoto A, Akiyama Y, Shimada S, Zhu WG, Yuasa Y, Tanaka S. DNA Methylation in the Exon 1 Region and Complex Regulation of Twist1 Expression in Gastric Cancer Cells. PLoS One 2015; 10:e0145630. [PMID: 26695186 PMCID: PMC4687923 DOI: 10.1371/journal.pone.0145630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/06/2015] [Indexed: 02/06/2023] Open
Abstract
Twist1 overexpression is frequently observed in various cancers including gastric cancer (GC). Although DNA methylation of the Twist1 gene has been reported in cancer cells, the mechanisms underlying transcriptional activation remain uncertain. In this study, we first examined epigenetic alterations of the Twist1 using Twist1 transcription-positive and -negative cell lines that are derived from our established diffuse-type GC mouse model. Treatment with a DNA demethylation agent 5-aza-dC re-activated Twist1 expression in Twist1 expression-negative GC cells. According to methylation-specific PCR and bisulfite sequencing analysis, methylation at the CpG-rich region within Twist1 coding exon 1, rather than its promoter region, was tightly linked to transcriptional silencing of the Twist1 expression in mouse GC cells. Chromatin immunoprecipitation assays revealed that active histone mark H3K4me3 was enriched in Twist1 expression-positive cells, and inactive histone mark H3K9me3 was enriched in Twist1 expression-negative cells. The expression levels of Suv39h1 and Suv39h2, histone methyltransferases for H3K9me3, were inversely correlated with Twist1 expression, and knockdown of Suv39h1 or Suv39h2 induced Twist1 expression. Moreover, Sp1 transcription factor bound to the exon 1 CpG-rich region in Twist1 expression-positive cell lines, and Twist1 expression was diminished by mithramycin, which that interferes with Sp1 binding to CpG-rich regulatory sequences. Our studies suggested that the Twist1 transcription in GC cells might be regulated through potential cooperation of DNA methylation, histone modification in complex with Sp1 binding to CpG-rich regions within the exon 1 region.
Collapse
Affiliation(s)
- Ayuna Sakamoto
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
90
|
Ma XS, Chao SB, Huang XJ, Lin F, Qin L, Wang XG, Meng TG, Zhu CC, Schatten H, Liu HL, Sun QY. The Dynamics and Regulatory Mechanism of Pronuclear H3k9me2 Asymmetry in Mouse Zygotes. Sci Rep 2015; 5:17924. [PMID: 26639638 PMCID: PMC4671145 DOI: 10.1038/srep17924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/30/2015] [Indexed: 12/25/2022] Open
Abstract
H3K9 methylation is an important histone modification that is correlated with gene transcription repression. The asymmetric H3K9 dimethylation (H3K9me2) pattern between paternal and maternal genomes is generated soon after fertilization. In the present study, we carefully determined the dynamics of H3K9me2 changes in mouse zygotes, and investigated the regulatory mechanisms. The results indicated that histone methyltransferase G9a, but not GLP, was involved in the regulation of asymmetric H3K9me2, and G9a was the methyltransferase that induced the appearance of H3K9me2 in the male pronucleus of the zygote treated with cycloheximide. We found that there were two distinct mechanisms that regulate H3K9me2 in the male pronucleus. Before 8 h of in vitro fertilization (IVF), a mechanism exists that inhibits the association of G9a with the H3K9 sites. After 10 h of IVF the inhibition of G9a activity depends on yet unknown novel protein(s) synthesis. The two mechanisms of transfer take place between 8-10 h of IVF, and the novel protein failed to inhibit G9a activity in time, resulting in the appearance of a low level de novo H3K9me2 in the male pronucleus.
