51
|
Abstract
Eukaryotic cells contain at least two types of cytoplasmic RNA-protein (RNP) granules that contain nontranslating mRNAs. One such RNP granule is a P-body, which contains translationally inactive mRNAs and proteins involved in mRNA degradation and translation repression. A second such RNP granule is a stress granule which also contains mRNAs, some RNA binding proteins and several translation initiation factors, suggesting these granules contain mRNAs stalled in translation initiation. In this chapter, we describe methods to analyze P-bodies and stress granules in Saccharomyces cerevisiae, including procedures to determine if a protein or mRNA can accumulate in either granule, if an environmental perturbation or mutation affects granule size and number, and granule quantification methods.
Collapse
|
52
|
Buchan JR, Parker R. Eukaryotic stress granules: the ins and outs of translation. Mol Cell 2010; 36:932-41. [PMID: 20064460 PMCID: PMC2813218 DOI: 10.1016/j.molcel.2009.11.020] [Citation(s) in RCA: 1127] [Impact Index Per Article: 75.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 11/12/2009] [Indexed: 12/17/2022]
Abstract
The stress response in eukaryotic cells often inhibits translation initiation and leads to the formation of cytoplasmic RNA-protein complexes referred to as stress granules. Stress granules contain nontranslating mRNAs, translation initiation components, and many additional proteins affecting mRNA function. Stress granules have been proposed to affect mRNA translation and stability and have been linked to apoptosis and nuclear processes. Stress granules also interact with P-bodies, another cytoplasmic RNP granule containing nontranslating mRNA, translation repressors, and some mRNA degradation machinery. Together, stress granules and P-bodies reveal a dynamic cycle of distinct biochemical and compartmentalized mRNPs in the cytosol, with implications for the control of mRNA function.
Collapse
Affiliation(s)
- J Ross Buchan
- Howard Hughes Medical Institute, University of Arizona, Tucson, 85721, USA
| | | |
Collapse
|
53
|
He F, Balling R, Zeng AP. Reverse engineering and verification of gene networks: principles, assumptions, and limitations of present methods and future perspectives. J Biotechnol 2009; 144:190-203. [PMID: 19631244 DOI: 10.1016/j.jbiotec.2009.07.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/13/2009] [Accepted: 07/16/2009] [Indexed: 12/21/2022]
Abstract
Reverse engineering of gene networks aims at revealing the structure of the gene regulation network in a biological system by reasoning backward directly from experimental data. Many methods have recently been proposed for reverse engineering of gene networks by using gene transcript expression data measured by microarray. Whereas the potentials of the methods have been well demonstrated, the assumptions and limitations behind them are often not clearly stated or not well understood. In this review, we first briefly explain the principles of the major methods, identify the assumptions behind them and pinpoint the limitations and possible pitfalls in applying them to real biological questions. With regard to applications, we then discuss challenges in the experimental verification of gene networks generated from reverse engineering methods. We further propose an optimal experimental design for allocating sampling schedule and possible strategies for reducing the limitations of some of the current reverse engineering methods. Finally, we examine the perspectives for the development of reverse engineering and urge the need to move from revealing network structure to the dynamics of biological systems.
Collapse
Affiliation(s)
- Feng He
- Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | | | | |
Collapse
|
54
|
di Penta A, Mercaldo V, Florenzano F, Munck S, Ciotti MT, Zalfa F, Mercanti D, Molinari M, Bagni C, Achsel T. Dendritic LSm1/CBP80-mRNPs mark the early steps of transport commitment and translational control. ACTA ACUST UNITED AC 2009; 184:423-35. [PMID: 19188494 PMCID: PMC2646547 DOI: 10.1083/jcb.200807033] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Messenger RNA (mRNA) transport to neuronal dendrites is crucial for synaptic plasticity, but little is known of assembly or translational regulation of dendritic messenger ribonucleoproteins (mRNPs). Here we characterize a novel mRNP complex that is found in neuronal dendrites throughout the central nervous system and in some axonal processes of the spinal cord. The complex is characterized by the LSm1 protein, which so far has been implicated in mRNA degradation in nonneuronal cells. In brain, it associates with intact mRNAs. Interestingly, the LSm1-mRNPs contain the cap-binding protein CBP80 that associates with (pre)mRNAs in the nucleus, suggesting that the dendritic LSm1 complex has been assembled in the nucleus. In support of this notion, neuronal LSm1 is partially nuclear and inhibition of mRNA synthesis increases its nuclear localization. Importantly, CBP80 is also present in the dendrites and both LSm1 and CBP80 shift significantly into the spines upon stimulation of glutamergic receptors, suggesting that these mRNPs are translationally activated and contribute to the regulated local protein synthesis.
