51
|
Bosch TC, Unger TF, Fisher DA, Steele RE. Structure and expression of STK, a src-related gene in the simple metazoan Hydra attenuata. Mol Cell Biol 1989; 9:4141-51. [PMID: 2479820 PMCID: PMC362492 DOI: 10.1128/mcb.9.10.4141-4151.1989] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Both cDNA clones and a genomic DNA clone encoding a 509-amino-acid protein that is 64% similar to chicken pp60c-src were isolated from the simple metazoan Hydra attenuata. We have designated this gene STK, for src-type kinase. Features of the amino acid sequence of the protein encoded by the STK gene suggest that it is likely to be myristoylated and regulated by phosphorylation in a manner similar to that found for pp60c-src. The genomic sequence encoding the protein was found to be interrupted by at least two introns, one of which was located in a position identical to that of one of the introns in the chicken src gene. The STK gene was expressed during early development of H. attenuata and at high levels in the epithelial cells of adult polyps. Probing of Hydra proteins with an antibody to phosphotyrosine indicated that the major phosphotyrosine-containing protein in H. attenuata may be the STK protein itself. H. attenuata is the simplest organism from which a protein-tyrosine kinase gene has been isolated. The presence of such a gene in the evolutionarily ancient phylum Cnidaria suggests that protein-tyrosine kinase genes arose concomitantly with or shortly after the appearance of multicellular organisms.
Collapse
Affiliation(s)
- T C Bosch
- Department of Biological Chemistry, University of California, Irvine 92717
| | | | | | | |
Collapse
|
52
|
Abstract
Phosphorylation of a tyrosine residue near the carboxy terminus of src-family protein tyrosine kinases is believed to regulate the biological activity of these gene products. Conversion of this tyrosine in p59hck (Tyr-501) to a phenylalanine residue by using oligonucleotide-directed mutagenesis yielded a product (p59hckF501) with very potent transforming activity. Quantitative analysis by a soft-agar cloning assay revealed that p59hckF501 was more than 100-fold more effective than a closely related transforming element, p56lckF505, in colony formation. Cells bearing p59hckF501 had increased levels of protein phosphotyrosine. The ability of p59hckF501 to transform NIH 3T3 cells was abolished by a second mutation believed to destroy the ATP-binding domain.
Collapse
|
53
|
Yee SP, Mock D, Maltby V, Silver M, Rossant J, Bernstein A, Pawson T. Cardiac and neurological abnormalities in v-fps transgenic mice. Proc Natl Acad Sci U S A 1989; 86:5873-7. [PMID: 2788278 PMCID: PMC297733 DOI: 10.1073/pnas.86.15.5873] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transgenic mice that widely express the v-fps protein-tyrosine kinase develop several independent pathological conditions, in addition to a high tumor incidence. v-fps expression and protein-tyrosine kinase activity in the heart were directly correlated with cardiac enlargement. This cardiomegaly was accompanied by severe myocardial and endocardial damage, which was concentrated in the left ventricular wall, and characterized by a progressive atrophy and necrosis of cardiac muscle fibers with concomitant fibrosis. This pathology was associated with congestive heart failure. Mice from five lines developed a marked trembling, correlated with expression of the v-fps transgene in the brain, and two lines showed a striking bilateral enlargement of the trigeminal nerves. Unlike tumor formation, these cardiac and neurological phenotypes were evident shortly after birth and showed 100% penetrance. The pleiotropic effects of the v-fps transgene suggest the involvement of protein-tyrosine kinases in mammalian neural development and cardiac function.
Collapse
Affiliation(s)
- S P Yee
- Division of Molecular and Developmental Biology, Mount Sinai Hospital Research Institute, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
54
|
Ziegler SF, Levin SD, Perlmutter RM. Transformation of NIH 3T3 fibroblasts by an activated form of p59hck. Mol Cell Biol 1989; 9:2724-7. [PMID: 2503711 PMCID: PMC362345 DOI: 10.1128/mcb.9.6.2724-2727.1989] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phosphorylation of a tyrosine residue near the carboxy terminus of src-family protein tyrosine kinases is believed to regulate the biological activity of these gene products. Conversion of this tyrosine in p59hck (Tyr-501) to a phenylalanine residue by using oligonucleotide-directed mutagenesis yielded a product (p59hckF501) with very potent transforming activity. Quantitative analysis by a soft-agar cloning assay revealed that p59hckF501 was more than 100-fold more effective than a closely related transforming element, p56lckF505, in colony formation. Cells bearing p59hckF501 had increased levels of protein phosphotyrosine. The ability of p59hckF501 to transform NIH 3T3 cells was abolished by a second mutation believed to destroy the ATP-binding domain.
Collapse
Affiliation(s)
- S F Ziegler
- Howard Hughes Medical Institute, University of Washington, Seattle 98195
| | | | | |
Collapse
|
55
|
Novel tyrosine kinase identified by phosphotyrosine antibody screening of cDNA libraries. Mol Cell Biol 1989. [PMID: 2468999 DOI: 10.1128/mcb.8.12.5541] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an attempt to clone protein tyrosine kinases, antiphosphotyrosine antibodies were used to screen lambda gt11 cDNA expression libraries. By this method, a 2.5-kilobase cDNA encoding a novel tyrosine kinase was isolated from a mouse liver cDNA library. This new gene is most closely related to the receptor tyrosine kinases ret, fms, and kit.
