51
|
Rodriguez-Menocal L, D'Urso G. Programmed cell death in fission yeast. FEMS Yeast Res 2005; 5:111-7. [PMID: 15489193 DOI: 10.1016/j.femsyr.2004.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 07/20/2004] [Accepted: 07/22/2004] [Indexed: 10/26/2022] Open
Abstract
Recently a metacaspase, encoded by YCA1, has been implicated in a primitive form of apoptosis or programmed cell death in yeast. Previously it had been shown that over-expression of mammalian pro-apoptotic proteins can induce cell death in yeast, but the mechanism of how cell death occurred was not clearly established. More recently, it has been shown that DNA or oxidative damage, or other cell cycle blocks, can result in cell death that mimics apoptosis in higher cells. Also, in fission yeast deletion of genes required for triacylglycerol synthesis leads to cell death and expression of apoptotic markers. A metacaspase sharing greater than 40% identity to budding yeast Yca1 has been identified in fission yeast, however, its role in programmed cell death is not yet known. Analysis of the genetic pathways that influence cell death in yeast may provide insights into the mechanisms of apoptosis in all eukaryotic organisms.
Collapse
Affiliation(s)
- Luis Rodriguez-Menocal
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, P.O. Box 016129, Miami, FL 33101-6129, USA
| | | |
Collapse
|
52
|
Raina D, Pandey P, Ahmad R, Bharti A, Ren J, Kharbanda S, Weichselbaum R, Kufe D. c-Abl tyrosine kinase regulates caspase-9 autocleavage in the apoptotic response to DNA damage. J Biol Chem 2005; 280:11147-51. [PMID: 15657060 DOI: 10.1074/jbc.m413787200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the initiator caspase-9 is essential for induction of apoptosis by developmental signals, oncogenic transformation, and genotoxic stress. The c-Abl tyrosine kinase is also involved in the apoptotic response to DNA damage. The present results demonstrate that c-Abl binds directly to caspase-9. We show that c-Abl phosphorylates caspase-9 on Tyr-153 in vitro and in cells treated with DNA damaging agents. Moreover, inhibition of c-Abl with STI571 blocked DNA damage-induced autoprocessing of caspase-9 to the p35 subunit and activation of caspase-3. Caspase-9(Y153F) also attenuated DNA damage-induced processing of caspase-9 to p35, activation of caspase-3, and apoptosis. These findings indicate that caspase-9 autoprocessing is regulated by c-Abl in the apoptotic response to genotoxic stress.
Collapse
Affiliation(s)
- Deepak Raina
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Maniwa Y, Yoshimura M, Bermudez VP, Yuki T, Okada K, Kanomata N, Ohbayashi C, Hayashi Y, Hurwitz J, Okita Y. Accumulation of hRad9 protein in the nuclei of nonsmall cell lung carcinoma cells. Cancer 2005; 103:126-32. [PMID: 15558813 DOI: 10.1002/cncr.20740] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND DNA damage sensor proteins have received much attention as upstream components of the DNA damage checkpoint signaling pathway that are required for cell cycle control and the induction of apoptosis. Deficiencies in these proteins are directly linked to the accumulation of gene mutations, which can induce cellular transformation and result in malignant disease. METHODS Using 48 sets of tumor tissue specimens and peripheral normal lung tissue specimens from 48 patients with nonsmall cell lung carcinoma (NSCLC) who underwent surgery, the authors investigated the expression of hRad9 protein, a member of the human DNA damage sensor family, using immunohistochemical and Western blot analyses. RESULTS Immunohistochemical analysis detected the accumulation of hRad9 in the nuclei of tumor cells in 16 tumor tissue specimens, (33% of tumor tissue specimens examined). Western blot analysis also revealed elevated levels of phosphorylated hRad9 protein in NSCLC cells that was accompanied by the detection of phosphorylated Chk1, a protein kinase that regulates the downstream signaling of the DNA damage checkpoint pathway. Furthermore, strong expression of hRad9 was correlated with an increase in Ki-67 expression index in the tumor cells that were examined. CONCLUSIONS The findings made in the current study suggest that Rad9 expression may play an important role in cell cycle control in NSCLC cells and may influence NSCLC cell phenotype.
