51
|
van der Pluijm RW, Amaratunga C, Dhorda M, Dondorp AM. Triple Artemisinin-Based Combination Therapies for Malaria - A New Paradigm? Trends Parasitol 2020; 37:15-24. [PMID: 33060063 DOI: 10.1016/j.pt.2020.09.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 01/31/2023]
Abstract
Recent gains in the fight against malaria are threatened by the emergence and spread of artemisinin and partner drug resistance in Plasmodium falciparum in the Greater Mekong Subregion (GMS). When artemisinins are combined with a single partner drug, all recommended artemisinin-based combination therapies have shown reduced efficacy in some countries in the GMS at some point. Novel drugs are not available for the near future. Triple artemisinin-based combination therapies, combining artemisinins with two currently available partner drugs, will provide one of the last remaining safe and effective treatments for falciparum malaria that can be deployed rapidly in the GMS, whereas their deployment beyond the GMS could delay or prevent the global emergence and spread of resistance to currently available drugs.
Collapse
Affiliation(s)
- Rob W van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chanaki Amaratunga
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; WorldWide Antimalarial Resistance Network - Asia-Pacific Regional Centre, Bangkok, Thailand
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
52
|
D'Alessandro S, Menegola E, Parapini S, Taramelli D, Basilico N. Safety of Artemisinin Derivatives in the First Trimester of Pregnancy: A Controversial Story. Molecules 2020; 25:molecules25153505. [PMID: 32752056 PMCID: PMC7435965 DOI: 10.3390/molecules25153505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
Artemisinin combination therapy (ACT) is recommended by the World Health Organization (WHO) as first line treatment for uncomplicated malaria both in adults and children. During pregnancy, ACT is considered safe only in the second and third trimester, since animal studies have demonstrated that artemisinin derivatives can cause foetal death and congenital malformation within a narrow time window in early embryogenesis. During this period, artemisinin derivatives induce defective embryonic erythropoiesis and vasculogenesis/angiogenesis in experimental models. However, clinical data on the safety profile of ACT in pregnant women have not shown an increased risk of miscarriage, stillbirth, or congenital malformation, nor low birth weight, associated with exposure to artemisinins in the first trimester. Although further studies are needed, the evidence collected up to now is prompting the WHO towards a change in the guidelines for the treatment of uncomplicated malaria, allowing the use of ACT also in the first trimester of pregnancy.
Collapse
Affiliation(s)
- Sarah D'Alessandro
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elena Menegola
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, 20133 Milan, Italy
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milan, Italy
| | - Donatella Taramelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
53
|
González R, Pons-Duran C, Bardají A, Leke RGF, Clark R, Menendez C. Systematic review of artemisinin embryotoxicity in animals: Implications for malaria control in human pregnancy. Toxicol Appl Pharmacol 2020; 402:115127. [PMID: 32622917 DOI: 10.1016/j.taap.2020.115127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
Pregnant women are one of the most susceptible and vulnerable groups to malaria, the most important parasitic disease worldwide. Artemisinin-based combination therapies (ACTs) are recommended for the treatment of uncomplicated malaria in all population groups including pregnant women. However, due to the embryotoxicity observed in animal studies, ACTs have long been contraindicated during the first trimester in pregnant women. Despite the safety concerns raised in pre-clinical studies, recent findings on ACTs's use in pregnant women appear to be reassuring regarding safety and have prompted a revision of malaria treatment guidelines for first trimester of pregnancy. To contribute to the risk-benefit assessment of ACTs, we conducted a systematic literature review of animal studies published between 2007 and 2019, which evaluated the embryotoxic effects of artemisinin and its derivatives among pregnant mammals. Eighteen experimental studies fitted the inclusion criteria. These studies confirmed and further characterized the severe embryolethal and embryotoxic dose-dependent effects of artemisinin and its derivatives when administered during the organogenesis period in rats, rabbits and monkeys. Timing of administration and dosage of the drug were found to be key factors in the appearance of embryo damage. Overall, the translation of the findings of artemisinin derivatives use in animal studies to pregnant women remains disturbing. Thus, a policy change in the use of ACTs during the first trimester in pregnant women for the treatment of uncomplicated malaria does not seem pertinent and if implemented, it should be accompanied by solid pharmacovigilance systems, which are challenging to establish in malaria endemic countries.
Collapse
Affiliation(s)
- Raquel González
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Clara Pons-Duran
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Azucena Bardají
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain; Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Rose G F Leke
- Department of Microbiology, Immunology and Haematology, Faculty of Medicine and Biomedical Sciences, University of Yaounde, Yaounde, Cameroon
| | - Robert Clark
- Artemis Pharmaceutical Research, Jacksonville, Florida, USA
| | - Clara Menendez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain; Manhiça Health Research Center (CISM), Manhiça, Mozambique
| |
Collapse
|
54
|
Ahmad F, Sarder A, Gour R, Karna SKL, Arora P, Kartha KPR, Pokharel YR. Inhibition of prostate cancer cell line (PC-3) by anhydrodihydroartemisinin (ADHA) through caspase-dependent pathway. EXCLI JOURNAL 2020; 19:613-619. [PMID: 32483407 PMCID: PMC7257247 DOI: 10.17179/excli2020-1331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 11/10/2022]
Abstract
Cancer is a generic term for a large group of diseases characterized by the growth of abnormal cells, which is the second leading cause of death globally. To treat cancer, currently, a number of anticancer drugs belonging to various classes chemically are available. The discovery of artemisinin and its derivatives such as artesunate, arteether, and artemether became a milestone in the cure for malaria. Here, we report the anti-cancer property of anhydrodihydroartemisinin (ADHA) - a semisynthetic derivative of artemisinin against prostate cancer cell line PC-3. ADHA was found to be inhibiting growth of PC-3 cells. ADHA was also found to be inhibiting migration of PC-3 cells. At molecular level, ADHA was found to be inhibiting the expression of c-Jun, p-c-Jun, p-Akt and NF-κB and activated caspase 3 and 7. The results show that ADHA like few other artemisinin derivatives hold potential to be used as an anti-cancer agent against prostate cancer cells.
Collapse
Affiliation(s)
- Faiz Ahmad
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| | - Amit Sarder
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| | - Rajesh Gour
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab-160062, India
| | | | - Priya Arora
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| | - K P Ravindranathan Kartha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab-160062, India
| | - Yuba Raj Pokharel
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| |
Collapse
|
55
|
Collins KA, Abd-Rahman AN, Marquart L, Ballard E, Gobeau N, Griffin P, Chalon S, Möhrle JJ, McCarthy JS. Antimalarial activity of artefenomel against asexual parasites and transmissible gametocytes during experimental blood-stage Plasmodium vivax infection. J Infect Dis 2020; 225:1062-1069. [PMID: 32479608 PMCID: PMC8922009 DOI: 10.1093/infdis/jiaa287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background Interventions that effectively target Plasmodium vivax are critical for the future control and elimination of malaria. We conducted a P. vivax volunteer infection study to characterize the antimalarial activity of artefenomel, a new drug candidate. Methods Eight healthy, malaria-naive participants were intravenously inoculated with blood-stage P. vivax and subsequently received a single oral 200-mg dose of artefenomel. Blood samples were collected to monitor the development and clearance of parasitemia, and plasma artefenomel concentration. Mosquito feeding assays were conducted before artefenomel dosing to investigate parasite transmissibility. Results Initial parasite clearance occurred in all participants after artefenomel administration (log10 parasite reduction ratio over 48 hours, 1.67; parasite clearance half-life, 8.67 hours). Recrudescence occurred in 7 participants 11–14 days after dosing. A minimum inhibitory concentration of 0.62 ng/mL and minimum parasiticidal concentration that achieves 90% of maximum effect of 0.83 ng/mL were estimated, and a single 300-mg dose was predicted to clear 109 parasites per milliliter with 95% certainty. Gametocytemia developed in all participants and was cleared 4–8 days after dosing. At peak gametocytemia, 75% of participants were infectious to mosquitoes. Conclusions The in vivo antimalarial activity of artefenomel supports its further clinical development as a treatment for P. vivax malaria. Clinical Trials Registration NCT02573857.
Collapse
Affiliation(s)
| | | | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| | - Emma Ballard
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| | - Nathalie Gobeau
- Medicine for Malaria Venture, Route de Pré-Bois, Meyrin, Switzerland
| | - Paul Griffin
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia.,The University of Queensland, Brisbane QLD, Australia.,Department of Medicine and Infectious Diseases, Mater Hospital and Mater Research, Raymond Terrace, South Brisbane QLD, Australia
| | - Stephan Chalon
- Medicine for Malaria Venture, Route de Pré-Bois, Meyrin, Switzerland
| | - Jörg J Möhrle
- Medicine for Malaria Venture, Route de Pré-Bois, Meyrin, Switzerland
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia.,The University of Queensland, Brisbane QLD, Australia
| |
Collapse
|
56
|
Cheong DHJ, Tan DWS, Wong FWS, Tran T. Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases. Pharmacol Res 2020; 158:104901. [PMID: 32405226 PMCID: PMC7217791 DOI: 10.1016/j.phrs.2020.104901] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Artemisinins are sesquiterpene lactones with a peroxide moiety that are isolated from the herb Artemisia annua. It has been used for centuries for the treatment of fever and chills, and has been recently approved for the treatment of malaria due to its endoperoxidase properties. Progressively, research has found that artemisinins displayed multiple pharmacological actions against inflammation, viral infections, and cell and tumour proliferation, making it effective against diseases. Moreover, it has displayed a relatively safe toxicity profile. The use of artemisinins against different respiratory diseases has been investigated in lung cancer models and inflammatory-driven respiratory disorders. These studies revealed the ability of artemisinins in attenuating proliferation, inflammation, invasion, and metastasis, and in inducing apoptosis. Artemisinins can regulate the expression of pro-inflammatory cytokines, nuclear factor-kappa B (NF-κB), matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF), promote cell cycle arrest, drive reactive oxygen species (ROS) production and induce Bak or Bax-dependent or independent apoptosis. In this review, we aim to provide a comprehensive update of the current knowledge of the effects of artemisinins in relation to respiratory diseases to identify gaps that need to be filled in the course of repurposing artemisinins for the treatment of respiratory diseases. In addition, we postulate whether artemisinins can also be repurposed for the treatment of COVID-19 given its anti-viral and anti-inflammatory properties.
