51
|
Galindo RL, Allport JA, Olson EN. A Drosophila model of the rhabdomyosarcoma initiator PAX7-FKHR. Proc Natl Acad Sci U S A 2006; 103:13439-44. [PMID: 16938866 PMCID: PMC1569182 DOI: 10.1073/pnas.0605926103] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alveolar rhabdomyosarcoma (ARMS) is an aggressive myogenic-type tumor and a gain-of-function disease, caused by misexpression of the PAX3-FKHR or PAX7-FKHR fusion oncoprotein from structurally rearranged chromosomes. PAX3-FKHR misexpressed in terminally differentiating mouse myofibers can cause rhabdomyosarcoma at a low frequency, suggesting that skeletal muscle is an ARMS tissue of origin. Because patterned muscle is widely viewed as irreversibly syncytial, questions persist, however, regarding this potential pathogenetic mechanism for ARMS tumor initiation. To further explore this issue, we generated transgenic Drosophila lines that conditionally express human PAX-FKHR. Here we show that PAX7-FKHR causes nucleated cells to form and separate from syncytial myofibers, which then spread to nonmuscular tissue compartments, including the central nervous system, and that wild-type PAX3 demonstrates similar potential. We further show that Ras, which is known to interfere with the differentiation of myogenic cells, genetically interacts with PAX7-FKHR: constitutively activated Ras enhances PAX7-FKHR phenotypes, whereas loss-of-function ras alleles dominantly suppress PAX7-FKHR activity, including rescue of lethality. These results show that PAX-FKHR can drive the generation of discrete nucleated cells from differentiated myofibers in vivo, argue for syncytial muscle as an ARMS tissue of origin, and demonstrate that Drosophila provides a powerful system to screen for genetic modifiers of PAX-FKHR.
Collapse
Affiliation(s)
- Rene L. Galindo
- *Division of Pediatric Pathology, Department of Pathology, Children’s Medical Center, Dallas, TX 75235; and
| | - Jay A. Allport
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
52
|
Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005; 24:7410-25. [PMID: 16288288 DOI: 10.1038/sj.onc.1209086] [Citation(s) in RCA: 1027] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wide range of human diseases, including cancer, has a striking age-dependent onset. However, the molecular mechanisms that connect aging and cancer are just beginning to be unraveled. FOXO transcription factors are promising candidates to serve as molecular links between longevity and tumor suppression. These factors are major substrates of the protein kinase Akt. In the presence of insulin and growth factors, FOXO proteins are relocalized from the nucleus to the cytoplasm and degraded via the ubiquitin-proteasome pathway. In the absence of growth factors, FOXO proteins translocate to the nucleus and upregulate a series of target genes, thereby promoting cell cycle arrest, stress resistance, or apoptosis. Stress stimuli also trigger the relocalization of FOXO factors into the nucleus, thus allowing an adaptive response to stress stimuli. Consistent with the notion that stress resistance is highly coupled with lifespan extension, activation of FOXO transcription factors in worms and flies increases longevity. Emerging evidence also suggests that FOXO factors play a tumor suppressor role in a variety of cancers. Thus, FOXO proteins translate environmental stimuli into changes in gene expression programs that may coordinate organismal longevity and tumor suppression.
