51
|
Lee KY, Atwill ER, Pitesky M, Huang A, Lavelle K, Rickard M, Shafii M, Hung-Fan M, Li X. Antimicrobial Resistance Profiles of Non-typhoidal Salmonella From Retail Meat Products in California, 2018. Front Microbiol 2022; 13:835699. [PMID: 35369434 PMCID: PMC8966841 DOI: 10.3389/fmicb.2022.835699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
Non-typhoidal Salmonella remains a leading cause of foodborne illness in the United States, with food animal products serving as a key conduit for transmission. The emergence of antimicrobial resistance (AMR) poses an additional public health concern warranting better understanding of its epidemiology. In this study, 958 retail meat samples collected from January to December 2018 in California were tested for Salmonella. From multivariable logistic regression, there was a 6.47 (90% CI 2.29–18.27), 3.81 (90% CI 1.29–11.27), and 3.12 (90% CI 1.03–9.45) higher odds of contamination in samples purchased in the fall, spring, and summer than in winter months, respectively, and a 3.70 (90% CI 1.05–13.07) higher odds in ground turkey compared to pork samples. Fourteen distinct serotypes and 17 multilocus sequence types were identified among the 43 isolates recovered, with S. Kentucky (25.58%), S. Reading (18.60%), S. Infantis (11.63%), and S. Typhimurium (9.30%) comprising the top serotypes. High prevalence of resistance was observed in retail chicken isolates for streptomycin (12/23, 52.17%) and tetracycline (12/23, 52.17%), in ground turkey isolates for ampicillin (8/15, 53.34%), and in ground beef isolates for nalidixic acid (2/3, 66.67%). Fourteen (32.56%) were susceptible to all antimicrobials tested, 11 (25.58%) were resistant to one drug, and 12 (27.91%) were resistant to two drugs. The remaining six isolates (13.95%) were multidrug-resistant (MDR, ≥3 drug classes) S. Infantis (n = 4), S. Reading (n = 1), and S. Kentucky (n = 1). Whole-genome sequencing (WGS) identified 16 AMR genes and 17 plasmid replicons, including blaCTX–M–65 encoding ceftriaxone resistance and a D87Y mutation in gyrA conferring resistance to nalidixic acid and reduced susceptibility to ciprofloxacin. The IncFIB(pN55391) replicon previously identified in connection to the worldwide dissemination of pESI-like mega plasmid carriage in an emerged S. Infantis clone was detected in four of the six MDR isolates. Genotypes from WGS showed high concordance with phenotype with overall sensitivity and specificity of 95.31% and 100%, respectively. This study provides insight into the AMR profiles of a diversity of Salmonella serotypes isolated from retail meat products in California and highlights the value of routine retail food surveillance for the detection and characterization of AMR in foodborne pathogens.
Collapse
Affiliation(s)
- Katie Yen Lee
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| | - Edward Robert Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Maurice Pitesky
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Anny Huang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Kurtis Lavelle
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| | - Maribel Rickard
- Contra Costa County Public Health Laboratory, Martinez, CA, United States
| | - Marzieh Shafii
- Contra Costa County Public Health Laboratory, Martinez, CA, United States
| | - Melody Hung-Fan
- Contra Costa County Public Health Laboratory, Martinez, CA, United States
| | - Xunde Li
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| |
Collapse
|
52
|
Waddington C, Carey ME, Boinett CJ, Higginson E, Veeraraghavan B, Baker S. Exploiting genomics to mitigate the public health impact of antimicrobial resistance. Genome Med 2022; 14:15. [PMID: 35172877 PMCID: PMC8849018 DOI: 10.1186/s13073-022-01020-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major global public health threat, which has been largely driven by the excessive use of antimicrobials. Control measures are urgently needed to slow the trajectory of AMR but are hampered by an incomplete understanding of the interplay between pathogens, AMR encoding genes, and mobile genetic elements at a microbial level. These factors, combined with the human, animal, and environmental interactions that underlie AMR dissemination at a population level, make for a highly complex landscape. Whole-genome sequencing (WGS) and, more recently, metagenomic analyses have greatly enhanced our understanding of these processes, and these approaches are informing mitigation strategies for how we better understand and control AMR. This review explores how WGS techniques have advanced global, national, and local AMR surveillance, and how this improved understanding is being applied to inform solutions, such as novel diagnostic methods that allow antimicrobial use to be optimised and vaccination strategies for better controlling AMR. We highlight some future opportunities for AMR control informed by genomic sequencing, along with the remaining challenges that must be overcome to fully realise the potential of WGS approaches for international AMR control.
