51
|
Tang M, Chen Y, Li B, Sugimoto H, Yang S, Yang C, LeBleu VS, McAndrews KM, Kalluri R. Therapeutic targeting of STAT3 with small interference RNAs and antisense oligonucleotides embedded exosomes in liver fibrosis. FASEB J 2021; 35:e21557. [PMID: 33855751 PMCID: PMC10851328 DOI: 10.1096/fj.202002777rr] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Hepatic fibrosis is a wound healing response that results in excessive extracellular matrix (ECM) accumulation in response to chronic hepatic injury. Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor associated with the pathogenesis of liver fibrosis. Though a promising potential therapeutic target, there are no specific drug candidates for STAT3. Exosomes are extracellular vesicles generated by all cell types with a capacity to efficiently enter cells across different biological barriers. Here, we utilize exosomes as delivery conduit to specifically target STAT3 in liver fibrosis. Exosomes derived from clinical grade fibroblast-like mesenchymal stem cells (MSCs) were engineered to carry siRNA or antisense oligonucleotide (ASO) targeting STAT3 (iExosiRNA-STAT3 or iExomASO-STAT3 ). Compared to scrambled siRNA control, siRNA-STAT3, or ASO-STAT3, iExosiRNA-STAT3 or iExomASO-STAT3 showed enhanced STAT3 targeting efficiency. iExosiRNA-STAT3 or iExomASO-STAT3 treatments suppressed STAT3 levels and ECM deposition in established liver fibrosis in mice, and significantly improved liver function. iExomASO-Stat3 restored liver function more efficiently when compared to iExosiRNA-STAT3 . Our results identify a novel anti-fibrotic approach for direct targeting of STAT3 with exosomes with immediate translational potential.
Collapse
Affiliation(s)
- Min Tang
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yang Chen
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bingrui Li
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sujuan Yang
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Changqing Yang
- Division of Gastroenterology and Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Valerie S. LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Kathleen M. McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Bioengineering, Rice University, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
52
|
Song Z, Chen W, Athavale D, Ge X, Desert R, Das S, Han H, Nieto N. Osteopontin Takes Center Stage in Chronic Liver Disease. Hepatology 2021; 73:1594-1608. [PMID: 32986864 PMCID: PMC8106357 DOI: 10.1002/hep.31582] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Osteopontin (OPN) was first identified in 1986. The prefix osteo- means bone; however, OPN is expressed in other tissues, including liver. The suffix -pontin means bridge and denotes the role of OPN as a link protein within the extracellular matrix. While OPN has well-established physiological roles, multiple "omics" analyses suggest that it is also involved in chronic liver disease. In this review, we provide a summary of the OPN gene and protein structure and regulation. We outline the current knowledge on how OPN is involved in hepatic steatosis in the context of alcoholic liver disease and non-alcoholic fatty liver disease. We describe the mechanisms whereby OPN participates in inflammation and liver fibrosis and discuss current research on its role in hepatocellular carcinoma and cholangiopathies. To conclude, we highlight important points to consider when doing research on OPN and provide direction for making progress on how OPN contributes to chronic liver disease.
Collapse
Affiliation(s)
- Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Wei Chen
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Hui Han
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, IL,Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
53
|
Peiseler M, Tacke F. Inflammatory Mechanisms Underlying Nonalcoholic Steatohepatitis and the Transition to Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:730. [PMID: 33578800 PMCID: PMC7916589 DOI: 10.3390/cancers13040730] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a rising chronic liver disease and comprises a spectrum from simple steatosis to nonalcoholic steatohepatitis (NASH) to end-stage cirrhosis and risk of hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is multifactorial, but inflammation is considered the key element of disease progression. The liver harbors an abundance of resident immune cells, that in concert with recruited immune cells, orchestrate steatohepatitis. While inflammatory processes drive fibrosis and disease progression in NASH, fueling the ground for HCC development, immunity also exerts antitumor activities. Furthermore, immunotherapy is a promising new treatment of HCC, warranting a more detailed understanding of inflammatory mechanisms underlying the progression of NASH and transition to HCC. Novel methodologies such as single-cell sequencing, genetic fate mapping, and intravital microscopy have unraveled complex mechanisms behind immune-mediated liver injury. In this review, we highlight some of the emerging paradigms, including macrophage heterogeneity, contributions of nonclassical immune cells, the role of the adaptive immune system, interorgan crosstalk with adipose tissue and gut microbiota. Furthermore, we summarize recent advances in preclinical and clinical studies aimed at modulating the inflammatory cascade and discuss how these novel therapeutic avenues may help in preventing or combating NAFLD-associated HCC.
Collapse
Affiliation(s)
- Moritz Peiseler
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany;
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pharmacology & Physiology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany;
| |
Collapse
|
54
|
Li B, Liu J, Xin X, Zhang L, Zhou J, Xia C, Zhu W, Yu H. MiR-34c promotes hepatic stellate cell activation and Liver Fibrogenesis by suppressing ACSL1 expression. Int J Med Sci 2021; 18:615-625. [PMID: 33437196 PMCID: PMC7797556 DOI: 10.7150/ijms.51589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Normally, there are multiple microRNAs involved in the pathogenesis of liver fibrosis. In our work, we aimed at identifying the role of miR-34c in the hepatic stellate cell (HSC) activation and liver fibrosis and its potential mechanism. Our results have shown that during natural activation of HSC, the level of miR-34c was increased significantly whereas acyl-CoA synthetase long-chain family member-1(ACSL1), which is a key enzyme can affect fatty acid(FA) synthesis, was decreased. A double fluorescence reporter assay further confirmed that ACSL1 is a direct target gene of miR-34c. Moreover, the inhibition of miR-34C can attenuate the synthesis of collagen in HSC-T6. In our rescue assay, ACSL1 expression was 1.49-fold higher compared to normal control cells which were transfected with the miR-34c inhibitor in a stable low expression ACSL1 cell line. While at the same time, α-SMA and Col1α expression decreased by 18.22% and 2.58%, respectively. Moreover, we performed an in vivo model using dimethylnitrosamine (DMN) in conjunction with the miR-34c agomir, combined with the treatment of DMN and the miR-34c agomir can increase liver fibrosis. Meanwhile, the degree of hepatic fibrosis was increased and lipid droplets reduced dramatically in rats and HSC-T6 cell treated with miR-34c mimics alone compared to untreated groups. Our results indicate that miR-34c plays an essential role in liver fibrosis by targeting ACSL1 closely associated with lipid droplets, and it might be used as a potential therapeutic target.
Collapse
Affiliation(s)
- Binbin Li
- Department of Pathology, Changzheng Hospital, Navy Medical University (Second Military Medical University), Shanghai 200003, China
| | - Jiaxuan Liu
- Department of Pathology, Changzheng Hospital, Navy Medical University (Second Military Medical University), Shanghai 200003, China
| | - Xuan Xin
- Department of Pathology, Changzheng Hospital, Navy Medical University (Second Military Medical University), Shanghai 200003, China
- Department of Pathology, No. 960 Hospital of People' Liberation Army, Jinan 250031, China
| | - Lifen Zhang
- Department of Pathology, Changzheng Hospital, Navy Medical University (Second Military Medical University), Shanghai 200003, China
| | - Jiaming Zhou
- Department of Pathology, Changzheng Hospital, Navy Medical University (Second Military Medical University), Shanghai 200003, China
- Department of Pathological Anatomy, Nantong University, Nantong 226001, China
| | - Chunyan Xia
- Department of Pathology, Changzheng Hospital, Navy Medical University (Second Military Medical University), Shanghai 200003, China
| | - Weijian Zhu
- Department of Pathology, Changzheng Hospital, Navy Medical University (Second Military Medical University), Shanghai 200003, China
| | - Hongyu Yu
- Department of Pathology, Changzheng Hospital, Navy Medical University (Second Military Medical University), Shanghai 200003, China
| |
Collapse
|
55
|
Kuchay MS, Choudhary NS, Mishra SK. Pathophysiological mechanisms underlying MAFLD. Diabetes Metab Syndr 2020; 14:1875-1887. [PMID: 32998095 DOI: 10.1016/j.dsx.2020.09.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The pathophysiology underlying metabolic associated fatty liver disease (MAFLD) involves a multitude of interlinked processes, including insulin resistance (IR) underlying the metabolic syndrome, lipotoxicity attributable to the accumulation of toxic lipid species, infiltration of proinflammatory cells causing hepatic injury and ultimately leading to hepatic stellate cell (HSC) activation and fibrogenesis. The proximal processes, such as IR, lipid overload and lipotoxicity are relatively well established, but the downstream molecular mechanisms, such as inflammatory processes, hepatocyte lipoapoptosis, and fibrogenesis are incompletely understood. METHODS A literature search was performed with Medline (PubMed), Scopus and Google Scholar electronic databases till June 2020, using relevant keywords (nonalcoholic fatty liver disease; metabolic associated fatty liver disease; nonalcoholic steatohepatitis; NASH pathogenesis) to extract relevant studies describing pathogenesis of MAFLD/MASH. RESULTS Several studies have reported new concepts underlying pathophysiology of MAFLD. Activation of HSCs is the common final pathway for diverse signals from damaged hepatocytes and proinflammatory cells. Activated HSCs then secrete excess extracellular matrix (ECM) which accumulates and impairs structure and function of the liver. TAZ (a transcriptional regulator), hedgehog (HH) ligands, transforming growth factor-β (TGF-β), bone morphogenetic protein 8B (BMP8B) and osteopontin play important roles in activating these HSCs. Dysfunctional gut microbiome, dysregulated bile acid metabolism, endogenous alcohol production, and intestinal fructose handling, modify individual susceptibility to MASH. CONCLUSIONS Newer concepts of pathophysiology underlying MASH, such as TAZ/Ihh pathway, extracellular vesicles, microRNA, dysfunctional gut microbiome and intestinal fructose handling present promising targets for the development of therapeutic agents.