Collapse
Affiliation(s)
- Eric L Greer
- Department of Genetics, Stanford University, CA 94305, USA
| | | |
Collapse
|
53
|
Bois PRJ, Izeradjene K, Houghton PJ, Cleveland JL, Houghton JA, Grosveld GC. FOXO1a acts as a selective tumor suppressor in alveolar rhabdomyosarcoma. ACTA ACUST UNITED AC 2005; 170:903-12. [PMID: 16157701 PMCID: PMC2171446 DOI: 10.1083/jcb.200501040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Rhabdomyosarcoma (RMS), the most common pediatric soft-tissue sarcoma, has two major histological subtypes: embryonal RMS (ERMS), which has a favorable prognosis, and alveolar RMS (ARMS), which has a poor outcome. Although both forms of RMS express muscle cell–specific markers, only ARMS cells express PAX3-FOXO1a or PAX7-FOXO1a chimeric proteins. In mice, Pax3 and Pax7 play key roles in muscle cell development and differentiation, and FoxO1a regulates myoblast differentiation and fusion; thus, the aberrant regulation of these proteins may contribute to the development of ARMS. In this paper, we report that FOXO1a is not expressed in primary ARMS tumors or ARMS-derived tumor cell lines and that restoration of FOXO1a expression in ARMS cells is sufficient to induce cell cycle arrest and apoptosis. Strikingly, the effects of FOXO1a are selective, as enforced expression of FOXO1a in ERMS-derived tumor cell lines had no effect. Furthermore, FOXO1a induced apoptosis in ARMS by directly activating the transcription of caspase-3. We conclude that FOXO1a is a potent and specific tumor suppressor in ARMS, suggesting that agents that restore or augment FOXO1a activity may be effective as ARMS therapeutics.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Caspase 3
- Caspases/chemistry
- Caspases/metabolism
- Cell Cycle/genetics
- Cell Differentiation
- Cell Division
- Cell Line, Tumor
- Cells, Cultured
- Chromatin Immunoprecipitation
- Enzyme Activation/genetics
- Fluorescent Antibody Technique
- Fluorescent Dyes
- Forkhead Box Protein O1
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Indoles
- Luciferases/analysis
- Luciferases/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Myoblasts/physiology
- Promoter Regions, Genetic
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Rhabdomyosarcoma, Alveolar/genetics
- Rhabdomyosarcoma, Alveolar/metabolism
- Rhabdomyosarcoma, Alveolar/pathology
- Rhabdomyosarcoma, Embryonal/genetics
- Rhabdomyosarcoma, Embryonal/metabolism
- Rhabdomyosarcoma, Embryonal/pathology
Collapse
Affiliation(s)
- Philippe R J Bois
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
54
|
Xia SJ, Barr FG. Chromosome translocations in sarcomas and the emergence of oncogenic transcription factors. Eur J Cancer 2005; 41:2513-27. [PMID: 16213703 DOI: 10.1016/j.ejca.2005.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A subset of sarcomas is characterised by recurrent chromosome translocations that generate novel fusion oncoproteins. One or both of the genes involved in these translocations often encode transcription factors, and the resulting fusion proteins have aberrant transcriptional function compared to their wild-type counterparts. These fusion transcription factors disrupt multiple biological pathways by altering expression of target genes, and thereby result in a variety of altered cellular properties that contribute to the tumourigenic process. However, experimental data indicate that the fusion gene alone is not sufficient for transformation in primary cells (EWS-FLI1) or tumourigenesis in the mouse (PAX3-FKHR, FUS-CHOP), suggesting that additional collaborating genetic alterations are required. In addition to improving our understanding of the etiology of these tumours, this accumulating knowledge of the oncogenic properties of these fusion proteins, their downstream targets, and cooperating genetic alterations will permit the development of a variety of novel approaches to improve the therapy of these cancers.
Collapse
Affiliation(s)
- Shujuan J Xia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 505C Stellar Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104-6082, USA
| | | |
Collapse
|
55
|
Begum S, Emami N, Emani N, Cheung A, Wilkins O, Der S, Hamel PA. Cell-type-specific regulation of distinct sets of gene targets by Pax3 and Pax3/FKHR. Oncogene 2005; 24:1860-72. [PMID: 15688035 DOI: 10.1038/sj.onc.1208315] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The oncogenic fusion protein, Pax3/FKHR, is a more potent transcription factor relative to its normal counterpart, Pax3. Since Pax3 induced a mesenchymal to epithelial transition (MET) in human SaOS-2 osteosarcomas, we hypothesized that Pax3/FKHR would also induce a morphological change in SaOS-2 cells. We demonstrate here that Pax3/FKHR more potently induces a MET in SaOS-2 cells than Pax3. This greater potency was further evident where Pax3/FKHR, but not Pax3, induced a morphological alteration in U2-OS osteosarcoma cells. By microarray analysis, we determined that Pax3/FKHR altered the expression of gene targets in a manner quantitatively and qualitatively distinct from Pax3. Three classes of genes were identified: (i) genes induced or repressed by Pax3 and Pax3/FKHR, (ii) genes induced or repressed by Pax3/FKHR but not Pax3 and (iii) genes induced by Pax3/FKHR but repressed by Pax3. Chromatin immunoprecipitations confirmed the direct binding of Pax3/FKHR to the promoter region of several factors including cannabinoid receptor-1, EPHA2 and EPHA4. Verification of the microarray data also revealed coordinate alteration in the expression of factors involved in BMP4 signalling. Regulation of gene expression by Pax3 and Pax3/FKHR is, however, cell-type specific. BMP4 expression, for example, was repressed by both Pax3 and Pax3/FKHR in SaOS-2 cells, while in the rhabdomyosarcoma, RD, Pax3/FKHR, but not Pax3, induced BMP4 expression. Thus, our data reveal that Pax3/FKHR regulates a distinct but overlapping set of genes relative to Pax3 and that the global set of Pax3 and Pax3/FKHR gene targets is cell-type specific.