Collapse
|
56
|
Tissue-specific expression and developmental regulation of the human fgr proto-oncogene. Mol Cell Biol 1989. [PMID: 2538725 DOI: 10.1128/mcb.9.1.92] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we show that c-fgr proto-oncogene expression is limited to normal peripheral blood granulocytes, monocytes, and alveolar macrophages, all of which contain 50 to 100 copies of c-fgr mRNA per cell. The c-fgr RNA molecules in these cells consisted of partially spliced transcripts containing intron 7 and completely spliced molecules capable of encoding the predicted p55 c-fgr protein. The splicing of intron 7 appeared to occur after the splicing of most of the other introns; partially spliced molecules containing intron 7 did not appear to be transported into the cytoplasm. Very low levels of fgr transcripts were also present in U937 promonocytic cells and increased in abundance with 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced differentiation. The level of fgr transcripts began to increase 2 to 4 h after TPA addition, peaked at 8 h, and subsequently declined. Since we found that the half-life of fgr mRNA was longer than 8 h, these changes are best explained by transient transcriptional activation of fgr during TPA-induced differentiation, although nuclear runoff experiments were not sensitive enough to detect this event. Cycloheximide also caused accumulation of c-fgr transcripts in U937 cells; no superinduction was observed when TPA and cycloheximide were added at the same time. Induction by either agent was blocked with actinomycin D. These results demonstrate that the c-fgr gene is expressed in a tissue- and development-specific fashion and suggest that constitutive expression of c-fgr in U937 cells is regulated by a labile transcriptional repressor.
Collapse
|
57
|
Evolution, expression, and chromosomal location of a novel receptor tyrosine kinase gene, eph. Mol Cell Biol 1989. [PMID: 3221865 DOI: 10.1128/mcb.8.9.3770] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Partial sequence analysis of the genomic eph locus revealed that the splicing points of kinase domain-encoding exons were completely distinct from those of the other protein tyrosine kinase members reported, suggesting that this is the earliest evolutionary split within this family. In Northern (RNA) blot analysis, the eph gene was expressed in liver, lung, kidney, and testis of rat, and screening of 25 human cancers of various cell types showed preferential expression in cells of epithelial origin. Overexpression of eph mRNA was found in a hepatoma and a lung cancer without gene amplification. Comparison of cDNA sequences derived from a normal liver and a hepatoma that overproduces eph mRNA demonstrated that two of them were completely identical throughout the transmembrane to the carboxy-terminal portions. Southern blot analysis of DNAs from human-mouse hybrid clones with an eph probe showed that this gene was present on human chromosome 7.
Collapse
|
58
|
Abstract
A chimera containing the coding region for residues 1 to 516 of p60c-src and residues 495 to 509 (the carboxy terminus) of p56lck was constructed and expressed in mouse fibroblasts. The chimeric protein appeared to be phosphorylated and regulated in the same fashion as p60c-src.
Collapse
|
59
|
Abstract
The small (40S) subunit of eukaryotic ribosomes is believed to bind initially at the capped 5'-end of messenger RNA and then migrate, stopping at the first AUG codon in a favorable context for initiating translation. The first-AUG rule is not absolute, but there are rules for breaking the rule. Some anomalous observations that seemed to contradict the scanning mechanism now appear to be artifacts. A few genuine anomalies remain unexplained.
Collapse
Affiliation(s)
- M Kozak
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| |
Collapse
|
60
|
Nasmith PE, Mills GB, Grinstein S. Guanine nucleotides induce tyrosine phosphorylation and activation of the respiratory burst in neutrophils. Biochem J 1989; 257:893-7. [PMID: 2930492 PMCID: PMC1135671 DOI: 10.1042/bj2570893] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Activation of the NADPH oxidase was examined in electrically permeabilized human neutrophils exposed to non-hydrolysable guanine nucleotides. Guanosine 5'-[gamma-thio]triphosphate (GTP[S]) induced a marked increase in the rate of O2 consumption, which was partially resistant to staurosporine, an inhibitor of protein kinase C, under conditions where the response to diacylglycerol was virtually abolished. The respiratory burst elicited by GTP[S] was dependent on the presence of ATP and Mg2+, suggesting involvement of phosphorylation reactions. Accordingly, phosphoprotein formation was greatly stimulated by the guanine nucleotide. The polypeptide phosphorylation pattern induced by GTP[S] was similar to, but not identical with, that observed with diacylglycerol, indicating the activation of kinases other than protein kinase C by the guanine nucleotide. The possible involvement of tyrosine kinases was assessed by immunoblotting using anti-phosphotyrosine antibodies. Treatment of electroporated cells with GTP[S] stimulated the accumulation of tyrosine-phosphorylated proteins. This effect was not induced by diacylglycerol, indicating that tyrosine phosphorylation is not secondary to stimulation of protein kinase C. The results indicate that, in neutrophils, activated G-proteins can stimulate tyrosine kinase and/or inhibit tyrosine phosphatase activity. Changes in the amounts of tyrosine-phosphorylated proteins may signal activation of the respiratory burst.
