51
|
Marzluff WF, Wagner EJ, Duronio RJ. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 2008; 9:843-54. [PMID: 18927579 PMCID: PMC2715827 DOI: 10.1038/nrg2438] [Citation(s) in RCA: 570] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The canonical histone proteins are encoded by replication-dependent genes and must rapidly reach high levels of expression during S phase. In metazoans the genes that encode these proteins produce mRNAs that, instead of being polyadenylated, contain a unique 3' end structure. By contrast, the synthesis of the variant, replication-independent histones, which are encoded by polyadenylated mRNAs, persists outside of S phase. Accurate positioning of both histone types in chromatin is essential for proper transcriptional regulation, the demarcation of heterochromatic boundaries and the epigenetic inheritance of gene expression patterns. Recent results suggest that the coordinated synthesis of replication-dependent and variant histone mRNAs is achieved by signals that affect formation of the 3' end of the replication-dependent histone mRNAs.
Collapse
Affiliation(s)
- William F Marzluff
- Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
52
|
Dávila López M, Samuelsson T. Early evolution of histone mRNA 3' end processing. RNA (NEW YORK, N.Y.) 2008; 14:1-10. [PMID: 17998288 PMCID: PMC2151031 DOI: 10.1261/rna.782308] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 09/27/2007] [Indexed: 05/20/2023]
Abstract
The replication-dependent histone mRNAs in metazoa are not polyadenylated, in contrast to the bulk of mRNA. Instead, they contain an RNA stem-loop (SL) structure close to the 3' end of the mature RNA, and this 3' end is generated by cleavage using a machinery involving the U7 snRNP and protein factors such as the stem-loop binding protein (SLBP). This machinery of 3' end processing is related to that of polyadenylation as protein components are shared between the systems. It is commonly believed that histone 3' end processing is restricted to metazoa and green algae. In contrast, polyadenylation is ubiquitous in Eukarya. However, using computational approaches, we have now identified components of histone 3' end processing in a number of protozoa. Thus, the histone mRNA stem-loop structure as well as the SLBP protein are present in many different protozoa, including Dictyostelium, alveolates, Trypanosoma, and Trichomonas. These results show that the histone 3' end processing machinery is more ancient than previously anticipated and can be traced to the root of the eukaryotic phylogenetic tree. We also identified histone mRNAs from both metazoa and protozoa that are polyadenylated but also contain the signals characteristic of histone 3' end processing. These results provide further evidence that some histone genes are regulated at the level of 3' end processing to produce either polyadenylated RNAs or RNAs with the 3' end characteristic of replication-dependent histone mRNAs.
Collapse
Affiliation(s)
- Marcela Dávila López
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Göteborg University, SE-405 30 Göteborg, Sweden
| | | |
Collapse
|
53
|
Tharun S. Roles of eukaryotic Lsm proteins in the regulation of mRNA function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:149-89. [PMID: 19121818 DOI: 10.1016/s1937-6448(08)01604-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The eukaryotic Lsm proteins belong to the large family of Sm-like proteins, which includes members from all organisms ranging from archaebacteria to humans. The Sm and Lsm proteins typically exist as hexameric or heptameric complexes in vivo and carry out RNA-related functions. Multiple complexes made up of different combinations of Sm and Lsm proteins are known in eukaryotes and these complexes are involved in a variety of functions such as mRNA decay in the cytoplasm, mRNA and pre-mRNA decay in the nucleus, pre-mRNA splicing, replication dependent histone mRNA 3'-end processing, etc. While most Lsm proteins function in the form of heteromeric complexes that include other Lsm proteins, some Lsm proteins are also known that do not behave in that manner. Abnormal expression of some Lsm proteins has also been implicated in human diseases. The various roles of eukaryotic Lsm complexes impacting mRNA function are discussed in this review.
Collapse
Affiliation(s)
- Sundaresan Tharun
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
54
|
Arnold DR, Françon P, Zhang J, Martin K, Clarke HJ. Stem-loop binding protein expressed in growing oocytes is required for accumulation of mRNAs encoding histones H3 and H4 and for early embryonic development in the mouse. Dev Biol 2008; 313:347-58. [PMID: 18036581 PMCID: PMC5123872 DOI: 10.1016/j.ydbio.2007.10.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/18/2007] [Accepted: 10/22/2007] [Indexed: 11/29/2022]
Abstract
Growing oocytes accumulate mRNAs and proteins that support early embryogenesis. Among the most abundant of these maternal factors are the histones. Histone mRNA accumulation and translation are mainly restricted to S-phase in somatic cells, and the mechanism by which oocytes produce histones is unknown. In somatic cells, replication-dependent histone synthesis requires the stem-loop binding protein (SLBP). SLBP is expressed during S-phase, binds to the 3'-untranslated region of non-polyadenylated transcripts encoding the histones, and is required for their stabilization and translation. SLBP is expressed in oocytes of several species, suggesting a role in histone synthesis. To test this, we generated transgenic mice whose oocytes lack SLBP. mRNAs encoding histones H3 and H4 failed to accumulate in these oocytes. Unexpectedly, mRNAs encoding H2A and H2B were little affected. Embryos derived from SLBP-depleted oocytes reached the 2-cell stage, but most then became arrested. Histones H3 and H4, but not H2A or H2B, were substantially reduced in these embryos. The embryos also expressed high levels of gamma H2A.X. Injection of histones into SLBP-depleted embryos rescued them from developmental arrest. Thus, SLBP is an essential component of the mechanism by which growing oocytes of the mouse accumulate the histones that support early embryonic development.