Collapse
Affiliation(s)
- Salma Begum
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | | | |
Collapse
|
56
|
Kappler R, Bauer R, Calzada-Wack J, Rosemann M, Hemmerlein B, Hahn H. Profiling the molecular difference between Patched- and p53-dependent rhabdomyosarcoma. Oncogene 2005; 23:8785-95. [PMID: 15480423 DOI: 10.1038/sj.onc.1208133] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rhabdomyosarcoma (RMS) is a highly malignant tumor that is histologically related to skeletal muscle, yet genetic and molecular lesions underlying its genesis and progression remain largely unknown. In this study we have compared the molecular profiles of two different mouse models of RMS, each associated with a defined primary genetic defect known to play a role in rhabdomyosarcomagenesis in man. We report that RMS of heterozygous Patched1 (Ptch1) mice show less aggressive growth and a greater degree of differentiation than RMS of heterozygous p53 mice. By means of cDNA microarray analysis we demonstrate that RMS in Ptch1 mutants predominantly express a number of myogenic markers, including myogenic differentiation 1, myosin heavy chain, actin, troponin and tropomyosin, as well as genes associated with Hedgehog/Patched signaling like insulin-like growth factor 2, forkhead box gene Foxf1 and the growth arrest and DNA-damage-inducible gene Gadd45a. In sharp contrast, RMS in p53 mutants display higher expression levels of cell cycle-associated genes like cyclin B1, cyclin-dependent kinase 4 and the proliferation marker Ki-67. These results demonstrate that different causative mutations lead to distinct gene expression profiles in RMS, which appear to reflect their different biological characteristics. Our results provide a first step towards a molecular classification of different forms of RMS. If the described differences can be confirmed in human RMS our results will contribute to a new molecular taxonomy of this cancer, which will be critical for gene mutation- and expression-specific therapy.
Collapse
Affiliation(s)
- Roland Kappler
- Institute of Human Genetics, University of Göttingen, Heinrich-Düker-Weg 12, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
57
|
Firulli AB, Conway SJ. Combinatorial transcriptional interaction within the cardiac neural crest: a pair of HANDs in heart formation. ACTA ACUST UNITED AC 2005; 72:151-61. [PMID: 15269889 PMCID: PMC2561314 DOI: 10.1002/bdrc.20009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The cardiac neural crest cells migrate from the rostral dorsal neural folds and populate the branchial arches, which contribute directly to the cardiac-outflow structures. Although neural crest cell specification is associated with a number of morphogenic factors, little is understood about the mechanisms by which transcription factors actually implement the transcriptional programs that dictate cell migration and later the differentiation into the proper cell types within the great vessels and the heart. It is clear from genetic evidence that members of the paired box family and basic helix-loop-helix (bHLH) transcription factors from the twist family of proteins are expressed in and play an important function in cardiac neural crest specification and differentiation. Interestingly, both paired box and bHLH factors can function as dimers and, in the case of twist family bHLH factors, partner choice can clearly dictate a change in transcriptional program. The focus of this review is to consider what role the protein-protein interactions of these transcription factors may play in determining cardiac neural crest specification and differentiation, and how genetic alteration of transcription factor stoichiometry within the cell may reflect more than a simple null event.