Collapse
Affiliation(s)
- Mohammad Shafi Kuchay
- Division of Endocrinology and Metabolism, Medanta the Medicity Hospital, Gurugram, 122001, Haryana, India.
| | - Narendra Singh Choudhary
- Institute of Digestive and Hepatobiliary Sciences, Medanta-The Medicity Hospital, Gurugram, 122001, Haryana, India
| | - Sunil Kumar Mishra
- Division of Endocrinology and Metabolism, Medanta the Medicity Hospital, Gurugram, 122001, Haryana, India
| |
Collapse
|
56
|
Asakage M, Usui Y, Nezu N, Shimizu H, Tsubota K, Umazume K, Yamakawa N, Umezu T, Suwanai H, Kuroda M, Goto H. Comprehensive Gene Analysis of IgG4-Related Ophthalmic Disease Using RNA Sequencing. J Clin Med 2020; 9:jcm9113458. [PMID: 33121169 PMCID: PMC7693346 DOI: 10.3390/jcm9113458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023] Open
Abstract
High-throughput RNA sequencing (RNA-seq) uses massive parallel sequencing technology, allowing the unbiased analysis of genome-wide transcription levels and tumor mutation status. Immunoglobulin G4-related ophthalmic disease (IgG4-ROD) is a fibroinflammatory disease characterized by the enlargement of the ocular adnexal tissues. We analyzed RNA expression levels via RNA-seq in the biopsy specimens of three patients diagnosed with IgG4-ROD. Mucosa-associated lymphoid tissue (MALT) lymphoma, reactive lymphoid hyperplasia (RLH), normal lacrimal gland tissue, and adjacent adipose tissue were used as the controls (n = 3 each). RNA-seq was performed using the NextSeq 500 system, and genes with |fold change| ≥ 2 and p < 0.05 relative to the controls were defined as differentially expressed genes (DEGs) in IgG4-ROD. To validate the results of RNA-seq, real-time polymerase chain reaction (PCR) was performed in 30 IgG4-ROD and 30 orbital MALT lymphoma tissue samples. RNA-seq identified 35 up-regulated genes, including matrix metallopeptidase 12 (MMP12) and secreted phosphoprotein 1 (SPP1), in IgG4-ROD tissues when compared to all the controls. Many pathways related to the immune system were included when compared to all the controls. Expressions of MMP12 and SPP1 in IgG4-ROD tissues were confirmed by real-time PCR and immunohistochemistry. In conclusion, we identified novel DEGs, including those associated with extracellular matrix degradation, fibrosis, and inflammation, in IgG4-ROD biopsy specimens. These data provide new insights into molecular pathogenetic mechanisms and may contribute to the development of new biomarkers for diagnosis and molecular targeted drugs.
Collapse
Affiliation(s)
- Masaki Asakage
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (M.A.); (N.N.); (H.S.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Yoshihiko Usui
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (M.A.); (N.N.); (H.S.); (K.T.); (K.U.); (N.Y.); (H.G.)
- Correspondence: ; Tel.: +81-3-3342-6111
| | - Naoya Nezu
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (M.A.); (N.N.); (H.S.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Hiroyuki Shimizu
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (M.A.); (N.N.); (H.S.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Kinya Tsubota
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (M.A.); (N.N.); (H.S.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Kazuhiko Umazume
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (M.A.); (N.N.); (H.S.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Naoyuki Yamakawa
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (M.A.); (N.N.); (H.S.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Tomohiro Umezu
- Department of Molecular Pathology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.U.); (M.K.)
| | - Hirotsugu Suwanai
- Department of Diabetes, Metabolism and Endocrinology, Tokyo Medical University, 6-7-1 Nishi-shinjuku Shinjuku-ku, Tokyo 160-0023, Japan;
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.U.); (M.K.)
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (M.A.); (N.N.); (H.S.); (K.T.); (K.U.); (N.Y.); (H.G.)
| |
Collapse
|
57
|
Tang M, Jia H, Chen S, Yang B, Patpur BK, Song W, Chang Y, Li J, Yang C. Significance of MR/OPN/HMGB1 axis in NAFLD-associated hepatic fibrogenesis. Life Sci 2020; 264:118619. [PMID: 33091447 DOI: 10.1016/j.lfs.2020.118619] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
AIMS The activation of hepatic stellate cells (HSCs) plays a central role in liver fibrosis, however non-alcoholic fatty liver disease (NAFLD) associated liver fibrogenesis have been poorly understood. We aimed to determine the significance of mineralocorticoid receptor (MR)/osteopontin (OPN)/high-mobility group box-1 (HMGB1) axis in this setting. MAIN METHODS Liver specimens were collected from NAFLD patients and murine NAFLD models established with 12-week high fat diet (HFD) for analysis of both upstream signals of MR and intrahepatic MR/OPN/HMGB1 axis. The in vitro cell model of NAFLD-associated liver fibrogenesis was established by treating LX-2 (a cell line of human HSCs) with free fatty acids (FFA). The effects of MR signaling were evaluated using with ALD (MR activator) or eplerenone (Ep, MR antagonist). Moreover, the in vitro loss- and gain- of function approaches were applied to confirm the upstream and downstream relationships of mediators contained in the intracellular MR/OPN/HMGB1 axis of LX-2. KEY FINDINGS In NAFLD condition, both human and mouse liver tissue samples demonstrated a significant up-regulation of MR/OPN/HMGB1 axis simultaneously with enhanced expression of pro-fibrogenic markers, including ACTA2, TIMP1, TGFB1 and COL1A1. Besides, enhanced production of serum aldosterone (ALD) was also observed in mouse NAFLD models. Moreover, the in vitro data demonstrated MR play an essential role in FFA-induced HSCs fibrogenesis. Meanwhile, MR acts as the upstream effector mediator of OPN and shares downstream HMGB1 with OPN. SIGNIFICANCE The MR/OPN/HMGB1 axis could be therapeutically targeted to treat NAFLD associated hepatic fibrogenesis.