Collapse
Affiliation(s)
- P E Nasmith
- Division of Cell Biology, Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
61
|
Verderame MF, Kaplan JM, Varmus HE. A mutation in v-src that removes a single conserved residue in the SH-2 domain of pp60v-src restricts transformation in a host-dependent manner. J Virol 1989; 63:338-48. [PMID: 2462061 PMCID: PMC247689 DOI: 10.1128/jvi.63.1.338-348.1989] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The v-src oncogene of Rous sarcoma virus (RSV) is able to transform both avian and mammalian cells, but the mutant allele v-src-L displays a host range dependence for transformation, transforming chicken but not rat cells with wild-type efficiency. This host range restriction can be detected by measuring growth in low serum, saturation density, and anchorage independent growth. In addition, rat cells expressing v-src-L do not form tumors in syngeneic rats or nude mice, but RSV carrying the mutant allele causes tumors in chicks, although at a reduced efficiency and with increased latency. To determine the lesion responsible for this phenotype, we sequenced the entire v-src gene from the parental B77 strain of RSV, as well as the mutant allele. v-src-L is missing 3 nucleotides present in the wild-type parent, RSV B31, eliminating Phe-172, an invariant residue in a conserved region of src-related proteins known as SH-2. The kinase activity of pp60v-src-L was indistinguishable from that of the wild type in chicken cells but was significantly reduced in rat cells as assayed by an in vitro immune complex assay; in vivo phosphorylation of one specific substrate, p36 (calpactin I heavy chain); and total phosphotyrosine-containing proteins. In addition, the pattern of phosphotyrosine-containing proteins in rat cells was qualitatively different when cells containing pp60v-src-L were compared with cells with wild-type pp60v-src, even though both pp60v-src proteins were membrane associated. The data are consistent with a role for the SH-2 region in substrate specificity.
Collapse
Affiliation(s)
- M F Verderame
- Department of Microbiology and Immunology, University of California, San Francisco 94118
| | | | | |
Collapse
|
62
|
Ley TJ, Connolly NL, Katamine S, Cheah MS, Senior RM, Robbins KC. Tissue-specific expression and developmental regulation of the human fgr proto-oncogene. Mol Cell Biol 1989; 9:92-9. [PMID: 2538725 PMCID: PMC362149 DOI: 10.1128/mcb.9.1.92-99.1989] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, we show that c-fgr proto-oncogene expression is limited to normal peripheral blood granulocytes, monocytes, and alveolar macrophages, all of which contain 50 to 100 copies of c-fgr mRNA per cell. The c-fgr RNA molecules in these cells consisted of partially spliced transcripts containing intron 7 and completely spliced molecules capable of encoding the predicted p55 c-fgr protein. The splicing of intron 7 appeared to occur after the splicing of most of the other introns; partially spliced molecules containing intron 7 did not appear to be transported into the cytoplasm. Very low levels of fgr transcripts were also present in U937 promonocytic cells and increased in abundance with 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced differentiation. The level of fgr transcripts began to increase 2 to 4 h after TPA addition, peaked at 8 h, and subsequently declined. Since we found that the half-life of fgr mRNA was longer than 8 h, these changes are best explained by transient transcriptional activation of fgr during TPA-induced differentiation, although nuclear runoff experiments were not sensitive enough to detect this event. Cycloheximide also caused accumulation of c-fgr transcripts in U937 cells; no superinduction was observed when TPA and cycloheximide were added at the same time. Induction by either agent was blocked with actinomycin D. These results demonstrate that the c-fgr gene is expressed in a tissue- and development-specific fashion and suggest that constitutive expression of c-fgr in U937 cells is regulated by a labile transcriptional repressor.
Collapse
Affiliation(s)
- T J Ley
- Department of Medicine, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri 63110
| | | | | | | | | | | |
Collapse
|
63
|
Wasenius VM, Saraste M, Salvén P, Erämaa M, Holm L, Lehto VP. Primary structure of the brain alpha-spectrin. J Cell Biol 1989; 108:79-93. [PMID: 2910879 PMCID: PMC2115353 DOI: 10.1083/jcb.108.1.79] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have determined the nucleotide sequence coding for the chicken brain alpha-spectrin. It is derived both from the cDNA and genomic sequences, comprises the entire coding frame, 5' and 3' untranslated sequences, and terminates in the poly(A)-tail. The deduced amino acid sequence was used to map the domain structure of the protein. The alpha-chain of brain spectrin contains 22 segments of which 20 correspond to the repeat of the human erythrocyte spectrin (Speicher, D. W., and V. T. Marchesi. 1984. Nature (Lond.). 311:177-180.), typically made of 106 residues. These homologous segments probably account for the flexible, rod-like structure of spectrin. Secondary structure prediction suggests predominantly alpha-helical structure for the entire chain. Parts of the primary structure are excluded from the repetitive pattern and they reside in the middle part of the sequence and in its COOH terminus. Search for homology in other proteins showed the presence of the following distinct structures in these nonrepetitive regions: (a) the COOH-terminal part of the molecule that shows homology with alpha-actinin, (b) two typical EF-hand (i.e., Ca2+-binding) structures in this region, (c) a sequence close to the EF-hand that fulfills the criteria for a calmodulin-binding site, and (d) a domain in the middle of the sequence that is homologous to a NH2-terminal segment of several src-tyrosine kinases and to a domain of phospholipase C. These regions are good candidates to carry some established as well as some yet unestablished functions of spectrin. Comparative analysis showed that alpha-spectrin is well conserved across the species boundaries from Xenopus to man, and that the human erythrocyte alpha-spectrin is divergent from the other spectrins.