Collapse
Affiliation(s)
- Yoshimasa Maniwa
- Division of Cardiovascular, Thoracic, and Pediatric Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Yoshida K, Miki Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci 2004; 95:866-71. [PMID: 15546503 PMCID: PMC11159131 DOI: 10.1111/j.1349-7006.2004.tb02195.x] [Citation(s) in RCA: 456] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 09/27/2004] [Indexed: 01/11/2023] Open
Abstract
BRCA1 (BReast-CAncer susceptibility gene 1) and BRCA2 are tumor suppressor genes, the mutant phenotypes of which predispose to breast and ovarian cancers. Intensive research has shown that BRCA proteins are involved in a multitude of pivotal cellular processes. In particular, both genes contribute to DNA repair and transcriptional regulation in response to DNA damage. Recent studies suggest that BRCA proteins are required for maintenance of chromosomal stability, thereby protecting the genome from damage. New data also show that BRCAs transcriptionally regulate some genes involved in DNA repair, the cell cycle, and apoptosis. Many of these functions are mediated by a large number of cellular proteins that interact with BRCAs. The functions of BRCA proteins are also linked to distinct and specific phosphorylation events; however, the extent to which phosphorylation-activated molecular pathways contribute to tumor suppressor activity remains unclear. Finally, the reasons why mutations in BRCA genes lead to the development of breast and ovarian cancers are not clearly understood. Elucidation of the precise molecular functions of BRCAs is expected to improve our understanding of hereditary as well as sporadic mammary carcinogenesis.
Collapse
Affiliation(s)
- Kiyotsugu Yoshida
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510
| | | |
Collapse
|
55
|
Hopkins KM, Auerbach W, Wang XY, Hande MP, Hang H, Wolgemuth DJ, Joyner AL, Lieberman HB. Deletion of mouse rad9 causes abnormal cellular responses to DNA damage, genomic instability, and embryonic lethality. Mol Cell Biol 2004; 24:7235-48. [PMID: 15282322 PMCID: PMC479733 DOI: 10.1128/mcb.24.16.7235-7248.2004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe rad9 gene promotes cell survival through activation of cell cycle checkpoints induced by DNA damage. Mouse embryonic stem cells with a targeted deletion of Mrad9, the mouse ortholog of this gene, were created to evaluate its function in mammals. Mrad9(-/-) cells demonstrated a marked increase in spontaneous chromosome aberrations and HPRT mutations, indicating a role in the maintenance of genomic integrity. These cells were also extremely sensitive to UV light, gamma rays, and hydroxyurea, and heterozygotes were somewhat sensitive to the last two agents relative to Mrad9(+/+) controls. Mrad9(-/-) cells could initiate but not maintain gamma-ray-induced G(2) delay and retained the ability to delay DNA synthesis rapidly after UV irradiation, suggesting that checkpoint abnormalities contribute little to the radiosensitivity observed. Ectopic expression of Mrad9 or human HRAD9 complemented Mrad9(-/-) cell defects, indicating that the gene has radioresponse and genomic maintenance functions that are evolutionarily conserved. Mrad9(+/-) mice were generated, but heterozygous intercrosses failed to yield Mrad9(-/-) pups, since embryos died at midgestation. Furthermore, Mrad9(-/-) mouse embryo fibroblasts were not viable. These investigations establish Mrad9 as a key mammalian genetic element of pathways that regulate the cellular response to DNA damage, maintenance of genomic integrity, and proper embryonic development.
Collapse
Affiliation(s)
- Kevin M Hopkins
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Lindsey-Boltz LA, Wauson EM, Graves LM, Sancar A. The human Rad9 checkpoint protein stimulates the carbamoyl phosphate synthetase activity of the multifunctional protein CAD. Nucleic Acids Res 2004; 32:4524-30. [PMID: 15326225 PMCID: PMC516061 DOI: 10.1093/nar/gkh789] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human Rad9 checkpoint protein is a subunit of the heterotrimeric Rad9-Rad1-Hus1 (9-1-1) complex that plays a role as a damage sensor in the DNA damage checkpoint response. Rad9 has been found to interact with several other proteins outside the context of the 9-1-1 complex with no obvious checkpoint functions. During our studies on the 9-1-1 complex, we found that Rad9 immunoprecipitates contained a 240 kDa protein that was identified as carbamoyl phosphate synthetase/aspartate transcarbamoylase/dihydroorotase (CAD), a multienzymatic protein required for the de novo synthesis of pyrimidine nucleotides and cell growth. Further investigations revealed that only free Rad9, but not Rad9 within the 9-1-1 complex, bound to CAD. The rate-limiting step in de novo pyrimidine nucleotide synthesis is catalyzed by the carbamoyl phosphate synthetase II (CPSase) domain of CAD. We find that Rad9 binds to the CPSase domain, and, moreover, this binding results in a 2-fold stimulation of the CPSase activity of CAD. Similar results were also obtained with an N-terminal Rad9 fragment. These findings suggest that Rad9 may play a role in ribonucleotide biosynthesis.