Collapse
Affiliation(s)
- Alessandra di Penta
- Laboratory for Neurobiochemistry, Department for Experimental Neurosciences, Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico, 00143 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Buchan JR, Muhlrad D, Parker R. P bodies promote stress granule assembly in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2008; 183:441-55. [PMID: 18981231 PMCID: PMC2575786 DOI: 10.1083/jcb.200807043] [Citation(s) in RCA: 417] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent results indicate that nontranslating mRNAs in eukaryotic cells exist in distinct biochemical states that accumulate in P bodies and stress granules, although the nature of interactions between these particles is unknown. We demonstrate in Saccharomyces cerevisiae that RNA granules with similar protein composition and assembly mechanisms as mammalian stress granules form during glucose deprivation. Stress granule assembly is dependent on P-body formation, whereas P-body assembly is independent of stress granule formation. This suggests that stress granules primarily form from mRNPs in preexisting P bodies, which is also supported by the kinetics of P-body and stress granule formation both in yeast and mammalian cells. These observations argue that P bodies are important sites for decisions of mRNA fate and that stress granules, at least in yeast, primarily represent pools of mRNAs stalled in the process of reentry into translation from P bodies.
Collapse
Affiliation(s)
- J Ross Buchan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
56
|
Ling SHM, Decker CJ, Walsh MA, She M, Parker R, Song H. Crystal structure of human Edc3 and its functional implications. Mol Cell Biol 2008; 28:5965-76. [PMID: 18678652 PMCID: PMC2547010 DOI: 10.1128/mcb.00761-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 06/10/2008] [Accepted: 07/17/2008] [Indexed: 12/16/2022] Open
Abstract
Edc3 is an enhancer of decapping and serves as a scaffold that aggregates mRNA ribonucleoproteins together for P-body formation. Edc3 forms a network of interactions with the components of the mRNA decapping machinery and has a modular domain architecture consisting of an N-terminal Lsm domain, a central FDF domain, and a C-terminal YjeF-N domain. We have determined the crystal structure of the N-terminally truncated human Edc3 at a resolution of 2.2 A. The structure reveals that the YjeF-N domain of Edc3 possesses a divergent Rossmann fold topology that forms a dimer, which is supported by sedimentation velocity and sedimentation equilibrium analysis in solution. The dimerization interface of Edc3 is highly conserved in eukaryotes despite the overall low sequence homology across species. Structure-based site-directed mutagenesis revealed dimerization is required for efficient RNA binding, P-body formation, and likely for regulating the yeast Rps28B mRNA as well, suggesting that the dimeric form of Edc3 is a structural and functional unit in mRNA degradation.
Collapse
Affiliation(s)
- Sharon H M Ling
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | | | | | | | | | | |
Collapse
|
57
|
Subcellular localization of mRNA and factors involved in translation initiation. Biochem Soc Trans 2008; 36:648-52. [PMID: 18631134 DOI: 10.1042/bst0360648] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Both the process and synthesis of factors required for protein synthesis (or translation) account for a large proportion of cellular activity. In eukaryotes, the most complex and highly regulated phase of protein synthesis is that of initiation. For instance, across eukaryotes, at least 12 factors containing 22 or more proteins are involved, and there are several regulated steps. Recently, the localization of mRNA and factors involved in translation has received increased attention. The present review provides a general background to the subcellular localization of mRNA and translation initiation factors, and focuses on the potential functions of localized translation initiation factors. That is, as genuine sites for translation initiation, as repositories for factors and mRNA, and as sites of regulation.
Collapse
|
58
|
Mascarenhas C, Edwards-Ingram LC, Zeef L, Shenton D, Ashe MP, Grant CM. Gcn4 is required for the response to peroxide stress in the yeast Saccharomyces cerevisiae. Mol Biol Cell 2008; 19:2995-3007. [PMID: 18417611 PMCID: PMC2441660 DOI: 10.1091/mbc.e07-11-1173] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 03/31/2008] [Accepted: 04/09/2008] [Indexed: 11/11/2022] Open
Abstract
An oxidative stress occurs when reactive oxygen species overwhelm the cellular antioxidant defenses. We have examined the regulation of protein synthesis in Saccharomyces cerevisiae in response to oxidative stress induced by exposure to hydroperoxides (hydrogen peroxide, and cumene hydroperoxide), a thiol oxidant (diamide), and a heavy metal (cadmium). Examination of translational activity indicates that these oxidants inhibit translation at the initiation and postinitiation phases. Inhibition of translation initiation in response to hydroperoxides is entirely dependent on phosphorylation of the alpha subunit of eukaryotic initiation factor (eIF)2 by the Gcn2 kinase. Activation of Gcn2 is mediated by uncharged tRNA because mutation of its HisRS domain abolishes regulation in response to hydroperoxides. Furthermore, Gcn4 is translationally up-regulated in response to H(2)O(2), and it is required for hydroperoxide resistance. We used transcriptional profiling to identify a wide range of genes that mediate this response as part of the Gcn4-dependent H(2)O(2)-regulon. In contrast to hydroperoxides, regulation of translation initiation in response to cadmium and diamide depends on both Gcn2 and the eIF4E binding protein Eap1. Thus, the response to oxidative stress is mediated by oxidant-specific regulation of translation initiation, and we suggest that this is an important mechanism underlying the ability of cells to adapt to different oxidants.