Collapse
Affiliation(s)
- V M Wasenius
- Department of Pathology, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
The number of gene assignments to human chromosome 20 has increased slowly until recently. Only seven genes and one fragile site were confirmed assignments to chromosome 20 at the Ninth Human Gene Mapping Workshop in September 1987 (HGM9). One fragile site, 13 additional genes, and 10 DNA sequences that identify restriction fragment length polymorphisms (RFLPs), however, were provisionally added to the map at HGM9. Five mutated genes on chromosome 20 have a relation to disease: a mutation in the adenosine deaminase gene results in a deficiency of the enzyme and severe combined immune deficiency; mutations in the gene for the growth hormone releasing factor result in some forms of dwarfism; mutations in the closely linked genes for the hormones arginine vasopressin and oxytocin and their neurophysins are probably responsible for some diabetes insipidus; and mutations in the gene that regulates both alpha-neuraminidase and beta-galactosidase activities determine galactosialidosis. The gene for the prion protein is on chromosome 20; it is related to the infectious agent of kuru, Creutzfeld-Jacob disease, and Gertsmann-Straussler syndrome, although the nature of the relationship is not completely understood. Two genes that code for tyrosine kinases are on the chromosome, SRC1 the proto-oncogene and a gene (HCK) coding for haemopoietic kinase (an src-like kinase), but no direct relation to cancer has been shown for either of these kinases. The significance of non-random loss of chromosome 20 in the malignant diseases non-lymphocytic leukaemia and polycythaemia vera is not understood. Twenty-four additional loci are assigned to the chromosome: five genes that code for binding proteins, one for a light chain of ferritin, genes for three enzymes (inosine triphosphatase, s-adenosylhomocysteine hydrolase, and sterol delta 24-reductase), one for each of a secretory protein and an opiate neuropeptide, a cell surface antigen, two fragile sites, and 10 DNA sequences (one satellite and nine unique) that detect RFLPs.
Collapse
Affiliation(s)
- N E Simpson
- Department of Paediatrics, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
65
|
Brickell PM, Patel M. Structure and expression of c-fgr protooncogene mRNA in Epstein-Barr virus converted cell lines. Br J Cancer 1988; 58:704-9. [PMID: 2852026 PMCID: PMC2246855 DOI: 10.1038/bjc.1988.294] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The c-fgr protooncogene is a member of the c-src family of tyrosine kinases. Expression of c-fgr was studied in a series of Epstein-Barr virus (EBV) negative Burkitt's lymphoma cell lines and their EBV-converted derivatives. Two transcripts, of 2.9 kb and 3.5 kb, were present at dramatically elevated levels following EBV-conversion. The structure of the c-fgr transcripts was studied by the isolation and nucleotide sequence analysis of cDNA clones. This indicated that the c-fgr protein encoded by the mature mRNA would contain 529 amino acids and have a molecular weight of approximately 58,000. The N-terminus of the predicted c-fgr protein has low amino acid homology with the N-termini of other members of this family of proteins, suggesting a cell specific function for the N-terminal domain. Analysis of the c-fgr cDNA clones also revealed the presence of alternative functional polyadenylation signals, although the use of these does not account for the size difference between the two major c-fgr transcripts.
Collapse
Affiliation(s)
- P M Brickell
- Department of Biochemistry, University College and Middlesex School of Medicine, London, UK
| | | |
Collapse
|
66
|
Kornbluth S, Paulson KE, Hanafusa H. Novel tyrosine kinase identified by phosphotyrosine antibody screening of cDNA libraries. Mol Cell Biol 1988; 8:5541-4. [PMID: 2468999 PMCID: PMC365658 DOI: 10.1128/mcb.8.12.5541-5544.1988] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In an attempt to clone protein tyrosine kinases, antiphosphotyrosine antibodies were used to screen lambda gt11 cDNA expression libraries. By this method, a 2.5-kilobase cDNA encoding a novel tyrosine kinase was isolated from a mouse liver cDNA library. This new gene is most closely related to the receptor tyrosine kinases ret, fms, and kit.
Collapse
Affiliation(s)
- S Kornbluth
- Rockefeller University, New York, New York 10021-6399
| | | | | |
Collapse
|
67
|
Ziegler SF, Wilson CB, Perlmutter RM. Augmented expression of a myeloid-specific protein tyrosine kinase gene (hck) after macrophage activation. J Exp Med 1988; 168:1801-10. [PMID: 3141554 PMCID: PMC2189116 DOI: 10.1084/jem.168.5.1801] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein tyrosine kinases are thought to participate in signal transduction pathways in a variety of cell types. Recent studies have identified a new src family protein tyrosine kinase (hck) that is preferentially expressed in myeloid cells. To examine the hypothesis that this kinase may regulate myeloid cell activity, antisera were generated that define the 59-kD product of the hck gene. Functional activation of human cultured macrophages with LPS augmented the expression of hck transcripts and of p59hck, but decreased the level of transcripts encoded by the closely related c-fgr protooncogene. Thus these two structurally similar src family kinases almost certainly subserve distinct functions. Reasoning from the known properties of the src family protein tyrosine kinases, it is likely that the products of these two protooncogenes assist in regulating the behavior of activated phagocytes.