Collapse
Affiliation(s)
- Dorothy H J Cheong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore
| | - Daniel W S Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Fred W S Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Immunology Program, Life Science Institute, National University of Singapore, 117456, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, 138602, Singapore
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore.
| |
Collapse
|
57
|
Secrieru A, Costa ICC, O’Neill PM, Cristiano MLS. Antimalarial Agents as Therapeutic Tools Against Toxoplasmosis-A Short Bridge between Two Distant Illnesses. Molecules 2020; 25:E1574. [PMID: 32235463 PMCID: PMC7181032 DOI: 10.3390/molecules25071574] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022] Open
Abstract
Toxoplasmosis is an infectious disease with paramount impact worldwide, affecting many vulnerable populations and representing a significant matter of concern. Current therapies used against toxoplasmosis are based essentially on old chemotypes, which fail in providing a definitive cure for the disease, placing the most sensitive populations at risk for irreversible damage in vital organs, culminating in death in the most serious cases. Antimalarial drugs have been shown to possess key features for drug repurposing, finding application in the treatment of other parasite-borne illnesses, including toxoplasmosis. Antimalarials provide the most effective therapeutic solutions against toxoplasmosis and make up for the majority of currently available antitoxoplasmic drugs. Additionally, other antiplasmodial drugs have been scrutinized and many promising candidates have emanated in recent developments. Available data demonstrate that it is worthwhile to explore the activity of classical and most recent antimalarial chemotypes, such as quinolines, endoperoxides, pyrazolo[1,5-a]pyrimidines, and nature-derived peptide-based parasiticidal agents, in the context of toxoplasmosis chemotherapy, in the quest for encountering more effective and safer tools for toxoplasmosis control or eradication.
Collapse
Affiliation(s)
- Alina Secrieru
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK;
| | - Inês C. C. Costa
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK;
| | - Maria L. S. Cristiano
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
| |
Collapse
|
58
|
Geroldinger G, Tonner M, Quirgst J, Walter M, De Sarkar S, Machín L, Monzote L, Stolze K, Catharina Duvigneau J, Staniek K, Chatterjee M, Gille L. Activation of artemisinin and heme degradation in Leishmania tarentolae promastigotes: A possible link. Biochem Pharmacol 2020; 173:113737. [PMID: 31786259 PMCID: PMC7116464 DOI: 10.1016/j.bcp.2019.113737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022]
Abstract
Endoperoxides (EPs) appear to be promising drug candidates against protozoal diseases, including malaria and leishmaniasis. Previous studies have shown that these drugs need an intracellular activation to exert their pharmacological potential. The efficiency of these drugs is linked to the extensive iron demand of these intracellular protozoal parasites. An essential step of the activation mechanism of these drugs is the formation of radicals in Leishmania. Iron is a known trigger for intracellular radical formation. However, the activation of EPs by low molecular iron or by heme iron may strongly depend on the structure of the EPs themselves. In this study, we focused on the activation of artemisinin (Art) in Leishmania tarentolae promastigotes (LtP) in comparison to reference compounds. Viability assays in different media in the presence of different iron sources (hemin/fetal calf serum) showed that IC50 values of Art in LtP were modulated by assay conditions, but overall were within the low micromolar range. Low temperature electron paramagnetic resonance (EPR) spectroscopy of LtP showed that Art shifted the redox state of the labile iron pool less than the EP ascaridole questioning its role as a major activator of Art in LtP. Based on the high reactivity of Art with hemin in previous biomimetic experiments, we focused on putative heme-metabolizing enzymes in Leishmania, which were so far not well described. Inhibitors of mammalian heme oxygenase (HO; tin and chromium mesoporphyrin) acted antagonistically to Art in LtP and boosted its IC50 value for several magnitudes. By inductively coupled plasma methods (ICP-OES, ICP-MS) we showed that these inhibitors do not block iron (heme) accumulation, but are taken up and act within LtP. These inhibitors blocked the conversion of hemin to bilirubin in LtP homogenates, suggesting that an HO-like enzyme activity in LtP exists. NADPH-dependent degradation of Art and hemin was highest in the small granule and microsomal fractions of LtP. Photometric measurements in the model Art/hemin demonstrated that hemin requires reduction to heme and that subsequently an Art/heme complex (λmax 474 nm) is formed. EPR spin-trapping in the system Art/hemin revealed that NADPH, ascorbate and cysteine are suitable reductants and finally activate Art to acyl-carbon centered radicals. These findings suggest that heme is a major activator of Art in LtP either via HO-like enzyme activities and/or chemical interaction of heme with Art.
Collapse
Affiliation(s)
- Gerald Geroldinger
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Matthias Tonner
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Judith Quirgst
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Martin Walter
- Department of Environmental Geosciences, University of Vienna, Vienna, Austria
| | - Sritama De Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Laura Machín
- Institute of Pharmacy and Food, Havana University, Havana, Cuba
| | - Lianet Monzote
- Parasitology Department, Institute of Tropical Medicine "Pedro Kouri", Havana, Cuba
| | - Klaus Stolze
- Institute of Animal Nutrition and Functional Plant Compounds, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - J Catharina Duvigneau
- Institute for Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Katrin Staniek
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
59
|
Ma L, Fei H. Antimalarial drug artesunate is effective against chemoresistant anaplastic thyroid carcinoma via targeting mitochondrial metabolism. J Bioenerg Biomembr 2020; 52:123-130. [PMID: 32036542 DOI: 10.1007/s10863-020-09824-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/02/2020] [Indexed: 12/29/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive type of thyroid malignancies and resistant to chemotherapy. Novel therapeutic strategy is required for better management of ATC. In this work, we show that artesunate, an antimalarial drug, is active against chemoresistant ATC cells. Artesunate dose-dependently inhibits growth and induces apoptosis in chemo-sensitive (8505C and KAT-4) and -resistant (8505C-r and KAT-4-r) ATC cells, and acts synergistically with doxorubicin. Using multiple xenograft mouse models, artesunate is active against chemo-sensitive and -resistant ATC cells in vivo at doses that do not cause toxicity in mice. Our mechanism analysis reveals that artesunate acts on ATC cells through suppressing mitochondrial functions without affecting glycolysis, leading to oxidative stress and damage, regardless of whether they are sensitive or resistant to chemotherapy. Interestingly, KAT-4-r cells demonstrate decreased glycolysis, increased mitochondrial membrane potential and mitochondrial respiration compared to KAT-4 cells whereas such phenomenon is not observed between 8505C and 8505C-r cells. This suggests that some but not all ATC cells gain enhanced mitochondrial biogenesis after prolonged exposure to chemotherapy drug, which may explain the different sensitivities of 8505C-r and KAT-4-r to artesunate. Our work demonstrates that artesunate is a potential addition to the treatment armamentarium for ATC, particularly those with chemoresistance. Our findings also highlight the therapeutic value of targeting mitochondria in chemoresistant ATC.
Collapse
Affiliation(s)
- Ling Ma
- Department of Endocrinology, First Affiliated Hospital, First Clinical Medical College, Yangtze University, Jingzhou, Hubei, 434000, China
| | - Honghua Fei
- Department of Endocrinology, People's Hospital of Rizhao, No.126, Taian Road, Rizhao, 276826, Shandong, China.
| |
Collapse
|
60
|
A Single-Dose Combination Study with the Experimental Antimalarials Artefenomel and DSM265 To Determine Safety and Antimalarial Activity against Blood-Stage Plasmodium falciparum in Healthy Volunteers. Antimicrob Agents Chemother 2019; 64:AAC.01371-19. [PMID: 31685476 PMCID: PMC7187626 DOI: 10.1128/aac.01371-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Artefenomel and DSM265 are two new compounds that have been shown to be well tolerated and effective when administered as monotherapy malaria treatment. This study aimed to determine the safety, pharmacokinetics, and pharmacodynamics of artefenomel and DSM265 administered in combination to healthy subjects in a volunteer infection study using the Plasmodium falciparum-induced blood-stage malaria model. Thirteen subjects were inoculated with parasite-infected erythrocytes on day 0 and received a single oral dose of artefenomel and DSM265 on day 7. Cohort 1 (n = 8) received 200 mg artefenomel plus 100 mg DSM265, and cohort 2 (n = 5) received 200 mg artefenomel plus 50 mg DSM265. Blood samples were collected to measure parasitemia, gametocytemia, and artefenomel-DSM265 plasma concentrations. There were no treatment-related adverse events. The pharmacokinetic profiles of artefenomel and DSM265 were similar to those of the compounds when administered as monotherapy, suggesting no pharmacokinetic interactions. A reduction in parasitemia occurred in all subjects following treatment (log10 parasite reduction ratios over 48 h [PRR48] of 2.80 for cohort 1 and 2.71 for cohort 2; parasite clearance half-lives of 5.17 h for cohort 1 and 5.33 h for cohort 2). Recrudescence occurred in 5/8 subjects in cohort 1 between days 19 and 28 and in 5/5 subjects in cohort 2 between days 15 and 22. Low-level gametocytemia (1 to 330 female gametocytes/ml) was detected in all subjects from day 14. The results of this single-dosing combination study support the further clinical development of the use of artefenomel and DSM265 in combination as a treatment for falciparum malaria. (This study has been registered at ClinicalTrials.gov under identifier NCT02389348.).
Collapse
|
61
|
Jourdan J, Walz A, Matile H, Schmidt A, Wu J, Wang X, Dong Y, Vennerstrom JL, Schmidt RS, Wittlin S, Mäser P. Stochastic Protein Alkylation by Antimalarial Peroxides. ACS Infect Dis 2019; 5:2067-2075. [PMID: 31626733 DOI: 10.1021/acsinfecdis.9b00264] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antimalarial peroxides such as the phytochemical artemisinin or the synthetic ozonides arterolane and artefenomel undergo reductive cleavage of the pharmacophoric peroxide bond by ferrous heme, released by parasite hemoglobin digestion. The generated carbon-centered radicals alkylate heme in an intramolecular reaction and proteins in an intermolecular reaction. Here, we determine the proteinaceous alkylation signatures of artemisinin and synthetic ozonides in Plasmodium falciparum using alkyne click chemistry probes to identify target proteins by affinity purification and mass spectrometry-based proteomics. Using stringent controls and purification procedures, we identified 25 P. falciparum proteins that were alkylated by the antimalarial peroxides in a peroxide-dependent manner, but the alkylation patterns were more random than we had anticipated. Moreover, there was little overlap in the alkylation signatures identified in this work and those disclosed in previous studies. Our findings suggest that alkylation of parasite proteins by antimalarial peroxides is likely to be a nonspecific, stochastic process.