Collapse
Affiliation(s)
- Claire Mascarenhas
- The University of Manchester, Faculty of Life Sciences, Manchester M13 9PT, United Kingdom
| | | | - Leo Zeef
- The University of Manchester, Faculty of Life Sciences, Manchester M13 9PT, United Kingdom
| | - Daniel Shenton
- The University of Manchester, Faculty of Life Sciences, Manchester M13 9PT, United Kingdom
| | - Mark P. Ashe
- The University of Manchester, Faculty of Life Sciences, Manchester M13 9PT, United Kingdom
| | - Chris M. Grant
- The University of Manchester, Faculty of Life Sciences, Manchester M13 9PT, United Kingdom
| |
Collapse
|
59
|
He F, Buer J, Zeng AP, Balling R. Dynamic cumulative activity of transcription factors as a mechanism of quantitative gene regulation. Genome Biol 2008; 8:R181. [PMID: 17784952 PMCID: PMC2375019 DOI: 10.1186/gb-2007-8-9-r181] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 08/22/2007] [Accepted: 09/04/2007] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The regulation of genes in multicellular organisms is generally achieved through the combinatorial activity of different transcription factors. However, the quantitative mechanisms of how a combination of transcription factors controls the expression of their target genes remain unknown. RESULTS By using the information on the yeast transcription network and high-resolution time-series data, the combinatorial expression profiles of regulators that best correlate with the expression of their target genes are identified. We demonstrate that a number of factors, particularly time-shifts among the different regulators as well as conversion efficiencies of transcription factor mRNAs into functional binding regulators, play a key role in the quantification of target gene expression. By quantifying and integrating these factors, we have found a highly significant correlation between the combinatorial time-series expression profile of regulators and their target gene expression in 67.1% of the 161 known yeast three-regulator motifs and in 32.9% of 544 two-regulator motifs. For network motifs involved in the cell cycle, these percentages are much higher. Furthermore, the results have been verified with a high consistency in a second independent set of time-series data. Additional support comes from the finding that a high percentage of motifs again show a significant correlation in time-series data from stress-response studies. CONCLUSION Our data strongly support the concept that dynamic cumulative regulation is a major principle of quantitative transcriptional control. The proposed concept might also apply to other organisms and could be relevant for a wide range of biotechnological applications in which quantitative gene regulation plays a role.
Collapse
Affiliation(s)
- Feng He
- Biological Systems Analysis Group, HZI- Helmholtz Centre for Infection Research, Inhoffenstrasse, D-38124 Braunschweig, Germany
| | - Jan Buer
- Mucosal Immunity Group, HZI- Helmholtz Centre for Infection Research, Inhoffenstrasse, D-38124 Braunschweig, Germany
- Institute of Medical Microbiology, Hannover Medical School (MHH), D-30625 Hannover, Germany
| | - An-Ping Zeng
- Systems Biology Group, HZI- Helmholtz Centre for Infection Research, Inhoffenstrasse, D-38124 Braunschweig, Germany
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickerstrasse, D-21073 Hamburg, Germany
| | - Rudi Balling
- Biological Systems Analysis Group, HZI- Helmholtz Centre for Infection Research, Inhoffenstrasse, D-38124 Braunschweig, Germany
| |
Collapse
|
60
|
Beckham C, Hilliker A, Cziko AM, Noueiry A, Ramaswami M, Parker R. The DEAD-box RNA helicase Ded1p affects and accumulates in Saccharomyces cerevisiae P-bodies. Mol Biol Cell 2008; 19:984-93. [PMID: 18162578 PMCID: PMC2262982 DOI: 10.1091/mbc.e07-09-0954] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/27/2007] [Accepted: 12/19/2007] [Indexed: 12/16/2022] Open
Abstract
Recent results suggest that cytoplasmic mRNAs can form translationally repressed messenger ribonucleoprotein particles (mRNPs) capable of decapping and degradation, or accumulation into cytoplasmic processing bodies (P-bodies), which can function as sites of mRNA storage. The proteins that function in transitions between the translationally repressed mRNPs that accumulate in P-bodies and mRNPs engaged in translation are largely unknown. Herein, we demonstrate that the yeast translation initiation factor Ded1p can localize to P-bodies. Moreover, depletion of Ded1p leads to defects in P-body formation. Overexpression of Ded1p results in increased size and number of P-bodies and inhibition of growth in a manner partially suppressed by loss of Pat1p, Dhh1p, or Lsm1p. Mutations that inactivate the ATPase activity of Ded1p increase the overexpression growth inhibition of Ded1p and prevent Ded1p from localizing in P-bodies. Combined with earlier work showing Ded1p can have a positive effect on translation, these results suggest that Ded1p is a bifunctional protein that can affect both translation initiation and P-body formation.