Collapse
Affiliation(s)
- S F Ziegler
- Howard Hughes Medical Institute, University of Washington, Seattle
| | | | | |
Collapse
|
68
|
The first seven amino acids encoded by the v-src oncogene act as a myristylation signal: lysine 7 is a critical determinant. Mol Cell Biol 1988. [PMID: 2841581 DOI: 10.1128/mcb.8.6.2435] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transforming protein of Rous sarcoma virus, pp60v-src, is covalently coupled to myristic acid by an amide linkage to glycine 2. Myristylation promotes the association of pp60v-src with cellular membranes, and this subcellular location is essential for transforming activity. The findings presented here, in conjunction with the previous reports of others, imply that the seventh amino acid encoded by v-src might be important in the myristylation reaction. Replacement of lysine 7 by asparagine greatly reduced the myristylation, membrane association, and transforming activity of pp60v-src. In contrast, substitution of arginine at residue 7 had no effect on any of these properties of pp60v-src. Addition of amino acids 1 to 7 encoded by v-src was sufficient to cause myristylation of a src-pyruvate kinase fusion protein. We conclude that the recognition sequence for myristylation of pp60v-src comprises amino acids 1 to 7 and that lysine 7 is a critical component of this sequence.
Collapse
|
69
|
Maru Y, Hirai H, Yoshida MC, Takaku F. Evolution, expression, and chromosomal location of a novel receptor tyrosine kinase gene, eph. Mol Cell Biol 1988; 8:3770-6. [PMID: 3221865 PMCID: PMC365435 DOI: 10.1128/mcb.8.9.3770-3776.1988] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Partial sequence analysis of the genomic eph locus revealed that the splicing points of kinase domain-encoding exons were completely distinct from those of the other protein tyrosine kinase members reported, suggesting that this is the earliest evolutionary split within this family. In Northern (RNA) blot analysis, the eph gene was expressed in liver, lung, kidney, and testis of rat, and screening of 25 human cancers of various cell types showed preferential expression in cells of epithelial origin. Overexpression of eph mRNA was found in a hepatoma and a lung cancer without gene amplification. Comparison of cDNA sequences derived from a normal liver and a hepatoma that overproduces eph mRNA demonstrated that two of them were completely identical throughout the transmembrane to the carboxy-terminal portions. Southern blot analysis of DNAs from human-mouse hybrid clones with an eph probe showed that this gene was present on human chromosome 7.
Collapse
Affiliation(s)
- Y Maru
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | |
Collapse
|
70
|
Coll J, Dozier C, Saule S, Henry C, Quatannens B, Debuire B, Stehelin D. Mapping by in vitro constructs of the P100gag-mil region, accounting for induction of chicken neuroretina cell proliferation. J Virol 1988; 62:2808-16. [PMID: 3260632 PMCID: PMC253715 DOI: 10.1128/jvi.62.8.2808-2816.1988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The v-mil oncogene of the avian retrovirus MH2 is expressed as a fusion protein with viral gag determinants in infected cells. This P100gag-mil protein accounts for the proliferation of chicken embryo neuroretina cells (CNR) induced by MH2 in vitro. We constructed a series of mutants by in-frame deletions in different parts of the gag and mil domains and tested their ability to induce CNR growth. We show that gag sequences, as well as 200-base-pair 5' mil sequences, were not required to induce such a proliferation. However, gag sequences seem to contribute to a full proliferation of growing CNR. In contrast, deletions in the kinase domain abolish this induction. In particular, by deleting only 9 nucleotides localized around the unique SphI site of v-mil, we produced a totally inactive mutant (BalSp). This mutant directs the synthesis of a v-mil protein lacking the dipeptide Tyr-Leu, which is conserved in almost all the members of the large protein kinase family, and a histidine residue highly conserved in Ser-Thr protein kinase members.
Collapse
Affiliation(s)
- J Coll
- Institut National de la Santé et de la Recherche Médicale U 186, Institut Pasteur de Lille, France
| | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
A chimera containing the coding region for residues 1 to 516 of p60c-src and residues 495 to 509 (the carboxy terminus) of p56lck was constructed and expressed in mouse fibroblasts. The chimeric protein appeared to be phosphorylated and regulated in the same fashion as p60c-src.