Collapse
Affiliation(s)
- Min Tang
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Haoyu Jia
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Shuai Chen
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Bo Yang
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Bhuvanesh Kinish Patpur
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Weiping Song
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yizhong Chang
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Jing Li
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.
| | - Changqing Yang
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.
| |
Collapse
|
58
|
Chao X, Qian H, Wang S, Fulte S, Ding WX. Autophagy and liver cancer. Clin Mol Hepatol 2020; 26:606-617. [PMID: 33053934 PMCID: PMC7641568 DOI: 10.3350/cmh.2020.0169] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a highly conserved catabolic process that degrades cytosolic proteins and organelles via formation of autophagosomes that fuse with lysosomes to form autolysosomes, whereby autophagic cargos are degraded. Numerous studies have demonstrated that autophagy plays a critical role in the regulation of liver physiology and homeostasis, and impaired autophagy leads to the pathogenesis of various liver diseases such as viral hepatitis, alcohol associated liver diseases (AALD), non-alcoholic fatty liver diseases (NAFLD), and liver cancer. Recent evidence indicates that autophagy may play a dual role in liver cancer: inhibiting early tumor initiation while promoting progression and malignancy of already formed liver tumors. In this review, we summarized the progress of current understanding of how hepatic viral infection, alcohol consumption and diet-induced fatty liver diseases impair hepatic autophagy. We also discussed how impaired autophagy promotes liver tumorigenesis, and paradoxically how autophagy is required to promote the malignancy and progression of liver cancer. Understanding the molecular mechanisms underlying how autophagy differentially affects liver cancer development and progression may help to design better therapeutic strategies for prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hui Qian
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sam Fulte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
59
|
Han H, Desert R, Das S, Song Z, Athavale D, Ge X, Nieto N. Danger signals in liver injury and restoration of homeostasis. J Hepatol 2020; 73:933-951. [PMID: 32371195 PMCID: PMC7502511 DOI: 10.1016/j.jhep.2020.04.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Damage-associated molecular patterns are signalling molecules involved in inflammatory responses and restoration of homeostasis. Chronic release of these molecules can also promote inflammation in the context of liver disease. Herein, we provide a comprehensive summary of the role of damage-associated molecular patterns as danger signals in liver injury. We consider the role of reactive oxygen species and reactive nitrogen species as inducers of damage-associated molecular patterns, as well as how specific damage-associated molecular patterns participate in the pathogenesis of chronic liver diseases such as alcohol-related liver disease, non-alcoholic steatohepatitis, liver fibrosis and liver cancer. In addition, we discuss the role of damage-associated molecular patterns in ischaemia reperfusion injury and liver transplantation and highlight current studies in which blockade of specific damage-associated molecular patterns has proven beneficial in humans and mice.
Collapse
Affiliation(s)
- Hui Han
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St., Suite 1020N, MC 787, Chicago, IL 60612, USA.
| |
Collapse
|
60
|
Remmerie A, Martens L, Thoné T, Castoldi A, Seurinck R, Pavie B, Roels J, Vanneste B, De Prijck S, Vanhockerhout M, Binte Abdul Latib M, Devisscher L, Hoorens A, Bonnardel J, Vandamme N, Kremer A, Borghgraef P, Van Vlierberghe H, Lippens S, Pearce E, Saeys Y, Scott CL. Osteopontin Expression Identifies a Subset of Recruited Macrophages Distinct from Kupffer Cells in the Fatty Liver. Immunity 2020; 53:641-657.e14. [PMID: 32888418 PMCID: PMC7501731 DOI: 10.1016/j.immuni.2020.08.004] [Citation(s) in RCA: 352] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) represents a spectrum of disease states ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic macrophages, specifically Kupffer cells (KCs), are suggested to play important roles in the pathogenesis of MAFLD through their activation, although the exact roles played by these cells remain unclear. Here, we demonstrated that KCs were reduced in MAFLD being replaced by macrophages originating from the bone marrow. Recruited macrophages existed in two subsets with distinct activation states, either closely resembling homeostatic KCs or lipid-associated macrophages (LAMs) from obese adipose tissue. Hepatic LAMs expressed Osteopontin, a biomarker for patients with NASH, linked with the development of fibrosis. Fitting with this, LAMs were found in regions of the liver with reduced numbers of KCs, characterized by increased Desmin expression. Together, our data highlight considerable heterogeneity within the macrophage pool and suggest a need for more specific macrophage targeting strategies in MAFLD. Resident KCs are lost with time in MAFLD Resident KCs are replaced by distinct subsets of bone marrow derived macrophages One subset of recruited macrophages termed hepatic LAMs, express Osteopontin Hepatic LAMs are found in zones characterized by increased Desmin expression
Collapse
Affiliation(s)
- Anneleen Remmerie
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Liesbet Martens
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Tinne Thoné
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Angela Castoldi
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ruth Seurinck
- Data Mining and Modelling for Biomedicine, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Faculty of Science, Ghent University, Ghent, Belgium
| | - Benjamin Pavie
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Joris Roels
- Data Mining and Modelling for Biomedicine, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Faculty of Science, Ghent University, Ghent, Belgium
| | - Bavo Vanneste
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Sofie De Prijck
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Mathias Vanhockerhout
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Mushida Binte Abdul Latib
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Lindsey Devisscher
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, Ghent 9000, Belgium
| | - Johnny Bonnardel
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Niels Vandamme
- Data Mining and Modelling for Biomedicine, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Faculty of Science, Ghent University, Ghent, Belgium
| | - Anna Kremer
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Peter Borghgraef
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Hans Van Vlierberghe
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Saskia Lippens
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Edward Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; University of Freiburg, Freiburg, Germany
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Faculty of Science, Ghent University, Ghent, Belgium
| | - Charlotte L Scott
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium.
| |
Collapse
|
61
|
Ge S, Wu X, Xiong Y, Xie J, Liu F, Zhang W, Yang L, Zhang S, Lai L, Huang J, Li M, Yu YQ. HMGB1 Inhibits HNF1A to Modulate Liver Fibrogenesis via p65/miR-146b Signaling. DNA Cell Biol 2020; 39:1711-1722. [PMID: 32833553 DOI: 10.1089/dna.2019.5330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
High mobility group box 1 (HMGB1) is essential for the pathogenesis of liver injury and liver fibrosis. We previously revealed that miR-146b promotes hepatic stellate cells (HSCs) activation and proliferation. Nevertheless, the potential mechanisms are still unknown. Herein, HMGB1 increased HSCs proliferation and COL1A1 and α-SMA protein levels. However, the knockdown of miR-146b inhibited HSCs proliferation and COL1A1 and α-SMA protein levels induced via HMGB1 treatment. miR-146b was upregulated by HMGB1 and miR-146b targeted hepatocyte nuclear factor 1A (HNF1A) 3'-untranslated region (3'UTR) to modulate its expression negatively. Further, we confirmed that HMGB1 might elicit miR-146b expression via p65 within HSCs. Knockdown or block of HMGB1 relieved the CCl4-induced liver fibrosis. In fibrotic liver tissues, miR-146b expression was positively correlated with p65 mRNA, but HNF1A mRNA was inversely correlated with p65, and miR-146b expression. In summary, our findings suggest that HMGB1/p65/miR-146b/HNF1A signaling exerts a crucial effect on liver fibrogenesis via the regulation of HSC function.
Collapse
Affiliation(s)
- Shanfei Ge
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoping Wu
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ying Xiong
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianping Xie
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fei Liu
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenfeng Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lixia Yang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Song Zhang
- Department of Infectious Disease, ShangRao People's Hospital, ShangRao, Jiangxi, China
| | - Lingling Lai
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiansheng Huang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ming Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yan-Qing Yu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
62
|
Zhao Z, Hu Z, Zeng R, Yao Y. HMGB1 in kidney diseases. Life Sci 2020; 259:118203. [PMID: 32781069 DOI: 10.1016/j.lfs.2020.118203] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/20/2022]
Abstract
High mobility group box 1 (HMGB1) is a highly conserved nucleoprotein involving in numerous biological processes, and well known to trigger immune responses as the damage-associated molecular pattern (DAMP) in the extracellular environment. The role of HMGB1 is distinct due to its multiple functions in different subcellular location. In the nucleus, HMGB1 acts as a chaperone to regulate DNA events including DNA replication, repair and nucleosome stability. While in the cytoplasm, it is engaged in regulating autophagy and apoptosis. A great deal of research has explored its function in the pathogenesis of renal diseases. This review mainly focuses on the role of HMGB1 and summarizes the pathway and treatment targeting HMGB1 in the various renal diseases which may open the windows of opportunities for the development of desirable therapeutic ends in these pathological conditions.
Collapse
Affiliation(s)
- Zhi Zhao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China
| | - Zhizhi Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China.