Collapse
Affiliation(s)
- Daniel R. Arnold
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - Patricia Françon
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - James Zhang
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - Kyle Martin
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - Hugh J. Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
- Department of Biology, McGill University, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
55
|
Wagner EJ, Burch BD, Godfrey AC, Salzler HR, Duronio RJ, Marzluff WF. A genome-wide RNA interference screen reveals that variant histones are necessary for replication-dependent histone pre-mRNA processing. Mol Cell 2007; 28:692-9. [PMID: 18042462 DOI: 10.1016/j.molcel.2007.10.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/18/2007] [Accepted: 10/03/2007] [Indexed: 11/18/2022]
Abstract
Metazoan replication-dependent histone mRNAs are not polyadenylated and instead end in a conserved stem loop that is the cis element responsible for coordinate posttranscriptional regulation of these mRNAs. Using biochemical approaches, only a limited number of factors required for cleavage of histone pre-mRNA have been identified. We therefore performed a genome-wide RNA interference screen in Drosophila cells using a GFP reporter that is expressed only when histone pre-mRNA processing is disrupted. Four of the 24 genes identified encode proteins also necessary for cleavage/polyadenylation, indicating mechanistic conservation in formation of different mRNA 3' ends. We also unexpectedly identified the histone variants H2Av and H3.3A/B. In H2Av mutant cells, U7 snRNP remains active but fails to accumulate at the histone locus, suggesting there is a regulatory pathway that coordinates the production of variant and canonical histones that acts via localization of essential histone pre-mRNA processing factors.
Collapse
Affiliation(s)
- Eric J Wagner
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
56
|
Narita T, Yung TMC, Yamamoto J, Tsuboi Y, Tanabe H, Tanaka K, Yamaguchi Y, Handa H. NELF interacts with CBC and participates in 3' end processing of replication-dependent histone mRNAs. Mol Cell 2007; 26:349-65. [PMID: 17499042 DOI: 10.1016/j.molcel.2007.04.011] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/12/2007] [Accepted: 04/10/2007] [Indexed: 11/22/2022]
Abstract
Negative elongation factor (NELF) is a four subunit transcription elongation factor that has been implicated in numerous diseases ranging from neurological disorders to cancer. Here we show that NELF interacts with the nuclear cap binding complex (CBC), a multifunctional factor that plays important roles in several mRNA processing steps, and the two factors together participate in the 3' end processing of replication-dependent histone mRNAs, most likely through association with the histone stem-loop binding protein (SLBP). Strikingly, absence of NELF and CBC causes aberrant production of polyadenylated histone mRNAs. Moreover, NELF is physically associated with histone gene loci and forms distinct intranuclear foci that we call NELF bodies, which often overlap with Cajal bodies and cleavage bodies. Our results point to a surprising role of NELF in the 3' end processing of histone mRNAs and also suggest that NELF is a new factor that coordinates different mRNA processing steps during transcription.
Collapse
Affiliation(s)
- Takashi Narita
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Kanagawa 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Keall R, Whitelaw S, Pettitt J, Müller B. Histone gene expression and histone mRNA 3' end structure in Caenorhabditis elegans. BMC Mol Biol 2007; 8:51. [PMID: 17570845 PMCID: PMC1924863 DOI: 10.1186/1471-2199-8-51] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 06/14/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histone protein synthesis is essential for cell proliferation and required for the packaging of DNA into chromatin. In animals, histone proteins are provided by the expression of multicopy replication-dependent histone genes. Histone mRNAs that are processed by a histone-specific mechanism to end after a highly conserved RNA hairpin element, and lack a poly(A) tail. In vertebrates and Drosophila, their expression is dependent on HBP/SLBP that binds to the RNA hairpin element. We showed previously that these cis and trans acting regulators of histone gene expression are conserved in C. elegans. Here we report the results of an investigation of the histone mRNA 3' end structure and of histone gene expression during C. elegans development. RESULTS Sequence analysis of replication-dependent histone genes revealed the presence of several highly conserved sequence elements in the 3' untranslated region of histone pre-mRNAs, including an RNA hairpin element and a polyadenylation signal. To determine whether in C. elegans histone mRNA 3' end formation occurs at this polyadenylation signal and results in polyadenylated histone mRNA, we investigated the mRNA 3' end structure of histone mRNA. Using poly(A) selection, RNAse protection and sequencing of histone mRNA ends, we determined that a majority of C. elegans histone mRNAs lack a poly(A) tail and end three to six nucleotides after the hairpin structure, after an A or a U, and have a 3' OH group. RNAi knock down of CDL-1, the C. elegans HBP/SLBP, does not significantly affect histone mRNA levels but severely depletes histone protein levels. Histone gene expression varies during development and is reduced in L3 animals compared to L1 animals and adults. In adults, histone gene expression is restricted to the germ line, where cell division occurs. CONCLUSION Our findings indicate that the expression of C. elegans histone genes is subject to control mechanisms similar to the ones in other animals: the structure of C. elegans histone mRNA 3' ends is compatible with histone-specific mRNA 3' end processing; CDL-1 functions in post-transcriptional control of histone gene expression; and C. elegans histone mRNA levels are elevated at periods of active cell division, indicating that histone gene expression is linked to DNA replication.
Collapse
Affiliation(s)
- Rebecca Keall
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Sandra Whitelaw
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Jonathan Pettitt
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Berndt Müller
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
58
|
Li C, Song L, Zhao J, Zou H, Su J, Zhang H. Genomic organization, nucleotide sequence analysis of the core histone genes cluster in Chlamys farreri and molecular evolution assessment of the H2A and H2B. ACTA ACUST UNITED AC 2007; 17:440-51. [PMID: 17381045 DOI: 10.1080/10425170600752593] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This work represents the nucleotide sequence of the core histone gene cluster from scallop Chlamys farreri. The tandemly repeated unit of 5671 bp containing a copy of the four core histone genes H4, H2B, H2A and H3 was amplified and identified by the techniques of homology cloning and genomic DNA walking. All the histone genes in the cluster had the structures in their 3' flanking region which related to the evolution of histone gene expression patterns throughout the cell cycle, including two different termination signals, the hairpin structure and at least one AATAAA polyadenylation signal. In their 5' region, the transcription initiation sites with a conserved sequence of 5'-PyATTCPu-3' known as the CAP site were present in all genes except to H2B, generally 37-45 bp upstream of the start code. Canonical TATA and CAAT boxes were identified only in certain histone genes. In the case of the promoters of H2B and H2A genes, there was a 5'-GATCC-3' element, which had been found to be essential to start transcription at the appropriate site. After this element, in the promoter of H2B, there was another sequence, 5'-GGATCGAAACGTTC-3', which was similar to the consensus sequence of 5'-GGAATAAACGTATTC-3' corresponding to the H2B-specific promoter element. The presence of enhancer sequences (5'-TGATATATG-3') was identified from the H4 and H3 genes, matching perfectly with the consensus sequence defined for histone genes. There were several slightly more complex repetitive DNA in the intergene regions. The presence of the series of conserved sequences and reiterated sequences was consistent with the view that mollusc histone gene cluster arose by duplicating of an ancestral precursor histone gene, the birth-and-death evolution model with strong purifying selection enabled the histone cluster less variation and more conserved function. Meanwhile, the H2A and the H2B were demonstrated to be potential good marks for phylogenetic analysis. All the results will be contributed to the characterization of repeating histone gene families in molluscs.