Collapse
Affiliation(s)
- A MacAuley
- Department of Cell Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | |
Collapse
|
72
|
The carboxy terminus of pp60c-src is a regulatory domain and is involved in complex formation with the middle-T antigen of polyomavirus. Mol Cell Biol 1988. [PMID: 2454396 DOI: 10.1128/mcb.8.4.1736] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A large number of mutations were introduced into the carboxy-terminal domain of pp60c-src. The level of phosphorylation on Tyr-416 and Tyr-527, the transforming activity (as measured by focus formation on NIH 3T3 cells), kinase activity, and the ability of the mutant pp60c-src to associate with the middle-T antigen of polyomavirus were examined. The results indicate that Tyr-527 is a major carboxy-terminal element responsible for regulating pp60c-src in vivo. A good but not perfect correlation exists between lack of phosphorylation at Tyr-527 and increased phosphorylation at Tyr-416, between elevated phosphorylation on Tyr-416 and activated kinase activity, and between activated kinase activity and transforming activity. Phosphorylation of Tyr-527 was insensitive to the mutation of adjacent residues, indicating that the primary sequence only has a minor role in recognition by kinases or phosphatases which regulate it in vivo. Three mutants which have in common a modified Glu-524 residue were phosphorylated on Tyr-416 and Tyr-527 and were weakly transforming. This suggests that other mechanisms besides complete dephosphorylation of Tyr-527 can lead to increased phosphorylation of Tyr-416 and activation of the transforming activity of pp60c-src. Furthermore, the residues between Asp-518 and Pro-525 were required to form a stable complex with middle-T antigen. The proximity of these sequences to Tyr-527 suggests a model in which middle-T activates pp60c-src by binding directly to this region of the molecular and thereby preventing phosphorylation of Tyr-527. Alternatively, middle-T binding may mediate a conformational change in this region, which in turn induces an alteration in the level of phosphorylation at Tyr-527 and Tyr-416.
Collapse
|
73
|
Kawakami T, Kawakami Y, Aaronson SA, Robbins KC. Acquisition of transforming properties by FYN, a normal SRC-related human gene. Proc Natl Acad Sci U S A 1988; 85:3870-4. [PMID: 3287380 PMCID: PMC280321 DOI: 10.1073/pnas.85.11.3870] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The SRC gene is the prototype for a family of closely related genes whose products have protein-tyrosine kinase activity. We recently described another member of this family, designated FYN, whose cDNA was isolated from normal human fibroblasts. To examine the possible role of FYN as an oncogene, we investigated the effects of FYN overexpression on NIH 3T3 cells. Our findings demonstrate that normal FYN overexpression induces morphologic transformation and anchorage-independent growth. In addition, at relatively low frequency, FYN acquired properties of a dominant-acting oncogene capable of inducing the fully tumorigenic phenotype. Genetic changes associated with the conversion of normal FYN cDNA into a transforming gene with high focus-forming activity were localized to the carboxyl-terminal region of its translational product.
Collapse
Affiliation(s)
- T Kawakami
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| | | | | | | |
Collapse
|
74
|
Kaplan JM, Mardon G, Bishop JM, Varmus HE. The first seven amino acids encoded by the v-src oncogene act as a myristylation signal: lysine 7 is a critical determinant. Mol Cell Biol 1988; 8:2435-41. [PMID: 2841581 PMCID: PMC363442 DOI: 10.1128/mcb.8.6.2435-2441.1988] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The transforming protein of Rous sarcoma virus, pp60v-src, is covalently coupled to myristic acid by an amide linkage to glycine 2. Myristylation promotes the association of pp60v-src with cellular membranes, and this subcellular location is essential for transforming activity. The findings presented here, in conjunction with the previous reports of others, imply that the seventh amino acid encoded by v-src might be important in the myristylation reaction. Replacement of lysine 7 by asparagine greatly reduced the myristylation, membrane association, and transforming activity of pp60v-src. In contrast, substitution of arginine at residue 7 had no effect on any of these properties of pp60v-src. Addition of amino acids 1 to 7 encoded by v-src was sufficient to cause myristylation of a src-pyruvate kinase fusion protein. We conclude that the recognition sequence for myristylation of pp60v-src comprises amino acids 1 to 7 and that lysine 7 is a critical component of this sequence.
Collapse
Affiliation(s)
- J M Kaplan
- Department of Microbiology, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
75
|
Amrein KE, Sefton BM. Mutation of a site of tyrosine phosphorylation in the lymphocyte-specific tyrosine protein kinase, p56lck, reveals its oncogenic potential in fibroblasts. Proc Natl Acad Sci U S A 1988; 85:4247-51. [PMID: 3380789 PMCID: PMC280404 DOI: 10.1073/pnas.85.12.4247] [Citation(s) in RCA: 189] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
p56lck, a cellular tyrosine protein kinase (EC 2.7.1.112) of the src family, is expressed in essentially all T cells and in some B cells. Expression in nonlymphoid cells is observed only rarely. We have found that mutation of a carboxyl-terminal phosphorylation site, tyrosine-505, reveals an oncogenic activity of this protein. Infection of fibroblasts with a retrovirus encoding wild-type p56lck is without consequence. In contrast, infection with a virus encoding the mutant protein leads to greatly increased phosphorylation of cellular proteins on tyrosine, morphological transformation, and anchorage-independent growth. This suggests that the tyrosine protein kinase activity and the oncogenic potential of p56lck are normally suppressed in vivo by phosphorylation of tyrosine-505. Since similar results were obtained previously with an analogous mutant of c-src, our results suggest that the protein kinase activity of all members of the src family of cytoplasmic tyrosine protein kinases will prove to be regulated by tyrosine phosphorylation at a conserved residue near the carboxyl terminus. Because p56lck is normally expressed only in lymphoid cells, it was possible that p56lck would be without effect in other tissues. The transformation of fibroblasts by mutant p56lck shows that this lymphoid protein can interact productively with nonlymphoid polypeptide substrates.