Collapse
Affiliation(s)
- Anthony B Firulli
- Wells Center for Pediatric Research, James Whitcomb Riley Hospital for Children, Indianapolis, Indiana 46202-5225, USA.
| | | |
Collapse
|
58
|
Keller C, Arenkiel BR, Coffin CM, El-Bardeesy N, DePinho RA, Capecchi MR. Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 2004; 18:2614-26. [PMID: 15489287 PMCID: PMC525542 DOI: 10.1101/gad.1244004] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alveolar rhabdomyosarcoma is an aggressive childhood muscle cancer for which outcomes are poor when the disease is advanced. Although well-developed mouse models exist for embryonal and pleomorphic rhabdomyosarcomas, neither a spontaneous nor a transgenic mouse model of alveolar rhabdomyosarcoma has yet been reported. We report the first mouse model of alveolar rhabdomyosarcoma using a conditional Pax3:Fkhr knock-in allele whose activation in late embryogenesis and postnatally is targeted to terminally differentiating Myf6-expressing skeletal muscle. In these mice, alveolar rhabdomyosarcomas occur but at low frequency, and Fkhr haploinsufficiency does not appear to accelerate tumorigenesis. However, Pax3:Fkhr homozygosity with accompanying Ink4a/ARF or Trp53 pathway disruption, by means of conditional Trp53 or Ink4a/ARF loss of function, substantially increases the frequencies of tumor formation. These results of successful tumor generation postnatally from a target pool of differentiating myofibers are in sharp contrast to the birth defects and lack of tumors for mice with prenatal and postnatal satellite cell triggering of Pax3:Fkhr. Furthermore, these murine alveolar rhabdomyosarcomas have an immunohistochemical profile similar to human alveolar rhabdomyosarcoma, suggesting that this conditional mouse model will be relevant to study of the disease and will be useful for preclinical therapeutic testing.
Collapse
Affiliation(s)
- Charles Keller
- Division of Pediatric Hematology-Oncology and Department of Pediatrics, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | |
Collapse
|
59
|
Abstract
Forkhead transcription factors of the FoxO subfamily are emerging as a shared component among pathways regulating diverse cellular functions, such as differentiation, metabolism, proliferation, and survival. Their transcriptional output is controlled via a two-tiered mechanism of phosphorylation and acetylation. Modest alterations of this balance can result in profound effects. The gamut of phenotypes runs from protection against diabetes and predisposition to neoplasia, conferred by FoxO loss of function, to increased cellular survival and a marked catabolic response associated with gain of function.
Collapse
Affiliation(s)
- Domenico Accili
- College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
60
|
Baer C, Nees M, Breit S, Selle B, Kulozik AE, Schaefer KL, Braun Y, Wai D, Poremba C. Profiling and functional annotation of mRNA gene expression in pediatric rhabdomyosarcoma and Ewing's sarcoma. Int J Cancer 2004; 110:687-94. [PMID: 15146558 DOI: 10.1002/ijc.20171] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Using Affymetrix oligonucleotide microarrays, we analyzed mRNA gene expression patterns of 12 primary pediatric rhabdomyosarcomas (RMS) and 11 Ewing's sarcomas (EWS), which belong to the small round blue cell tumors (SRBCTs). Diagnostic classification of these cancers is frequently complicated by the highly similar appearance in routine histology, and additional molecular markers could significantly improve tumor classification. A combination of three independent statistical approaches (t-test, SAM, k-nearest neighborhood analysis) resulted in 101 highly significant probe sets that clearly discriminate between EWS and RMS. We identified novel marker transcripts that have not been previously associated with either RMS or EWS yet, including CITED2, glypican 3 (GPC3), and cyclin D1 (CCND1). Expression levels for selected candidate genes were validated by quantitative real-time reverse-transcription PCR. Furthermore, to identify biologically meaningful trends, functional annotations were assigned to 946 genes differentially expressed between EWS and RMS (t-test). Genes involved in protein biosynthesis (n = 28) and complex assembly (n = 9), lipid metabolism (n = 23), energy generation (n = 22), and mRNA processing (n = 11) were expressed significantly higher in EWS. Thus, functional annotation of tumor-specific genes reveals detailed insights into tumor biology and differentiation-specific expression patterns and gives important clues related to the possible cellular origin of these pediatric tumors. Supplementary material for this article is available at the International Journal of Cancer website at http://www.interscience.wiley.com/jpages/0020-7136/suppmat/index.html.