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China.
| |
Collapse
|
63
|
Fabris L, Cadamuro M, Cagnin S, Strazzabosco M, Gores GJ. Liver Matrix in Benign and Malignant Biliary Tract Disease. Semin Liver Dis 2020; 40:282-297. [PMID: 32162285 DOI: 10.1055/s-0040-1705109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The extracellular matrix is a highly reactive scaffold formed by a wide array of multifunctional molecules, encompassing collagens and noncollagenous glycoproteins, proteoglycans, glycosaminoglycans, and polysaccharides. Besides outlining the tissue borders, the extracellular matrix profoundly regulates the behavior of resident cells by transducing mechanical signals, and by integrating multiple cues derived from the microenvironment. Evidence is mounting that changes in the biostructure of the extracellular matrix are instrumental for biliary repair. Following biliary damage and eventually, malignant transformation, the extracellular matrix undergoes several quantitative and qualitative modifications, which direct interactions among hepatic progenitor cells, reactive ductular cells, activated myofibroblasts and macrophages, to generate the ductular reaction. Herein, we will give an overview of the main molecular factors contributing to extracellular matrix remodeling in cholangiopathies. Then, we will discuss the structural alterations in terms of biochemical composition and physical stiffness featuring the "desmoplastic matrix" of cholangiocarcinoma along with their pro-oncogenic effects.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Molecular Medicine, University of Padua, Padua, Italy.,Liver Center, Department of Medicine, Yale University, New Haven, Connecticut
| | | | - Silvia Cagnin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, Connecticut
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Michigan
| |
Collapse
|
64
|
Schwabe RF, Tabas I, Pajvani UB. Mechanisms of Fibrosis Development in Nonalcoholic Steatohepatitis. Gastroenterology 2020; 158:1913-1928. [PMID: 32044315 PMCID: PMC7682538 DOI: 10.1053/j.gastro.2019.11.311] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease is the most prevalent liver disease worldwide, affecting 20%-25% of the adult population. In 25% of patients, nonalcoholic fatty liver disease progresses to nonalcoholic steatohepatitis (NASH), which increases the risk for the development of cirrhosis, liver failure, and hepatocellular carcinoma. In patients with NASH, liver fibrosis is the main determinant of mortality. Here, we review how interactions between different liver cells culminate in fibrosis development in NASH, focusing on triggers and consequences of hepatocyte-macrophage-hepatic stellate cell (HSC) crosstalk. We discuss pathways through which stressed and dead hepatocytes instigate the profibrogenic crosstalk with HSC and macrophages, including the reactivation of developmental pathways such as TAZ, Notch, and hedgehog; how clearance of dead cells in NASH via efferocytosis may affect inflammation and fibrogenesis; and insights into HSC and macrophage heterogeneity revealed by single-cell RNA sequencing. Finally, we summarize options to therapeutically interrupt this profibrogenic hepatocyte-macrophage-HSC network in NASH.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York.
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York; Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York
| |
Collapse
|
65
|
Fu S, Wu D, Jiang W, Li J, Long J, Jia C, Zhou T. Molecular Biomarkers in Drug-Induced Liver Injury: Challenges and Future Perspectives. Front Pharmacol 2020; 10:1667. [PMID: 32082163 PMCID: PMC7002317 DOI: 10.3389/fphar.2019.01667] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023] Open
Abstract
Drug-induced liver injury (DILI) is one among the common adverse drug reactions and the leading causes of drug development attritions, black box warnings, and post-marketing withdrawals. Despite having relatively low clinical incidence, its potentially severe adverse events should be considered in the individual patients due to the high risk of acute liver failure. Although traditional liver parameters have been applied to the diagnosis of DILI, the lack of specific and sensitive biomarkers poses a major limitation, and thus accurate prediction of the subsequent clinical course remains a significant challenge. These drawbacks prompt the investigation and discovery of more effective biomarkers, which could lead to early detection of DILI, and improve its diagnosis and prognosis. Novel promising biomarkers include glutamate dehydrogenase, keratin 18, sorbitol dehydrogenase, glutathione S-transferase, bile acids, cytochrome P450, osteopontin, high mobility group box-1 protein, fatty acid binding protein 1, cadherin 5, miR-122, genetic testing, and omics technologies, among others. Furthermore, several clinical scoring systems have gradually emerged for the diagnosis of DILI including the Roussel Uclaf Causality Assessment Method (RUCAM), Clinical Diagnostic Scale (CDS), and Digestive Disease Week Japan (DDW-J) systems. However, currently their predictive value is limited with certain inherent deficiencies. Thus, perhaps the greatest benefit would be achieved by simultaneously combining the scoring systems and those biomarkers. Herein, we summarized the recent research progress on molecular biomarkers for DILI to improved approaches for its diagnosis and clinical management.
Collapse
Affiliation(s)
- Siyu Fu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Department of Infectious Diseases, Pidu District People's Hospital, Chengdu, China
| | - Jiang Long
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Chengyao Jia
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Taoyou Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
66
|
Lin R, Wu S, Zhu D, Qin M, Liu X. Osteopontin induces atrial fibrosis by activating Akt/GSK-3β/β-catenin pathway and suppressing autophagy. Life Sci 2020; 245:117328. [PMID: 31954162 DOI: 10.1016/j.lfs.2020.117328] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 01/09/2023]
Abstract
AIMS Atrial fibrosis is a common feature of atrial fibrillation (AF). Recently, it is reported that osteopontin (OPN) can induce fibrosis in lungs, livers and kidneys. However, its role in atrial fibrosis remains unclear. Here, we sought to determine the involvement of OPN in atrial fibrosis and the underlying mechanisms during this pathological remodeling process. MATERIALS AND METHODS Protein expressions were determined by enzyme-linked immunosorbent assay (ELISA), immunohistochemical staining and immunoblotting. mRNA expressions were detected by qRT-PCR. Cell proliferation was assessed by CCK-8. Left atrial electroanatomical voltage maps were created using PentaRay catheters and a 3-dimensional mapping system. KEY FINDINGS OPN was highly expressed in the circulation of AF patients and was further increased with the progression of AF. In addition, correlation analysis showed that circulating OPN positively related with low-voltage areas (LVAs, a marker of atrial fibrosis) in AF patients. Immunohistological staining and immunoblotting revealed an increased expression of OPN in AF patients who present a higher degree of atrial fibrosis. Furthermore, in vitro studies in cultured human atrial fibroblasts (hAFs) demonstrated that OPN promoted the proliferation of fibroblasts and increased production of collagen I and fibronectin. Mechanistically, the profibrotic effects of OPN on atrial fibroblasts were determined via activating Akt/GSK-3β/β-catenin signaling and suppressing autophagy. SIGNIFICANCE This study uncovered a previously unrecognized profibrotic role of OPN in atrial fibrosis, which was achieved through activation of Akt/GSK-3β/β-catenin signaling pathway and suppression of autophagy, implying a promising therapeutic target in atrial fibrosis and AF.
Collapse
Affiliation(s)
- Rongjie Lin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shaohui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Zhu
- Department of Cardiac Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
67
|
Survival of endogenous hepatic stem/progenitor cells in liver tissues during liver cirrhosis. Life Sci 2020; 241:117121. [DOI: 10.1016/j.lfs.2019.117121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/19/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022]
|
68
|
Tibaldi E, Brocca A, Sticca A, Gola E, Pizzi M, Bordin L, Pagano MA, Mazzorana M, Donà G, Violi P, Marin O, Romano A, Angeli P, Carraro A, Brunati AM. Fam20C-mediated phosphorylation of osteopontin is critical for its secretion but dispensable for its action as a cytokine in the activation of hepatic stellate cells in liver fibrogenesis. FASEB J 2019; 34:1122-1135. [PMID: 31914633 DOI: 10.1096/fj.201900880r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 01/27/2023]
Abstract
Osteopontin (OPN) is a phosphoglycoprotein secreted into the extracellular matrix upon liver injury, acting as a cytokine stimulates the deposition of fibrillary collagen in liver fibrogenesis. In livers of mice subjected to bile duct ligation (BDL) and in cultured activated hepatic stellate cells (HSCs), we show that OPN, besides being overexpressed, is substantially phosphorylated by family with sequence similarity 20, member C (Fam20C), formerly known as Golgi casein kinase (G-CK), which is exclusively resident in the Golgi apparatus. In both experimental models, Fam20C becomes overactive when associated with a 500-kDa multiprotein complex, as compared with the negligible activity in livers of sham-operated rats and in quiescent HSCs. Fam20C knockdown not only confirmed the role of Fam20C itself in OPN phosphorylation, but also revealed that phosphorylation was essential for OPN secretion. However, OPN acts as a fibrogenic factor independently of its phosphorylation state, as demonstrated by the increased expression of Collagen-I by HSCs incubated with either a phosphorylated or nonphosphorylated form of recombinant OPN. Collectively, our results confirm that OPN promotes liver fibrosis and highlight Fam20C as a novel factor driving this process by favoring OPN secretion from HSCs, opening new avenues for deciphering yet unidentified mechanisms underlying liver fibrogenesis.