Collapse
Affiliation(s)
- K E Amrein
- Molecular Biology and Virology Laboratory, Salk Institute, San Diego, CA 92138
| | | |
Collapse
|
76
|
Semba K, Nishizawa M, Satoh H, Fukushige S, Yoshida MC, Sasaki M, Matsubara K, Yamamoto T, Toyoshima K. Nucleotide sequence and chromosomal mapping of the human c-yes-2 gene. Jpn J Cancer Res 1988; 79:710-7. [PMID: 3137198 PMCID: PMC5917577 DOI: 10.1111/j.1349-7006.1988.tb02227.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We molecularly characterized the second gene, c-yes-2, of two copies of yes-related genes which we previously found to contain in the human genome. First, nucleotide sequence analysis revealed that the c-yes-2 gene is a pseudogene of the c-yes-1 gene. Second, by using two independent methods, hybridization of both DNAs from sorted chromosomes and metaphase spreads with c-yes-2 DNA, we assigned the c-yes-2 gene to chromosome 22q11.2. This chromosomal localization is consistent with that given in our previous report. The failure of proper mapping in our experiment might have been caused by instability of hybrid cell clones.
Collapse
Affiliation(s)
- K Semba
- Department of Oncology, University of Tokyo
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Neoplastic transformation induced by an activated lymphocyte-specific protein tyrosine kinase (pp56lck). Mol Cell Biol 1988. [PMID: 3352600 DOI: 10.1128/mcb.8.2.540] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The lck proto-oncogene encodes a lymphocyte-specific member of the src family of protein tyrosine kinases. Here we demonstrate that pp56lck is phosphorylated in vivo at a carboxy-terminal tyrosine residue (Tyr-505) analogous to Tyr-527 of pp60c-src. Substitution of phenylalanine for tyrosine at this position resulted in increased phosphorylation of a second tyrosine residue (Tyr-394) and was associated with an increase in apparent kinase activity. In addition, this single point mutation unmasked the oncogenic potential of pp56lck in NIH 3T3 cell transformation assays. Viewed in the context of similar results obtained with pp60c-src, it is likely that the enzymatic activity and transforming ability of all src-family protein tyrosine kinases can be regulated by carboxy-terminal tyrosine phosphorylation. We further demonstrate that overexpression of pp56lck in the murine T-cell lymphoma LSTRA as a result of a retroviral insertion event produces a kinase protein that despite wild-type primary structure is nevertheless hypophosphorylated at Tyr-505. Thus, control of normal growth in this lymphoid cell line may have been abrogated through acquisition of a posttranslationally activated version of pp56lck.
Collapse
|
78
|
Cheng SH, Piwnica-Worms H, Harvey RW, Roberts TM, Smith AE. The carboxy terminus of pp60c-src is a regulatory domain and is involved in complex formation with the middle-T antigen of polyomavirus. Mol Cell Biol 1988; 8:1736-47. [PMID: 2454396 PMCID: PMC363334 DOI: 10.1128/mcb.8.4.1736-1747.1988] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A large number of mutations were introduced into the carboxy-terminal domain of pp60c-src. The level of phosphorylation on Tyr-416 and Tyr-527, the transforming activity (as measured by focus formation on NIH 3T3 cells), kinase activity, and the ability of the mutant pp60c-src to associate with the middle-T antigen of polyomavirus were examined. The results indicate that Tyr-527 is a major carboxy-terminal element responsible for regulating pp60c-src in vivo. A good but not perfect correlation exists between lack of phosphorylation at Tyr-527 and increased phosphorylation at Tyr-416, between elevated phosphorylation on Tyr-416 and activated kinase activity, and between activated kinase activity and transforming activity. Phosphorylation of Tyr-527 was insensitive to the mutation of adjacent residues, indicating that the primary sequence only has a minor role in recognition by kinases or phosphatases which regulate it in vivo. Three mutants which have in common a modified Glu-524 residue were phosphorylated on Tyr-416 and Tyr-527 and were weakly transforming. This suggests that other mechanisms besides complete dephosphorylation of Tyr-527 can lead to increased phosphorylation of Tyr-416 and activation of the transforming activity of pp60c-src. Furthermore, the residues between Asp-518 and Pro-525 were required to form a stable complex with middle-T antigen. The proximity of these sequences to Tyr-527 suggests a model in which middle-T activates pp60c-src by binding directly to this region of the molecular and thereby preventing phosphorylation of Tyr-527. Alternatively, middle-T binding may mediate a conformational change in this region, which in turn induces an alteration in the level of phosphorylation at Tyr-527 and Tyr-416.