Collapse
Affiliation(s)
- Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
57
|
Yin Y, Zhu A, Jin YJ, Liu YX, Zhang X, Hopkins KM, Lieberman HB. Human RAD9 checkpoint control/proapoptotic protein can activate transcription of p21. Proc Natl Acad Sci U S A 2004; 101:8864-9. [PMID: 15184659 PMCID: PMC428438 DOI: 10.1073/pnas.0403130101] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When human cells incur DNA damage, two fundamental responses can follow, cell cycle arrest or apoptosis. Human RAD9 (hRAD9) and p53 function in both processes, but the mechanistic relationship between their activities is unknown. p53 mediates checkpoint control at G(1) by transcriptional regulation of p21. In this report, we show that hRAD9, like p53, can also regulate p21 at the transcriptional level. We demonstrate that overexpression of hRAD9 leads to increased p21 RNA and encoded protein levels. The promoter region of p21 fused to a luciferase reporter can be transactivated by either hRAD9 or p53, indicating that hRAD9 regulates the p21 promoter for transcriptional control of expression. Using an electrophoretic mobility-shift assay, we show that hRAD9 specifically binds to a p53-consensus DNA-binding sequence in the p21 promoter. Microarray screening coupled with Northern analysis reveals that hRAD9 regulates the abundance of other messages in addition to p21. Our data reveal a previously undescribed mechanism for regulation of p21 and demonstrate that hRAD9 can control gene transcription. We suggest that hRAD9 and p53 co-regulate p21 to direct cell cycle progression by similar molecular mechanisms. Furthermore, hRAD9 might regulate other cellular processes as well by modulating transcription of multiple down-stream target genes.
Collapse
Affiliation(s)
- Yuxin Yin
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
Unicellular organisms respond to the presence of DNA lesions by activating cell cycle checkpoint and repair mechanisms, while multicellular animals have acquired the further option of eliminating damaged cells by triggering apoptosis. Defects in DNA damage-induced apoptosis contribute to tumorigenesis and to the resistance of cancer cells to a variety of therapeutic agents. The intranuclear mechanisms that signal apoptosis after DNA damage overlap with those that initiate cell cycle arrest and DNA repair, and the early events in these pathways are highly conserved. In addition, multiple independent routes have recently been traced by which nuclear DNA damage can be signalled to the mitochondria, tipping the balance in favour of cell death rather than repair and survival. Here, we review current knowledge of nuclear DNA damage signalling, giving particular attention to interactions between these nuclear events and apoptotic processes in other intracellular compartments.
Collapse
Affiliation(s)
- Chris J Norbury
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|
59
|
Hirai I, Sasaki T, Wang HG. Human hRad1 but not hRad9 protects hHus1 from ubiquitin–proteasomal degradation. Oncogene 2004; 23:5124-30. [PMID: 15122316 DOI: 10.1038/sj.onc.1207658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three of the Rad family proteins, Rad9, Rad1, and Hus1, can interact with each other and form a heterotrimeric complex that is thought to play a role in the sensing step of the DNA integrity checkpoint pathways, but the nature of the Rad9-Rad1-Hus1 complex assembly remains enigmatic. Here, we demonstrate that the human hRad1 protein plays a significant role as molecular chaperone in the process of the hRad9-hRad1-hHus1 heterotrimeric complex formation. In contrast to hRad1, hHus1 is an unstable protein that is actively degraded via the ubiquitin-proteasome pathway. We show that treating cells with proteasome-specific inhibitors stabilizes hHus1 expression. Moreover, hRad1 can associate with hHus1 in the absence of hRad9 and protect hHus1 from ubiquitination and degradation in the cytoplasm. Importantly, genotoxic stress induces hRad1 expression and stabilizes the hHus1 protein. Taken together, these findings suggest a novel role of hRad1 as a potential intrinsic chaperone in the stabilization of hHus1 for the hRad9-hRad1-hHus1 checkpoint complex formation.