Collapse
Affiliation(s)
- Chenghua Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
59
|
White AE, Leslie ME, Calvi BR, Marzluff WF, Duronio RJ. Developmental and cell cycle regulation of the Drosophila histone locus body. Mol Biol Cell 2007; 18:2491-502. [PMID: 17442888 PMCID: PMC1924828 DOI: 10.1091/mbc.e06-11-1033] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cyclin E/Cdk2 is necessary for replication-dependent histone mRNA biosynthesis, but how it controls this process in early development is unknown. We show that in Drosophila embryos the MPM-2 monoclonal antibody, raised against a phosphoepitope from human mitotic cells, detects Cyclin E/Cdk2-dependent nuclear foci that colocalize with nascent histone transcripts. These foci are coincident with the histone locus body (HLB), a Cajal body-like nuclear structure associated with the histone locus and enriched in histone pre-mRNA processing factors such as Lsm11, a core component of the U7 small nuclear ribonucleoprotein. Using MPM-2 and anti-Lsm11 antibodies, we demonstrate that the HLB is absent in the early embryo and occurs when zygotic histone transcription begins during nuclear cycle 11. Whereas the HLB is found in all cells after its formation, MPM-2 labels the HLB only in cells with active Cyclin E/Cdk2. MPM-2 and Lsm11 foci are present in embryos lacking the histone locus, and MPM-2 foci are present in U7 mutants, which cannot correctly process histone pre-mRNA. These data indicate that MPM-2 recognizes a Cdk2-regulated protein that assembles into the HLB independently of histone mRNA biosynthesis. HLB foci are present in histone deletion embryos, although the MPM-2 foci are smaller, and some Lsm11 foci are not associated with MPM-2 foci, suggesting that the histone locus is important for HLB integrity.
Collapse
Affiliation(s)
| | | | - Brian R. Calvi
- Department of Biology, Syracuse University, Syracuse, NY 13244
| | - William F. Marzluff
- *Department of Biology
- Curriculum in Genetics and Molecular Biology
- Department of Biochemistry and Biophysics, and
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599; and
| | - Robert J. Duronio
- *Department of Biology
- Curriculum in Genetics and Molecular Biology
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599; and
| |
Collapse
|
60
|
Kupsco JM, Wu MJ, Marzluff WF, Thapar R, Duronio RJ. Genetic and biochemical characterization of Drosophila Snipper: A promiscuous member of the metazoan 3'hExo/ERI-1 family of 3' to 5' exonucleases. RNA (NEW YORK, N.Y.) 2006; 12:2103-17. [PMID: 17135487 PMCID: PMC1664731 DOI: 10.1261/rna.186706] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The DnaQ-H family exonuclease Snipper (Snp) is a 33-kDa Drosophila melanogaster homolog of 3'hExo and ERI-1, exoribonucleases implicated in the degradation of histone mRNA in mammals and in the negative regulation of RNA interference (RNAi) in Caenorhabditis elegans, respectively. In metazoans, Snp, Exod1, 3'hExo, ERI-1, and the prpip nucleases define a new subclass of structure-specific 3'-5' exonucleases that bind and degrade double-stranded RNA and/or DNA substrates with 3' overhangs of 2-5 nucleotides (nt) in the presence of Mg2+ with no apparent sequence specificity. These nucleases are also capable of degrading linear substrates. Snp efficiently degrades structured RNA and DNA substrates as long as there exists a minimum 3' overhang of 2 nt to initiate degradation. We identified a Snp mutant and used it to test whether Snp plays a role in regulating histone mRNA degradation or RNAi in vivo. Snp mutant flies are viable, and display no obvious developmental abnormalities. The expression pattern and level of histone H3 mRNA in Snp mutant embryos and third instar imaginal eye discs was indistinguishable from wild type, suggesting that Snp does not play a significant role in the turnover of histone mRNA at the end of the S phase. The loss of Snp was also unable to enhance the silencing capability of two different RNAi transgenes targeting the white and yellow genes, suggesting that Snp does not negatively modulate RNAi. Therefore, Snp is a nonessential exonuclease that is not a functional ortholog of either 3'hExo or ERI-1.
Collapse
Affiliation(s)
- Jeremy M Kupsco
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
61
|
Abstract
New research on lipid droplets in Drosophila embryos has led to the surprising conclusion that these poorly understood organelles have a novel role as a regulated storage depot of maternally supplied proteins, particularly histones.
Collapse
Affiliation(s)
- Dawn L Brasaemle
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
62
|
Abstract
The posttranslational modification of histone proteins via methylation has important functions in gene activation, transcriptional silencing, establishment of chromatin states, and likely many aspects of DNA metabolism. The identification of numerous effector protein domains with the capability of binding methylated histones has significantly advanced our understanding of how such histone modifications may exert their biological effects. Here, we summarize aspects of the generation of arginine and lysine methylation marks on core histones, the characterization of the protein modules that interact with them, and how histone methylation cross-talks with other modifications.