Collapse
Affiliation(s)
- S H Cheng
- Laboratory of Cellular Regulation, Integrated Genetics Inc., Framingham, Massachusetts 01701
| | | | | | | | | |
Collapse
|
79
|
Marth JD, Cooper JA, King CS, Ziegler SF, Tinker DA, Overell RW, Krebs EG, Perlmutter RM. Neoplastic transformation induced by an activated lymphocyte-specific protein tyrosine kinase (pp56lck). Mol Cell Biol 1988; 8:540-50. [PMID: 3352600 PMCID: PMC363178 DOI: 10.1128/mcb.8.2.540-550.1988] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The lck proto-oncogene encodes a lymphocyte-specific member of the src family of protein tyrosine kinases. Here we demonstrate that pp56lck is phosphorylated in vivo at a carboxy-terminal tyrosine residue (Tyr-505) analogous to Tyr-527 of pp60c-src. Substitution of phenylalanine for tyrosine at this position resulted in increased phosphorylation of a second tyrosine residue (Tyr-394) and was associated with an increase in apparent kinase activity. In addition, this single point mutation unmasked the oncogenic potential of pp56lck in NIH 3T3 cell transformation assays. Viewed in the context of similar results obtained with pp60c-src, it is likely that the enzymatic activity and transforming ability of all src-family protein tyrosine kinases can be regulated by carboxy-terminal tyrosine phosphorylation. We further demonstrate that overexpression of pp56lck in the murine T-cell lymphoma LSTRA as a result of a retroviral insertion event produces a kinase protein that despite wild-type primary structure is nevertheless hypophosphorylated at Tyr-505. Thus, control of normal growth in this lymphoid cell line may have been abrogated through acquisition of a posttranslationally activated version of pp56lck.
Collapse
Affiliation(s)
- J D Marth
- Howard Hughes Medical Institute, Seattle, Washington
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Holtzman DA, Cook WD, Dunn AR. Isolation and sequence of a cDNA corresponding to a src-related gene expressed in murine hemopoietic cells. Proc Natl Acad Sci U S A 1987; 84:8325-9. [PMID: 3317404 PMCID: PMC299535 DOI: 10.1073/pnas.84.23.8325] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have isolated a murine cDNA that shares extensive homology with genes encoding the src (Rous sarcoma virus oncogene)-related family of protein-tyrosine kinases. The cDNA includes an open reading frame of 1509 base pairs, and conceptual translation predicts a protein of 56 kDa. Blot-hybridization analysis indicates that this src-related gene is expressed in normal macrophages and in cell lines representing both the myeloid and lymphoid B-cell lineages and, accordingly, is designated "bmk" (B cell/myeloid kinase). In addition, bmk mRNA levels increase following the induced differentiation of the murine myelomonocytic leukemic cell line WEHI-3B.
Collapse
Affiliation(s)
- D A Holtzman
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Victoria, Australia
| | | | | |
Collapse
|
81
|
Affiliation(s)
- M J Klemsz
- Cancer Research Center, La Jolla Cancer Research Foundation, CA 92037
| | | | | |
Collapse
|
82
|
Novel protein-tyrosine kinase gene (hck) preferentially expressed in cells of hematopoietic origin. Mol Cell Biol 1987. [PMID: 3453117 DOI: 10.1128/mcb.7.6.2276] [Citation(s) in RCA: 145] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein-tyrosine kinases are implicated in the control of cell growth by virtue of their frequent appearance as products of retroviral oncogenes and as components of growth factor receptors. Here we report the characterization of a novel human protein-tyrosine kinase gene (hck) that is primarily expressed in hematopoietic cells, particularly granulocytes. The hck gene encodes a 505-residue polypeptide that is closely related to pp56lck, a lymphocyte-specific protein-tyrosine kinase. The exon breakpoints of the hck gene, partially defined by using murine genomic clones, demonstrate that hck is a member of the src gene family and has been subjected to strong selection pressure during mammalian evolution. High-level expression of hck transcripts in granulocytes is especially provocative since these cells are terminally differentiated and typically survive in vivo for only a few hours. Thus the hck gene, like other members of the src gene family, appears to function primarily in cells with little growth potential.
Collapse
|
83
|
Ziegler SF, Marth JD, Lewis DB, Perlmutter RM. Novel protein-tyrosine kinase gene (hck) preferentially expressed in cells of hematopoietic origin. Mol Cell Biol 1987; 7:2276-85. [PMID: 3453117 PMCID: PMC365352 DOI: 10.1128/mcb.7.6.2276-2285.1987] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Protein-tyrosine kinases are implicated in the control of cell growth by virtue of their frequent appearance as products of retroviral oncogenes and as components of growth factor receptors. Here we report the characterization of a novel human protein-tyrosine kinase gene (hck) that is primarily expressed in hematopoietic cells, particularly granulocytes. The hck gene encodes a 505-residue polypeptide that is closely related to pp56lck, a lymphocyte-specific protein-tyrosine kinase. The exon breakpoints of the hck gene, partially defined by using murine genomic clones, demonstrate that hck is a member of the src gene family and has been subjected to strong selection pressure during mammalian evolution. High-level expression of hck transcripts in granulocytes is especially provocative since these cells are terminally differentiated and typically survive in vivo for only a few hours. Thus the hck gene, like other members of the src gene family, appears to function primarily in cells with little growth potential.
Collapse
|