Collapse
Affiliation(s)
- Xue-Shan Ma
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shi-Bin Chao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- The ART Center of Jiujiang Maternal and Child Health Care Hospital, Jiujiang 332000, China
| | - Xian-Ju Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Lin
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Qin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xu-Guang Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- College of Animal Science, Xinjiang Agricultural University, Xinjiang 830025, China
| | - Tie-Gang Meng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng-Cheng Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Hong-Lin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
91
|
Targeting Suppressor of Variegation 3-9 Homologue 2 (SUV39H2) in Acute Lymphoblastic Leukemia (ALL). Transl Oncol 2015; 8:368-375. [PMID: 26500027 PMCID: PMC4631083 DOI: 10.1016/j.tranon.2015.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 01/26/2023] Open
Abstract
Although recent progress in understanding the biology and optimizing the treatment of acute lymphoblastic leukemia (ALL) has improved cure rates of childhood ALL to nearly 90%, the cure rate in adult ALL remains less than 50%. The poor prognosis in adult ALL has in part been attributed to larger proportion of high-risk leukemia showing drug resistance. Thus, identifying novel therapeutic targets in ALL is needed for further improvements in treatment outcomes of adult ALL. Genetic aberration of chromatin-modifying molecules has been recently reported in subtypes of ALL, and targeting components of chromatin complexes has shown promising efficacy in preclinical studies. Suppressor of variegation 3-9 homologue 2 (SUV39H2), also known as KMT1B, is a SET-domain–containing histone methyltransferase that is upregulated in solid cancers, but its expression is hardly detectable in normal tissues. Here, we show that SUV39H2 is highly expressed in ALL cells but not in blood cells from healthy donors and also that SUV39H2 mRNA is expressed at significantly higher levels in bone marrow or blood cells from patients with ALL obtained at diagnosis compared with those obtained at remission (P = .007). In four ALL cell lines (Jurkat and CEM derived from T-ALL and RS4;11 and REH derived from B-ALL), SUV39H2 knockdown resulted in a significant decrease in cell viability (~ 77%, P < .001), likely through induction of apoptosis. On the other hand, SUV39H2 overexpression made cells more resistant to chemotherapy. We conclude that SUV39H2 is a promising therapeutic target and further investigation of this therapeutic approach in ALL is warranted.
Collapse
|
92
|
Sound of silence: the properties and functions of repressive Lys methyltransferases. Nat Rev Mol Cell Biol 2015. [PMID: 26204160 DOI: 10.1038/nrm4029] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The methylation of histone Lys residues by Lys methyltransferases (KMTs) regulates chromatin organization and either activates or represses gene expression, depending on the residue that is targeted. KMTs are emerging as key components in several cellular processes, and their deregulation is often associated with pathogenesis. Here, we review the current knowledge on the main KMTs that are associated with gene silencing: namely, those responsible for methylating histone H3 Lys 9 (H3K9), H3K27 and H4K20. We discuss their biochemical properties and the various mechanisms by which they are targeted to the chromatin and regulate gene expression, as well as new data on the interplay between them and other chromatin modifiers.
Collapse
|
93
|
Zhao Y, Garcia BA. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol 2015; 7:a025064. [PMID: 26330523 DOI: 10.1101/cshperspect.a025064] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modern techniques in molecular biology, genomics, and mass spectrometry-based proteomics have identified a large number of novel histone posttranslational modifications (PTMs), many of whose functions are still under intense investigation. Here, we catalog histone PTMs under two classes: first, those whose functions have been fairly well studied and, second, those PTMs that have been more recently identified but whose functions remain unclear. We hope that this will be a useful resource for researchers from all biological or technical backgrounds, aiding in their chromatin and epigenetic pursuits.