Collapse
Affiliation(s)
- Claire Waddington
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Megan E Carey
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Ellen Higginson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Balaji Veeraraghavan
- Department of Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK. .,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
53
|
Bengtsson RJ, Simpkin AJ, Pulford CV, Low R, Rasko DA, Rigden DJ, Hall N, Barry EM, Tennant SM, Baker KS. Pathogenomic analyses of Shigella isolates inform factors limiting shigellosis prevention and control across LMICs. Nat Microbiol 2022; 7:251-261. [PMID: 35102306 PMCID: PMC8813619 DOI: 10.1038/s41564-021-01054-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
Shigella spp. are the leading bacterial cause of severe childhood diarrhoea in low- and middle-income countries (LMICs), are increasingly antimicrobial resistant and have no widely available licenced vaccine. We performed genomic analyses of 1,246 systematically collected shigellae sampled from seven countries in sub-Saharan Africa and South Asia as part of the Global Enteric Multicenter Study (GEMS) between 2007 and 2011, to inform control and identify factors that could limit the effectiveness of current approaches. Through contemporaneous comparison among major subgroups, we found that S. sonnei contributes ≥6-fold more disease than other Shigella species relative to its genomic diversity, and highlight existing diversity and adaptative capacity among S. flexneri that may generate vaccine escape variants in <6 months. Furthermore, we show convergent evolution of resistance against ciprofloxacin, the current WHO-recommended antimicrobial for the treatment of shigellosis, among Shigella isolates. This demonstrates the urgent need to integrate existing genomic diversity into vaccine and treatment plans for Shigella, providing a framework for the focused application of comparative genomics to guide vaccine development, and the optimization of control and prevention strategies for other pathogens relevant to public health policy considerations.
Collapse
Affiliation(s)
- Rebecca J Bengtsson
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK
| | - Adam J Simpkin
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Systems Biology, The University of Liverpool, Liverpool, UK
| | - Caisey V Pulford
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK
- Gastrointestinal Infections and Food Safety (One Health), United Kingdom Health Security Agency, London, UK
| | - Ross Low
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - David A Rasko
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel J Rigden
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Systems Biology, The University of Liverpool, Liverpool, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Eileen M Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kate S Baker
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK.
| |
Collapse
|
54
|
Cunningham-Oakes E, Trivett H. Applied Bioinformatics and Public Health Microbiology: challenges, discoveries and innovations during a pandemic. Microb Genom 2022; 8:000757. [PMID: 35098917 PMCID: PMC8914353 DOI: 10.1099/mgen.0.000757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/06/2021] [Indexed: 10/31/2022] Open
Abstract
The eighth Applied Bioinformatics and Public Health Microbiology (ABPHM) conference showcased the recent acceleration of bioinformatic approaches used in public health settings. This included approaches for the surveillance of infectious diseases, understanding microbial evolution and diversity and pathogen interactions. Overall, the meeting highlighted the importance of data-driven approaches used by scientists during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Edward Cunningham-Oakes
- Health Protection Research Unit in Gastrointestinal Infections, HPRU Project Team, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool L69 7BE, UK
- Infection Biology and Microbiomes, Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral, CH64 7TE, UK
| | - Hannah Trivett
- Health Protection Research Unit in Gastrointestinal Infections, HPRU Project Team, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool L69 7BE, UK
- Infection Biology and Microbiomes, Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral, CH64 7TE, UK
| |
Collapse
|
55
|
Shelenkov A. Whole-Genome Sequencing of Pathogenic Bacteria-New Insights into Antibiotic Resistance Spreading. Microorganisms 2021; 9:2624. [PMID: 34946225 PMCID: PMC8708895 DOI: 10.3390/microorganisms9122624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023] Open
Abstract
In recent years, the acquisition of antimicrobial resistance (AMR) by both pathogenic and opportunistic bacteria has become a major problem worldwide, which was already noticed as a global healthcare threat by the World Health Organization [...].