Collapse
Affiliation(s)
| | - Angela Hilliker
- Molecular and Cellular Biology
- Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721-0206; and
| | | | - Amine Noueiry
- Davis College of Agriculture, Forestry and Consumer Science, West Virginia University, Morgantown, WV 26506-6010
| | - Mani Ramaswami
- Molecular and Cellular Biology
- Program in Neuroscience, and
| | - Roy Parker
- Molecular and Cellular Biology
- Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721-0206; and
| |
Collapse
|
61
|
Abstract
Cytoplasmic processing bodies, or P-bodies, are RNA-protein granules found in eukaryotic cells. P-bodies contain non-translating mRNAs and proteins involved in mRNA degradation and translational repression. P-bodies, and the mRNPs within them, have been implicated in mRNA storage, mRNA degradation, and translational repression. The analysis of mRNA turnover often involves the analysis of P-bodies. In this chapter, we describe methods to analyze P-bodies in the budding yeast, Saccharomyces cerevisiae, including procedures to determine whether a protein or mRNA can accumulate in P-bodies, whether an environmental perturbation or mutation affects P-body size and number, and methods to quantify P-bodies.
Collapse
Affiliation(s)
- Tracy Nissan
- University of Arizona, Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, Tucson, AZ 85721, 520-621-9347, 520-621-4524 (fax)
| | - Roy Parker
- University of Arizona, Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, Tucson, AZ 85721, 520-621-9347, 520-621-4524 (fax)
| |
Collapse
|
62
|
Pat1 contains distinct functional domains that promote P-body assembly and activation of decapping. Mol Cell Biol 2007; 28:1298-312. [PMID: 18086885 DOI: 10.1128/mcb.00936-07] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The control of mRNA degradation and translation are important aspects of gene regulation. Recent results suggest that translation repression and mRNA decapping can be intertwined and involve the formation of a quiescent mRNP, which can accumulate in cytoplasmic foci referred to as P bodies. The Pat1 protein is a key component of this complex and an important activator of decapping, yet little is known about its function. In this work, we analyze Pat1 in Saccharomyces cerevisiae function by deletion and functional analyses. Our results identify two primary functional domains in Pat1: one promoting translation repression and P-body assembly and a second domain promoting mRNA decapping after assembly of the mRNA into a P-body mRNP. In addition, we provide evidence that Pat1 binds RNA and has numerous domain-specific interactions with mRNA decapping factors. These results indicate that Pat1 is an RNA binding protein and a multidomain protein that functions at multiple stages in the process of translation repression and mRNA decapping.
Collapse
|
63
|
Decker CJ, Teixeira D, Parker R. Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2007; 179:437-49. [PMID: 17984320 PMCID: PMC2064791 DOI: 10.1083/jcb.200704147] [Citation(s) in RCA: 389] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Processing bodies (P-bodies) are cytoplasmic RNA granules that contain translationally repressed messenger ribonucleoproteins (mRNPs) and messenger RNA (mRNA) decay factors. The physical interactions that form the individual mRNPs within P-bodies and how those mRNPs assemble into larger P-bodies are unresolved. We identify direct protein interactions that could contribute to the formation of an mRNP complex that consists of core P-body components. Additionally, we demonstrate that the formation of P-bodies that are visible by light microscopy occurs either through Edc3p, which acts as a scaffold and cross-bridging protein, or via the “prionlike” domain in Lsm4p. Analysis of cells defective in P-body formation indicates that the concentration of translationally repressed mRNPs and decay factors into microscopically visible P-bodies is not necessary for basal control of translation repression and mRNA decay. These results suggest a stepwise model for P-body assembly with the initial formation of a core mRNA–protein complex that then aggregates through multiple specific mechanisms.
Collapse
Affiliation(s)
- Carolyn J Decker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721
| | | | | |
Collapse
|
64
|
Hoyle NP, Castelli LM, Campbell SG, Holmes LEA, Ashe MP. Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies. J Cell Biol 2007; 179:65-74. [PMID: 17908917 PMCID: PMC2064737 DOI: 10.1083/jcb.200707010] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 09/06/2007] [Indexed: 11/24/2022] Open
Abstract
Cytoplasmic RNA granules serve key functions in the control of messenger RNA (mRNA) fate in eukaryotic cells. For instance, in yeast, severe stress induces mRNA relocalization to sites of degradation or storage called processing bodies (P-bodies). In this study, we show that the translation repression associated with glucose starvation causes the key translational mediators of mRNA recognition, eIF4E, eIF4G, and Pab1p, to resediment away from ribosomal fractions. These mediators then accumulate in P-bodies and in previously unrecognized cytoplasmic bodies, which we define as EGP-bodies. Our kinetic studies highlight the fundamental difference between EGP- and P-bodies and reflect the complex dynamics surrounding reconfiguration of the mRNA pool under stress conditions. An absence of key mRNA decay factors from EGP-bodies points toward an mRNA storage function for these bodies. Overall, this study highlights new potential control points in both the regulation of mRNA fate and the global control of translation initiation.