Collapse
Affiliation(s)
- Michael S Torok
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
63
|
Godfrey AC, Kupsco JM, Burch BD, Zimmerman RM, Dominski Z, Marzluff WF, Duronio RJ. U7 snRNA mutations in Drosophila block histone pre-mRNA processing and disrupt oogenesis. RNA (NEW YORK, N.Y.) 2006; 12:396-409. [PMID: 16495235 PMCID: PMC1383579 DOI: 10.1261/rna.2270406] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Metazoan replication-dependent histone mRNAs are not polyadenylated, and instead terminate in a conserved stem-loop structure generated by an endonucleolytic cleavage involving the U7 snRNP, which interacts with histone pre-mRNAs through base-pairing between U7 snRNA and a purine-rich sequence in the pre-mRNA located downstream of the cleavage site. Here we generate null mutations of the single Drosophila U7 gene and demonstrate that U7 snRNA is required in vivo for processing all replication-associated histone pre-mRNAs. Mutation of U7 results in the production of poly A+ histone mRNA in both proliferating and endocycling cells because of read-through to cryptic polyadenylation sites found downstream of each Drosophila histone gene. A similar molecular phenotype also results from mutation of Slbp, which encodes the protein that binds the histone mRNA 3' stem-loop. U7 null mutants develop into sterile males and females, and these females display defects during oogenesis similar to germ line clones of Slbp null cells. In contrast to U7 mutants, Slbp null mutations cause lethality. This may reflect a later onset of the histone pre-mRNA processing defect in U7 mutants compared to Slbp mutants, due to maternal stores of U7 snRNA. A double mutant combination of a viable, hypomorphic Slbp allele and a viable U7 null allele is lethal, and these double mutants express polyadenylated histone mRNAs earlier in development than either single mutant. These data suggest that SLBP and U7 snRNP cooperate in the production of histone mRNA in vivo, and that disruption of histone pre-mRNA processing is detrimental to development.
Collapse
Affiliation(s)
- Ashley C Godfrey
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Borchers CH, Thapar R, Petrotchenko EV, Torres MP, Speir JP, Easterling M, Dominski Z, Marzluff WF. Combined top-down and bottom-up proteomics identifies a phosphorylation site in stem-loop-binding proteins that contributes to high-affinity RNA binding. Proc Natl Acad Sci U S A 2006; 103:3094-9. [PMID: 16492733 PMCID: PMC1413926 DOI: 10.1073/pnas.0511289103] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Indexed: 11/18/2022] Open
Abstract
The stem-loop-binding protein (SLBP) is involved in multiple aspects of histone mRNA metabolism. To characterize the modification status and sites of SLBP, we combined mass spectrometric bottom-up (analysis of peptides) and top-down (analysis of intact proteins) proteomic approaches. Drosophilia SLBP is heavily phosphorylated, containing up to seven phosphoryl groups. Accurate M(r) determination by Fourier transform ion cyclotron resonance (FTICR)-MS and FTICR-MS top-down experiments using a variety of dissociation techniques show there is removal of the initiator methionine and acetylation of the N terminus in the baculovirus-expressed protein, and that T230 is stoichiometrically phosphorylated. T230 is highly conserved; we have determined that this site is also completely phosphorylated in baculovirus-expressed mammalian SLBP and extensively phosphorylated in both Drosophila and mammalian cultured cells. Removal of the phosphoryl group from T230 by either dephosphorylation or mutation results in a 7-fold reduction in the affinity of SLBP for the stem-loop RNA.
Collapse
Affiliation(s)
| | - Roopa Thapar
- *Department of Biochemistry and Biophysics and
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599; and
| | | | | | | | | | - Zbigniew Dominski
- *Department of Biochemistry and Biophysics and
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599; and
| | - William F. Marzluff
- *Department of Biochemistry and Biophysics and
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599; and
| |
Collapse
|
65
|
Allard P, Yang Q, Marzluff WF, Clarke HJ. The stem-loop binding protein regulates translation of histone mRNA during mammalian oogenesis. Dev Biol 2005; 286:195-206. [PMID: 16125165 PMCID: PMC5123871 DOI: 10.1016/j.ydbio.2005.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 06/22/2005] [Accepted: 07/19/2005] [Indexed: 01/01/2023]
Abstract
Although messenger RNAs encoding the histone proteins are among the most abundant in mammalian oocytes, the mechanism regulating their translation has not been identified. The stem-loop binding protein (SLBP) binds to a highly conserved sequence in the 3'-untranslated region (utr) of the non-polyadenylated histone mRNAs in somatic cells and mediates their stabilization and translation. We previously showed that SLBP, which is expressed only during S-phase of proliferating cells, is expressed in growing oocytes at G2 of the cell cycle and accumulates substantially during meiotic maturation. We report here that elevating the amount of SLBP in immature (G2) oocytes is sufficient to increase translation of a reporter mRNA bearing the histone 3'-utr and endogenous histone synthesis and that this effect is not mediated through increased stability of the encoding mRNAs. We further report that translation of the reporter mRNA increases dramatically during meiotic maturation coincident with the accumulation of SLBP. Conversely, when SLBP accumulation during maturation is prevented using RNA interference, both translation of the reporter mRNA and synthesis of endogenous histones are significantly reduced. This effect is not mediated by a loss of the encoding mRNAs. Moreover, following fertilization, SLBP-depleted oocytes also show a significant decrease in pronuclear size and in the amount of acetylated histone detectable on the chromatin. These results demonstrate that histone synthesis in immature and maturing oocytes is governed by a translational control mechanism that is directly regulated by changes in the amount of SLBP.
Collapse
Affiliation(s)
- Patrick Allard
- Department of Biology, McGill University, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | - Qin Yang
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | - William F. Marzluff
- Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Hugh J. Clarke
- Department of Biology, McGill University, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
- Corresponding author. Room F3.50, Royal Victoria Hospital, 687 Pine Ave. W., Montreal, QC, Canada H3A 1A1. Fax: +1 514 843 1662. (H.J. Clarke)
| |
Collapse
|
66
|
Marzluff WF. Metazoan replication-dependent histone mRNAs: a distinct set of RNA polymerase II transcripts. Curr Opin Cell Biol 2005; 17:274-80. [PMID: 15901497 DOI: 10.1016/j.ceb.2005.04.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Metazoan replication-dependent histone mRNAs are the only eukaryotic mRNAs that lack polyA tails. The genes for the five histone proteins have remained physically linked during evolution. Expression of histone mRNAs and histone proteins requires a unique set of factors, and may be coordinated by association of the histone genes with Cajal bodies. Recently several novel factors, including components of the U7 snRNP, as well as proteins involved in regulation of histone gene expression, have been described.