Collapse
Affiliation(s)
- Joëlle Jourdan
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Annabelle Walz
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Hugues Matile
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Jianbo Wu
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Jonathan L. Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Remo S. Schmidt
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
62
|
Zuma NH, Aucamp J, N'Da DD. An update on derivatisation and repurposing of clinical nitrofuran drugs. Eur J Pharm Sci 2019; 140:105092. [DOI: 10.1016/j.ejps.2019.105092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
|
63
|
Bergman ME, Davis B, Phillips MA. Medically Useful Plant Terpenoids: Biosynthesis, Occurrence, and Mechanism of Action. Molecules 2019; 24:E3961. [PMID: 31683764 PMCID: PMC6864776 DOI: 10.3390/molecules24213961] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022] Open
Abstract
Specialized plant terpenoids have found fortuitous uses in medicine due to their evolutionary and biochemical selection for biological activity in animals. However, these highly functionalized natural products are produced through complex biosynthetic pathways for which we have a complete understanding in only a few cases. Here we review some of the most effective and promising plant terpenoids that are currently used in medicine and medical research and provide updates on their biosynthesis, natural occurrence, and mechanism of action in the body. This includes pharmacologically useful plastidic terpenoids such as p-menthane monoterpenoids, cannabinoids, paclitaxel (taxol®), and ingenol mebutate which are derived from the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, as well as cytosolic terpenoids such as thapsigargin and artemisinin produced through the mevalonate (MVA) pathway. We further provide a review of the MEP and MVA precursor pathways which supply the carbon skeletons for the downstream transformations yielding these medically significant natural products.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Cellular and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| | - Benjamin Davis
- Department of Cellular and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| | - Michael A Phillips
- Department of Cellular and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
64
|
Tsui KH, Wu MY, Lin LT, Wen ZH, Li YH, Chu PY, Li CJ. Disruption of mitochondrial homeostasis with artemisinin unravels anti-angiogenesis effects via auto-paracrine mechanisms. Theranostics 2019; 9:6631-6645. [PMID: 31588240 PMCID: PMC6771251 DOI: 10.7150/thno.33353] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Rationale: Tumor angiogenesis promotes tumor development, progression, growth, and metastasis. Metronomic chemotherapy involves the frequent administration of low-dose chemotherapeutic agents to block angiogenic activity and reduce side effects. Methods: MDA-MB-231 cells were treated with various concentrations of artemisinin (ART) and vinorelbine (NVB) and the cytotoxic effects of ART/NVB were determined using the CCK-8 assay. Mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential (∆Ψm) and mass were assessed using MitoSOX, TMRE and MitoTracker green staining. Western blot analysis was used to quantify the expression of autophagy-related proteins. Herein, by using bioinformatics analysis and experimental verification, we identified CREB as a master in MDA-MB-231 cells. Results: We found that artemisinin (ART), which exhibits anti-angiogenic and anti-cancer effects via mitochondrial regulation, synergized with vinorelbine (NVB) to inhibit MDA-MB-231 cell proliferation. ART and NVB cooperated to regulate mitochondrial biogenesis. CREB acted as a crucial regulator of PGC1α and VEGF, which played critical roles in NVB-dependent growth factor depletion. Moreover, CREB suppression significantly reversed mitochondrial dysfunction following ART/NVB co-treatment. In addition, combination treatment with ART and NVB significantly suppressed tumor growth in a nude mouse xenograft model, with downregulated CREB and PGC1α expression levels observed in tumor biopsies, in agreement with our in vitro and ex vivo data. Conclusions: These findings support the hypothesis that ART affects cancer and endothelial cells by targeting the auto-paracrine effects of VEGF to suppress mitochondrial biogenesis, angiogenesis, and migration between cancer cells and endothelial cells.
Collapse
Affiliation(s)
- Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Li-Te Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Marine Biomedical Laboratory and Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiun, Taiwan
| | - Yi-Han Li
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei city, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
65
|
Alkandahri MY, Berbudi A, Vicahyani Utami N, Subarnas A. Antimalarial activity of extract and fractions of Castanopsis costata (Blume) A.DC. AVICENNA JOURNAL OF PHYTOMEDICINE 2019; 9:474-481. [PMID: 31516861 PMCID: PMC6727430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 10/28/2022]
Abstract
OBJECTIVE One of the biggest health problems in the world, which occurs in more than 90 countries, is the spread of malaria. Cep-cepan leaves (Castanopsis costata), was empirically used as an antimalarial herb in North Sumatra. Since its use has not been scientifically studied, we investigated the antimalarial activity of extract and fractions of C. costata against Plasmodium berghei ANKA (PbA) in a mouse model. MATERIALS AND METHODS This experimental study was conducted using 32 male Balb/C mice. PbA inoculation was performed intraperitoneally with 106 parasites/mouse. Immediately after parasitemia reach >2% (day 0), the mice were treated orally with daily artesunate (36.4 mg/kg/day) (positive control), ethanolic extract (100, 200, and 400 mg/kg/day), and the fractions of water, ethyl acetate and n-hexane (108 mg/kg/day each) for 5 consecutive days (from day 0 to 4). Parasitemia inhibition was observed to determine the antimalarial activity of each type of C. costata extract and fractions. RESULTS The administration of C. costata leaves ethanolic extract (100, 200, and 400 mg/kg) significantly inhibited the growth of PbA in Balb/C mice (42.66%, 66.2 1% and 80.99 % inhibition, respectively) (p<0.05). Similarly, all C. costata fractions also produced antimalarial activity against PbA with administration of the ethyl acetate fraction presenting the highest activity (79.85 % inhibition). CONCLUSION The C. costata leaves showed antimalarial activity against P bA. However, further studies are necessary to elucidate the underlying mechanisms of this effect and the active compounds involved. Our current study revealed that C.costata could be a potential candidate to be used as a new antimalarial drug.
Collapse
Affiliation(s)
- Maulana Yusuf Alkandahri
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, West Java, Indonesia.
- Equal first author
| | - Afiat Berbudi
- Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Padjadjaran University, Bandung, West Java, Indonesia.
- Equal first author
| | - Novi Vicahyani Utami
- Department of Biomedical Sciences, Pharmacology Division, Faculty of Medicine, Padjadjaran University, Bandung, West Java, Indonesia.
| | - Anas Subarnas
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, West Java, Indonesia.
| |
Collapse
|
66
|
Dang WZ, Li H, Jiang B, Nandakumar KS, Liu KF, Liu LX, Yu XC, Tan HJ, Zhou C. Therapeutic effects of artesunate on lupus-prone MRL/lpr mice are dependent on T follicular helper cell differentiation and activation of JAK2-STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152965. [PMID: 31129432 DOI: 10.1016/j.phymed.2019.152965] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/27/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Anti-malarial drug artesunate (ART), a semi-synthetic derivative of artemisnin, has immunosuppressive effects on several autoimmune diseases, including Systemic lupus erythematosus (SLE), Rheumatoid arthritis (RA), and Colitis. However, molecular mechanisms of ART, especially on follicular helper T cells (Tfh), central players in SLE pathology, are far from clear. PURPOSE The object for this work is to investigate the therapeutic effect of ART on lupus-prone MRL/lpr mice and its regulatory function on Tfh cells. STUDY DESIGN AND METHODS MRL/lpr mice were used to explore therapeutic effects of ART on lupus-prone MRL/lpr mice and its regulatory functions on Tfh cells. Then, experiments of renal function were accomplished using the biochemical kits. Effects of ART on histopathology of kidneys, inflammatory factors and autoantibodies were examined using H&E staining, ELISA and real-time PCR. Flow cytometry and western blot analysis were used to examine effects of ART on Tfh differentiation and Jak2-Stat3 signaling pathway. RESULTS Upon oral administration, ART significantly prolonged the survival of MRL/lpr mice, ameliorated the lupus nephritis symptoms, decreased the levels of anti-dsDNA antibodies deposited in the kidney, and the levels of pathogenic cytokines (IL-6, IFN-γ and IL-21). After ART treatment, T-cell compartment in the spleen of MRL/lpr mice was restored in terms of reduction in the number of Tfh cells and in the maintenance of the ratio of Tfr to follicular regulatory T cells (Tfh). In addition, ART has significantly inhibited the phosphorylation levels of Jak2 and Stat3 in the MRL/lpr mice. CONCLUSION ART showed therapeutic effects on lupus-prone MRL/lpr mice by inhibiting the differentiation of Tfh cells as well as altering the activation status of Jak2-Stat3 signaling cascade.
Collapse
Affiliation(s)
- Wen-Zhen Dang
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hui Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Bing Jiang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pharmacology of Chinese Material Medical, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kutty Selva Nandakumar
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Kai-Fei Liu
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Li-Xin Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiao-Chen Yu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hui-Jing Tan
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Chun Zhou
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China.
| |
Collapse
|
67
|
Martínez-Agramunt V, Peris E. Photocatalytic Properties of a Palladium Metallosquare with Encapsulated Fullerenes via Singlet Oxygen Generation. Inorg Chem 2019; 58:11836-11842. [DOI: 10.1021/acs.inorgchem.9b02097] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Víctor Martínez-Agramunt
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, Castellón E-12071, Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, Castellón E-12071, Spain
| |
Collapse
|
68
|
Wang Y, Li Y, Shang D, Efferth T. Interactions between artemisinin derivatives and P-glycoprotein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152998. [PMID: 31301971 DOI: 10.1016/j.phymed.2019.152998] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Artemisinin was isolated and identified in 1972, which was the starting point for a new era in antimalarial drug therapy. Furthermore, numerous studies have demonstrated that artemisinin and its derivatives exhibit considerable anticancer activity both in vitro, in vivo, and even in clinical Phase I/II trials. P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) is one of the most serious causes of chemotherapy failure in cancer treatment. Interestingly, many artemisinin derivatives exhibit excellent ability to overcome P-gp mediated MDR and even show collateral sensitivity against MDR cancer cells. Furthermore, some artemisinin derivatives show P-gp-mediated MDR reversal activity. Therefore, the interaction between P-gp and artemisinin derivatives is important to develop novel combination treatment protocols with artemisinin derivatives and established anticancer drugs that are P-gp substrates. PURPOSE This systematic review provides an updated overview on the interaction between artemisinin derivatives and P-gp and the effect of artemisinin derivatives on the P-gp expression level. RESULTS Artemisinin derivatives exhibit multi-specific interactions with P-gp. The currently used artemisinin derivatives are not transported by P-gp. However, some of novel synthetized artemisinin derivatives exhibit P-gp substrate properties. Furthermore, many artemisinin derivatives act as P-gp inhibitors, which exhibit the potential to reverse MDR towards clinically used anticancer drugs. CONCLUSION Therefore, studies on the interaction between artemisinin derivatives and P-gp provide important information for the development of novel anti-cancer artemisinin derivatives to reverse P-gp mediated MDR and for the design of rational artemisinin-based combination therapies against cancer.
Collapse
Affiliation(s)
- Yulin Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yongjie Li
- Department of Chinese Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian China; College of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg University 55128 Mainz, Germany.
| |
Collapse
|
69
|
Kannan D, Yadav N, Ahmad S, Namdev P, Bhattacharjee S, Lochab B, Singh S. Pre-clinical study of iron oxide nanoparticles fortified artesunate for efficient targeting of malarial parasite. EBioMedicine 2019; 45:261-277. [PMID: 31255656 PMCID: PMC6642363 DOI: 10.1016/j.ebiom.2019.06.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/01/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Artesunate the most potent antimalarial is widely used for the treatment of multidrug-resistant malaria. The antimalarial cytotoxicity of artesunate has been mainly attributed to its selective, irreversible and iron- radical-mediated damage of parasite biomolecules. In the present research, iron oxide nanoparticle fortified artesunate was tested in P. falciparum and in an experimental malaria mouse model for enhancement in the selectivity and toxicity of artesunate towards parasite. Artesunate was fortified with nontoxic biocompatible surface modified iron oxide nanoparticle which is specially designed and synthesized for the sustained pH-dependent release of Fe2+ within the parasitic food vacuole for enhanced ROS spurt. METHODS Antimalarial efficacy of Iron oxide nanoparticle fortified artesunate was evaluated in wild type and artemisinin-resistant Plasmodium falciparum (R539T) grown in O + ve human blood and in Plasmodium berghei ANKA infected swiss albino mice. Internalization of nanoparticles, the pH-dependent release of Fe2+, production of reactive oxygen species and parasite biomolecule damage by iron oxide nanoparticle fortified artesunate was studied using various biochemical, biophysical, ultra-structural and fluorescence microscopy. For determining the efficacy of ATA-IONP+ART on resistant parasite ring survival assay was performed. RESULTS The nanoparticle fortified artesunate was highly efficient in the 1/8th concentration of artesunate IC50 and led to retarded growth of P. falciparum with significant damage to macromolecules mediated via enhanced ROS production. Similarly, preclinical In vivo studies also signified a radical reduction in parasitemia with ~8-10-fold reduced dosage of artesunate when fortified with iron oxide nanoparticles. Importantly, the ATA-IONP combination was efficacious against artemisinin-resistant parasites. INTERPRETATION Surface coated iron-oxide nanoparticle fortified artesunate can be developed into a potent therapeutic agent towards multidrug-resistant and artemisinin-resistant malaria in humans. FUND: This study is supported by the Centre for Study of Complex Malaria in India funded by the National Institute of Health, USA.