Collapse
Affiliation(s)
- Nathaniel P Hoyle
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | | | | | | | | |
Collapse
|
65
|
Gilbert WV, Zhou K, Butler TK, Doudna JA. Cap-independent translation is required for starvation-induced differentiation in yeast. Science 2007; 317:1224-7. [PMID: 17761883 DOI: 10.1126/science.1144467] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cellular internal ribosome entry sites (IRESs) are untranslated segments of mRNA transcripts thought to initiate protein synthesis in response to environmental stresses that prevent canonical 5' cap-dependent translation. Although numerous cellular mRNAs are proposed to have IRESs, none has a demonstrated physiological function or molecular mechanism. Here we show that seven yeast genes required for invasive growth, a developmental pathway induced by nutrient limitation, contain potent IRESs that require the initiation factor eIF4G for cap-independent translation. In contrast to the RNA structure-based activity of viral IRESs, we show that an unstructured A-rich element mediates internal initiation via recruitment of the poly(A) binding protein (Pab1) to the 5' untranslated region (UTR) of invasive growth messages. A 5'UTR mutation that impairs IRES activity compromises invasive growth, which indicates that cap-independent translation is required for physiological adaptation to stress.
Collapse
Affiliation(s)
- Wendy V Gilbert
- Department of Molecular and Cell Biology, Department of Chemistry, and Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
66
|
Yamasaki S, Stoecklin G, Kedersha N, Simarro M, Anderson P. T-cell intracellular antigen-1 (TIA-1)-induced translational silencing promotes the decay of selected mRNAs. J Biol Chem 2007; 282:30070-7. [PMID: 17711853 DOI: 10.1074/jbc.m706273200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene array analysis revealed that a subset of mRNAs overexpressed in macrophages lacking the destabilizing factor TTP are also overexpressed in macrophages lacking the translational silencer TIA-1. We confirmed that a representative transcript, apobec-1, is significantly stabilized in cells lacking TIA-1. Tethering TIA-1 to a reporter transcript also promotes mRNA decay, suggesting that TIA-1-mediated translational silencing can render mRNA susceptible to the decay machinery. TIA-1-mediated decay is inhibited by small interfering RNAs targeting components of either the 5'-3' (e.g. DCP2) or the 3'-5' (e.g. exosome component Rrp46) decay pathways, suggesting that TIA-1 renders mRNA susceptible to both major decay pathways. TIA-1-mediated decay is inhibited by cycloheximide and emetine, drugs that stabilize polysomes, but is unaffected by puromycin, a drug that disassembles polysomes. These results suggest that TIA-1-induced polysome disassembly is required for enhanced mRNA decay and that TIA-1-induced translational silencing promotes the decay of selected mRNAs.
Collapse
Affiliation(s)
- Satoshi Yamasaki
- Harvard Medical School, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
67
|
Teixeira D, Parker R. Analysis of P-body assembly in Saccharomyces cerevisiae. Mol Biol Cell 2007; 18:2274-87. [PMID: 17429074 PMCID: PMC1877105 DOI: 10.1091/mbc.e07-03-0199] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 03/28/2007] [Accepted: 03/30/2007] [Indexed: 12/20/2022] Open
Abstract
Recent experiments have defined cytoplasmic foci, referred to as processing bodies (P-bodies), that contain untranslating mRNAs in conjunction with proteins involved in translation repression and mRNA decapping and degradation. However, the order of protein assembly into P-bodies and the interactions that promote P-body assembly are unknown. To gain insight into how yeast P-bodies assemble, we examined the P-body accumulation of Dcp1p, Dcp2p, Edc3p, Dhh1p, Pat1p, Lsm1p, Xrn1p, Ccr4p, and Pop2p in deletion mutants lacking one or more P-body component. These experiments revealed that Dcp2p and Pat1p are required for recruitment of Dcp1p and of the Lsm1-7p complex to P-bodies, respectively. We also demonstrate that P-body assembly is redundant and no single known component of P-bodies is required for P-body assembly, although both Dcp2p and Pat1p contribute to P-body assembly. In addition, our results indicate that Pat1p can be a nuclear-cytoplasmic shuttling protein and acts early in P-body assembly. In contrast, the Lsm1-7p complex appears to primarily function in a rate limiting step after P-body assembly in triggering decapping. Taken together, these results provide insight both into the function of individual proteins involved in mRNA degradation and the mechanisms by which yeast P-bodies assemble.
Collapse
Affiliation(s)
- Daniela Teixeira
- *Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4099-003 Porto, Portugal
| | - Roy Parker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721-0106; and
| |
Collapse
|
68
|
Brengues M, Parker R. Accumulation of polyadenylated mRNA, Pab1p, eIF4E, and eIF4G with P-bodies in Saccharomyces cerevisiae. Mol Biol Cell 2007; 18:2592-602. [PMID: 17475768 PMCID: PMC1924816 DOI: 10.1091/mbc.e06-12-1149] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recent experiments have shown that mRNAs can move between polysomes and P-bodies, which are aggregates of nontranslating mRNAs associated with translational repressors and the mRNA decapping machinery. The transitions between polysomes and P-bodies and how the poly(A) tail and the associated poly(A) binding protein 1 (Pab1p) may affect this process are unknown. Herein, we provide evidence that poly(A)(+) mRNAs can enter P-bodies in yeast. First, we show that both poly(A)(-) and poly(A)(+) mRNA become translationally repressed during glucose deprivation, where mRNAs accumulate in P-bodies. In addition, both poly(A)(+) transcripts and/or Pab1p can be detected in P-bodies during glucose deprivation and in stationary phase. Cells lacking Pab1p have enlarged P-bodies, suggesting that Pab1p plays a direct or indirect role in shifting the equilibrium of mRNAs away from P-bodies and into translation, perhaps by aiding in the assembly of a type of mRNP within P-bodies that is poised to reenter translation. Consistent with this latter possibility, we observed the translation initiation factors (eIF)4E and eIF4G in P-bodies at a low level during glucose deprivation and at high levels in stationary phase. Moreover, Pab1p exited P-bodies much faster than Dcp2p when stationary phase cells were given fresh nutrients. Together, these results suggest that polyadenylated mRNAs can enter P-bodies, and an mRNP complex including poly(A)(+) mRNA, Pab1p, eIF4E, and eIF4G2 may represent a transition state during the process of mRNAs exchanging between P-bodies and translation.