Collapse
Affiliation(s)
- William F Marzluff
- Program in Molecular Biology and Biotechnology, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
67
|
Nishida H, Tomaru Y, Oho Y, Hayashizaki Y. Naturally occurring antisense RNA of histone H2a in mouse cultured cell lines. BMC Genet 2005; 6:23. [PMID: 15892893 PMCID: PMC1156883 DOI: 10.1186/1471-2156-6-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 05/14/2005] [Indexed: 11/30/2022] Open
Abstract
Background An antisense transcript of histone H2a that has no significant protein-coding region has been cloned from a mouse full-length cDNA library. In the present study, we evaluated this transcript by using RT-PCR and compared the expression patterns of the sense and antisense transcripts by using quantitative RT-PCR (qRT-PCR). Results This antisense RNA was expressed in three mouse cell lines. We call it ASH2a. ASH2a includes not only the complementary sequence of the transcript of Hist2h2aa2 (a replication-dependent histone H2a gene), but also that of the promoter of Hist2h2aa2. The upstream genomic sequence of the transcription start site of the ASH2a-coding gene (ASH2a) lacks both CCAAT and TATA boxes. This absence suggests that the regulation of ASH2a is different from that of the replication-dependent histone H2a genes. Findings from qRT-PCR indicated that the expression pattern of ASH2a was different from that of Hist2h2aa2. Expression of Hist2h2aa2 peaked at 2 to 4 h during S-phase, but that of ASH2a peaked at 1 h. Conclusion We showed the existence of ASH2a, a histone H2a antisense RNA, in mouse cultured cells. The expression pattern of ASH2a is different from that of the sense RNA.
Collapse
Affiliation(s)
- Hiromi Nishida
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Tomaru
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yuko Oho
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshihide Hayashizaki
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
68
|
Erkmann JA, Wagner EJ, Dong J, Zhang Y, Kutay U, Marzluff WF. Nuclear import of the stem-loop binding protein and localization during the cell cycle. Mol Biol Cell 2005; 16:2960-71. [PMID: 15829567 PMCID: PMC1142439 DOI: 10.1091/mbc.e04-11-1023] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A key factor involved in the processing of histone pre-mRNAs in the nucleus and translation of mature histone mRNAs in the cytoplasm is the stem-loop binding protein (SLBP). In this work, we have investigated SLBP nuclear transport and subcellular localization during the cell cycle. SLBP is predominantly nuclear under steady-state conditions and localizes to the cytoplasm during S phase when histone mRNAs accumulate. Consistently, SLBP mutants that are defective in histone mRNA binding remain nuclear. As assayed in heterokaryons, export of SLBP from the nucleus is dependent on histone mRNA binding, demonstrating that SLBP on its own does not possess any nuclear export signals. We find that SLBP interacts with the import receptors Impalpha/Impbeta and Transportin-SR2. Moreover, complexes formed between SLBP and the two import receptors are disrupted by RanGTP. We have further shown that SLBP is imported by both receptors in vitro. Three sequences in SLBP required for Impalpha/Impbeta binding were identified. Simultaneous mutation of all three sequences was necessary to abolish SLBP nuclear localization in vivo. In contrast, we were unable to identify an in vivo role for Transportin-SR2 in SLBP nuclear localization. Thus, only the Impalpha/Impbeta pathway contributes to SLBP nuclear import in HeLa cells.
Collapse
Affiliation(s)
- Judith A Erkmann
- Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
69
|
Nishida H, Suzuki T, Tomaru Y, Hayashizaki Y. A novel replication-independent histone H2a gene in mouse. BMC Genet 2005; 6:10. [PMID: 15720718 PMCID: PMC554098 DOI: 10.1186/1471-2156-6-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 02/19/2005] [Indexed: 11/10/2022] Open
Abstract
Background An uncharacterized histone H2a-coding transcript (E130307C13) has been cloned from a mouse full-length cDNA library. This transcript is encoded on chromosome 6, approximately 4 kb upstream of a histone H4 gene, Hist4h4. The proteins encoded by this transcript and the human H2afj mRNA isoform-2 have the highest amino acid similarity. In this paper, we characterize it from the expression pattern given by quantitative RT-PCR. Results Quantitative RT-PCR indicated that the gene that encodes E130307C13 (E130307C13) is regulated in a replication-independent manner, and therefore it is H2afj. Certainly, H2afj transcript lacks a stem-loop structure at the 3'-UTR but contains a poly (A) signal. In addition, its promoter region has a different structure from those of the replication-dependent histone H2a genes. Conclusion The bioinformatics imply that E130307C13 is a replication-independent H2a gene. In addition, quantitative RT-PCR analysis shows that it is replication-independent. Thus, it is H2afj, a novel replication-independent H2a gene in mouse.
Collapse
Affiliation(s)
- Hiromi Nishida
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takahiro Suzuki
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Tomaru
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshihide Hayashizaki
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
70
|
Erkmann JA, Sànchez R, Treichel N, Marzluff WF, Kutay U. Nuclear export of metazoan replication-dependent histone mRNAs is dependent on RNA length and is mediated by TAP. RNA (NEW YORK, N.Y.) 2005; 11:45-58. [PMID: 15611298 PMCID: PMC1370690 DOI: 10.1261/rna.7189205] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 10/25/2004] [Indexed: 05/23/2023]
Abstract
Replication-dependent histone mRNAs are the only metazoan mRNAs that are not polyadenylated, ending instead in a conserved stem-loop sequence. Histone pre-mRNAs lack introns and are processed in the nucleus by a single cleavage step, which produces the mature 3' end of the mRNA. We have systematically examined the requirements for the nuclear export of a mouse histone mRNA using the Xenopus oocyte system. Histone mRNAs were efficiently exported when injected as mature mRNAs, demonstrating that the process of 3' end cleavage is not required for export factor binding. Export also does not depend on the stem-loop binding protein (SLBP) since mutations of the stem-loop that prevent SLBP binding and competition with a stem-loop RNA did not affect export. Only the length of the region upstream of the stem-loop, but not its sequence, was important for efficient export. Histone mRNA export was blocked by competition with constitutive transport element (CTE) RNA, indicating that the mRNA export receptor TAP is involved in histone mRNA export. Consistent with this observation, depletion of TAP from Drosophila cells by RNAi resulted in the restriction of mature histone mRNAs to the nucleus.