Collapse
Affiliation(s)
- Claudia Baer
- Deparment of Pediatric Oncology, Hematology and Immunology, University Children's Hospital, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Relaix F, Polimeni M, Rocancourt D, Ponzetto C, Schäfer BW, Buckingham M. The transcriptional activator PAX3-FKHR rescues the defects of Pax3 mutant mice but induces a myogenic gain-of-function phenotype with ligand-independent activation of Met signaling in vivo. Genes Dev 2003; 17:2950-65. [PMID: 14665670 PMCID: PMC289153 DOI: 10.1101/gad.281203] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 10/22/2003] [Indexed: 11/24/2022]
Abstract
Pax3 is a key transcription factor implicated in development and human disease. To dissect the role of Pax3 in myogenesis and establish whether it is a repressor or activator, we generated loss- and gain-of-function alleles by targeting an nLacZ reporter and a sequence encoding the oncogenic fusion protein PAX3-FKHR into the Pax3 locus. Rescue of the Pax3 mutant phenotypes by PAX3-FKHR suggests that Pax3 acts as a transcriptional activator during embryogenesis. This is confirmed by a Pax reporter mouse. However, mice expressing PAX3-FKHR display developmental defects, including ectopic delamination and inappropriate migration of muscle precursor cells. These events result from overexpression of c-met, leading to constitutive activation of Met signaling, despite the absence of the ligand SF/HGF. Haploinsufficiency of c-met rescues this phenotype, confirming the direct genetic link with Pax3. The gain-of-function phenotype is also characterized by overactivation of MyoD. The consequences of PAX3-FKHR myogenic activity in the limbs and cervical and thoracic regions point to differential regulation of muscle growth and patterning. This gain-of-function allele provides a new approach to the molecular and cellular analysis of the role of Pax3 and of its target genes in vivo.
Collapse
Affiliation(s)
- Frédéric Relaix
- CNRS URA 2375, Department of Developmental Biology, Pasteur Institute, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
62
|
Abstract
Sarcomas are a rare and diverse group of tumours that are derived from connective tissues, including bone, muscle and cartilage. Although there are instances of hereditary predisposition to sarcomas, the overwhelming majority of such tumours are sporadic. In the past decade, we have gained much insight into the genetic abnormalities that seem to underlie the pathogenesis of these tumours. This information has already led to new classification of many sarcomas, as well as to successful therapies that are targeted at specific genetic abnormalities. It is likely that this approach will lead to continued refinements in classification and treatment of these tumours.
Collapse
Affiliation(s)
- Lee J Helman
- Molecular Oncology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 13N240, MSC 1928, Bethesda, Maryland 20892-1928, USA.
| | | |
Collapse
|
63
|
Parker MH, Seale P, Rudnicki MA. Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat Rev Genet 2003; 4:497-507. [PMID: 12838342 DOI: 10.1038/nrg1109] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skeletal muscle has an intrinsic capacity for regeneration following injury or exercise. The presence of adult stem cells in various tissues with myogenic potential provides new opportunities for cell-based therapies to treat muscle disease. Recent studies have shown a conserved transcriptional hierarchy that regulates the myogenic differentiation of both embryonic and adult stem cells. Importantly, the molecules and signalling pathways that induce myogenic determination in the embryo might be manipulated or mimicked to direct the differentiation of adult stem cells either in vivo or ex vivo.
Collapse
Affiliation(s)
- Maura H Parker
- Ottawa Health Research Institute, Molecular Medicine Program, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | | | | |
Collapse
|
64
|
Tran H, Brunet A, Griffith EC, Greenberg ME. The many forks in FOXO's road. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:RE5. [PMID: 12621150 DOI: 10.1126/stke.2003.172.re5] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The FOXO family of transcription factors constitute an evolutionarily conserved subgroup within the larger family known as winged helix or Forkhead transcriptional regulators. Building upon work in the nematode, researchers have uncovered a role for these proteins in a diverse set of cellular responses that include glucose metabolism, stress response, cell cycle regulation, and apoptosis. At the organismal level, FOXO transcription factors are believed to function in various pathological processes ranging from cancer and diabetes to organismal aging. A number of studies have also shed light on the signaling pathways that regulate FOXO activity in response to external stimuli and have identified multiple FOXO target genes that mediate this varied set of biological responses.
Collapse
Affiliation(s)
- Hien Tran
- Department of Neurobiology, Division of Neuroscience, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
65
|
|