Collapse
Affiliation(s)
- Itaru Hirai
- Drug Discovery Program, H Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | |
Collapse
|
60
|
Wang L, Hsu CL, Ni J, Wang PH, Yeh S, Keng P, Chang C. Human checkpoint protein hRad9 functions as a negative coregulator to repress androgen receptor transactivation in prostate cancer cells. Mol Cell Biol 2004; 24:2202-13. [PMID: 14966297 PMCID: PMC350564 DOI: 10.1128/mcb.24.5.2202-2213.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Positive responses to combined androgen elimination therapy and radiation therapy have been well documented in the treatment of prostate cancer patients. The detailed mechanisms how androgen-androgen receptor (AR) cross talks to the radiation-related signal pathways, however, remain largely unknown. Here we report the identification of hRad9, a key member of the checkpoint Rad protein family, as a coregulator to suppress androgen-AR transactivation in prostate cancer cells. In vivo and in vitro interaction assays using Saccharomyces cerevisiae two-hybrid, mammalian two-hybrid, glutathione S-transferase pull-down, and coimmunoprecipitation methods prove that AR can interact with the C terminus of hRad9 via its ligand binding domain. The FXXLF motif within the C terminus of hRad9 interrupts the androgen-induced interaction between the N terminus and C terminus of AR. This interaction between AR and hRad9 may result in the suppression of AR transactivation, demonstrated by the repressed AR transactivation in androgen-induced luciferase reporter assay and the reduced endogenous prostate-specific antigen expression in Western blot assay. Addition of small interfering RNA of hRad9 can reverse hRad9 suppression effects, which suggests that hRad9 functions as a repressor of AR transactivation in vivo. Together, our data provide the first linkage between androgen-AR signals and radiation-induced responses. Further studies of the influence of hRad9 on prostate cancer growth may provide potential new therapeutic approaches.
Collapse
Affiliation(s)
- Liang Wang
- George H. Whipple Laboratory for Cancer Research, Department of Pathology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Kobayashi M, Hirano A, Kumano T, Xiang SL, Mihara K, Haseda Y, Matsui O, Shimizu H, Yamamoto KI. Critical role for chicken Rad17 and Rad9 in the cellular response to DNA damage and stalled DNA replication. Genes Cells 2004; 9:291-303. [PMID: 15066121 DOI: 10.1111/j.1356-9597.2004.00728.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Rad17-replication factor C (Rad17-RFC) and Rad9-Rad1-Hus1 complexes are thought to function in the early phase of cell-cycle checkpoint control as sensors for genome damage and genome replication errors. However, genetic analysis of the functions of these complexes in vertebrates is complicated by the lethality of these gene disruptions in embryonic mouse cells. We disrupted the Rad17 and Rad9 loci by gene targeting in the chicken B lymphocyte line DT40. Rad17-/- and Rad9-/- DT40 cells are viable, and are highly sensitive to UV irradiation, alkylating agents, and DNA replication inhibitors, such as hydroxyurea. We further found that Rad17-/- and Rad9-/- but not ATM-/- cells are defective in S-phase DNA damage checkpoint controls and in the cellular response to stalled DNA replication. These results indicate a critical role for chicken Rad17 and Rad9 in the cellular response to stalled DNA replication and DNA damage.
Collapse
Affiliation(s)
- Masahiko Kobayashi
- Department of Molecular Pathology, Cancer Research Institute, Kanazawa University, Ishikawa 920-0934, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Loegering D, Arlander SJH, Hackbarth J, Vroman BT, Roos-Mattjus P, Hopkins KM, Lieberman HB, Karnitz LM, Kaufmann SH. Rad9 protects cells from topoisomerase poison-induced cell death. J Biol Chem 2004; 279:18641-7. [PMID: 14988409 DOI: 10.1074/jbc.m313536200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have suggested two possible roles for Rad9 in mammalian cells subjected to replication stress or DNA damage. One model suggests that a Rad9-containing clamp is loaded onto damaged DNA, where it participates in Chk1 activation and subsequent events that contribute to cell survival. The other model suggests that Rad9 translocates to mitochondria, where it triggers apoptosis by binding to and inhibiting Bcl-2 and Bcl-x(L). To further study the role of Rad9, parental and Rad9(-/-) murine embryonic stem (ES) cells were treated with camptothecin, etoposide, or cytarabine, all prototypic examples of three classes of widely used anticancer agents. All three agents induced Rad9 chromatin binding. Each of these agents also triggered S-phase checkpoint activation in parental ES cells, as indicated by a caffeine-inhibitable decrease in [3H]thymidine incorporation into DNA and Cdc25A down-regulation. Interestingly, the ability of cytarabine to activate the S-phase checkpoint was severely compromised in Rad9(-/-) cells, whereas activation of this checkpoint by camptothecin and etoposide was unaltered, suggesting that the action of cytarabine is readily distinguished from that of classical topoisomerase poisons. Nonetheless, Rad9 deletion sensitized ES cells to the cytotoxic effects of all three agents, as evidenced by enhanced apoptosis and diminished colony formation. Collectively, these results suggest that the predominant role of Rad9 in ES cells is to promote survival after replicative stress and topoisomerase-mediated DNA damage.