Collapse
Affiliation(s)
- Judith A Erkmann
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
71
|
Zhao X, McKillop-Smith S, Müller B. The human histone gene expression regulator HBP/SLBP is required for histone and DNA synthesis, cell cycle progression and cell proliferation in mitotic cells. J Cell Sci 2004; 117:6043-51. [PMID: 15546920 DOI: 10.1242/jcs.01523] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone proteins are essential for chromatin formation, and histone gene expression is coupled to DNA synthesis. In metazoans, the histone RNA binding protein HBP/SLBP is involved in post-transcriptional control of histone gene expression. In vitro assays have demonstrated that human HBP/SLBP is involved in histone mRNA 3' end formation and translation. We have inhibited human HBP/SLBP expression by RNA interference to determine its function during the mitotic cell cycle. Inhibition of HBP/SLBP expression resulted in the inhibition of histone gene expression and DNA synthesis, the inhibition of cell cycle progression in S phase and the inhibition of cell proliferation. These findings indicate that human HBP/SLBP is essential for the coordinate synthesis of DNA and histone proteins and is required for progression through the cell division cycle.
Collapse
Affiliation(s)
- Xiujie Zhao
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | | | | |
Collapse
|
72
|
Lanzotti DJ, Kupsco JM, Marzluff WF, Duronio RJ. string(cdc25) and cyclin E are required for patterned histone expression at different stages of Drosophila embryonic development. Dev Biol 2004; 274:82-93. [PMID: 15355790 DOI: 10.1016/j.ydbio.2004.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Revised: 05/26/2004] [Accepted: 06/01/2004] [Indexed: 10/26/2022]
Abstract
Metazoan replication-dependent histone mRNAs accumulate to high levels during S phase as a result of an increase in the rate of histone gene transcription, pre-mRNA processing, and mRNA stability at the G1-S transition. However, relatively little is known about the contribution of these processes to histone expression in the cell cycles of early development, which often lack a G1 phase. In post-blastoderm Drosophila embryos, zygotic expression of the stg(cdc25) phosphatase in G2 activates cyclin/cdc2 kinases and triggers mitosis. Here we show that histone transcription initiates in late G2 of cycle 14 in response to stg(cdc25) and in anticipation of S phase of the next cycle, which occurs immediately following mitosis. Mutation of stg(cdc25) arrests cells in G2 and prevents histone transcription. Expression of a mutant form of Cdc2 that bypasses the requirement for stg(cdc25) activates histone transcription during G2 in stg(cdc25) mutant embryos. Thus, in these embryonic cycles, histone transcription is controlled by the principal G2-M regulators, string(cdc25), and cdc2 kinase, rather than solely by regulators of the G1-S transition. After the introduction of G1-S control midway through embryogenesis, histone expression depends on DNA replication and the function of cyclin E, and no longer requires stg(cdc25). Thus, during the altered cell cycles of early animal development, different cell cycle mechanisms are employed to ensure that the production of histones accompanies DNA synthesis.
Collapse
Affiliation(s)
- David J Lanzotti
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
73
|
Lanzotti DJ, Kupsco JM, Yang XC, Dominski Z, Marzluff WF, Duronio RJ. Drosophila stem-loop binding protein intracellular localization is mediated by phosphorylation and is required for cell cycle-regulated histone mRNA expression. Mol Biol Cell 2004; 15:1112-23. [PMID: 14999087 PMCID: PMC363087 DOI: 10.1091/mbc.e03-09-0649] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Stem-loop binding protein (SLBP) is an essential component of the histone pre-mRNA processing machinery. SLBP protein expression was examined during Drosophila development by using transgenes expressing hemagglutinin (HA) epitope-tagged proteins expressed from the endogenous Slbp promoter. Full-length HA-dSLBP complemented a Slbp null mutation, demonstrating that it was fully functional. dSLBP protein accumulates throughout the cell cycle, in contrast to the observed restriction of mammalian SLBP to S phase. dSLBP is located in both nucleus and cytoplasm in replicating cells, but it becomes predominantly nuclear during G2. dSLBP is present in mitotic cells and is down-regulated in G1 when cells exit the cell cycle. We determined whether mutation at previously identified phosphorylation sites, T120 and T230, affected the ability of the protein to restore viability and histone mRNA processing to dSLBP null mutants. The T120A SLBP restored viability and histone pre-mRNA processing. However, the T230A mutant, located in a conserved TPNK sequence in the RNA binding domain, did not restore viability and histone mRNA processing in vivo, although it had full activity in histone mRNA processing in vitro. The T230A protein is concentrated in the cytoplasm, suggesting that it is defective in nuclear targeting, and accounting for its failure to function in histone pre-mRNA processing in vivo.
Collapse
Affiliation(s)
- David J Lanzotti
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
74
|
Abstract
Regardless of the species, the development of a multicellular organism requires the precise execution of essential developmental processes including patterning, growth, proliferation and differentiation. The cell cycle, in addition to its role as coordinator of DNA replication and mitosis, is also a coordinator of developmental processes, and is a target of developmental signaling pathways. Perhaps because of its central role during development, the cell cycle mechanism, its regulation and its effects on developing tissues is remarkably complex. It was in this light that the Keystone meeting on the cell cycle and development at Snowbird, Utah in January 2004 was held.