Collapse
Affiliation(s)
- Deepika Kannan
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Nisha Yadav
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Shakeel Ahmad
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India
| | - Pragya Namdev
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India
| | - Souvik Bhattacharjee
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India
| | - Bimlesh Lochab
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India.
| | - Shailja Singh
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India.
| |
Collapse
|
70
|
de Lima DA, Andreotti CEL, Antiquera Ferreira F, Pauli KB, da Silva GR, Ribeiro RDCL, Dalsenter PR, Boechat N, Gasparotto Junior A, Lourenço ELB, Lívero FADR. Safety assessment of MEFAS: an innovative hybrid salt of mefloquine and artesunate for malaria treatment. Drug Chem Toxicol 2019; 44:380-385. [PMID: 31060457 DOI: 10.1080/01480545.2019.1607371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Malaria is a global public health problem that causes approximately 445 000 deaths annually worldwide, especially in underdeveloped countries. Because of the high prevalence and mortality of the disease, new and less toxic therapeutic agents need to be developed, such as MEFAS, a low-cost hybrid salt that consists of artesunate and mefloquine. However, the efficacy of MEFAS has been systematically demonstrated, its safety requires further investigation. This study investigated the acute toxicity of MEFAS and its precursors, artesunate, and mefloquine. A total of 42 female Swiss mice were divided into seven groups (n = 6/group) that were treated orally by gavage with vehicle (filtered water, negative control), MEFAS (50, 500, and 1000 mg/kg), and 1:1 concentrations of artesunate + mefloquine (50, 500, and 1000 mg/kg). Clinical signs of toxicity were observed for 14 d after treatment. On day 15, the animals were weighed, deeply anesthetized with isoflurane, and euthanized for subsequent collection of the liver, spleen, and kidneys. The relative organ weights were determined, followed by histopathological analysis. Artesunate + mefloquine produced toxic effects compared with the negative control group, reflected by changes in clinical signs, relative organ weights, and histopathological alterations. In MEFAS-treated animals, no changes were observed compared with the negative control group. These findings demonstrate that MEFAS is safer than artesunate + mefloquine after acute administration in mice.
Collapse
Affiliation(s)
- Daniely Alves de Lima
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| | | | | | - Karoline Bach Pauli
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| | - Gustavo Ratti da Silva
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| | | | | | - Nubia Boechat
- Laboratory of Organic Synthesis, Institute of Technology and Pharmaceuticals, FIOCRUZ Farmanguinhos/RJ, Rio de Janeiro, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | | | | |
Collapse
|
71
|
Abstract
The first synthesis of myristicyclin A, which was isolated from the Papua New Guinean plant Horsfieldia spicata, is described. The synthesis features acid-mediated hydroarylation reaction to form a dihydrocoumarin moiety, construction of the 2,8-dioxabicyclo[3.3.1]nonane skeleton under acidic conditions, and regioselective Friedel-Crafts acylation at a later stage.
Collapse
Affiliation(s)
- Shinichiro Kubo
- a Department of Applied Biological Chemistry , Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo Japan
| | - Naoki Mori
- a Department of Applied Biological Chemistry , Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo Japan
| | - Hidenori Watanabe
- a Department of Applied Biological Chemistry , Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo Japan
| | - Hirosato Takikawa
- a Department of Applied Biological Chemistry , Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo Japan
| |
Collapse
|
72
|
Mvango S, Matshe WMR, Balogun AO, Pilcher LA, Balogun MO. Nanomedicines for Malaria Chemotherapy: Encapsulation vs. Polymer Therapeutics. Pharm Res 2018; 35:237. [PMID: 30324329 DOI: 10.1007/s11095-018-2517-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/03/2018] [Indexed: 12/29/2022]
Abstract
Malaria is one of the oldest infectious diseases that afflict humans and its history extends back for millennia. It was once prevalent throughout the globe but today it is mainly endemic to tropical regions like sub-Saharan Africa and South-east Asia. Ironically, treatment for malaria has existed for centuries yet it still exerts an enormous death toll. This contradiction is attributed in part to the rapid development of resistance by the malaria parasite to chemotherapeutic drugs. In turn, resistance has been fuelled by poor patient compliance to the relatively toxic antimalarial drugs. While drug toxicity and poor pharmacological potentials have been addressed or ameliorated with various nanomedicine drug delivery systems in diseases like cancer, no clinically significant success story has been reported for malaria. There have been several reviews on the application of nanomedicine technologies, especially drug encapsulation, to malaria treatment. Here we extend the scope of the collation of the nanomedicine research literature to polymer therapeutics technology. We first discuss the history of the disease and how a flurry of scientific breakthroughs in the latter part of the nineteenth century provided scientific understanding of the disease. This is followed by a review of the disease biology and the major antimalarial chemotherapy. The achievements of nanomedicine in cancer and other infectious diseases are discussed to draw parallels with malaria. A review of the current state of the research into malaria nanomedicines, both encapsulation and polymer therapeutics polymer-drug conjugation technologies, is covered and we conclude with a consideration of the opportunities and challenges offered by both technologies.
Collapse
Affiliation(s)
- Sindisiwe Mvango
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa.,Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa
| | - William M R Matshe
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa
| | - Abideen O Balogun
- Department of Medicine, Nottingham University Hospital, Nottingham, UK
| | - Lynne A Pilcher
- Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa
| | - Mohammed O Balogun
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa.
| |
Collapse
|
73
|
Fitness Loss under Amino Acid Starvation in Artemisinin-Resistant Plasmodium falciparum Isolates from Cambodia. Sci Rep 2018; 8:12622. [PMID: 30135481 PMCID: PMC6105667 DOI: 10.1038/s41598-018-30593-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/31/2018] [Indexed: 11/09/2022] Open
Abstract
Artemisinin is the most rapidly effective drug for Plasmodium falciparum malaria treatment currently in clinical use. Emerging artemisinin-resistant parasites pose a great global health risk. At present, the level of artemisinin resistance is still relatively low with evidence pointing towards a trade-off between artemisinin resistance and fitness loss. Here we show that artemisinin-resistant P. falciparum isolates from Cambodia manifested fitness loss, showing fewer progenies during the intra-erythrocytic developmental cycle. The loss in fitness was exacerbated under the condition of low exogenous amino acid supply. The resistant parasites failed to undergo maturation, whereas their drug-sensitive counterparts were able to complete the erythrocytic cycle under conditions of amino acid deprivation. The artemisinin-resistant phenotype was not stable, and loss of the phenotype was associated with changes in the expression of a putative target, Exp1, a membrane glutathione transferase. Analysis of SNPs in haemoglobin processing genes revealed associations with parasite clearance times, suggesting changes in haemoglobin catabolism may contribute to artemisinin resistance. These findings on fitness and protein homeostasis could provide clues on how to contain emerging artemisinin-resistant parasites.
Collapse
|
74
|
Ge WQ. MiR-539 Inhibits Inflammation in Renal Transplant Iscemia-Reperfusion Injury Via Blocking the MyD88/NF-κB Pathway. ACTA ACUST UNITED AC 2018. [DOI: 10.31491/csrc.2018.6.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
75
|
Khamis D, El Mouden C, Kura K, Bonsall MB. Optimal control of malaria: combining vector interventions and drug therapies. Malar J 2018; 17:174. [PMID: 29690874 PMCID: PMC5937842 DOI: 10.1186/s12936-018-2321-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/18/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The sterile insect technique and transgenic equivalents are considered promising tools for controlling vector-borne disease in an age of increasing insecticide and drug-resistance. Combining vector interventions with artemisinin-based therapies may achieve the twin goals of suppressing malaria endemicity while managing artemisinin resistance. While the cost-effectiveness of these controls has been investigated independently, their combined usage has not been dynamically optimized in response to ecological and epidemiological processes. RESULTS An optimal control framework based on coupled models of mosquito population dynamics and malaria epidemiology is used to investigate the cost-effectiveness of combining vector control with drug therapies in homogeneous environments with and without vector migration. The costs of endemic malaria are weighed against the costs of administering artemisinin therapies and releasing modified mosquitoes using various cost structures. Larval density dependence is shown to reduce the cost-effectiveness of conventional sterile insect releases compared with transgenic mosquitoes with a late-acting lethal gene. Using drug treatments can reduce the critical vector control release ratio necessary to cause disease fadeout. CONCLUSIONS Combining vector control and drug therapies is the most effective and efficient use of resources, and using optimized implementation strategies can substantially reduce costs.
Collapse
Affiliation(s)
- Doran Khamis
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| | - Claire El Mouden
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| | - Klodeta Kura
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| | - Michael B. Bonsall
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| |
Collapse
|
76
|
Rocamora F, Zhu L, Liong KY, Dondorp A, Miotto O, Mok S, Bozdech Z. Oxidative stress and protein damage responses mediate artemisinin resistance in malaria parasites. PLoS Pathog 2018; 14:e1006930. [PMID: 29538461 PMCID: PMC5868857 DOI: 10.1371/journal.ppat.1006930] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 03/26/2018] [Accepted: 02/08/2018] [Indexed: 12/16/2022] Open
Abstract
Due to their remarkable parasitocidal activity, artemisinins represent the key components of first-line therapies against Plasmodium falciparum malaria. However, the decline in efficacy of artemisinin-based drugs jeopardizes global efforts to control and ultimately eradicate the disease. To better understand the resistance phenotype, artemisinin-resistant parasite lines were derived from two clones of the 3D7 strain of P. falciparum using a selection regimen that mimics how parasites interact with the drug within patients. This long term in vitro selection induced profound stage-specific resistance to artemisinin and its relative compounds. Chemosensitivity and transcriptional profiling of artemisinin-resistant parasites indicate that enhanced adaptive responses against oxidative stress and protein damage are associated with decreased artemisinin susceptibility. This corroborates our previous findings implicating these cellular functions in artemisinin resistance in natural infections. Genomic characterization of the two derived parasite lines revealed a spectrum of sequence and copy number polymorphisms that could play a role in regulating artemisinin response, but did not include mutations in pfk13, the main marker of artemisinin resistance in Southeast Asia. Taken together, here we present a functional in vitro model of artemisinin resistance that is underlined by a new set of genetic polymorphisms as potential genetic markers.