Collapse
Affiliation(s)
- Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
94
|
Paschall AV, Yang D, Lu C, Choi JH, Li X, Liu F, Figueroa M, Oberlies NH, Pearce C, Bollag WB, Nayak-Kapoor A, Liu K. H3K9 Trimethylation Silences Fas Expression To Confer Colon Carcinoma Immune Escape and 5-Fluorouracil Chemoresistance. THE JOURNAL OF IMMUNOLOGY 2015; 195:1868-82. [PMID: 26136424 DOI: 10.4049/jimmunol.1402243] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 06/03/2015] [Indexed: 12/21/2022]
Abstract
The Fas-FasL effector mechanism plays a key role in cancer immune surveillance by host T cells, but metastatic human colon carcinoma often uses silencing Fas expression as a mechanism of immune evasion. The molecular mechanism under FAS transcriptional silencing in human colon carcinoma is unknown. We performed genome-wide chromatin immunoprecipitation sequencing analysis and identified that the FAS promoter is enriched with H3K9me3 in metastatic human colon carcinoma cells. The H3K9me3 level in the FAS promoter region is significantly higher in metastatic than in primary cancer cells, and it is inversely correlated with Fas expression level. We discovered that verticillin A is a selective inhibitor of histone methyltransferases SUV39H1, SUV39H2, and G9a/GLP that exhibit redundant functions in H3K9 trimethylation and FAS transcriptional silencing. Genome-wide gene expression analysis identified FAS as one of the verticillin A target genes. Verticillin A treatment decreased H3K9me3 levels in the FAS promoter and restored Fas expression. Furthermore, verticillin A exhibited greater efficacy than decitabine and vorinostat in overcoming colon carcinoma resistance to FasL-induced apoptosis. Verticillin A also increased DR5 expression and overcame colon carcinoma resistance to DR5 agonist drozitumab-induced apoptosis. Interestingly, verticillin A overcame metastatic colon carcinoma resistance to 5-fluorouracil in vitro and in vivo. Using an orthotopic colon cancer mouse model, we demonstrated that tumor-infiltrating cytotoxic T lymphocytes are FasL(+) and that FasL-mediated cancer immune surveillance is essential for colon carcinoma growth control in vivo. Our findings determine that H3K9me3 of the FAS promoter is a dominant mechanism underlying FAS silencing and resultant colon carcinoma immune evasion and progression.
Collapse
Affiliation(s)
- Amy V Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Cancer Center, Georgia Regents University, Augusta, GA 30912; Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Jeong-Hyeon Choi
- Cancer Center, Georgia Regents University, Augusta, GA 30912; Department of Biostatistics and Epidemiology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Xia Li
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Feiyan Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China;
| | - Mario Figueroa
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402
| | | | - Wendy B Bollag
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904; Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | | | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Cancer Center, Georgia Regents University, Augusta, GA 30912; Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904;
| |
Collapse
|
95
|
Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A, Yuan T, Yang J, Li Y, Shi L, Guan D, Pan H, Duan S, Ding Z, Li M, Yi F, Bai R, Wang Y, Chen C, Yang F, Li X, Wang Z, Aizawa E, Goebl A, Soligalla RD, Reddy P, Esteban CR, Tang F, Liu GH, Belmonte JCI. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 2015; 348:1160-3. [PMID: 25931448 PMCID: PMC4494668 DOI: 10.1126/science.aaa1356] [Citation(s) in RCA: 402] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/15/2015] [Indexed: 12/16/2022]
Abstract
Werner syndrome (WS) is a premature aging disorder caused by WRN protein deficiency. Here, we report on the generation of a human WS model in human embryonic stem cells (ESCs). Differentiation of WRN-null ESCs to mesenchymal stem cells (MSCs) recapitulates features of premature cellular aging, a global loss of H3K9me3, and changes in heterochromatin architecture. We show that WRN associates with heterochromatin proteins SUV39H1 and HP1α and nuclear lamina-heterochromatin anchoring protein LAP2β. Targeted knock-in of catalytically inactive SUV39H1 in wild-type MSCs recapitulates accelerated cellular senescence, resembling WRN-deficient MSCs. Moreover, decrease in WRN and heterochromatin marks are detected in MSCs from older individuals. Our observations uncover a role for WRN in maintaining heterochromatin stability and highlight heterochromatin disorganization as a potential determinant of human aging.