Collapse
Affiliation(s)
- Muriel Brengues
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721-0106
| | - Roy Parker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721-0106
| |
Collapse
|
69
|
Whitney ML, Hurto RL, Shaheen HH, Hopper AK. Rapid and reversible nuclear accumulation of cytoplasmic tRNA in response to nutrient availability. Mol Biol Cell 2007; 18:2678-86. [PMID: 17475781 PMCID: PMC1924813 DOI: 10.1091/mbc.e07-01-0006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytoplasmic tRNAs have recently been found to accumulate in the nucleus during amino acid starvation in yeast. The mechanism and regulation by which tRNAs return to the nucleus are unclear. Here, we show accumulation of cytoplasmic tRNA in the nucleus also occurs during glucose starvation. Nuclear accumulation of tRNA in response to acute glucose or amino acid starvation is rapid, reversible, requires no new transcription, and is independent of the aminoacylation status of tRNA. Gradual depletion of nutrients also results in the accrual of tRNA in the nucleus. Distinct signal transduction pathways seem to be involved in the accumulation of cytoplasmic tRNA in the nucleus in response to amino acid versus glucose starvation. These findings suggest tRNA nucleocytoplasmic distribution may play a role in gene expression in response to nutritional stress.
Collapse
Affiliation(s)
- Michael L. Whitney
- *Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Rebecca L. Hurto
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Hussam H. Shaheen
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Anita K. Hopper
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
70
|
Abstract
Recent results indicate that many untranslating mRNAs in somatic eukaryotic cells assemble into related mRNPs that accumulate in specific cytoplasmic foci referred to as P bodies. Transcripts associated with P body components can either be degraded or return to translation. Moreover, P bodies are also biochemically and functionally related to some maternal and neuronal mRNA granules. This suggests an emerging model of cytoplasmic mRNA function in which the rates of translation and degradation of mRNAs are influenced by a dynamic equilibrium between polysomes and the mRNPs seen in P bodies. Moreover, some mRNA-specific regulatory factors, including miRNAs and RISC, appear to repress translation and promote decay by recruiting P body components to individual mRNAs.
Collapse
Affiliation(s)
- Roy Parker
- Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
71
|
Shenton D, Smirnova JB, Selley JN, Carroll K, Hubbard SJ, Pavitt GD, Ashe MP, Grant CM. Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. J Biol Chem 2006; 281:29011-21. [PMID: 16849329 DOI: 10.1074/jbc.m601545200] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Global inhibition of protein synthesis is a common response to stress conditions. We have analyzed the regulation of protein synthesis in response to oxidative stress induced by exposure to H(2)O(2) in the yeast Saccharomyces cerevisiae. Our data show that H(2)O(2) causes an inhibition of translation initiation dependent on the Gcn2 protein kinase, which phosphorylates the alpha-subunit of eukaryotic initiation factor-2. Additionally, our data indicate that translation is regulated in a Gcn2-independent manner because protein synthesis was still inhibited in response to H(2)O(2) in a gcn2 mutant. Polysome analysis indicated that H(2)O(2) causes a slower rate of ribosomal runoff, consistent with an inhibitory effect on translation elongation or termination. Furthermore, analysis of ribosomal transit times indicated that oxidative stress increases the average mRNA transit time, confirming a post-initiation inhibition of translation. Using microarray analysis of polysome- and monosome-associated mRNA pools, we demonstrate that certain mRNAs, including mRNAs encoding stress protective molecules, increase in association with ribosomes following H(2)O(2) stress. For some candidate mRNAs, we show that a low concentration of H(2)O(2) results in increased protein production. In contrast, a high concentration of H(2)O(2) promotes polyribosome association but does not necessarily lead to increased protein production. We suggest that these mRNAs may represent an mRNA store that could become rapidly activated following relief of the stress condition. In summary, oxidative stress elicits complex translational reprogramming that is fundamental for adaptation to the stress.