Collapse
Affiliation(s)
- David Loegering
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
McLean LA, Gathmann I, Capdeville R, Polymeropoulos MH, Dressman M. Pharmacogenomic Analysis of Cytogenetic Response in Chronic Myeloid Leukemia Patients Treated with Imatinib. Clin Cancer Res 2004; 10:155-65. [PMID: 14734464 DOI: 10.1158/1078-0432.ccr-0784-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To better understand the molecular basis of cytogenetic response in chronic myeloid leukemia patients treated with imatinib, we studied gene expression profiles from a total of 100 patients from a large, multinational Phase III clinical trial (International Randomized Study of IFN-alpha versus STI571). EXPERIMENTAL DESIGN Gene expression data for >12,000 genes were generated from whole blood samples collected at baseline (before imatinib treatment) using Affymetrix oligonucleotide microarrays. Cytogenetic response was determined based on the percentage of Ph(+) cells from bone marrow following a median of 13 months of treatment. RESULTS A genomic profile of response was developed using a subset of individuals that exhibited the greatest divergence in cytogenetic response; those with complete response (0% Ph(+) cells; n = 53) and those with minimal or no response (>65% Ph(+) cells; n = 13). A total of 55 genes was identified that were differentially expressed between these two groups. Using a "leave-one-out" strategy, we identified the optimum 31 genes from this list to use as our genomic profile of response. Using this genomic profile, we were able to distinguish between individuals that achieved major cytogenetic response (0-35% Ph(+) cells) and those that did not, with a sensitivity of 93.4% (71 of 76 patients), specificity of 58.3% (14 of 24 patients), positive predictive value of 87.7%, and negative predictive value of 73.7%. CONCLUSIONS Interestingly, many of the genes identified appear to be strongly related to reported mechanisms of BCR-ABL transformation and warrant additional research as potential drug targets. The validity and clinical implications of these results should be explored in future studies.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Benzamides
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Cytogenetic Analysis
- Female
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Profiling
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Male
- Middle Aged
- Oligonucleotide Array Sequence Analysis
- Pharmacogenetics
- Piperazines/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Pyrimidines/therapeutic use
- RNA, Neoplasm/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Lee Anne McLean
- Clinical Pharmacogenetics Department, Novartis Pharmaceuticals Corporation, Gaithersburg, Maryland, USA.
| | | | | | | | | |
Collapse
|
64
|
Abstract
Nucleoside analogs are structurally, metabolically, and pharmacodynamically related agents that nevertheless have diverse biological actions and therapeutic consequences. This class of agents affects the structural integrity of DNA, generally after incorporation during replication or DNA excision repair synthesis, leading to stalled replication forks and chain termination. The DNA damage sensors ATM, ATR and DNA-PK recognize these events. These and other protein kinases activate checkpoint pathways that arrest cell cycle progression, and also signal for DNA repair. In addition, if these survival mechanisms are overwhelmed by the damage caused, a third function of these sensors is to activate signaling pathways that initiate apoptotic processes. A review of the spectrum of responses that are activated by clinically relevant nucleoside analogs begins to provide a mechanistic basis for diverse outcomes in cell viability. Such information, when coupled with an understanding of the intrinsic apoptotic potential of a tumor cell type may provide a rational basis for the design of therapeutic strategies.
Collapse
Affiliation(s)
- Deepa Sampath
- The Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
65
|
Abstract
The activation of caspases is a critical event for the execution phase of programmed cell death. Caspases are highly specific in their ability to activate or inhibit many crucial proteins in the cell via cleavage. In this study, we report the identification of several caspase-3-like cleavage sites in the cell-cycle checkpoint protein Rad9. We demonstrate that human Rad9 can be specifically cleaved in cells induced to enter apoptosis by both DNA damage and staurosporine treatment. Indeed, we show that human Rad9 can be effectively cleaved both in vitro and in vivo, which can be inhibited by either a pan-caspase inhibitor or a caspase-3-specific inhibitor. Additionally, no cleavage of Rad9 can be seen in the caspase-3-deficient cell line MCF-7. Site-directed mutagenesis of three of the most conserved cleavage sites dramatically abrogates cleavage of Rad9 by caspase-3 in vitro, and in intact cells after DNA damage. Expression of the cleavage-resistant mutant Rad9 DDD/AAA appears to protect the cell from DNA damage-induced apoptosis. Immunofluorescence studies of Rad9 localization before and after induction of apoptosis show a translocation of Rad9 from the nucleus to the cytosol, concomitant to the appearance of apoptotic morphology. Furthermore, analysis of a truncated Rad9 mutant that corresponds to a putative N-terminal cleavage fragment shows that the N-terminal portion of Rad9 localizes in the cytosol, binds to Bcl-XL, and induces apoptosis. These results support a dual role for cleavage of Rad9: (1) the liberation and translocation of the BH3 domain-containing N-terminus of Rad9 to the cytosol, as a means of promoting apoptosis via antagonism of Bcl-XL, and (2) the disruption of the Rad9-Rad1-Hus1 DNA damage checkpoint complex.