Collapse
Affiliation(s)
- Frances Rocamora
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kek Yee Liong
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Arjen Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Olivo Miotto
- Medical Research Council (MRC) Centre for Genomics and Global Health, University of Oxford, Oxford, United Kingdom
| | - Sachel Mok
- Columbia University Medical Center, New York, New York, United States of America
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
77
|
Artesunate enhances the therapeutic response of glioma cells to temozolomide by inhibition of homologous recombination and senescence. Oncotarget 2018; 7:67235-67250. [PMID: 27626497 PMCID: PMC5341871 DOI: 10.18632/oncotarget.11972] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/04/2016] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme (GBM), a malignant brain tumor with a dismal prognosis, shows a high level of chemo- and radioresistance and, therefore, attempts to sensitize glioma cells are highly desired. Here, we addressed the question of whether artesunate (ART), a drug currently used in the treatment of malaria, enhances the killing response of glioblastoma cells to temozolomide (TMZ), which is the first-line therapeutic for GBM. We measured apoptosis, necrosis, autophagy and senescence, and the extent of DNA damage in glioblastoma cells. Further, we determined the tumor growth in nude mice. We show that ART enhances the killing effect of TMZ in glioblastoma cell lines and in glioblastoma stem-like cells. The DNA double-strand break level induced by TMZ was not clearly enhanced in the combined treatment regime. Also, we did not observe an attenuation of TMZ-induced autophagy, which is considered a survival mechanism. However, we observed a significant effect of ART on homologous recombination (HR) with downregulation of RAD51 protein expression and HR activity. Further, we found that ART is able to inhibit senescence induced by TMZ. Since HR and senescence are pro-survival mechanisms, its inhibition by ART appears to be a key node in enhancing the TMZ-induced killing response. Enhancement of the antitumor effect of TMZ by co-administration of ART was also observed in a mouse tumor model. In conclusion, the amelioration of TMZ-induced cell death upon ART co-treatment provides a rational basis for a combination regime of TMZ and ART in glioblastoma therapy.
Collapse
|
78
|
Abstract
A marked decrease in malaria-related deaths worldwide has been attributed to the administration of effective antimalarials against Plasmodium falciparum, in particular, artemisinin-based combination therapies (ACTs). Increasingly, ACTs are also used to treat Plasmodium vivax, the second major human malaria parasite. However, resistance to frontline artemisinins and partner drugs is now causing the failure of P. falciparum ACTs in southeast Asia. In this Review, we discuss our current knowledge of markers and mechanisms of resistance to artemisinins and ACTs. In particular, we describe the identification of mutations in the propeller domains of Kelch 13 as the primary marker for artemisinin resistance in P. falciparum and explore two major mechanisms of resistance that have been independently proposed: the activation of the unfolded protein response and proteostatic dysregulation of parasite phosphatidylinositol 3- kinase. We emphasize the continuing challenges and the imminent need to understand mechanisms of resistance to improve parasite detection strategies, develop new combinations to eliminate resistant parasites and prevent their global spread.
Collapse
|
79
|
Ma L, Wei S, Yang B, Ma W, Wu X, Ji H, Sui H, Chen J. Chrysosplenetin inhibits artemisinin efflux in P-gp-over-expressing Caco-2 cells and reverses P-gp/MDR1 mRNA up-regulated expression induced by artemisinin in mouse small intestine. PHARMACEUTICAL BIOLOGY 2017; 55:374-380. [PMID: 27931149 PMCID: PMC6130654 DOI: 10.1080/13880209.2016.1241810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/24/2016] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT CYP3A4 and P-gp together form a highly efficient barrier for orally absorbed drugs and always share the same substrates. Our previous work revealed that chrysosplenetin (CHR) significantly augmented the rat plasma level and anti-malarial efficacy of artemisinin (ART), partially due to the uncompetitive inhibition effect of CHR on rat CYP3A. But the impact of CHR on P-gp is still unknown. OBJECTIVE The present study investigates whether CHR interferes with P-gp-mediated efflux of ART and elucidates the underlying mechanism. MATERIALS AND METHODS P-gp-over-expressing Caco-2 cells were treated with ART (10 μM) or ART-CHR (1:2, 10:20 μM) in ART bidirectional transport experiment. ART concentration was determined by UHPLC-MS/MS method. Healthy male ICR mice were randomly divided into nine groups (n = 6) including negative control (0.5% CMC-Na solution, 13 mL/kg), ART alone (40 mg/kg), verapamil (positive control, 40 mg/kg), ART-verapamil (1:1, 40:40 mg/kg), CHR alone (80 mg/kg), ART-CHR (1:0.1, 40:4 mg/kg), ART-CHR (1:1, 40:40 mg/kg), ART-CHR (1:2, 40:80 mg/kg) and ART-CHR (1:4, 40:160 mg/kg). The drugs were administrated intragastrically for seven consecutive days. MDR1 and P-gp expression levels in mice small intestine were examined by performing RT-PCR and western blot analysis. ABC coupling ATPase activity was also determined. RESULTS After combined with CHR (1:2), Papp (AP-BL) and Papp (BL-AP) of ART changed to 4.29 × 10 - 8 (increased 1.79-fold) and 2.85 × 10 - 8 cm/s (decreased 1.24-fold) from 2.40 × 10 - 8 and 3.54 × 10 - 8 cm/s, respectively. Efflux ratio (PBA/PAB) declined 2.21-fold (p < 0.01) versus to ART alone. ART significantly up-regulated both MDR1 mRNA and P-gp levels compared with vehicle, while CHR in combination ratio of 0:1, 0.1:1, 1:1, 2:1 and 4:1 with ART, reversed them to normal levels as well as negative control (p < 0.05). The ATPase activities in ART-CHR 1:4 and CHR alone groups achieved a slight increase (p < 0.05) when compared with ART alone. DISCUSSION AND CONCLUSION These results confirm that CHR inhibited P-gp activity and reverse the up-regulated P-gp and MDR1 levels induced by ART. It suggested that CHR potentially can be used as a P-gp reversal agent to obstruct ART multidrug resistance.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Artemisinins/metabolism
- Biological Transport
- Blotting, Western
- Caco-2 Cells
- Chromatography, High Pressure Liquid
- Colon/drug effects
- Colon/metabolism
- Drug Interactions
- Drug Resistance, Multiple/drug effects
- Flavonoids/pharmacology
- Humans
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Male
- Mice, Inbred ICR
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tandem Mass Spectrometry
- Transfection
- Up-Regulation
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Liping Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Shijie Wei
- Institute of Clinical Pharmacology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Bei Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Wei Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Xiuli Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Hongyan Ji
- Institute of Clinical Pharmacology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Hong Sui
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Jing Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, PR China
| |
Collapse
|
80
|
A Dynamic Stress Model Explains the Delayed Drug Effect in Artemisinin Treatment of Plasmodium falciparum. Antimicrob Agents Chemother 2017; 61:AAC.00618-17. [PMID: 28993326 PMCID: PMC5700357 DOI: 10.1128/aac.00618-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/28/2017] [Indexed: 01/23/2023] Open
Abstract
Artemisinin resistance constitutes a major threat to the continued success of control programs for malaria, particularly in light of developing resistance to partner drugs. Improving our understanding of how artemisinin-based drugs act and how resistance manifests is essential for the optimization of dosing regimens and the development of strategies to prolong the life span of current first-line treatment options. Recent short-drug-pulse in vitro experiments have shown that the parasite killing rate depends not only on drug concentration but also the exposure time, challenging the standard pharmacokinetic-pharmacodynamic (PK-PD) paradigm in which the killing rate depends only on drug concentration. Here, we introduce a dynamic stress model of parasite killing and show through application to 3D7 laboratory strain viability data that the inclusion of a time-dependent parasite stress response dramatically improves the model's explanatory power compared to that of a traditional PK-PD model. Our model demonstrates that the previously reported hypersensitivity of early-ring-stage parasites of the 3D7 strain to dihydroartemisinin compared to other parasite stages is due primarily to a faster development of stress rather than a higher maximum achievable killing rate. We also perform in vivo simulations using the dynamic stress model and demonstrate that the complex temporal features of artemisinin action observed in vitro have a significant impact on predictions for in vivo parasite clearance. Given the important role that PK-PD models play in the design of clinical trials for the evaluation of alternative drug dosing regimens, our novel model will contribute to the further development and improvement of antimalarial therapies.
Collapse
|
81
|
Synthesis of (−)-okundoperoxide and determination of the absolute configuration of natural (+)-okundoperoxide. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.08.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
82
|
Synthesis and cytotoxic activity of new artemisinin hybrid molecules against human leukemia cells. Bioorg Med Chem 2017; 25:3357-3367. [DOI: 10.1016/j.bmc.2017.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 12/11/2022]
|
83
|
Knockout of the peroxiredoxin 5 homologue PFAOP does not affect the artemisinin susceptibility of Plasmodium falciparum. Sci Rep 2017; 7:4410. [PMID: 28667301 PMCID: PMC5493673 DOI: 10.1038/s41598-017-04277-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/03/2017] [Indexed: 01/07/2023] Open
Abstract
Artemisinins are the current mainstay of malaria chemotherapy. Their exact mode of action is an ongoing matter of debate, and several factors have recently been reported to affect an early stage of artemisinin resistance of the most important human malaria parasite Plasmodium falciparum. Here, we identified a locus on chromosome 7 that affects the artemisinin susceptibility of P. falciparum in a quantitative trait locus analysis of a genetic cross between strains 7G8 and GB4. This locus includes the peroxiredoxin gene PFAOP. However, steady-state kinetic data with recombinant PfAOP do not support a direct interaction between this peroxidase and the endoperoxide artemisinin. Furthermore, neither the overexpression nor the deletion of the encoding gene affected the IC50 values for artemisinin or the oxidants diamide and tert-butyl hydroperoxide. Thus, PfAOP is dispensable for blood stage parasite survival, and the correlation between the artemisinin susceptibility and chromosome 7 is probably based on another gene within the identified locus.