Collapse
Affiliation(s)
- Andrey Shelenkov
- Central Research Institute of Epidemiology, Rospotrebnadzor, 111123 Moscow, Russia
| |
Collapse
|
56
|
Aanensen DM, Carlos CC, Donado-Godoy P, Okeke IN, Ravikumar KL. Implementing Whole-Genome Sequencing for Ongoing Surveillance of Antimicrobial Resistance: Exemplifying Insights Into Klebsiella pneumoniae. Clin Infect Dis 2021; 73:S255-S257. [PMID: 34850830 PMCID: PMC8634455 DOI: 10.1093/cid/ciab795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In this Supplement, we detail outputs of the National Institute for Health Research Global Health Research Unit on Genomic Surveillance of Antimicrobial Resistance project, covering practical implementation of whole-genome sequencing across our consortium, which consists of laboratories in Colombia, India, Nigeria, and the Philippines.
Collapse
Affiliation(s)
- David M Aanensen
- Centre
for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Old Road Campus, Oxford, United Kingdom
- Wellcome Genome Campus, Hinxton, United Kingdom
| | - Celia C Carlos
- Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Pilar Donado-Godoy
- Colombian Integrated Program for Antimicrobial Resistance Surveillance–Coipars, CI Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, Tibaitatá–Mosquera, Cundinamarca, Colombia
| | - Iruka N Okeke
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
| | - K L Ravikumar
- Central Research Laboratory, Kempegowda Institute of Medical Sciences, Bengaluru, India
| |
Collapse
|
57
|
Multidrug Resistance Dynamics in Salmonella in Food Animals in the United States: An Analysis of Genomes from Public Databases. Microbiol Spectr 2021; 9:e0049521. [PMID: 34704804 PMCID: PMC8549754 DOI: 10.1128/spectrum.00495-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The number of bacterial genomes deposited each year in public databases is growing exponentially. However, efforts to use these genomes to track trends in antimicrobial resistance (AMR) have been limited thus far. We used 22,102 genomes from public databases to track AMR trends in nontyphoidal Salmonella in food animals in the United States. In 2018, genomes deposited in public databases carried genes conferring resistance, on average, to 2.08 antimicrobial classes in poultry, 1.74 in bovines, and 1.28 in swine. This represents a decline in AMR of over 70% compared to the levels in 2000 in bovines and swine, and an increase of 13% for poultry. Trends in resistance inferred from genomic data showed good agreement with U.S. phenotypic surveillance data (weighted mean absolute difference ± standard deviation, 5.86% ± 8.11%). In 2018, resistance to 3rd-generation cephalosporins in bovines, swine, and poultry decreased to 9.97% on average, whereas in quinolones and 4th-generation cephalosporins, resistance increased to 12.53% and 3.87%, respectively. This was concomitant with a decrease of blaCMY-2 but an increase in blaCTX-M-65 and gyrA D87Y (encoding a change of D to Y at position 87). Core genome single-nucleotide polymorphism (SNP) phylogenies show that resistance to these antimicrobial classes was predominantly associated with Salmonella enterica serovar Infantis and, to a lesser extent, S. enterica serovar Typhimurium and its monophasic variant I 4,[5],12:i:−, whereas quinolone resistance was also associated with S. enterica serovar Dublin. Between 2000 and 2018, trends in serovar prevalence showed a composition shift where S. Typhimurium decreased while S. Infantis increased. Our findings illustrate the growing potential of using genomes in public databases to track AMR in regions where sequencing capacities are currently expanding. IMPORTANCE Next-generation sequencing has led to an exponential increase in the number of genomes deposited in public repositories. This growing volume of information presents opportunities to track the prevalence of genes conferring antimicrobial resistance (AMR), a growing threat to the health of humans and animals. Using 22,102 public genomes, we estimated that the prevalence of multidrug resistance (MDR) in the United States decreased in nontyphoidal Salmonella isolates recovered from bovines and swine between 2000 and 2018, whereas it increased in poultry. These trends are consistent with those detected by national surveillance systems that monitor resistance using phenotypic testing. However, using genomes, we identified that genes conferring resistance to critically important antimicrobials were associated with specific MDR serovars that could be the focus for future interventions. Our analysis illustrates the growing potential of public repositories to monitor AMR trends and shows that similar efforts could soon be carried out in other regions where genomic surveillance is increasing.