Collapse
Affiliation(s)
- Weiqi Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingyi Li
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Keiichiro Suzuki
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jing Qu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ping Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Junzhi Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomeng Liu
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ruotong Ren
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuling Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Alejandro Ocampo
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tingting Yuan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiping Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Shi
- Diagnosis and Treatment Center for Oral Disease, the 306th Hospital of the PLA, Beijing, China
| | - Dee Guan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huize Pan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shunlei Duan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhichao Ding
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mo Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fei Yi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruijun Bai
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yayu Wang
- Diagnosis and Treatment Center for Oral Disease, the 306th Hospital of the PLA, Beijing, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuquan Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyu Li
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Zimei Wang
- The Center for Anti-aging and Regenerative Medicine, Shenzhen University, Shenzhen 518060, China
| | - Emi Aizawa
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - April Goebl
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. Universidad Católica San Antonio de Murcia, Campus de los Jerónimos s/n, 30107 Guadalupe, Murcia, Spain
| | - Rupa Devi Soligalla
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pradeep Reddy
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China. Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China. Center for Molecular and Translational Medicine (CMTM), Beijing 100101, China. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Guang-Hui Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. The Center for Anti-aging and Regenerative Medicine, Shenzhen University, Shenzhen 518060, China. Center for Molecular and Translational Medicine (CMTM), Beijing 100101, China. Beijing Institute for Brain Disorders, Beijing 100069, China.
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
96
|
Wada S, Ideno H, Shimada A, Kamiunten T, Nakamura Y, Nakashima K, Kimura H, Shinkai Y, Tachibana M, Nifuji A. H3K9MTase G9a is essential for the differentiation and growth of tenocytes in vitro. Histochem Cell Biol 2015; 144:13-20. [PMID: 25812847 DOI: 10.1007/s00418-015-1318-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
Cell differentiation is controlled by specific transcription factors. The functions and expression levels of these transcription factors are regulated by epigenetic modifications, such as histone modifications and cytosine methylation of the genome. In tendon tissue, tendon-specific transcription factors have been shown to play functional roles in the regulation of tenocyte differentiation. However, the effects of epigenetic modifications on gene expression and differentiation in tenocytes are unclear. In this study, we investigated the epigenetic regulation of tenocyte differentiation, focusing on the enzymes mediating histone 3 lysine 9 (H3K9) methylation. In primary mouse tenocytes, six H3K9 methyltransferase (H3K9MTase) genes, i.e., G9a, G9a-like protein (GLP), PR domain zinc finger protein 2 (PRDM2), SUV39H1, SUV39H2, and SETDB1/ESET were all expressed, with increased mRNA levels observed during tenocyte differentiation. In mouse embryos, G9a and Prdm2 mRNAs were expressed in tenocyte precursor cells, which were overlapped with or were adjacent to cells expressing a tenocyte-specific marker, tenomodulin. Using tenocytes isolated from G9a-flox/flox mice, we deleted G9a by infecting the cells with Cre-expressing adenoviruses. Proliferation of G9a-null tenocytes was significantly decreased compared with that of control cells infected with GFP-expressing adenoviruses. Moreover, the expression levels of tendon transcription factors gene, i.e., Scleraxis (Scx), Mohawk (Mkx), Egr1, Six1, and Six2 were all suppressed in G9a-null tenocytes. The tendon-related genes Col1a1, tenomodulin, and periostin were also downregulated. Consistent with this, Western blot analysis showed that tenomodulin protein expression was significantly suppressed by G9a deletion. These results suggested that expression of the H3K9MTase G9a was essential for the differentiation and growth of tenocytes and that H3K9MTases may play important roles in tendinogenesis.
Collapse
Affiliation(s)
- Satoshi Wada
- Department of Pharmacology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Affiliation(s)
- He Huang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shu Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
98
|
Abstract
The molecular signatures of epigenetic regulation and chromatin architectures are fundamental to genetically determined biological processes. Covalent and post-translational chemical modification of the chromatin template can sensitize the genome to changing environmental conditions to establish diverse functional states. Recent interest and research focus surrounds the direct connections between metabolism and chromatin dynamics, which now represents an important conceptual challenge to explain many aspects of metabolic dysfunction. Several components of the epigenetic machinery require intermediates of cellular metabolism for enzymatic function. Furthermore, changes to intracellular metabolism can alter the expression of specific histone methyltransferases and acetyltransferases conferring widespread variations in epigenetic modification patterns. Specific epigenetic influences of dietary glucose and lipid consumption, as well as undernutrition, are observed across numerous organs and pathways associated with metabolism. Studies have started to define the chromatin-dependent mechanisms underlying persistent and pathophysiological changes induced by altered metabolism. Importantly, numerous recent studies demonstrate that gene regulation underlying phenotypic determinants of adult metabolic health is influenced by maternal and early postnatal diet. These emerging concepts open new perspectives to combat the rising global epidemic of metabolic disorders.