Collapse
Affiliation(s)
- Daniel Shenton
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Segal SP, Dunckley T, Parker R. Sbp1p affects translational repression and decapping in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:5120-30. [PMID: 16782896 PMCID: PMC1489156 DOI: 10.1128/mcb.01913-05] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 10/31/2005] [Accepted: 03/31/2006] [Indexed: 11/20/2022] Open
Abstract
The relationship between translation and mRNA turnover is critical to the regulation of gene expression. One major pathway for mRNA turnover occurs by deadenylation, which leads to decapping and subsequent 5'-to-3' degradation of the body of the mRNA. Prior to mRNA decapping, a transcript exits translation and enters P bodies to become a potential decapping substrate. To understand the transition from translation to decapping, it is important to identify the factors involved in this process. In this work, we identify Sbp1p (formerly known as Ssb1p), an abundant RNA binding protein, as a high-copy-number suppressor of a conditional allele in the decapping enzyme. Sbp1p overexpression restores normal decay rates in decapping-defective strains and increases P-body size and number. In addition, Sbp1p promotes translational repression of mRNA during glucose deprivation. Moreover, P-body formation is reduced in strains lacking Sbp1p. Sbp1p acts in conjunction with Dhh1p, as it is required for translational repression and P-body formation in pat1Delta strains under these conditions. These results identify Sbp1p as a new protein that functions in the transition of mRNAs from translation to an mRNP complex destined for decapping.
Collapse
Affiliation(s)
- Scott P Segal
- Department of Molecular Cellular Biology and Howard Hughes Medical Institute, University of Arizona, 1007 E. Lowell St., Tucson, AZ 85721, USA
| | | | | |
Collapse
|
73
|
Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 2006; 20:515-24. [PMID: 16510870 DOI: 10.1101/gad.1399806] [Citation(s) in RCA: 1593] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The control of translation and mRNA degradation is an important part of the regulation of gene expression. It is now clear that small RNA molecules are common and effective modulators of gene expression in many eukaryotic cells. These small RNAs that control gene expression can be either endogenous or exogenous micro RNAs (miRNAs) and short interfering RNAs (siRNAs) and can affect mRNA degradation and translation, as well as chromatin structure, thereby having impacts on transcription rates. In this review, we discuss possible mechanisms by which miRNAs control translation and mRNA degradation. An emerging theme is that miRNAs, and siRNAs to some extent, target mRNAs to the general eukaryotic machinery for mRNA degradation and translation control.
Collapse
Affiliation(s)
- Marco Antonio Valencia-Sanchez
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
74
|
Swaminathan S, Masek T, Molin C, Pospisek M, Sunnerhagen P. Rck2 is required for reprogramming of ribosomes during oxidative stress. Mol Biol Cell 2005; 17:1472-82. [PMID: 16381815 PMCID: PMC1382333 DOI: 10.1091/mbc.e05-07-0632] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rck2 is a mitogen-activated protein kinase-activated protein kinase in yeast implicated in translational regulation. rck2Delta mutants are mildly sensitive to oxidative stress, a condition that causes dissociation of actively translating ribosomes (polysomes). In rck2Delta cells, polysomes are lost to an even higher degree than in the wild-type upon stress. Cells overexpressing the catalytically inactive rck2-kd allele are highly sensitive to oxidative stress. In such cells, dissociation of polysomes upon stress was instead greatly delayed. The protein synthesis rate decreased to a similar degree as in wild-type cells, however, indicating that in rck2-kd cells, the polysome complexes were inactive. Array analyses of total and polysome-associated mRNAs revealed major deregulation of the translational machinery in rck2 mutant cells. This involves transcripts for cytosolic ribosomal proteins and for processing and assembly of ribosomes. In rck2Delta cells, weakly transcribed mRNAs associate more avidly with polysomes than in wild-type cells, whereas the opposite holds true for rck2-kd cells. This is consistent with perturbed regulation of translation elongation, which is predicted to alter the ratio between mRNAs with and without strong entry sites at ribosomes. We infer that imbalances in the translational apparatus are a major reason for the inability of these cells to respond to stress.
Collapse
Affiliation(s)
- Swarna Swaminathan
- Department of Cell and Molecular Biology, Lundberg Laboratory, Göteborg University, S-405 30 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
75
|
Coller J, Parker R. General translational repression by activators of mRNA decapping. Cell 2005; 122:875-86. [PMID: 16179257 PMCID: PMC1853273 DOI: 10.1016/j.cell.2005.07.012] [Citation(s) in RCA: 504] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 06/22/2005] [Accepted: 07/13/2005] [Indexed: 12/24/2022]
Abstract
Translation and mRNA degradation are affected by a key transition where eukaryotic mRNAs exit translation and assemble an mRNP state that accumulates into processing bodies (P bodies), cytoplasmic sites of mRNA degradation containing non-translating mRNAs, and mRNA degradation machinery. We identify the decapping activators Dhh1p and Pat1p as functioning as translational repressors and facilitators of P body formation. Strains lacking both Dhh1p and Pat1p show strong defects in mRNA decapping and P body formation and are blocked in translational repression. Contrastingly, overexpression of Dhh1p or Pat1p causes translational repression, P body formation, and arrests cell growth. Dhh1p, and its human homolog, RCK/p54, repress translation in vitro, and Dhh1p function is bypassed in vivo by inhibition of translational initiation. These results identify a broadly acting mechanism of translational repression that targets mRNAs for decapping and functions in translational control. We propose this mechanism is competitively balanced with translation, and shifting this balance is an important basis of translational control.