Collapse
|
58
|
Dennis EK, Chaturvedi S, Chaturvedi V. So Many Diagnostic Tests, So Little Time: Review and Preview of Candida auris Testing in Clinical and Public Health Laboratories. Front Microbiol 2021; 12:757835. [PMID: 34691009 PMCID: PMC8529189 DOI: 10.3389/fmicb.2021.757835] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023] Open
Abstract
The recognition of a new yeast, Candida auris, in 2009 in East Asia, and its rapid global spread, was a reminder of the threats posed by multidrug-resistant fungal pathogens. C. auris had likely remained unrecognized for a long time as accurate tests were not available. The laboratory community responded to the C. auris challenge by publishing 35 new or revised diagnostic methods between 2014 and early 2021. The commercial sector also modified existing diagnostic devices. These C. auris diagnostic tests run the gamut from traditional culture-based differential and selective media, biochemical assimilations, and rapid protein profiles, as well as culture-independent DNA-based diagnostics. We provide an overview of these developments, especially the tests with validation data that were subsequently adopted for common use. We share a workflow developed in our laboratory to process over 37,000 C. auris surveillance samples and 5,000 C. auris isolates from the outbreak in the New York metropolitan area. Our preview covers new devices and diagnostic approaches on the horizon based on microfluidics, optics, and nanotechnology. Frontline laboratories need rapid, cheap, stable, and easy-to-implement tests to improve C. auris diagnosis, surveillance, patient isolation, admission screening, and environmental control. Among the urgent needs is a lateral flow assay or similar device for presumptive C. auris identification. All laboratories will benefit from devices that allow rapid antifungal susceptibility testing, including detection of mutations conferring drug resistance. Hopefully, multiplex test panels are on the horizon for synergy of C. auris testing with ongoing surveillance of other healthcare-associated infections. C. auris genome analysis has a proven role for outbreak investigations, and diagnostic laboratories need quick access to regional and national genome analysis networks.
Collapse
Affiliation(s)
- Emily K Dennis
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, United States.,Department of Biomedical Sciences, University at Albany, Albany, NY, United States
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| |
Collapse
|
59
|
Fischer N, Maex M, Mattheus W, Van den Bossche A, Van Cauteren D, Laisnez V, Hammami N, Ceyssens PJ. Genomic epidemiology of persistently circulating MDR Shigella sonnei strains associated with men who have sex with men (MSM) in Belgium (2013-19). J Antimicrob Chemother 2021; 77:89-97. [PMID: 34673959 PMCID: PMC8730680 DOI: 10.1093/jac/dkab377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives Shigella sonnei resistant to first-line antibiotics azithromycin and ciprofloxacin are on the rise globally. The aim of this study was to describe the epidemiology of MDR S. sonnei in Belgium and to identify origins and circulating clusters through WGS. Methods We undertook demographic, temporal and geographical analysis of 930 S. sonnei isolates submitted to the Belgian National Reference Centre for Salmonella and Shigella between 2017 and 2019. Phylogenetic analysis of WGS data, genotyping and identification of genetic markers of antimicrobial resistance was performed on 372 Belgian isolates submitted between 2013 and 2019. Results S. sonnei was identified in 75% (930/1253) of Belgian Shigella isolates submitted between 2017 and 2019. Overall, 7% (69/930) of isolates were resistant to ciprofloxacin alone, 6% (57/930) showed reduced susceptibility to azithromycin alone, and 24% (223/930) exhibited both. Men were at higher risk of carrying a double resistant S. sonnei strain, compared with women (risk ratio = 8.6, 95% CI = 5.4–13.9). Phylogenetic analysis revealed four independent Belgian clusters of persistently circulating MDR strains, associated with men who have sex with men (MSM) and of the same genotypes as previously described international MSM-related clades. Belgian isolates carried various incompatibility (Inc)-type plasmids, the SpA plasmid and ESBL genes. Conclusions In Belgium, S. sonnei isolates from men are much more likely to be resistant to important first-line antibiotics than isolates from women. Multiple co-circulating MDR S. sonnei clusters of different genotypes were identified in the MSM community. Further studies on risk groups are needed for targeted prevention, improved clinical and public health management and antimicrobial stewardship in Belgium.