Collapse
Affiliation(s)
- Michael W Lee
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | |
Collapse
|
66
|
Jones RE, Chapman JR, Puligilla C, Murray JM, Car AM, Ford CC, Lindsay HD. XRad17 is required for the activation of XChk1 but not XCds1 during checkpoint signaling in Xenopus. Mol Biol Cell 2003; 14:3898-910. [PMID: 12972573 PMCID: PMC196587 DOI: 10.1091/mbc.e03-03-0138] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Revised: 04/30/2003] [Accepted: 04/30/2003] [Indexed: 12/31/2022] Open
Abstract
The DNA damage/replication checkpoints act by sensing the presence of damaged DNA or stalled replication forks and initiate signaling pathways that arrest cell cycle progression. Here we report the cloning and characterization of Xenopus orthologues of the RFCand PCNA-related checkpoint proteins. XRad17 shares regions of homology with the five subunits of Replication factor C. XRad9, XRad1, and XHus1 (components of the 9-1-1 complex) all show homology to the DNA polymerase processivity factor PCNA. We demonstrate that these proteins associate with chromatin and are phosphorylated when replication is inhibited by aphidicolin. Phosphorylation of X9-1-1 is caffeine sensitive, but the chromatin association of XRad17 and the X9-1-1 complex after replication block is unaffected by caffeine. This suggests that the X9-1-1 complex can associate with chromatin independently of XAtm/XAtr activity. We further demonstrate that XRad17 is essential for the chromatin binding and checkpoint-dependent phosphorylation of X9-1-1 and for the activation of XChk1 when the replication checkpoint is induced by aphidicolin. XRad17 is not, however, required for the activation of XCds1 in response to dsDNA ends.
Collapse
Affiliation(s)
- Rhiannon E Jones
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN19RQ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
67
|
Cheng WH, von Kobbe C, Opresko PL, Fields KM, Ren J, Kufe D, Bohr VA. Werner syndrome protein phosphorylation by abl tyrosine kinase regulates its activity and distribution. Mol Cell Biol 2003; 23:6385-95. [PMID: 12944467 PMCID: PMC193690 DOI: 10.1128/mcb.23.18.6385-6395.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Werner syndrome protein (WRN) is a caretaker of the human genome, and the Abl kinase is a regulator of the DNA damage response. Aberrant DNA repair has been linked to the development of cancer. Here, we have identified a direct binding between WRN and c-Abl in vitro via the N-terminal and central regions of WRN and the Src homology domain 3 of c-Abl. After bleomycin treatment in culture, WRN and c-Abl are dissociated and followed by an Abl kinase-dependent WRN relocalization to the nucleoplasm. WRN is a substrate of c-Abl in vitro and in vivo. WRN is tyrosine phosphorylated either transiently by treatment of HeLa cells with bleomycin or constitutively in cells from chronic myeloid leukemia (CML) patients, and these phosphorylations are prevented by treatment with the Abl kinase inhibitor STI-571. Tyrosine phosphorylation of WRN results in inhibition of both WRN exonuclease and helicase activities. Furthermore, anti-WRN immunoprecipitates from CML cells treated with STI-571 show increased 3'-->5' exonuclease activity. These findings suggest a novel signaling pathway by which c-Abl mediates WRN nuclear localization and catalytic activities in response to DNA damage.
Collapse
Affiliation(s)
- Wen-Hsing Cheng
- Laboratory of Molecular Gerontology, National Institute on Aging/NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Roos-Mattjus P, Hopkins KM, Oestreich AJ, Vroman BT, Johnson KL, Naylor S, Lieberman HB, Karnitz LM. Phosphorylation of human Rad9 is required for genotoxin-activated checkpoint signaling. J Biol Chem 2003; 278:24428-37. [PMID: 12709442 DOI: 10.1074/jbc.m301544200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rad9, a key component of genotoxin-activated checkpoint signaling pathways, associates with Hus1 and Rad1 in a heterotrimeric complex (the 9-1-1 complex). Rad9 is inducibly and constitutively phosphorylated. However, the role of Rad9 phosphorylation is unknown. Here we identified nine phosphorylation sites, all of which lie in the carboxyl-terminal 119-amino acid Rad9 tail and examined the role of phosphorylation in genotoxin-triggered checkpoint activation. Rad9 mutants lacking a Ser-272 phosphorylation site, which is phosphorylated in response to genotoxins, had no effect on survival or checkpoint activation in Mrad9-/- mouse ES cells treated with hydroxyurea (HU), ionizing radiation (IR), or ultraviolet radiation (UV). In contrast, additional Rad9 tail phosphorylation sites were essential for Chk1 activation following HU, IR, and UV treatment. Consistent with a role for Chk1 in S-phase arrest, HU- and UV-induced S-phase arrest was abrogated in the Rad9 phosphorylation mutants. In contrast, however, Rad9 did not play a role in IR-induced S-phase arrest. Clonogenic assays revealed that cells expressing a Rad9 mutant lacking phosphorylation sites were as sensitive as Rad9-/- cells to UV and HU. Although Rad9 contributed to survival of IR-treated cells, the identified phosphorylation sites only minimally contributed to survival following IR treatment. Collectively, these results demonstrate that the Rad9 phospho-tail is a key participant in the Chk1 activation pathway and point to additional roles for Rad9 in cellular responses to IR.