Collapse
Affiliation(s)
- Elena Tibaldi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | - Elisabetta Gola
- Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Marco Pizzi
- General Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Luciana Bordin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Marco Mazzorana
- Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Gabriella Donà
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Paola Violi
- Department of General Surgery and Odontoiatrics, Liver Transplant Unit, University Hospital of Verona, Verona, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonella Romano
- Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Paolo Angeli
- Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Amedeo Carraro
- Department of General Surgery and Odontoiatrics, Liver Transplant Unit, University Hospital of Verona, Verona, Italy
| | | |
Collapse
|
69
|
Weiskirchen R, Meurer SK, Liedtke C, Huber M. Mast Cells in Liver Fibrogenesis. Cells 2019; 8:E1429. [PMID: 31766207 PMCID: PMC6912398 DOI: 10.3390/cells8111429] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 01/10/2023] Open
Abstract
Mast cells (MCs) are immune cells of the myeloid lineage that are present in the connective tissue throughout the body and in mucosa tissue. They originate from hematopoietic stem cells in the bone marrow and circulate as MC progenitors in the blood. After migration to various tissues, they differentiate into their mature form, which is characterized by a phenotype containing large granules enriched in a variety of bioactive compounds, including histamine and heparin. These cells can be activated in a receptor-dependent and -independent manner. Particularly, the activation of the high-affinity immunoglobulin E (IgE) receptor, also known as FcεRI, that is expressed on the surface of MCs provoke specific signaling cascades that leads to intracellular calcium influx, activation of different transcription factors, degranulation, and cytokine production. Therefore, MCs modulate many aspects in physiological and pathological conditions, including wound healing, defense against pathogens, immune tolerance, allergy, anaphylaxis, autoimmune defects, inflammation, and infectious and other disorders. In the liver, MCs are mainly associated with connective tissue located in the surrounding of the hepatic arteries, veins, and bile ducts. Recent work has demonstrated a significant increase in MC number during hepatic injury, suggesting an important role of these cells in liver disease and progression. In the present review, we summarize aspects of MC function and mediators in experimental liver injury, their interaction with other hepatic cell types, and their contribution to the pathogenesis of fibrosis.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen University, D-52074 Aachen, Germany;
| | - Steffen K. Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen University, D-52074 Aachen, Germany;
| | - Christian Liedtke
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany;
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
70
|
Gaskell H, Ge X, Desert R, Das S, Han H, Lantvit D, Guzman G, Nieto N. Ablation of Hmgb1 in Intestinal Epithelial Cells Causes Intestinal Lipid Accumulation and Reduces NASH in Mice. Hepatol Commun 2019; 4:92-108. [PMID: 31909358 PMCID: PMC6939545 DOI: 10.1002/hep4.1448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a metabolic disorder in which poor nutrition and the gut-to-liver interaction play a major role. We previously established that hepatic high mobility group box-1 (HMGB1) is involved in chronic liver disease. HMGB1 increases in patients with NASH and it is expressed in intestinal epithelial cells (IEC); yet, the role of intestinal HMGB1 in the pathogenesis of NASH has not been investigated. Thus, we hypothesized that IEC-derived HMGB1 could play a role in NASH due to local effects in the intestine that govern hepatic steatosis. Control littermates and Hmgb1 ΔIEC mice were fed for 1 or 24 weeks a control diet or a high fat, high cholesterol (CHO) and fructose-enriched diet (HFCFD). Hepatic and intestinal injury were analyzed. Hmgb1 ΔIEC mice were protected from HFCFD-induced NASH after 1 or 24 weeks of feeding; however, they showed extensive atypical lipid droplet accumulation and increased concentrations of triglycerides (TG) and CHO in jejunal IEC together with lower TG and other lipid classes in serum. Olive oil or CHO gavage resulted in decreased serum TG and CHO in Hmgb1 ΔIEC mice, respectively, indicating delayed and/or reduced chylomicron (CM) efflux. There was significant up-regulation of scavenger receptor class B type 1 (SR-B1) and down-regulation of apolipoprotein B48 (ApoB48) proteins, suggesting decreased lipid packaging and/or CM formation that resulted in lesser hepatosteatosis. Conclusion: Ablation of Hmgb1 in IEC causes up-regulation of SR-B1 and down-regulation of ApoB48, leads to lipid accumulation in jejunal IEC, decreases CM packaging and/or release, reduces serum TG, and lessens liver steatosis, therefore protecting Hmgb1 ΔIEC mice from HFCFD-induced NASH.
Collapse
Affiliation(s)
- Harriet Gaskell
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Xiaodong Ge
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Romain Desert
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Sukanta Das
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Hui Han
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Daniel Lantvit
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Grace Guzman
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Natalia Nieto
- Department of Pathology University of Illinois at Chicago Chicago IL.,Department of Medicine Division of Gastroenterology and Hepatology University of Illinois at Chicago Chicago IL
| |
Collapse
|
71
|
Abstract
Studies using genetic mouse models that have defective autophagy have led to the conclusion that macroautophagy/autophagy serves as a tumor suppressor. One of such models is the liver-specific Atg5 or Atg7 knockout mice, and these knockout mice develop spontaneous liver tumors. It has been generally agreed that p62-mediated Nrf2 activation plays a critical role in promoting autophagy deficiency-induced liver injury and liver tumorigenesis. The mechanisms of how persistent Nrf2 activation induces liver injury and tumorigenesis are incompletely known. We discuss the recent progress on the new roles of HMGB1 and Yap in regulating liver injury and tumorigenesis in mice with liver-specific autophagy deficiency.
Collapse
Affiliation(s)
- Hua Yang
- *Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, P.R. China
| | - Hong-Min Ni
- †Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Wen-Xing Ding
- †Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
72
|
Salva-Pastor N, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N. Understanding the association of polycystic ovary syndrome and non-alcoholic fatty liver disease. J Steroid Biochem Mol Biol 2019; 194:105445. [PMID: 31381969 DOI: 10.1016/j.jsbmb.2019.105445] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among reproductive-age women. Patients with non-alcoholic fatty liver disease (NAFLD) often suffer from metabolic syndrome, atherosclerosis, ischemic heart disease, and extrahepatic tumors, conferring a lower survival than the general population; therefore it is crucial to study the association between NAFLD and PCOS since it remains poorly understood. Insulin resistance (IR) plays a central role in the pathogenesis of NAFLD and PCOS; also, hyperandrogenism enhances IR in these patients. IR, present in the NAFLD-PCOS association could decrease the hepatic production of sex hormone-binding globulin through a possible regulation mediated by hepatocyte nuclear factor 4 alpha. On the other hand, apoptotic processes initiated by androgens actively contribute to the progression of NAFLD. Considering the association between the two conditions, the screening of women with PCOS for the presence of NAFLD appears reasonable. The pathophysiological mechanisms of PCOS-NAFLD association and the initial approach will be reviewed here.
Collapse
Affiliation(s)
- Nicolás Salva-Pastor
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico; School of Medicine, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Los Volcanes, Z.C. 72420, Puebla, Mexico.
| | - Norberto C Chávez-Tapia
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico; Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico.