Collapse
Affiliation(s)
- Natalie Fischer
- European Programme for Public Health Microbiology (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Gustav III:s Boulevard 40, 169 73 Solna, Sweden.,Division of Human Bacterial Diseases, Sciensano, Rue Engeland 642, 1180 Uccle, Belgium
| | - Margo Maex
- Division of Human Bacterial Diseases, Sciensano, Rue Engeland 642, 1180 Uccle, Belgium
| | - Wesley Mattheus
- Division of Human Bacterial Diseases, Sciensano, Rue Engeland 642, 1180 Uccle, Belgium
| | - An Van den Bossche
- Division of Human Bacterial Diseases, Sciensano, Rue Engeland 642, 1180 Uccle, Belgium
| | - Dieter Van Cauteren
- Service Epidemiology of Infectious Diseases, Sciensano, Rue Ernest Blerot 1, 1070 Anderlecht, Belgium
| | - Valeska Laisnez
- Service Epidemiology of Infectious Diseases, Sciensano, Rue Ernest Blerot 1, 1070 Anderlecht, Belgium.,Agentschap Zorg en Gezondheid, Koning Albert-II-laan 35 bus 33, 1030 Brussels, Belgium
| | - Naïma Hammami
- Agentschap Zorg en Gezondheid, Koning Albert-II-laan 35 bus 33, 1030 Brussels, Belgium
| | - Pieter-Jan Ceyssens
- Division of Human Bacterial Diseases, Sciensano, Rue Engeland 642, 1180 Uccle, Belgium
| |
Collapse
|
60
|
Lüftinger L, Ferreira I, Frank BJH, Beisken S, Weinberger J, von Haeseler A, Rattei T, Hofstaetter JG, Posch AE, Materna A. Predictive Antibiotic Susceptibility Testing by Next-Generation Sequencing for Periprosthetic Joint Infections: Potential and Limitations. Biomedicines 2021; 9:910. [PMID: 34440114 PMCID: PMC8389688 DOI: 10.3390/biomedicines9080910] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/18/2023] Open
Abstract
Joint replacement surgeries are one of the most frequent medical interventions globally. Infections of prosthetic joints are a major health challenge and typically require prolonged or even indefinite antibiotic treatment. As multidrug-resistant pathogens continue to rise globally, novel diagnostics are critical to ensure appropriate treatment and help with prosthetic joint infections (PJI) management. To this end, recent studies have shown the potential of molecular methods such as next-generation sequencing to complement established phenotypic, culture-based methods. Together with advanced bioinformatics approaches, next-generation sequencing can provide comprehensive information on pathogen identity as well as antimicrobial susceptibility, potentially enabling rapid diagnosis and targeted therapy of PJIs. In this review, we summarize current developments in next generation sequencing based predictive antibiotic susceptibility testing and discuss potential and limitations for common PJI pathogens.
Collapse
Affiliation(s)
- Lukas Lüftinger
- Ares Genetics GmbH, Karl-Farkas-Gasse 18, 1030 Vienna, Austria; (L.L.); (I.F.); (S.B.); (J.W.); (A.E.P.)
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1030 Vienna, Austria;
| | - Ines Ferreira
- Ares Genetics GmbH, Karl-Farkas-Gasse 18, 1030 Vienna, Austria; (L.L.); (I.F.); (S.B.); (J.W.); (A.E.P.)
- Center for Integrative Bioinformatics Vienna, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria;
- Center for Integrative Bioinformatics Vienna, Max Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Bernhard J. H. Frank
- Michael Ogon Laboratory for Orthopaedic Research, Orthopaedic Hospital Vienna-Speising, 1130 Vienna, Austria; (B.J.H.F.); (J.G.H.)
| | - Stephan Beisken
- Ares Genetics GmbH, Karl-Farkas-Gasse 18, 1030 Vienna, Austria; (L.L.); (I.F.); (S.B.); (J.W.); (A.E.P.)
| | - Johannes Weinberger
- Ares Genetics GmbH, Karl-Farkas-Gasse 18, 1030 Vienna, Austria; (L.L.); (I.F.); (S.B.); (J.W.); (A.E.P.)
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria;
- Center for Integrative Bioinformatics Vienna, Max Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, 1090 Vienna, Austria
| | - Thomas Rattei
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1030 Vienna, Austria;
| | - Jochen G. Hofstaetter
- Michael Ogon Laboratory for Orthopaedic Research, Orthopaedic Hospital Vienna-Speising, 1130 Vienna, Austria; (B.J.H.F.); (J.G.H.)
| | - Andreas E. Posch
- Ares Genetics GmbH, Karl-Farkas-Gasse 18, 1030 Vienna, Austria; (L.L.); (I.F.); (S.B.); (J.W.); (A.E.P.)
| | - Arne Materna
- Ares Genetics GmbH, Karl-Farkas-Gasse 18, 1030 Vienna, Austria; (L.L.); (I.F.); (S.B.); (J.W.); (A.E.P.)