Collapse
Affiliation(s)
- Samuel T. Keating
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (S.T.K., A.E.-O.), Baker IDI Heart & Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Melbourne, Victoria, Australia (A.E.-O.)
| | - Assam El-Osta
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (S.T.K., A.E.-O.), Baker IDI Heart & Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Melbourne, Victoria, Australia (A.E.-O.)
| |
Collapse
|
99
|
Hamamoto R, Saloura V, Nakamura Y. Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat Rev Cancer 2015; 15:110-24. [PMID: 25614009 DOI: 10.1038/nrc3884] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several protein lysine methyltransferases and demethylases have been identified to have critical roles in histone modification. A large body of evidence has indicated that their dysregulation is involved in the development and progression of various diseases, including cancer, and these enzymes are now considered to be potential therapeutic targets. Although most studies have focused on histone methylation, many reports have revealed that these enzymes also regulate the methylation dynamics of non-histone proteins such as p53, RB1 and STAT3 (signal transducer and activator of transcription 3), which have important roles in human tumorigenesis. In this Review, we summarize the molecular functions of protein lysine methylation and its involvement in human cancer, with a particular focus on lysine methylation of non-histone proteins.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC 2115 Chicago, Illinois 60637, USA
| | - Vassiliki Saloura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC 2115 Chicago, Illinois 60637, USA
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC 2115 Chicago, Illinois 60637, USA
| |
Collapse
|
100
|
Mauger O, Klinck R, Chabot B, Muchardt C, Allemand E, Batsché E. Alternative splicing regulates the expression of G9A and SUV39H2 methyltransferases, and dramatically changes SUV39H2 functions. Nucleic Acids Res 2015; 43:1869-82. [PMID: 25605796 PMCID: PMC4330376 DOI: 10.1093/nar/gkv013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alternative splicing is the main source of proteome diversity. Here, we have investigated how alternative splicing affects the function of two human histone methyltransferases (HMTase): G9A and SUV39H2. We show that exon 10 in G9A and exon 3 in SUV39H2 are alternatively included in a variety of tissues and cell lines, as well as in a different species. The production of these variants is likely tightly regulated because both constitutive and alternative splicing factors control their splicing profiles. Based on this evidence, we have assessed the link between the inclusion of these exons and the activity of both enzymes. We document that these HMTase genes yield several protein isoforms, which are likely issued from alternative splicing regulation. We demonstrate that inclusion of SUV39H2 exon 3 is a determinant of the stability, the sub-nuclear localization, and the HMTase activity. Genome-wide expression analysis further revealed that alternative inclusion of SUV39H2 exon 3 differentially modulates the expression of target genes. Our data also suggest that a variant of G9A may display a function that is independent of H3K9 methylation. Our work emphasizes that expression and function of genes are not collinear; therefore alternative splicing must be taken into account in any functional study.
Collapse
Affiliation(s)
- Oriane Mauger
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 6, IFD, 4 Place Jussieu, 75252 PARIS cedex 05, France Institut Pasteur, Département de Biologie du Développement et Cellules Souches, CNRS URA2578, Unité de Régulation Epigénétique, 25 rue du Docteur Roux, Paris, 75015, France
| | - Roscoe Klinck
- Laboratory of Functional Genomics of the Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Benoit Chabot
- Laboratory of Functional Genomics of the Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke. Québec, J1E 4K8, Canada
| | - Christian Muchardt
- Institut Pasteur, Département de Biologie du Développement et Cellules Souches, CNRS URA2578, Unité de Régulation Epigénétique, 25 rue du Docteur Roux, Paris, 75015, France
| | - Eric Allemand
- Institut Pasteur, Département de Biologie du Développement et Cellules Souches, CNRS URA2578, Unité de Régulation Epigénétique, 25 rue du Docteur Roux, Paris, 75015, France
| | - Eric Batsché
- Institut Pasteur, Département de Biologie du Développement et Cellules Souches, CNRS URA2578, Unité de Régulation Epigénétique, 25 rue du Docteur Roux, Paris, 75015, France
| |
Collapse
|