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico.
| | - Natalia Nuño-Lámbarri
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico.
| |
Collapse
|
73
|
Khambu B, Yan S, Huda N, Yin XM. Role of High-Mobility Group Box-1 in Liver Pathogenesis. Int J Mol Sci 2019; 20:ijms20215314. [PMID: 31731454 PMCID: PMC6862281 DOI: 10.3390/ijms20215314] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is a highly abundant DNA-binding protein that can relocate to the cytosol or undergo extracellular release during cellular stress or death. HMGB1 has a functional versatility depending on its cellular location. While intracellular HMGB1 is important for DNA structure maintenance, gene expression, and autophagy induction, extracellular HMGB1 acts as a damage-associated molecular pattern (DAMP) molecule to alert the host of damage by triggering immune responses. The biological function of HMGB1 is mediated by multiple receptors, including the receptor for advanced glycation end products (RAGE) and Toll-like receptors (TLRs), which are expressed in different hepatic cells. Activation of HMGB1 and downstream signaling pathways are contributing factors in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), and drug-induced liver injury (DILI), each of which involves sterile inflammation, liver fibrosis, ductular reaction, and hepatic tumorigenesis. In this review, we will discuss the critical role of HMGB1 in these pathogenic contexts and propose HMGB1 as a bona fide and targetable DAMP in the setting of common liver diseases.
Collapse
Affiliation(s)
- Bilon Khambu
- Correspondence: ; Tel.: +1-317-274-1789; Fax: +1-317-491-6639
| | | | | | | |
Collapse
|
74
|
Czepukojc B, Abuhaliema A, Barghash A, Tierling S, Naß N, Simon Y, Körbel C, Cadenas C, van Hul N, Sachinidis A, Hengstler JG, Helms V, Laschke MW, Walter J, Haybaeck J, Leclercq I, Kiemer AK, Kessler SM. IGF2 mRNA Binding Protein 2 Transgenic Mice Are More Prone to Develop a Ductular Reaction and to Progress Toward Cirrhosis. Front Med (Lausanne) 2019; 6:179. [PMID: 31555647 PMCID: PMC6737005 DOI: 10.3389/fmed.2019.00179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022] Open
Abstract
The insulin-like growth factor 2 (IGF2) mRNA binding proteins (IMPs/IGF2BPs) IMP1 and 3 are regarded as oncofetal proteins, whereas the hepatic IMP2 expression in adults is controversially discussed. The splice variant IMP2-2/p62 promotes steatohepatitis and hepatocellular carcinoma. Aim of this study was to clarify whether IMP2 is expressed in the adult liver and influences progression toward cirrhosis. IMP2 was expressed at higher levels in embryonic compared to adult tissues as quantified in embryonic, newborn, and adult C57BL/6J mouse livers and suggested by analysis of publicly available human data. In an IMP2-2 transgenic mouse model microarray and qPCR analyses revealed increased expression of liver progenitor cell (LPC) markers Bex1, Prom1, Spp1, and Cdh1 indicating a de-differentiated liver cell phenotype. Induction of these LPC markers was confirmed in human cirrhotic tissue datasets. The LPC marker SPP1 has been described to play a major role in fibrogenesis. Thus, DNA methylation was investigated in order to decipher the regulatory mechanism of Spp1 induction. In IMP2-2 transgenic mouse livers single CpG sites were differentially methylated, as quantified by amplicon sequencing, whereas human HCC samples of a human publicly available dataset showed promoter hypomethylation. In order to study the impact of IMP2 on fibrogenesis in the context of steatohepatitis wild-type or IMP2-2 transgenic mice were fed either a methionine-choline deficient (MCD) or a control diet for 2-12 weeks. MCD-fed IMP2-2 transgenic mice showed a higher incidence of ductular reaction (DR), accompanied by hepatic stellate cell activation, extracellular matrix (ECM) deposition, and induction of the LPC markers Spp1, Cdh1, and Afp suggesting the occurrence of de-differentiated cells in transgenic livers. In human cirrhotic samples IMP2 overexpression correlated with LPC marker and ECM component expression. Progression of liver disease was induced by combined MCD and diethylnitrosamine (DEN) treatment. Combined MCD-DEN treatment resulted in shorter survival of IMP2-2 transgenic compared to wild-type mice. Only IMP2-2 transgenic livers progressed to cirrhosis, which was accompanied by strong DR. In conclusion, IMP2 is an oncofetal protein in the liver that promotes DR characterized by de-differentiated cells toward steatohepatitis-associated cirrhosis development with poor survival.
Collapse
Affiliation(s)
- Beate Czepukojc
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Ali Abuhaliema
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Ahmad Barghash
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany.,Department of Computer Science, German Jordanian University, Amman, Jordan
| | - Sascha Tierling
- Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Norbert Naß
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yvette Simon
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Christina Körbel
- Institute of Clinical-Experimental Surgery, Saarland University Hospital, Homburg, Germany
| | - Cristina Cadenas
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at the TU Dortmund, Dortmund, Germany
| | - Noemi van Hul
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Agapios Sachinidis
- Center for Molecular Medicine Cologne (CMMC), Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Jan G Hengstler
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at the TU Dortmund, Dortmund, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Matthias W Laschke
- Institute of Clinical-Experimental Surgery, Saarland University Hospital, Homburg, Germany
| | - Jörn Walter
- Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Johannes Haybaeck
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Pathology, Medical University of Graz, Graz, Austria.,Department of Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Sonja M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany.,Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
75
|
McGettigan B, McMahan R, Orlicky D, Burchill M, Danhorn T, Francis P, Cheng LL, Golden-Mason L, Jakubzick CV, Rosen HR. Dietary Lipids Differentially Shape Nonalcoholic Steatohepatitis Progression and the Transcriptome of Kupffer Cells and Infiltrating Macrophages. Hepatology 2019; 70:67-83. [PMID: 30516830 PMCID: PMC6923128 DOI: 10.1002/hep.30401] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
A crucial component of nonalcoholic fatty liver disease (NAFLD) pathogenesis is lipid stress, which may contribute to hepatic inflammation and activation of innate immunity in the liver. However, little is known regarding how dietary lipids, including fat and cholesterol, may facilitate innate immune activation in vivo. We hypothesized that dietary fat and cholesterol drive NAFLD progression to steatohepatitis and hepatic fibrosis by altering the transcription and phenotype of hepatic macrophages. This hypothesis was tested by using RNA-sequencing methods to characterize and analyze sort-purified hepatic macrophage populations that were isolated from mice fed diets with varying amounts of fat and cholesterol. The addition of cholesterol to a high-fat diet triggered hepatic pathology reminiscent of advanced nonalcoholic steatohepatitis (NASH) in humans characterized by signs of cholesterol dysregulation, generation of oxidized low-density lipoprotein, increased recruitment of hepatic macrophages, and significant fibrosis. RNA-sequencing analyses of hepatic macrophages in this model revealed that dietary cholesterol induced a tissue repair and regeneration phenotype in Kupffer cells (KCs) and recruited infiltrating macrophages to a greater degree than fat. Furthermore, comparison of diseased KCs and infiltrating macrophages revealed that these two macrophage subsets are transcriptionally diverse. Finally, direct stimulation of murine and human macrophages with oxidized low-density lipoprotein recapitulated some of the transcriptional changes observed in the RNA-sequencing study. These findings indicate that fat and cholesterol synergize to alter macrophage phenotype, and they also challenge the dogma that KCs are purely proinflammatory in NASH. Conclusion: This comprehensive view of macrophage populations in NASH indicates mechanisms by which cholesterol contributes to NASH progression and identifies potential therapeutic targets for this common disease.