Collapse
Affiliation(s)
- Pia Roos-Mattjus
- Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
The BRCA1 gene was identified and cloned in 1994 based its linkage to early onset breast cancer and breast-ovarian cancer syndromes in women. While inherited mutations of BRCA1 are responsible for about 40-45% of hereditary breast cancers, these mutations account for only 2-3% of all breast cancers, since the BRCA1 gene is rarely mutated in sporadic breast cancers. However, BRCA1 expression is frequently reduced or absent in sporadic cancers, suggesting a much wider role in mammary carcinogenesis. Since BRCA1 was cloned in 1994, its molecular function has been the subject of intense investigation. These studies have revealed multiple functions of the BRCA1 that may contribute to its tumor suppressor activity, including roles in: cell cycle progression, several highly specialized DNA repair processes, DNA damage-responsive cell cycle check-points, regulation of a set of specific transcriptional pathways, and apoptosis. Many of these functions are linked to protein:protein interactions involving different portions of the 1,863 amino acid (aa) BRCA1 protein. BRCA1 functions in cell cycle progression and the DNA damage response appear to be regulated by distinct and specific phosphorylation events, but the molecular pathways activated by these phosphorylations are only beginning to be unraveled. In addition, the reason that BRCA1 mutation carriers develop specific tumor types (breast and ovarian cancers in women and possibly prostate cancers in men) is not clearly understood. Elucidation of the precise molecular functions of the BRCA1 gene product will greatly enhance our understanding of the pathogenesis of hereditary as well as sporadic mammary carcinogenesis.
Collapse
Affiliation(s)
- Eliot M Rosen
- Department of Radiation Oncology, Long Island Jewish Medical Center, New York, New York, USA.
| | | | | | | |
Collapse
|
70
|
Yoshida K, Wang HG, Miki Y, Kufe D. Protein kinase Cdelta is responsible for constitutive and DNA damage-induced phosphorylation of Rad9. EMBO J 2003; 22:1431-41. [PMID: 12628935 PMCID: PMC151076 DOI: 10.1093/emboj/cdg134] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mammalian homolog of the Schizosaccharomyces pombe Rad9 is involved in checkpoint signaling and the induction of apoptosis. While the mechanisms responsible for the regulation of human Rad9 (hRad9) are not known, hRad9 is subject to hyperphosphorylation in the response of cells to DNA damage. The present results demonstrate that protein kinase Cdelta (PKCdelta) associates with Rad9 and that DNA damage induces this interaction. PKCdelta phosphorylates hRad9 in vitro and in cells exposed to genotoxic agents. The functional significance of the interaction between hRad9 and PKCdelta is supported by the finding that activation of PKCdelta is necessary for formation of the Rad9-Hus1-Rad1 complex. We also show that PKCdelta is required for binding of hRad9 to Bcl-2. In concert with these results, inhibition of PKCdelta attenuates Rad9-mediated apoptosis. These findings demonstrate that PKCdelta is responsible for the regulation of Rad9 in the Hus1-Rad1 complex and in the apoptotic response to DNA damage.