| |
Collapse
|
61
|
Asare P, Asante-Poku A, Osei-Wusu S, Otchere ID, Yeboah-Manu D. The Relevance of Genomic Epidemiology for Control of Tuberculosis in West Africa. Front Public Health 2021; 9:706651. [PMID: 34368069 PMCID: PMC8342769 DOI: 10.3389/fpubh.2021.706651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB), an airborne infectious disease caused by Mycobacterium tuberculosis complex (MTBC), remains a global health problem. West Africa has a unique epidemiology of TB that is characterized by medium- to high-prevalence. Moreover, the geographical restriction of M. africanum to the sub-region makes West Africa have an extra burden to deal with a two-in-one pathogen. The region is also burdened with low case detection, late reporting, poor treatment adherence leading to development of drug resistance and relapse. Sporadic studies conducted within the subregion report higher burden of drug resistant TB (DRTB) than previously thought. The need for more sensitive and robust tools for routine surveillance as well as to understand the mechanisms of DRTB and transmission dynamics for the design of effective control tools, cannot be overemphasized. The advancement in molecular biology tools including traditional fingerprinting and next generation sequencing (NGS) technologies offer reliable tools for genomic epidemiology. Genomic epidemiology provides in-depth insight of the nature of pathogens, circulating strains and their spread as well as prompt detection of the emergence of new strains. It also offers the opportunity to monitor treatment and evaluate interventions. Furthermore, genomic epidemiology can be used to understand potential emergence and spread of drug resistant strains and resistance mechanisms allowing the design of simple but rapid tools. In this review, we will describe the local epidemiology of MTBC, highlight past and current investigations toward understanding their biology and spread as well as discuss the relevance of genomic epidemiology studies to TB control in West Africa.
Collapse
Affiliation(s)
- Prince Asare
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Adwoa Asante-Poku
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Isaac Darko Otchere
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
62
|
Tong S, Ma L, Ronholm J, Hsiao W, Lu X. Whole genome sequencing of Campylobacter in agri-food surveillance. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
63
|
A global resource for genomic predictions of antimicrobial resistance and surveillance of Salmonella Typhi at pathogenwatch. Nat Commun 2021; 12:2879. [PMID: 34001879 PMCID: PMC8128892 DOI: 10.1038/s41467-021-23091-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
As whole-genome sequencing capacity becomes increasingly decentralized, there is a growing opportunity for collaboration and the sharing of surveillance data within and between countries to inform typhoid control policies. This vision requires free, community-driven tools that facilitate access to genomic data for public health on a global scale. Here we present the Pathogenwatch scheme for Salmonella enterica serovar Typhi (S. Typhi), a web application enabling the rapid identification of genomic markers of antimicrobial resistance (AMR) and contextualization with public genomic data. We show that the clustering of S. Typhi genomes in Pathogenwatch is comparable to established bioinformatics methods, and that genomic predictions of AMR are highly concordant with phenotypic susceptibility data. We demonstrate the public health utility of Pathogenwatch with examples selected from >4,300 public genomes available in the application. Pathogenwatch provides an intuitive entry point to monitor of the emergence and spread of S. Typhi high risk clones. Whole genome sequencing data are increasingly becoming routinely available but generating actionable insights is challenging. Here, the authors describe Pathogenwatch, a web tool for genomic surveillance of S. Typhi, and demonstrate its use for antimicrobial resistance assignment and strain risk assessment.
Collapse
|
64
|
Pelegrin AC, Palmieri M, Mirande C, Oliver A, Moons P, Goossens H, van Belkum A. Pseudomonas aeruginosa: a clinical and genomics update. FEMS Microbiol Rev 2021; 45:6273131. [PMID: 33970247 DOI: 10.1093/femsre/fuab026] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a global medical priority that needs urgent resolution. Pseudomonas aeruginosa is a versatile, adaptable bacterial species with widespread environmental occurrence, strong medical relevance, a diverse set of virulence genes and a multitude of intrinsic and possibly acquired antibiotic resistance traits. P. aeruginosa causes a wide variety of infections and has an epidemic-clonal population structure. Several of its dominant global clones have collected a wide variety of resistance genes rendering them multi-drug resistant (MDR) and particularly threatening groups of vulnerable individuals including surgical patients, immunocompromised patients, Caucasians suffering from cystic fibrosis (CF) and more. AMR and MDR especially are particularly problematic in P. aeruginosa significantly complicating successful antibiotic treatment. In addition, antimicrobial susceptibility testing (AST) of P. aeruginosa can be cumbersome due to its slow growth or the massive production of exopolysaccharides and other extracellular compounds. For that reason, phenotypic AST is progressively challenged by genotypic methods using whole genome sequences (WGS) and large-scale phenotype databases as a framework of reference. We here summarize the state of affairs and the quality level of WGS-based AST for P. aeruginosa mostly from clinical origin.