Collapse
Affiliation(s)
- Brett McGettigan
- Department of Medicine, Division of Gastroenterology & Hepatology,Department of Immunology
| | - Rachel McMahan
- Department of Medicine, Division of Gastroenterology & Hepatology
| | | | - Matthew Burchill
- Department of Medicine, Division of Gastroenterology & Hepatology
| | - Thomas Danhorn
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, CO
| | | | - Lin Ling Cheng
- Department of Medicine, Division of Gastroenterology & Hepatology
| | - Lucy Golden-Mason
- Department of Medicine, Division of Gastroenterology & Hepatology,Department of Immunology,Department of Medicine, University of Southern California,USC Research Center for Liver Diseases, Los Angeles, CA
| | | | - Hugo R. Rosen
- Department of Medicine, Division of Gastroenterology & Hepatology,Department of Immunology,Department of Medicine, University of Southern California,USC Research Center for Liver Diseases, Los Angeles, CA
| |
Collapse
|
76
|
HIV and HCV augments inflammatory responses through increased TREM-1 expression and signaling in Kupffer and Myeloid cells. PLoS Pathog 2019; 15:e1007883. [PMID: 31260499 PMCID: PMC6625740 DOI: 10.1371/journal.ppat.1007883] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/12/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic infection with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) affects an estimated 35 million and 75 million individuals worldwide, respectively. These viruses induce persistent inflammation which often drives the development or progression of organ-specific diseases and even cancer including Hepatocellular Carcinoma (HCC). In this study, we sought to examine inflammatory responses following HIV or HCV stimulation of macrophages or Kupffer cells (KCs), that may contribute to virus mediated inflammation and subsequent liver disease. KCs are liver-resident macrophages and reports have provided evidence that HIV can stimulate and infect them. In order to characterize HIV-intrinsic innate immune responses that may occur in the liver, we performed microarray analyses on KCs following HIV stimulation. Our data demonstrate that KCs upregulate several innate immune signaling pathways involved in inflammation, myeloid cell maturation, stellate cell activation, and Triggering Receptor Expressed on Myeloid cells 1 (TREM1) signaling. TREM1 is a member of the immunoglobulin superfamily of receptors and it is reported to be involved in systemic inflammatory responses due to its ability to amplify activation of host defense signaling pathways. Our data demonstrate that stimulation of KCs with HIV or HCV induces the upregulation of TREM1. Additionally, HIV viral proteins can upregulate expression of TREM1 mRNA through NF-кB signaling. Furthermore, activation of the TREM1 signaling pathway, with a targeted agonist, increased HIV or HCV-mediated inflammatory responses in macrophages due to enhanced activation of the ERK1/2 signaling cascade. Silencing TREM1 dampened inflammatory immune responses elicited by HIV or HCV stimulation. Finally, HIV and HCV infected patients exhibit higher expression and frequency of TREM1 and CD68 positive cells. Taken together, TREM1 induction by HIV contributes to chronic inflammation in the liver and targeting TREM1 signaling may be a therapeutic option to minimize HIV induced chronic inflammation. Although HIV antiviral therapy has limited the progression to AIDS in infected patients, there is still significant morbidity and mortality from HIV-driven diseases due to sustained inflammation. In this study, we sought to elucidate how HIV and HCV could impact inflammation in the liver and cause progressive liver disease that can eventually lead to cirrhosis and liver cancer. We found that HIV upregulates the inflammatory response amplifier, TREM1, in primary Kupffer Cells (KCs) that are liver-resident macrophages. Enhanced TREM1 expression subsequently is involved in augmented immune responses triggered by HIV or HCV. Additionally, our data demonstrates that blocking TREM1 expression reduces inflammatory responses mediated by HIV or HCV stimulation. Ultimately, our understanding of this mechanism may yield additional therapeutic strategies to help infected patients and give insight into inflammation driven liver cancer.
Collapse
|
77
|
MANF regulates splenic macrophage differentiation in mice. Immunol Lett 2019; 212:37-45. [PMID: 31226359 DOI: 10.1016/j.imlet.2019.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
Splenic immune cells, especially macrophages, play a key role in multiple pathological processes. With a proved anti-inflammatory and immunoregulatory function of mesencephalicastrocyte-derived neurotrophic factor (MANF) in inflammatory disorders, how MANF affects splenic immune cells in physiological and pathophysiological situations is still unknown. In this study, we constructed mono-macrophage-specific MANF knockout (Mø MANF-/-) mice and found the increased splenic M1 macrophages, but no significant change of splenic morphology and size compared with wild type (WT) mice. Also, we established the pathophysiological situation of carbon tetrachloride (CCl4)-induced hepatic fibrosis. Under the hepatic fibrosis, splenic M2 macrophages and CD138+ plasma cells were significantly increased in Mø MANF-/- mice. Consistently, we found the increased TGF-β1 level in serum and spleen of Mø MANF-/- mice as well. Mono-macrophage-specific MANF knockout did not affect the number of splenic T and B cells under both the normal and hepatic fibrosis conditions. Our results suggest a distinct regulation of MANF on splenic immune cells and a specific regulation of MANF on the differentiation of splenic macrophages, which may exert a significant impact on physiological and pathophysiological processes of the spleen.
Collapse
|
78
|
El-Khazragy N, Khalifa MM, Salem AM, Swellam M, Hegazy M. Evaluation of Osteopontin and Pokémon genes expression in hepatitis C virus-associated hepatocellular carcinoma. J Cell Biochem 2019; 120:7439-7445. [PMID: 30417409 DOI: 10.1002/jcb.28018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Osteopontin and Pokémon genes may have an important role in the pathogenesis of different malignancies. Osteopontin is a glycoprotein of the extracellular matrix, and Pokémon is a regulator of transcription. Both have been hypothesized to be useful as therapeutic targets or diagnostic markers. We aim to assess the role of both in hepatocellular carcinoma and liver fibrosis due to hepatitis C virus (HCV) infection. We conducted our study on 50 patients and classified them into three groups-Group I: Patients with HCV-related hepatocellular carcinoma (HCC) (n = 30); Group II: Patients with hepatitis C cirrhosis (n = 10); and Group III: Patients with hepatitis C fibrosis (n = 10). We found high levels of Osteopontin and Pokémon gene expression in group I. Osteopontin levels were higher also in patients with liver fibrosis was correlated to high levels of parameters such as alpha fetoprotein and caspase. We conclude that HCC is associated with overexpression of both Osteopontin and Pokémon and that Osteopontin plays a significant role in liver fibrosis due to hepatitis C infection.
Collapse
Affiliation(s)
- Nashwa El-Khazragy
- Department of Clinical Pathology/Hematology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Department of Medical Research, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona M Khalifa
- Biochemistry Department, Faculty of Science and Arts, Jazan University, Jazan, Saudi Arabia
| | - Ahmed M Salem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Menha Swellam
- High Throughput Molecular and Genetic laboratory, Center for Excellence for Advanced Sciences, Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre
| | - Marwa Hegazy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
79
|
Lesaffer B, Verboven E, Van Huffel L, Moya IM, van Grunsven LA, Leclercq IA, Lemaigre FP, Halder G. Comparison of the Opn-CreER and Ck19-CreER Drivers in Bile Ducts of Normal and Injured Mouse Livers. Cells 2019; 8:cells8040380. [PMID: 31027317 PMCID: PMC6523626 DOI: 10.3390/cells8040380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/28/2022] Open
Abstract
Inducible cyclization recombinase (Cre) transgenic mouse strains are powerful tools for cell lineage tracing and tissue-specific knockout experiments. However, low efficiency or leaky expression can be important pitfalls. Here, we compared the efficiency and specificity of two commonly used cholangiocyte-specific Cre drivers, the Opn-iCreERT2 and Ck19-CreERT drivers, using a tdTomato reporter strain. We found that Opn-iCreERT2 triggered recombination of the tdTomato reporter in 99.9% of all cholangiocytes while Ck19-CreERT only had 32% recombination efficiency after tamoxifen injection. In the absence of tamoxifen, recombination was also induced in 2% of cholangiocytes for the Opn-iCreERT2 driver and in 13% for the Ck19-CreERT driver. For both drivers, Cre recombination was highly specific for cholangiocytes since recombination was rare in other liver cell types. Toxic liver injury ectopically activated Opn-iCreERT2 but not Ck19-CreERT expression in hepatocytes. However, ectopic recombination in hepatocytes could be avoided by applying a three-day long wash-out period between tamoxifen treatment and toxin injection. Therefore, the Opn-iCreERT2 driver is best suited for the generation of mutant bile ducts, while the Ck19-CreERT driver has near absolute specificity for bile duct cells and is therefore favorable for lineage tracing experiments.
Collapse
Affiliation(s)
- Bram Lesaffer
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, 3000 Leuven, Belgium.
| | - Elisabeth Verboven
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, 3000 Leuven, Belgium.
| | - Leen Van Huffel
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, 3000 Leuven, Belgium.
| | - Iván M Moya
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, 3000 Leuven, Belgium.