Collapse
Affiliation(s)
- Edward M Levine
- Department of Ophthalmology and Visual Sciences, Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
75
|
Chioda M, Spada F, Eskeland R, Thompson EM. Histone mRNAs do not accumulate during S phase of either mitotic or endoreduplicative cycles in the chordate Oikopleura dioica. Mol Cell Biol 2004; 24:5391-403. [PMID: 15169902 PMCID: PMC419869 DOI: 10.1128/mcb.24.12.5391-5403.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metazoan histones are generally classified as replication-dependent or replacement variants. Replication-dependent histone genes contain cell cycle-responsive promoter elements, their transcripts terminate in an unpolyadenylated conserved stem-loop, and their mRNAs accumulate sharply during S phase. Replacement variant genes lack cell cycle-responsive promoter elements, their polyadenylated transcripts lack the stem-loop, and they are expressed at low levels throughout the cell cycle. During early development of some organisms with rapid cleavage cycles, replication-dependent mRNAs are not fully S phase restricted until complete cell cycle regulation is achieved. The accumulation of polyadenylated transcripts during this period has been considered incompatible with metazoan development. We show here that histone metabolism in the urochordate Oikopleura dioica does not accord with some key tenets of the replication-dependent/replacement variant paradigm. During the premetamorphic mitotic phase of development, expressed variants shared characteristics of replication-dependent histones, including the 3' stem-loop, but, in contrast, were extensively polyadenylated. After metamorphosis, when cells in many tissues enter endocycles, there was a global downregulation of histone transcript levels, with most variant transcripts processed at the stem-loop. Contrary to the 30-fold S-phase upregulation of histone transcripts described in common metazoan model organisms, we observed essentially constant histone transcript levels throughout both mitotic and endoreduplicative cell cycles.
Collapse
Affiliation(s)
- Mariacristina Chioda
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, N-5008 Bergen, Norway
| | | | | | | |
Collapse
|
76
|
Robertson AJ, Howard JT, Dominski Z, Schnackenberg BJ, Sumerel JL, McCarthy JJ, Coffman JA, Marzluff WF. The sea urchin stem-loop-binding protein: a maternally expressed protein that probably functions in expression of multiple classes of histone mRNA. Nucleic Acids Res 2004; 32:811-8. [PMID: 14762208 PMCID: PMC373320 DOI: 10.1093/nar/gkh193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Following the completion of oogenesis and oocyte maturation, histone mRNAs are synthesized and stored in the sea urchin egg pronucleus. Histone mRNAs are the only mRNAs that are not polyadenylated but instead end in a stem-loop which has been conserved in evolution. The 3' end binds the stem-loop-binding protein (SLBP), and SLBP is required for histone pre-mRNA processing as well as translation of the histone mRNAs. A cDNA encoding a 59 kDa sea urchin SLBP (suSLBP) has been cloned from an oocyte cDNA library. The suSLBP contains an RNA-binding domain that is similar to the RNA-binding domain found in SLBPs from other species, although there is no similarity between the rest of the suSLBP and other SLBPs. The suSLBP is present at constant levels in eggs and for the first 12 h of development. The levels of suSLBP then decline and remain at a low level for the rest of embryogenesis. The suSLBP is concentrated in the egg pronucleus and is released from the nucleus only when cells enter the first mitosis. SuSLBP expressed by in vitro translation does not bind the stem-loop RNA, suggesting that suSLBP is modified to activate RNA binding in sea urchin embryos.
Collapse
Affiliation(s)
- Anthony J Robertson
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Dominski Z, Yang XC, Kaygun H, Dadlez M, Marzluff WF. A 3' exonuclease that specifically interacts with the 3' end of histone mRNA. Mol Cell 2003; 12:295-305. [PMID: 14536070 DOI: 10.1016/s1097-2765(03)00278-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Metazoan histone mRNAs end in a highly conserved stem-loop structure followed by ACCCA. Previous studies have suggested that the stem-loop binding protein (SLBP) is the only protein binding this region. Using RNA affinity purification, we identified a second protein, designated 3'hExo, that contains a SAP and a 3' exonuclease domain and binds the same sequence. Strikingly, 3'hExo can bind the stem-loop region both separately and simultaneously with SLBP. Binding of 3'hExo requires the terminal ACCCA, whereas binding of SLBP requires the 5' side of the stem-loop region. Recombinant 3'hExo degrades RNA substrates in a 3'-5' direction and has the highest activity toward the wild-type histone mRNA. Binding of SLBP to the stem-loop at the 3' end of RNA prevents its degradation by 3'hExo. These features make 3'hExo a primary candidate for the exonuclease that initiates rapid decay of histone mRNA upon completion and/or inhibition of DNA replication.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
78
|
Dominski Z, Yang XC, Purdy M, Marzluff WF. Cloning and characterization of the Drosophila U7 small nuclear RNA. Proc Natl Acad Sci U S A 2003; 100:9422-7. [PMID: 12872004 PMCID: PMC170934 DOI: 10.1073/pnas.1533509100] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Base pairing between the 5' end of U7 small nuclear RNA (snRNA) and the histone downstream element (HDE) in replication-dependent histone pre-mRNAs is the key event in 3'-end processing that leads to generation of mature histone mRNAs. We have cloned the Drosophila U7 snRNA and demonstrated that it is required for histone pre-mRNA 3'-end processing in a Drosophila nuclear extract. The 71-nt Drosophila U7 snRNA is encoded by a single gene that is embedded in the direct orientation in an intron of the Eip63E gene. The U7 snRNA gene contains conserved promoter elements typical of other Drosophila snRNA genes, and the coding sequence is followed by a 3' box indicating that the Drosophila U7 snRNA gene is an independent transcription unit. Drosophila U7 snRNA contains a trimethyl-guanosine cap at the 5' end and a putative Sm-binding site similar to the unique Sm-binding site found in other U7 snRNAs. Drosophila U7 snRNA is approximately 10 nt longer than mammalian U7 snRNAs because of an extended 5' sequence and has only a limited potential to form a stem-loop structure near the 3' end. The extended 5' end of Drosophila U7 snRNA can base pair with the HDE in all five Drosophila histone pre-mRNAs. Blocking the 5' end of the U7 snRNA with a complementary oligonucleotide specifically blocks processing of a Drosophila histone pre-mRNA. Changes in the HDE that abolish or decrease processing efficiency result in a reduced ability to recruit U7 snRNA to the pre-mRNA.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Department of Biochemistry and Biophysics and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
79
|
Adamson TE, Price DH. Cotranscriptional processing of Drosophila histone mRNAs. Mol Cell Biol 2003; 23:4046-55. [PMID: 12773550 PMCID: PMC156150 DOI: 10.1128/mcb.23.12.4046-4055.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2002] [Revised: 02/06/2003] [Accepted: 03/21/2003] [Indexed: 11/20/2022] Open
Abstract
The 3' ends of metazoan histone mRNAs are generated by specialized processing machinery that cleaves downstream of a conserved stem-loop structure. To examine how this reaction might be influenced by transcription, we used a Drosophila melanogaster in vitro system that supports both processes. In this system the complete synthesis of histone mRNA, including transcription initiation and elongation, followed by 3' end formation, occurred at a physiologically significant rate. Processing of free transcripts was efficient and occurred with a t(1/2) of less than 1 min. Divalent cations were not required, but nucleoside triphosphates (NTPs) stimulated the rate of cleavage slightly. Isolated elongation complexes encountered a strong arrest site downstream of the mature histone H4 3' end. In the presence of NTPs, transcripts in these arrested complexes were processed at a rate similar to that of free RNA. Removal of NTPs dramatically reduced this rate, potentially due to concealment of the U7 snRNP binding element. The arrest site was found to be a conserved feature located 32 to 35 nucleotides downstream of the processing site on the H4, H2b, and H3 genes. The significance of the newly discovered arrest sites to our understanding of the coupling between transcription and RNA processing on the one hand and histone gene expression on the other is discussed.