Collapse
|
84
|
Nag S, Dalgaard MD, Kofoed PE, Ursing J, Crespo M, Andersen LO, Aarestrup FM, Lund O, Alifrangis M. High throughput resistance profiling of Plasmodium falciparum infections based on custom dual indexing and Illumina next generation sequencing-technology. Sci Rep 2017; 7:2398. [PMID: 28546554 PMCID: PMC5445084 DOI: 10.1038/s41598-017-02724-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/18/2017] [Indexed: 01/10/2023] Open
Abstract
Genetic polymorphisms in P. falciparum can be used to indicate the parasite's susceptibility to antimalarial drugs as well as its geographical origin. Both of these factors are key to monitoring development and spread of antimalarial drug resistance. In this study, we combine multiplex PCR, custom designed dual indexing and Miseq sequencing for high throughput SNP-profiling of 457 malaria infections from Guinea-Bissau, at the cost of 10 USD per sample. By amplifying and sequencing 15 genetic fragments, we cover 20 resistance-conferring SNPs occurring in pfcrt, pfmdr1, pfdhfr, pfdhps, as well as the entire length of pfK13, and the mitochondrial barcode for parasite origin. SNPs of interest were sequenced with an average depth of 2,043 reads, and bases were called for the various SNP-positions with a p-value below 0.05, for 89.8-100% of samples. The SNP data indicates that artemisinin resistance-conferring SNPs in pfK13 are absent from the studied area of Guinea-Bissau, while the pfmdr1 86 N allele is found at a high prevalence. The mitochondrial barcodes are unanimous and accommodate a West African origin of the parasites. With this method, very reliable high throughput surveillance of antimalarial drug resistance becomes more affordable than ever before.
Collapse
Affiliation(s)
- Sidsel Nag
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 1356, Copenhagen K, Denmark.
- Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen N, Denmark.
| | - Marlene D Dalgaard
- Department of Systems Biology, Technical University of Denmark, Kemitorvet Building 208, 2800, Kgs. Lyngby, Denmark
| | - Poul-Erik Kofoed
- Department of Paediatrics, Kolding Hospital, University of Southern Denmark, 6000, Kolding, Denmark
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Johan Ursing
- Bandim Health Project, Bissau, Guinea-Bissau
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marina Crespo
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 1356, Copenhagen K, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen N, Denmark
| | - Lee O'Brien Andersen
- Department of Microbiology and Infection Control, Statens Serum Institut, 2300, Copenhagen S, Denmark
| | | | - Ole Lund
- Department of Systems Biology, Technical University of Denmark, Kemitorvet Building 208, 2800, Kgs. Lyngby, Denmark
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 1356, Copenhagen K, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen N, Denmark
| |
Collapse
|
85
|
Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacol Res 2016; 117:192-217. [PMID: 27867026 DOI: 10.1016/j.phrs.2016.11.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 01/09/2023]
Abstract
Parasitic protozoan diseases continue to rank among the world's greatest global health problems, which are also common among poor populations. Currently available drugs for treatment present drawbacks, urging the need for more effective, safer, and cheaper drugs. Artemisinin (ART) and its derivatives are some of the most important classes of antimalarial agents originally derived from Artemisia annua L. However, besides the outstanding antimalarial and antischistosomal activities, ART and its derivatives also possess activities against other parasitic protozoa. In this paper we review the activities of ART and its derivatives against protozoan parasites in vitro and in vivo, including Leishmania spp., Trypanosoma spp., Toxoplasma gondii, Neospora caninum, Eimeria tenella, Acanthamoeba castellanii, Naegleria fowleri, Cryptosporidium parvum, Giardia lamblia, and Babesia spp. We conclude that ART and its derivatives may be good alternatives for treating other non-malarial protozoan infections in developing countries, although more studies are necessary before they can be applied clinically.
Collapse
|
86
|
Wilairatana P, Viriyavejakul P, Looareesuwan S, Chongsuphajaisiddhi T. Artesunate suppositories: an effective treatment for severe falciparum malaria in rural areas. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1997.11813216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
87
|
Ocan M, Bwanga F, Okeng A, Katabazi F, Kigozi E, Kyobe S, Ogwal-Okeng J, Obua C. Prevalence of K13-propeller gene polymorphisms among Plasmodium falciparum parasites isolated from adult symptomatic patients in northern Uganda. BMC Infect Dis 2016; 16:428. [PMID: 27543172 PMCID: PMC4992308 DOI: 10.1186/s12879-016-1777-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/11/2016] [Indexed: 11/16/2022] Open
Abstract
Background In the absence of an effective vaccine, malaria treatment and eradication is still a challenge in most endemic areas globally. This is especially the case with the current reported emergence of resistance to artemisinin agents in Southeast Asia. This study therefore explored the prevalence of K13-propeller gene polymorphisms among Plasmodium falciparum parasites in northern Uganda. Methods Adult patients (≥18 years) presenting to out-patients department of Lira and Gulu regional referral hospitals in northern Uganda were randomly recruited. Laboratory investigation for presence of plasmodium infection among patients was done using Plasmodium falciparum exclusive rapid diagnostic test, histidine rich protein-2 (HRP2) (Pf). Finger prick capillary blood from patients with a positive malaria test was spotted on a filter paper Whatman no. 903. The parasite DNA was extracted using chelex resin method and sequenced for mutations in K13-propeller gene using Sanger sequencing. PCR DNA sequence products were analyzed using in DNAsp 5.10.01software, data was further processed in Excel spreadsheet 2007. Results A total of 60 parasite DNA samples were sequenced. Polymorphisms in the K13-propeller gene were detected in four (4) of the 60 parasite DNA samples sequenced. A non-synonymous polymorphism at codon 533 previously detected in Cambodia was found in the parasite DNA samples analyzed. Polymorphisms at codon 522 (non-synonymous) and codon 509 (synonymous) were also found in the samples analyzed. The study found evidence of positive selection in the Plasmodium falciparum population in northern Uganda (Tajima’s D = −1.83205; Fu and Li’s D = −1.82458). Conclusions Polymorphism in the K13-propeller gene previously reported in Cambodia has been found in the Ugandan Plasmodium falciparum parasites. There is need for continuous surveillance for artemisinin resistance gene markers in the country. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1777-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Moses Ocan
- Department of Pharmacology & Therapeutics, Makerere University, P. O. Box 7072, Kampala, Uganda.
| | - Freddie Bwanga
- Department of Medical Microbiology, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Alfred Okeng
- MBN Clinical Laboratories, P. O. Box 35135, Kampala, Uganda
| | - Fred Katabazi
- Department of Medical Microbiology, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Edgar Kigozi
- Department of Medical Microbiology, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Samuel Kyobe
- Department of Medical Microbiology, Makerere University, P. O. Box 7072, Kampala, Uganda
| | | | - Celestino Obua
- Mbarara University of Science and Technology, P. O. Box 1410, Mbarara, Uganda
| |
Collapse
|
88
|
Comparison of the Exposure Time Dependence of the Activities of Synthetic Ozonide Antimalarials and Dihydroartemisinin against K13 Wild-Type and Mutant Plasmodium falciparum Strains. Antimicrob Agents Chemother 2016; 60:4501-10. [PMID: 27161632 PMCID: PMC4958167 DOI: 10.1128/aac.00574-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/03/2016] [Indexed: 12/03/2022] Open
Abstract
Fully synthetic endoperoxide antimalarials, namely, OZ277 (RBx11160; also known as arterolane) and OZ439 (artefenomel), have been approved for marketing or are currently in clinical development. We undertook an analysis of the kinetics of the in vitro responses of Plasmodium falciparum to the new ozonide antimalarials. For these studies we used a K13 mutant (artemisinin resistant) isolate from a region in Cambodia and a genetically matched (artemisinin sensitive) K13 revertant. We used a pulsed-exposure assay format to interrogate the time dependence of the response. Because the ozonides have physicochemical properties different from those of the artemisinins, assay optimization was required to ensure that the drugs were completely removed following the pulsed exposure. Like that of artemisinins, ozonide activity requires active hemoglobin degradation. Short pulses of the ozonides were less effective than short pulses of dihydroartemisinin; however, when early-ring-stage parasites were exposed to drugs for periods relevant to their in vivo exposure, the ozonide antimalarials were markedly more effective.
Collapse
|
89
|
Abstract
Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies.
Collapse
Affiliation(s)
- Alan H. Fairlamb
- Dundee Drug Discovery Unit, Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Neil A. R. Gow
- Aberdeen Fungal Group, Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology, School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Keith R. Matthews
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Andrew P. Waters
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
90
|
Gray KA, Gresty KJ, Chen N, Zhang V, Gutteridge CE, Peatey CL, Chavchich M, Waters NC, Cheng Q. Correlation between Cyclin Dependent Kinases and Artemisinin-Induced Dormancy in Plasmodium falciparum In Vitro. PLoS One 2016; 11:e0157906. [PMID: 27326764 PMCID: PMC4915707 DOI: 10.1371/journal.pone.0157906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/07/2016] [Indexed: 12/02/2022] Open
Abstract
Background Artemisinin-induced dormancy provides a plausible explanation for recrudescence following artemisinin monotherapy. This phenomenon shares similarities with cell cycle arrest where cyclin dependent kinases (CDKs) and cyclins play an important role. Methods Transcription profiles of Plasmodium falciparum CDKs and cyclins before and after dihydroartemisinin (DHA) treatment in three parasite lines, and the effect of CDK inhibitors on parasite recovery from DHA-induced dormancy were investigated. Results After DHA treatment, parasites enter a dormancy phase followed by a recovery phase. During the dormancy phase parasites up-regulate pfcrk1, pfcrk4, pfcyc2 and pfcyc4, and down-regulate pfmrk, pfpk5, pfpk6, pfcrk3, pfcyc1 and pfcyc3. When entering the recovery phase parasites immediately up-regulate all CDK and cyclin genes. Three CDK inhibitors, olomoucine, WR636638 and roscovitine, produced distinct effects on different phases of DHA-induced dormancy, blocking parasites recovery. Conclusions The up-regulation of PfCRK1 and PfCRK4, and down regulation of other CDKs and cyclins correlate with parasite survival in the dormant state. Changes in CDK expression are likely to negatively regulate parasite progression from G1 to S phase. These findings provide new insights into the mechanism of artemisinin-induced dormancy and cell cycle regulation of P. falciparum, opening new opportunities for preventing recrudescence following artemisinin treatment.
Collapse
Affiliation(s)
- Karen-Ann Gray
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Karryn J. Gresty
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nanhua Chen
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - Veronica Zhang
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- School of Biochemistry, University of Queensland, Brisbane, Australia
| | | | - Christopher L. Peatey
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marina Chavchich
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - Norman C. Waters
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- * E-mail: (QC); (NW)
| | - Qin Cheng
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- * E-mail: (QC); (NW)
| |
Collapse
|
91
|
Chen WJ. Honoring antiparasitics: The 2015 Nobel Prize in Physiology or Medicine. Biomed J 2016; 39:93-7. [PMID: 27372164 PMCID: PMC6139675 DOI: 10.1016/j.bj.2016.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/31/2015] [Indexed: 11/16/2022] Open
Abstract
Protozoa and helminths are the two main groups that cause parasitic diseases with a broad spectrum of clinical symptoms. Protozoa are unicellular organisms like the malaria parasite Plasmodium, which is responsible for the majority of deaths associated with parasitic infections. Helminths are alternative parasites that can produce debilitating diseases in hosts, some of which result in chronic infections. The discovery of effective therapeutic drugs is the key to improving health in regions of poverty and poor sanitation where these parasites usually occur. It is very encouraging that the 2015 Nobel Prize in Physiology or Medicine was awarded to Youyou Tu as well as William C. Campbell and Satoshi Õmura for their considerable contributions in discovering artemisinin and avermectin, respectively. Both drugs revolutionized therapies for filariasis and malaria, significantly reducing by large percentages their morbidity and mortality.