Collapse
Affiliation(s)
- Kiyotsugu Yoshida
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, Drug Discovery Program, H.Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa, FL, USA and Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan Corresponding author e-mail:
| | - Hong-Gang Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, Drug Discovery Program, H.Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa, FL, USA and Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan Corresponding author e-mail:
| | - Yoshio Miki
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, Drug Discovery Program, H.Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa, FL, USA and Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan Corresponding author e-mail:
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, Drug Discovery Program, H.Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa, FL, USA and Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan Corresponding author e-mail:
| |
Collapse
|
71
|
Yoshida K, Miki Y, Kufe D. Activation of SAPK/JNK signaling by protein kinase Cdelta in response to DNA damage. J Biol Chem 2002; 277:48372-8. [PMID: 12377781 DOI: 10.1074/jbc.m205485200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular response to genotoxic stress includes activation of protein kinase Cdelta (PKCdelta). The functional role of PKCdelta in the DNA damage response is unknown. The present studies demonstrate that PKCdelta is required in part for induction of the stress-activated protein kinase (SAPK/JNK) in cells treated with 1-beta-d-arabinofuranosylcytosine (araC) and other genotoxic agents. DNA damage-induced SAPK activation was attenuated by (i) treatment with rottlerin, (ii) expression of a kinase-inactive PKCdelta(K-R) mutant, and (iii) down-regulation of PKCdelta by small interfering RNA (siRNA). Coexpression studies demonstrate that PKCdelta activates SAPK by an MKK7-dependent, SEK1-independent mechanism. Previous work has shown that the nuclear Lyn tyrosine kinase activates the MEKK1 --> MKK7 --> SAPK pathway but not through a direct interaction with MEKK1. The present results extend those observations by demonstrating that Lyn activates PKCdelta, and in turn, MEKK1 is activated by a PKCdelta-dependent mechanism. These findings indicate that PKCdelta functions in the activation of SAPK through a Lyn --> PKCdelta --> MEKK1 --> MKK7 --> SAPK signaling cascade in response to DNA damage.
Collapse
Affiliation(s)
- Kiyotsugu Yoshida
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
72
|
Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, Sawyers CL. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002; 2:117-25. [PMID: 12204532 DOI: 10.1016/s1535-6108(02)00096-x] [Citation(s) in RCA: 1237] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Through sequencing analysis of blood or bone marrow samples from patients with chronic myeloid leukemia, we identified BCR-ABL kinase domain mutations in 29 of 32 patients whose disease relapsed after an initial response to the tyrosine kinase inhibitor imatinib. Fifteen different amino acid substitutions affecting 13 residues in the kinase domain were found. Mutations fell into two groups-those that alter amino acids that directly contact imatinib and those postulated to prevent BCR-ABL from achieving the inactive conformational state required for imatinib binding. Distinct mutations conferred varying degrees of imatinib resistance. Mutations detected in a subset of patients with stable chronic phase disease correlated with subsequent disease progression. Multiple independent mutant clones were detected in a subset of relapsed cases. Our data support a clonal selection model of preexisting BCR-ABL mutations that confer imatinib resistance.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/therapeutic use
- Benzamides
- Clinical Trials as Topic
- Clone Cells/metabolism
- Clone Cells/pathology
- DNA Mutational Analysis
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Models, Molecular
- Mutation
- Neoplasm Recurrence, Local
- Piperazines/administration & dosage
- Piperazines/therapeutic use
- Protein Structure, Tertiary
- Pyrimidines/administration & dosage
- Pyrimidines/therapeutic use
- Recurrence
- Time Factors
Collapse
Affiliation(s)
- Neil P Shah
- Department of Medicine, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Hirai I, Wang HG. A role of the C-terminal region of human Rad9 (hRad9) in nuclear transport of the hRad9 checkpoint complex. J Biol Chem 2002; 277:25722-7. [PMID: 11994305 DOI: 10.1074/jbc.m203079200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rad9, Rad1, and Hus1 are members of the Rad family of checkpoint proteins that are required for both DNA replication and DNA damage checkpoints and are thought to function as sensors in the DNA integrity checkpoint control. These proteins can interact with each other and form a stable proliferating cell nuclear antigen-related Rad9.Rad1.Hus1 heterotrimeric complex that might encircle DNA at or near the damaged sites. In this study, we demonstrate that the human Rad9 (hRad9) protein contains a predicted nuclear localization sequence (NLS) near its C terminus, which plays an essential role in the hRad9-mediated G(2) checkpoint. Deletion experiments indicate that the NLS-containing region of hRad9 is critical for the nuclear transport of not only hRad9 but also human Rad1 (hRad1) and human Hus1 (hHus1), although this region is not required for hRad9.hRad1.hHus1 complex formation. In support of the role that hRad9 NLS plays in the nuclear targeting of the hRad9.hRad1.hHus1 complex, overexpression of a deletion mutant of hRad9 lacking the NLS-containing C-terminal region can bypass the G(2) checkpoint and result in cell death after ionizing radiation or hydroxyurea treatment. Moreover, knockdown of hRad9 expression by small interfering RNA (siRNA) results in hRad1 accumulation in the cytoplasm and significantly abrogates the G(2) checkpoint in the presence of damaged DNA or incomplete DNA replication. Thus, the C-terminal region of human Rad9 protein is important for G(2) checkpoint control by operating the transport of the hRad9.hRad1.hHus1 checkpoint complex into the nucleus.
Collapse
Affiliation(s)
- Itaru Hirai
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | |
Collapse
|