Collapse
Affiliation(s)
- Todd E Adamson
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
80
|
Marzluff WF, Duronio RJ. Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences. Curr Opin Cell Biol 2002; 14:692-9. [PMID: 12473341 DOI: 10.1016/s0955-0674(02)00387-3] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Histone mRNA metabolism is tightly coupled to cell cycle progression and to rates of DNA synthesis. The recent identification of several novel proteins involved in histone gene transcription and pre-mRNA processing has shed light on the variety of mechanisms cells employ to achieve this coupling.
Collapse
Affiliation(s)
- William F Marzluff
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
81
|
Chioda M, Eskeland R, Thompson EM. Histone gene complement, variant expression, and mRNA processing in a urochordate Oikopleura dioica that undergoes extensive polyploidization. Mol Biol Evol 2002; 19:2247-60. [PMID: 12446815 DOI: 10.1093/oxfordjournals.molbev.a004048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Considerable data exist on coding sequences of histones in a wide variety of organisms. Much more restricted information is available on total histone gene complement, gene organization, transcriptional regulation, and histone mRNA processing. In particular, there is a significant phylogenetic gap in information for the urochordates, a subphylum near the invertebrate-vertebrate transition. In this study, we show that the appendicularian Oikopleura dioica has a histone gene complement that is similar to that of humans, though its genome size is 40- to 50-fold smaller. At a total length of 3.5 kb, the H3, H4, H1, H2A, and H2B quintet cluster is the most compact described thus far, but despite very rapid early developmental cleavage cycles, no extensive tandem repeats of the cluster were present. The high degree of variation within each of the complements of O. dioica H2A and H2B subtypes resembled that found in plants as opposed to more closely related vertebrate and invertebrate species, and developmental stage-specific expression of different subtypes was observed. The linker histone H1 was present in relatively few copies per haploid genome and contained short N- and C-terminal tails, a feature similar to that of copepods but different from many standard model organisms. The 3'UTRs of the histone genes contained both the consensus stem-loop sequence and the polyadenylation signals but lacked the consensus histone downstream element that is involved in the processing of histone mRNAs in echinoderms and vertebrates. Two types of transcripts were found, i.e., those containing both the stem-loop and a polyA tail as well as those cleaved at the normal site just 3' of the stem-loop. The O. dioica data are an important addition to the limited number of eukaryotes for which sufficiently extensive information on histone gene complements is available. Increasingly, it appears that understanding the evolution of histone gene organization, transcriptional regulation, and mRNA processing will depend at least as much on comparative analysis of constraints imposed by certain life history features and cell biological characteristics as on projections based on simple phylogenetic relationships.
Collapse
Affiliation(s)
- Mariacristina Chioda
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | | | | |
Collapse
|
82
|
|
83
|
Dominski Z, Yang XC, Raska CS, Santiago C, Borchers CH, Duronio RJ, Marzluff WF. 3' end processing of Drosophila melanogaster histone pre-mRNAs: requirement for phosphorylated Drosophila stem-loop binding protein and coevolution of the histone pre-mRNA processing system. Mol Cell Biol 2002; 22:6648-60. [PMID: 12192062 PMCID: PMC135633 DOI: 10.1128/mcb.22.18.6648-6660.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthetic pre-mRNAs containing the processing signals encoded by Drosophila melanogaster histone genes undergo efficient and faithful endonucleolytic cleavage in nuclear extracts prepared from Drosophila cultured cells and 0- to 13-h-old embryos. Biochemical requirements for the in vitro cleavage are similar to those previously described for the 3' end processing of mammalian histone pre-mRNAs. Drosophila 3' end processing does not require ATP and occurs in the presence of EDTA. However, in contrast to mammalian processing, Drosophila processing generates the final product ending four nucleotides after the stem-loop. Cleavage of the Drosophila substrates is abolished by depleting the extract of the Drosophila stem-loop binding protein (dSLBP), indicating that both dSLBP and the stem-loop structure in histone pre-mRNA are essential components of the processing machinery. Recombinant dSLBP expressed in insect cells by using the baculovirus system efficiently complements the depleted extract. Only the RNA-binding domain plus the 17 amino acids at the C terminus of dSLBP are required for processing. The full-length dSLBP expressed in insect cells is quantitatively phosphorylated on four residues in the C-terminal region. Dephosphorylation of the recombinant dSLBP reduces processing activity. Human and Drosophila SLBPs are not interchangeable and strongly inhibit processing in the heterologous extracts. The RNA-binding domain of the dSLBP does not substitute for the RNA-binding domain of the human SLBP in histone pre-mRNA processing in mammalian extracts. In addition to the stem-loop structure and dSLBP, 3' processing in Drosophila nuclear extracts depends on the presence of a short stretch of purines located ca. 20 nucleotides downstream from the stem, and an Sm-reactive factor, most likely the Drosophila counterpart of vertebrate U7 snRNP.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | | | | | |
Collapse
|