Collapse
Affiliation(s)
- Wei-June Chen
- Department of Public Health and Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
92
|
Wang Y, Cao J, Fan Y, Xie Y, Xu Z, Yin Z, Gao L, Wang C. Artemisinin inhibits monocyte adhesion to HUVECs through the NF-κB and MAPK pathways in vitro. Int J Mol Med 2016; 37:1567-75. [PMID: 27122190 PMCID: PMC4866958 DOI: 10.3892/ijmm.2016.2579] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 04/12/2016] [Indexed: 12/15/2022] Open
Abstract
The adhesion of monocytes to human umbilical vein endothelial cells (HUVECs) plays a crucial role in the initiation of atherosclerosis. Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) are two important molecules involved in the adhesion of monocytes to HUVECs. Previous studies have suggested that artemisinin, apart from an anti-malarial agent, also has other effects. In the present study, we found that artemisinin significantly decreased the adhesion of monocytes to tumor necrosis factor-α (TNF-α)-stimulated HUVECs in a dose-dependent manner and suppressed the mRNA and protein level of ICAM-1 and VCAM-1 in the TNF-α-stimulated HUVECs. In addition, the nuclear factor-κB (NF-κB) inhibitor, Bay 11-7082, and mitogen-activated protein kinase (MAPK) inhibitors (SB203580 and U0126) respectively reduced the adhesion of monocytes to TNF-α-stimulated HUVECs, and suppressed ICAM-1 and VCAM-1 expression in TNF-α stimulated HUVECs. Moreover, artemisinin impeded the activation of the NF-κB and MAPK signaling pathways. Furthermore, Bay 11-7082 significantly decreased the phosphorylation of levels extracellular signal-regulated protein kinase (ERK)1/2, p38 and c-Jun N-terminal kinase (JNK). Taken together, the findings of our study indicated that artemisinin blocked monocyte adhesion to TNF-α-stimulated to HUVECs by downregulating ICAM-1 and VCAM-1 expression in the TNF-α-stimulated HUVECs. Artemisinin may thus have potential for use in the protection against the early development of atherosclerotic lesions.
Collapse
Affiliation(s)
- Yue Wang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Jiatian Cao
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yuqi Fan
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yushui Xie
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Zuojun Xu
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Zhaofang Yin
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Lin Gao
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Changqian Wang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
93
|
Zhou Y, Li W, Xiao Y. Profiling of Multiple Targets of Artemisinin Activated by Hemin in Cancer Cell Proteome. ACS Chem Biol 2016; 11:882-8. [PMID: 26854499 DOI: 10.1021/acschembio.5b01043] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antimalarial drug artemisinin is found to have diverse biological activities ranging from anti-inflammatory to anticancer properties; however, as of today, the cellular targets and mechanism of action of this important compound have remained elusive. Here, we report the global protein target profiling of artemisinin in the HeLa cancer cell proteome using a chemical proteomics approach. In the presence of hemin, multiple proteins were targeted by artemisinin probe through covalent modification. Further studies revealed that reducing of hemin to heme by protein thiols was essential for endoperoxide activation and subsequent protein alkylation. Artemisinin may exert its synergistic therapeutic anticancer effects via modulation of a variety of cellular pathways through acting on multiple targets.
Collapse
Affiliation(s)
- Yiqing Zhou
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Weichao Li
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
94
|
Fröhlich T, Çapcı Karagöz A, Reiter C, Tsogoeva SB. Artemisinin-Derived Dimers: Potent Antimalarial and Anticancer Agents. J Med Chem 2016; 59:7360-88. [PMID: 27010926 DOI: 10.1021/acs.jmedchem.5b01380] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The development of new efficient therapeutics for the treatment of malaria and cancer is an important endeavor. Over the past 15 years, much attention has been paid to the synthesis of dimeric structures, which combine two units of artemisinin, as lead compounds of interest. A wide variety of atemisinin-derived dimers containing different linkers demonstrate improved properties compared to their parent compounds (e.g., circumventing multidrug resistance), making the dimerization concept highly compelling for development of efficient antimalarial and anticancer drugs. The present Perspective highlights recent developments on different types of artemisinin-derived dimers and their structural and functional features. Particular emphasis is put on the respective in vitro and in vivo studies, exploring the role of the length and nature of linkers on the activities of the dimers, and considering the future prospects of the dimerization concept for drug discovery.
Collapse
Affiliation(s)
- Tony Fröhlich
- Department of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg , Henkestrasse 42, 91054 Erlangen, Germany
| | - Aysun Çapcı Karagöz
- Department of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg , Henkestrasse 42, 91054 Erlangen, Germany
| | - Christoph Reiter
- Department of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg , Henkestrasse 42, 91054 Erlangen, Germany
| | - Svetlana B Tsogoeva
- Department of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg , Henkestrasse 42, 91054 Erlangen, Germany
| |
Collapse
|
95
|
Cai S, Risinger AL, Nair S, Peng J, Anderson TJC, Du L, Powell DR, Mooberry SL, Cichewicz RH. Identification of Compounds with Efficacy against Malaria Parasites from Common North American Plants. JOURNAL OF NATURAL PRODUCTS 2016; 79:490-8. [PMID: 26722868 PMCID: PMC5558429 DOI: 10.1021/acs.jnatprod.5b00874] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Some of the most valuable antimalarial compounds, including quinine and artemisinin, originated from plants. While these drugs have served important roles over many years for the treatment of malaria, drug resistance has become a widespread problem. Therefore, a critical need exists to identify new compounds that have efficacy against drug-resistant malaria strains. In the current study, extracts prepared from plants readily obtained from local sources were screened for activity against Plasmodium falciparum. Bioassay-guided fractionation was used to identify 18 compounds from five plant species. These compounds included eight lupane triterpenes (1-8), four kaempferol 3-O-rhamnosides (10-13), four kaempferol 3-O-glucosides (14-17), and the known compounds amentoflavone and knipholone. These compounds were tested for their efficacy against multi-drug-resistant malaria parasites and counterscreened against HeLa cells to measure their antimalarial selectivity. Most notably, one of the new lupane triterpenes (3) isolated from the supercritical extract of Buxus sempervirens, the common boxwood, showed activity against both drug-sensitive and -resistant malaria strains at a concentration that was 75-fold more selective for the drug-resistant malaria parasites as compared to HeLa cells. This study demonstrates that new antimalarial compounds with efficacy against drug-resistant strains can be identified from native and introduced plant species in the United States, which traditionally have received scant investigation compared to more heavily explored tropical and semitropical botanical resources from around the world.
Collapse
Affiliation(s)
- Shengxin Cai
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
- Natural Products Discovery Group, and Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - April L. Risinger
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
- Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
| | - Shalini Nair
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | - Jiangnan Peng
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
| | - Timothy J. C. Anderson
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | - Lin Du
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
- Natural Products Discovery Group, and Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Douglas R. Powell
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Susan L. Mooberry
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
- Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
| | - Robert H. Cichewicz
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
- Natural Products Discovery Group, and Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
96
|
Guo S, Cui Y, Wang K, Zhang W, Tan G, Wang B, Cui L. Development of a Specific Monoclonal Antibody for the Quantification of Artemisinin in Artemisia annua and Rat Serum. Anal Chem 2016; 88:2701-6. [PMID: 26822789 PMCID: PMC5045448 DOI: 10.1021/acs.analchem.5b04058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Artemisinin, extracted from Artemisia annua, and its derivatives are important frontline antimalarials. To produce specific antibodies for the detection and quantification of artemisinin, artemisinin was transformed to 9-hydroxyartemisinin by microbial fermentation, which was used to prepare a 9-succinate artemisinin hapten for conjugation with ovalbumin. A monoclonal antibody (mAb), designated as 3H7A10, was selected from hybridoma cell lines which showed high specificity to artemisinin. No competitive inhibition was observed with artesunate, dihydroartemisinin, and artemether for up to 20,000 ng mL(-1). An indirect competitive enzyme-linked immunosorbent assay (icELISA) was developed, which showed a concentration causing 50% of inhibition (IC50) for artemisinin as 2.6 ng mL(-1) and a working range of 0.6-11.5 ng mL(-1). The icELISA was applied for the quantification of artemisinin in crude extracts of wild A. annua and the study of pharmacokinetics of artemisinin in rat serum after intraperitoneal injection. The results were highly correlated with those determined by HPLC-UV analysis (R(2) = 0.9919). In comparison with reported antiartemisinin mAbs which have broad cross-reactivity with other artemisinin derivatives, the high specificity of 3H7A10 for artemisinin will enable development of methods for quantification of artemisinin in Artemisia plants and antimalarial drugs such as Arco and for pharmacokinetic studies.
Collapse
Affiliation(s)
- Suqin Guo
- College of Agronomy and Biotechnology, China Agricultural University , 100193 Beijing, China
| | - Yongliang Cui
- College of Agronomy and Biotechnology, China Agricultural University , 100193 Beijing, China
| | - Kunbi Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University , Kunming, Yunnan 650201, China
| | - Wei Zhang
- College of Agronomy and Biotechnology, China Agricultural University , 100193 Beijing, China
| | - Guiyu Tan
- College of Agronomy and Biotechnology, China Agricultural University , 100193 Beijing, China
| | - Baomin Wang
- College of Agronomy and Biotechnology, China Agricultural University , 100193 Beijing, China
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
97
|
Jourdan J, Matile H, Reift E, Biehlmaier O, Dong Y, Wang X, Mäser P, Vennerstrom JL, Wittlin S. Monoclonal Antibodies That Recognize the Alkylation Signature of Antimalarial Ozonides OZ277 (Arterolane) and OZ439 (Artefenomel). ACS Infect Dis 2016; 2:54-61. [PMID: 26819968 PMCID: PMC4718528 DOI: 10.1021/acsinfecdis.5b00090] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 11/29/2022]
Abstract
![]()
The
singular structure of artemisinin, with its embedded 1,2,4-trioxane
heterocycle, has inspired the discovery of numerous semisynthetic
artemisinin and structurally diverse synthetic peroxide antimalarials,
including ozonides OZ277 (arterolane) and OZ439 (artefenomel). Despite
the critical importance of artemisinin combination therapies (ACTs),
the precise mode of action of peroxidic antimalarials is not fully
understood. However, it has long been proposed that the peroxide bond
in artemisinin and other antimalarial peroxides undergoes reductive
activation by ferrous heme released during hemoglobin digestion to
produce carbon-centered radicals that alkylate heme and parasite proteins.
To probe the mode of action of OZ277 and OZ439, this paper now describes
initial studies with monoclonal antibodies that recognize the alkylation
signature (sum of heme and protein alkylation) of these synthetic
peroxides. Immunofluorescence experiments conducted with ozonide-treated
parasite cultures showed that ozonide alkylation is restricted to
the parasite, as no signal was found in the erythrocyte or its membrane.