Collapse
Affiliation(s)
- Andreu Coello Pelegrin
- bioMérieux, Data Analytics Unit, 3 Route du Port Michaud, 38390 La Balme les Grottes, France
| | - Mattia Palmieri
- bioMérieux, Data Analytics Unit, 3 Route du Port Michaud, 38390 La Balme les Grottes, France
| | - Caroline Mirande
- bioMérieux, R&D Microbiology, Route du Port Michaud, 38390 La Balme-les-Grottes, France
| | - Antonio Oliver
- Servicio de Microbiología, Módulo J, segundo piso, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Ctra. Valldemossa, 79, 07120 Palma de Mallorca, Spain
| | - Pieter Moons
- Laboratory of Medical Microbiology, University of Antwerp, Universiteitsplein 1, building S, 2610 Wilrijk, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Alex van Belkum
- bioMérieux, Open Innovation and Partnerships, 3 Route du Port Michaud, 38390 La Balme Les Grottes, France
| |
Collapse
|
65
|
Cracking the Challenge of Antimicrobial Drug Resistance with CRISPR/Cas9, Nanotechnology and Other Strategies in ESKAPE Pathogens. Microorganisms 2021; 9:microorganisms9050954. [PMID: 33946643 PMCID: PMC8145940 DOI: 10.3390/microorganisms9050954] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/23/2022] Open
Abstract
Antimicrobial resistance is mushrooming as a silent pandemic. It is considered among the most common priority areas identified by both national and international agencies. The global development of multidrug-resistant strains now threatens public health care improvement by introducing antibiotics against infectious agents. These strains are the product of both continuous evolution and unchecked antimicrobial usage (AMU). The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are the leading cause of nosocomial infections throughout the world. Most of them are now multidrug-resistant, which pose significant challenges in clinical practice. Understanding these bacteria’s resistance mechanisms is crucial for developing novel antimicrobial agents or other alternative tools to fight against these pathogens. A mechanistic understanding of resistance in these pathogens would also help predict underlying or even unknown mechanisms of resistance of other emerging multidrug-resistant pathogens. Research and development to find better antibacterial drugs and research on tools like CRISPER-Cas9, vaccines, and nanoparticles for treatment of infections that can be further explored in the clinical practice health sector have recognized these alternatives as essential and highly effective tools to mitigate antimicrobial resistance. This review summarizes the known antimicrobial resistance mechanisms of ESKAPE pathogens and strategies for overcoming this resistance with an extensive overview of efforts made in this research area.
Collapse
|
66
|
Cantón R. [Current microbiological aspects of community respiratory infection beyond COVID-19]. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2021; 34:81-92. [PMID: 33749214 PMCID: PMC8019468 DOI: 10.37201/req/049.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 12/22/2022]
Abstract
From a microbiological point of view, both empirical and targeted antimicrobial treatment in respiratory infection is based on the sensitivity profile of isolated microorganisms and the possible resistance mechanisms that they may present. The latter may vary in different geographic areas according to prescription profiles and vaccination programs. Beta-lactam antibiotics, fluoroquinolones, and macrolides are the most commonly used antimicrobials during the exacerbations of chronic obstructive pulmonary disease and community-acquired pneumonia. In their prescription, different aspects such as intrinsic activity, bactericidal effect or their ability to prevent the development of resistance must be taken into account. The latter is related to the PK/PD parameters, the mutant prevention concentration and the so-called selection window. More recently, the potential ecological impact has grown in importance, not only on the intestinal microbiota, but also on the respiratory one. Maintaining the state of eubiosis requires the use of antimicrobials with a low profile of action on anaerobic bacteria. With their use, the resilience of the bacterial populations belonging to the microbiota, the state of resistance of colonization and the collateral damage related to the emergence of resistance to the antimicrobials in pathogens causing the infections and in the bacterial populations integrating the microbiota.
Collapse
Affiliation(s)
- R Cantón
- Rafael Cantón. Servicio de Microbiología. Hospital Universitario Ramón y Cajal e Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid. Spain.
| |
Collapse
|