Collapse
Affiliation(s)
- Jeff Coller
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology University of Arizona Tucson, Arizona 85721
| | - Roy Parker
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology University of Arizona Tucson, Arizona 85721
- *Correspondence:
| |
Collapse
|
76
|
Smirnova JB, Selley JN, Sanchez-Cabo F, Carroll K, Eddy AA, McCarthy JEG, Hubbard SJ, Pavitt GD, Grant CM, Ashe MP. Global gene expression profiling reveals widespread yet distinctive translational responses to different eukaryotic translation initiation factor 2B-targeting stress pathways. Mol Cell Biol 2005; 25:9340-9. [PMID: 16227585 PMCID: PMC1265828 DOI: 10.1128/mcb.25.21.9340-9349.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 06/22/2005] [Accepted: 08/01/2005] [Indexed: 11/20/2022] Open
Abstract
Global inhibition of protein synthesis is a hallmark of many cellular stress conditions. Even though specific mRNAs defy this (e.g., yeast GCN4 and mammalian ATF4), the extent and variation of such resistance remain uncertain. In this study, we have identified yeast mRNAs that are translationally maintained following either amino acid depletion or fusel alcohol addition. Both stresses inhibit eukaryotic translation initiation factor 2B, but via different mechanisms. Using microarray analysis of polysome and monosome mRNA pools, we demonstrate that these stress conditions elicit widespread yet distinct translational reprogramming, identifying a fundamental role for translational control in the adaptation to environmental stress. These studies also highlight the complex interplay that exists between different stages in the gene expression pathway to allow specific preordained programs of proteome remodeling. For example, many ribosome biogenesis genes are coregulated at the transcriptional and translational levels following amino acid starvation. The transcriptional regulation of these genes has recently been connected to the regulation of cellular proliferation, and on the basis of our results, the translational control of these mRNAs should be factored into this equation.
Collapse
Affiliation(s)
- Julia B Smirnova
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Campbell SG, Hoyle NP, Ashe MP. Dynamic cycling of eIF2 through a large eIF2B-containing cytoplasmic body: implications for translation control. J Cell Biol 2005; 170:925-34. [PMID: 16157703 PMCID: PMC2171431 DOI: 10.1083/jcb.200503162] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 08/03/2005] [Indexed: 11/22/2022] Open
Abstract
The eukaryotic translation initiation factor 2B (eIF2B) provides a fundamental controlled point in the pathway of protein synthesis. eIF2B is the heteropentameric guanine nucleotide exchange factor that converts eIF2, from an inactive guanosine diphosphate-bound complex to eIF2-guanosine triphosphate. This reaction is controlled in response to a variety of cellular stresses to allow the rapid reprogramming of cellular gene expression. Here we demonstrate that in contrast to other translation initiation factors, eIF2B and eIF2 colocalize to a specific cytoplasmic locus. The dynamic nature of this locus is revealed through fluorescence recovery after photobleaching analysis. Indeed eIF2 shuttles into these foci whereas eIF2B remains largely resident. Three different strategies to decrease the guanine nucleotide exchange function of eIF2B all inhibit eIF2 shuttling into the foci. These results implicate a defined cytoplasmic center of eIF2B in the exchange of guanine nucleotides on the eIF2 translation initiation factor. A focused core of eIF2B guanine nucleotide exchange might allow either greater activity or control of this elementary conserved step in the translation pathway.
Collapse
Affiliation(s)
- Susan G Campbell
- Faculty of Life Science, The University of Manchester, Manchester, M13 9PT, England, UK
| | | | | |
Collapse
|
78
|
Mazzoni C, Herker E, Palermo V, Jungwirth H, Eisenberg T, Madeo F, Falcone C. Yeast caspase 1 links messenger RNA stability to apoptosis in yeast. EMBO Rep 2005; 6:1076-81. [PMID: 16170310 PMCID: PMC1371024 DOI: 10.1038/sj.embor.7400514] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 07/22/2005] [Accepted: 07/28/2005] [Indexed: 01/06/2023] Open
Abstract
During the past years, yeasts have been successfully established as models to study the mechanisms of apoptotic regulation. We recently showed that mutations in the LSM4 gene, which is involved in messenger RNA decapping, lead to increased mRNA stability and apoptosis in yeast. Here, we show that mitochondrial function and YCA1, which encodes a budding yeast metacaspase, are necessary for apoptosis triggered by stabilization of mRNAs. Deletion of YCA1 in yeast cells mutated in the LSM4 gene prevents mitochondrial fragmentation and rapid cell death during chronological ageing of the culture, diminishes reactive oxygen species accumulation and DNA breakage, and increases resistance to H2O2 and acetic acid. mRNA levels in lsm4 mutants deleted for YCA1 are still increased, positioning the Yca1 budding yeast caspase as a downstream executor of cell death induced by mRNA perturbations. In addition, we show that mitochondrial function is necessary for fast death during chronological ageing, as well as in LSM4 mutated and wild-type cells.
Collapse
Affiliation(s)
- Cristina Mazzoni
- Department of Cell and Developmental Biology, Pasteur Institute-Cenci Bolognetti Foundation, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|