In Western blot experiments with ozonide-treated Plasmodium
falciparum malaria parasites, distinct protein bands
were observed. Significantly, no protein bands were detected in parallel
Western blot experiments performed with lysates from ozonide-treated Babesia divergens, parasites that also proliferate
inside erythrocytes but, in contrast to P. falciparum, do not catabolize hemoglobin. However, subsequent immunoprecipitation
experiments with these antibodies failed to identify the P.
falciparum proteins alkylated by OZ277 and OZ439. To the
best of the authors’ knowledge, this shows for the first time
that antimalarial ozonides, such as the artemisinins, alkylate proteins
in P. falciparum.
Collapse
Affiliation(s)
- Joëlle Jourdan
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Hugues Matile
- F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Ellen Reift
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Oliver Biehlmaier
- Imaging Core Facility, Biozentrum, University of Basel, CH-4003 Basel, Switzerland
| | - Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical
Center, Omaha, Nebraska 68198, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical
Center, Omaha, Nebraska 68198, United States
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Jonathan L. Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical
Center, Omaha, Nebraska 68198, United States
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| |
Collapse
|
98
|
Wei S, Ji H, Yang B, Ma L, Bei Z, Li X, Dang H, Yang X, Liu C, Wu X, Chen J. Impact of chrysosplenetin on the pharmacokinetics and anti-malarial efficacy of artemisinin against Plasmodium berghei as well as in vitro CYP450 enzymatic activities in rat liver microsome. Malar J 2015; 14:432. [PMID: 26537009 PMCID: PMC4632357 DOI: 10.1186/s12936-015-0929-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 10/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Artemisinin (ART) is an efficacious and safe anti-malarial drugs but has low oral bioavailability and auto-induction profiles during multiple dosing. The pharmacokinetic disadvantages have been found to partially depend on the induction of cytochrome P-450 enzymes by ART and resulted in the therapeutic failure due to insufficient drug levels. The present study, therefore, investigated the impacts of chrysosplenetin (CHR), a polymethoxylated flavonoid from Artemisia annua, on the pharmacokinetics and the anti-malarial efficacy of ART against Plasmodium berghei. The inhibition of CHR on enzymatic activity of CYP1A2, CYP2A, CYP2C19, CYP2D6, CYP2E1, and CYP3A in rat liver microsome was also investigated. IC50, Km, Ki, and inhibitory type of CHR were respectively calculated. METHODS Twenty rats were randomly divided into four groups and received three-day oral doses of ART in absence or presence of CHR (in ratio of 1:0, 1:1, 1:2, and 1:4, respectively). Plasma samples were separately harvested for ART pharmacokinetics analysis using a valid liquid chromatography tandem mass spectrometric (LC-MS/MS) method. Female Kunming mice were inoculated by P. berghei K173 strain and pre-exposed to three-day oral administration of ART with or without CHR as pharmacokinetics protocol. Giemsa staining method was applied to calculate percent parasitaemia (%) and inhibition (%). In vitro rat liver microsomal model was employed to elucidate the inhibitory effect of CHR on CYP1A2, CYP2A, CYP2C19, CYP2D6, CYP2E1, and CYP3A. RESULTS The AUC0-t, Cmax, and t 1/2 of ART increased significantly (P < 0.05 or P < 0.01) as well as declined CLz (P < 0.05 or P < 0.01) after three-day oral doses of ART in presence of CHR (1:2) when compared with ART alone. Also, parasitaemia (%) remarkably attenuated 1.59 folds with 1.63-fold augmented inhibition (%) when the ratio between ART and CHR reached 1:2. CHR itself had no anti-malarial efficacy (P > 0.05). CHR inhibited in vitro activity of CYP1A2 and CYP2C19 (P < 0.01, IC50 = 4.61 and 6.23 μM) in a concentration-response manner. The inhibition did not emerge on CYP2E1 and CYP3A until the CHR concentration exceeded 4.0 μM (P < 0.01, IC50 = 28.17 and 3.38 µM). CHR has no impact on CYP 2A and CYP2D6 (P > 0.05). The inhibition types of CHR on CYP1A2 and CYP3A belonged to noncompetitive and uncompetitive, respectively. CONCLUSIONS Co-administration of ART with CHR in ratio of 1:2 achieved a synergic anti-malarial effect partly because of the noncompetitive or uncompetitive inhibition of CHR of drug-metabolism enzymes, especially CYP3A which is closely related to the auto-induction of ART.
Collapse
Affiliation(s)
- Shijie Wei
- School of Pharmacy, Ningxia Medical University, 1160# Shengli Street, Xingqing District, Yinchuan, 750004, People's Republic of China. .,Institute of Clinical Pharmacology, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China.
| | - Hongyan Ji
- Institute of Clinical Pharmacology, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China.
| | - Bei Yang
- School of Pharmacy, Ningxia Medical University, 1160# Shengli Street, Xingqing District, Yinchuan, 750004, People's Republic of China.
| | - Liping Ma
- School of Pharmacy, Ningxia Medical University, 1160# Shengli Street, Xingqing District, Yinchuan, 750004, People's Republic of China.
| | - Zhuchun Bei
- Institute of Epidemic Disease, Academy of Military Medical Sciences, Beijing, People's Republic of China.
| | - Xiang Li
- School of Pharmacy, Ningxia Medical University, 1160# Shengli Street, Xingqing District, Yinchuan, 750004, People's Republic of China.
| | - Hongwan Dang
- Institute of Clinical Pharmacology, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China.
| | - Xiaoying Yang
- Institute of Clinical Pharmacology, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China.
| | - Cheng Liu
- School of Pharmacy, Ningxia Medical University, 1160# Shengli Street, Xingqing District, Yinchuan, 750004, People's Republic of China.
| | - Xiuli Wu
- School of Pharmacy, Ningxia Medical University, 1160# Shengli Street, Xingqing District, Yinchuan, 750004, People's Republic of China.
| | - Jing Chen
- School of Pharmacy, Ningxia Medical University, 1160# Shengli Street, Xingqing District, Yinchuan, 750004, People's Republic of China.
| |
Collapse
|
99
|
O'Neill JF, Johnston RC, Halferty L, Hanna REB, Brennan GP, Fairweather I. A comparative study on the impact of two artemisinin derivatives, artemether and artesunate, on the female reproductive system of Fasciola hepatica. Vet Parasitol 2015; 211:182-94. [PMID: 26093822 DOI: 10.1016/j.vetpar.2015.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/22/2015] [Accepted: 05/30/2015] [Indexed: 10/23/2022]
Abstract
An in vivo study in the laboratory rat model has been carried out to monitor changes to the female reproductive system in adult Fasciola hepatica following treatment with the artemisinins, artemether and artesunate. Rats infected with the triclabendazole (TCBZ)-resistant Sligo isolate were dosed orally with artemether at a concentration of 200mg/kg and flukes recovered at 24, 48 and 72 h post-treatment (pt). Rats infected with the TCBZ-resistant Oberon isolate were dosed orally with artesunate at a concentration of 200mg/kg and flukes recovered 24, 48, 72 and 96 h pt. The flukes were processed for histological and transmission electron microscope (TEM) examination of the uterus, Mehlis' gland, ovary and vitellaria. After treatment with artemether, egg production had become abnormal by 72 h pt, with free vitelline cells and masses of shell protein material within the uterus; spermatozoa were absent. The Mehlis' gland and ovary retained a normal morphology over the 3-day period. A change in the cell population in the vitelline follicles was seen at 48 h pt, with a decline in the number of immature cells. This became more marked by 72 h and the follicles became progressively vacuolated over the 3-day period. At the TEM level, there were changes in the immature vitelline cells at 24h pt, as evidenced by a decrease in shell protein production and the presence of lipid droplets and abnormal mitochondria. Spaces in the follicles separated the cells from each other. The changes became progressively more severe with time, so that, by 72 h pt, the follicles were very disrupted, containing cells in the advanced stages of apoptotic breakdown. In extreme cases, the follicles were scarcely recognisable and had become filled with cellular debris. Fine structural changes to the vitelline cells induced by artesunate treatment were similar to those described for artemether, but generally occurred more quickly and were greater; this was particularly true of the swelling of the ger cisternae. Overall, the results have shown that artemisinin treatment has a severe impact on egg production by TCBZ-resistant flukes, an effect that is mediated by disruption of the vitelline cells.
Collapse
Affiliation(s)
- J F O'Neill
- Parasite Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - R C Johnston
- Parasite Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - L Halferty
- Parasite Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - R E B Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast BT4 3SD, United Kingdom
| | - G P Brennan
- Parasite Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - I Fairweather
- Parasite Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom.
| |
Collapse
|
100
|
Yamthe LRT, Fokou PVT, Mbouna CDJ, Keumoe R, Ndjakou BL, Djouonzo PT, Mfopa AN, Legac J, Tsabang N, Gut J, Rosenthal PJ, Boyom FF. Extracts from Annona Muricata L. and Annona Reticulata L. (Annonaceae) Potently and Selectively Inhibit Plasmodium Falciparum. MEDICINES 2015; 2:55-66. [PMID: 28930201 PMCID: PMC5533161 DOI: 10.3390/medicines2020055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 11/16/2022]
Abstract
The aim of this work was to screen extracts from Annona muricata and Annona reticulata in vitro against Plasmodium falciparum. Crude ethanolic extracts, methylene chloride fractions, aqueous fractions, subfractions and isolated compounds (stigmasterol-3-O-β-d-glucopyranoside, lichexanthone, gallic acid and β-sitosterol-3-O-β-d-glucopyranoside) were tested for cytotoxicity on erythrocytes and Human Foreskin Fibroblasts cells and against the W2 strain of P. falciparum in culture. Results indicated that none of the extracts was cytotoxic at concentrations up to 10 µg/mL. Most of the extracts, fractions and subfractions inhibited the growth of P. falciparum with IC50 values ranging from 0.07 to 3.46 µg/mL. The most potent was the subfraction 30 from A. muricata stem bark (IC50 = 0.07 µg/mL) with a selectivity index of ˃ 142. Subfraction 3 from A. muricata root also exhibited very good activity (IC50 = 0.09 µg/mL) with a high selectivity index (SI ˃ 111). Amongst the isolated compounds, only gallic acid showed activity with IC50 of 3.32 µg/mL and SI > 10. These results support traditional claims for A. muricata and A. reticulata in the treatment of malaria. Given their limited cytotoxicity profile, their extracts qualify as promising starting points for antimalarial drug discovery.
Collapse
Affiliation(s)
- Lauve Rachel Tchokouaha Yamthe
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
- Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 6163, Yaoundé, Cameroon.
| | - Patrick Valere Tsouh Fokou
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Cedric Derick Jiatsa Mbouna
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Rodrigue Keumoe
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Bruno Lenta Ndjakou
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1. P.O. Box 47, Yaoundé, Cameroon.
| | - Paul Toukam Djouonzo
- Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 6163, Yaoundé, Cameroon.
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Alvine Ngoutane Mfopa
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Jennifer Legac
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA 94943, USA.
| | - Nole Tsabang
- Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 6163, Yaoundé, Cameroon.
| | - Jiri Gut
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA 94943, USA.
| | - Philip J Rosenthal
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA 94943, USA.
| | - Fabrice Fekam Boyom
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|