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Americas, 170501 Quito, Ecuador.
| | - Leo A van Grunsven
- Liver Cell Biology research group, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| | - Isabelle A Leclercq
- Laboratory of Hepato-gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 1200 Brussels, Belgium.
| | - Frédéric P Lemaigre
- Liver and Pancreas Development Unit, de Duve Institute, Université catholique de Louvain, 1200 Brussels, Belgium.
| | - Georg Halder
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
80
|
Personnaz J, Piccolo E, Branchereau M, Filliol A, Paccoud R, Moreau E, Calise D, Riant E, Gourdy P, Heymes C, Schwabe RF, Dray C, Valet P, Pradère J. Macrophage-derived HMGB1 is dispensable for tissue fibrogenesis. FASEB Bioadv 2019; 1:227-245. [PMID: 32123829 PMCID: PMC6996376 DOI: 10.1096/fba.2018-00035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/11/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Alarmins and damage-associated molecular patterns (DAMPs) are powerful inflammatory mediators, capable of initiating and maintaining sterile inflammation during acute or chronic tissue injury. Recent evidence suggests that alarmins/DAMPs may also trigger tissue regeneration and repair, suggesting a potential contribution to tissue fibrogenesis. High mobility group B1 (HMGB1), a bona fide alarmin/DAMP, may be released passively by necrotic cells or actively secreted by innate immune cells. Macrophages can release large amounts of HMGB1 and play a key role in wound healing and regeneration processes. Here, we hypothesized that macrophages may be a key source of HMGB1 and thereby contribute to wound healing and fibrogenesis. Surprisingly, cell-specific deletion approaches, demonstrated that macrophage-derived HMGB1 is not involved in tissue fibrogenesis in multiple organs with different underlying pathologies. Compared to control HMGB1Flox mice, mice with macrophage-specific HMGB1 deletion (HMGB1ΔMac) do not display any modification of fibrogenesis in the liver after CCL4 or thioacetamide treatment and bile duct ligation; in the kidney following unilateral ureter obstruction; and in the heart after transverse aortic constriction. Of note, even under thermoneutral housing, known to exacerbate inflammation and fibrosis features, HMGB1ΔMac mice do not show impairment of fibrogenesis. In conclusion, our study clearly establishes that macrophage-derived HMGB1 does not contribute to tissue repair and fibrogenesis.
Collapse
Affiliation(s)
- Jean Personnaz
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | - Enzo Piccolo
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | - Maxime Branchereau
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | | | - Romain Paccoud
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | - Elsa Moreau
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | - Denis Calise
- UMS006, Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM) U1048, Institute of Cardiovascular and Metabolic DiseaseToulouseFrance
| | - Elodie Riant
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | - Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
- Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de ToulouseToulouseFrance
| | - Christophe Heymes
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | | | - Cédric Dray
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | - Philippe Valet
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | - Jean‐Philippe Pradère
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| |
Collapse
|
81
|
Schulien I, Hockenjos B, Schmitt-Graeff A, Perdekamp MG, Follo M, Thimme R, Hasselblatt P. The transcription factor c-Jun/AP-1 promotes liver fibrosis during non-alcoholic steatohepatitis by regulating Osteopontin expression. Cell Death Differ 2019; 26:1688-1699. [PMID: 30778201 PMCID: PMC6748141 DOI: 10.1038/s41418-018-0239-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/01/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
Progression of non-alcoholic fatty liver disease (NAFLD) from steatosis to non-alcoholic steatohepatitis (NASH) is a key step of NASH pathogenesis. The AP-1 transcription factor c-Jun is an important regulator of hepatic stress responses, but its contribution to NASH pathogenesis remains poorly defined. We therefore addressed c-Jun expression in liver biopsies of patients with steatosis and NASH. The role of c-Jun during NASH pathogenesis was analyzed mechanistically in c-Jun mutant mice fed with a methionine- and choline-deficient diet (MCDD). Disease progression from steatosis to NASH in patients correlated with increased c-Jun expression in hepatocytes, while its expression in non-parenchymal liver cells (NPLCs) particularly correlated with fibrosis. Analysis of untreated and MCDD-fed mice lacking c-Jun in hepatocytes (c-Jun∆li) revealed that c-Jun promotes hepatocyte survival, thereby protecting against the regenerative ductular reaction (DR) of Sox9/Osteopontin (Opn) co-expressing NPLCs, expression of the Opn receptor CD44 and fibrosis, which were all exacerbated in c-Jun∆li mice. Since Opn and c-Jun were co-expressed by NPLCs in mice and patients with NASH, we wondered whether the increased fibrosis observed in c-Jun∆li mice could be rescued by additional c-Jun deletion in NPLCs (c-Jun∆li*). c-Jun∆li* mice with NASH indeed exhibited reduced expression of Opn and CD44 in NPLCs, impaired DR and reduced fibrosis. A similar phenotype was observed in Opn knockout mice, suggesting that the observed functions of c-Jun were indeed Opn-dependent. In conclusion, c-Jun expression correlates with disease progression from steatosis to NASH in patients and exerts cell-type-specific functions in mice: In hepatocytes, it promotes cell survival thereby limiting the DR and fibrogenesis. In NPLCs, it rather promotes the DR and fibrogenesis by regulating expression of Opn and CD44.
Collapse
Affiliation(s)
- Isabel Schulien
- Department of Medicine II, Medical Center-University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Birgit Hockenjos
- Department of Medicine II, Medical Center-University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Annette Schmitt-Graeff
- Institute of Pathology, Medical Center-University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Markus Große Perdekamp
- Institute of Forensic Medicine, Medical Center-University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center-University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center-University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Peter Hasselblatt
- Department of Medicine II, Medical Center-University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
82
|
Ge X, Arriazu E, Magdaleno F, Antoine DJ, dela Cruz R, Theise N, Nieto N. High Mobility Group Box-1 Drives Fibrosis Progression Signaling via the Receptor for Advanced Glycation End Products in Mice. Hepatology 2018; 68:2380-2404. [PMID: 29774570 PMCID: PMC6240507 DOI: 10.1002/hep.30093] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/02/2018] [Indexed: 01/07/2023]
Abstract
High-mobility group box-1 (HMGB1) is a damage-associated molecular pattern (DAMP) increased in response to liver injury. Because HMGB1 is a ligand for the receptor for advanced glycation endproducts (RAGE), we hypothesized that induction of HMGB1 could participate in the pathogenesis of liver fibrosis though RAGE cell-specific signaling mechanisms. Liver HMGB1 protein expression correlated with fibrosis stage in patients with chronic hepatitis C virus (HCV) infection, primary biliary cirrhosis (PBC), or alcoholic steatohepatitis (ASH). Hepatic HMGB1 protein expression and secretion increased in five mouse models of liver fibrosis attributed to drug-induced liver injury (DILI), cholestasis, ASH, or nonalcoholic steatohepatitis (NASH). HMGB1 was up-regulated and secreted mostly by hepatocytes and Kupffer cells (KCs) following CCl4 treatment. Neutralization of HMGB1 protected, whereas injection of recombinant HMGB1 promoted liver fibrosis. Hmgb1 ablation in hepatocytes (Hmgb1ΔHep ) or in myeloid cells (Hmgb1ΔMye ) partially protected, whereas ablation in both (Hmgb1ΔHepΔMye ) prevented liver fibrosis in vivo. Coculture with hepatocytes or KCs from CCl4 -injected wild-type (WT) mice up-regulated Collagen type I production by hepatic stellate cells (HSCs); yet, coculture with hepatocytes from CCl4 -injected Hmgb1ΔHep or with KCs from CCl4 -injected Hmgb1ΔMye mice partially blunted this effect. Rage ablation in HSCs (RageΔHSC ) and RAGE neutralization prevented liver fibrosis. Last, we identified that HMGB1 stimulated HSC migration and signaled through RAGE to up-regulate Collagen type I expression by activating the phosphorylated mitogen-activated protein kinase kinase (pMEK)1/2, phosphorylated extracellular signal-regulated kinase (pERK)1/2 and pcJun signaling pathway. Conclusion: Hepatocyte and KC-derived HMGB1 participates in the pathogenesis of liver fibrosis by signaling through RAGE in HSCs to activate the pMEK1/2, pERK1/2 and pcJun pathway and increase Collagen type I deposition.
Collapse
Affiliation(s)
- Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA,Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Box 1123, 1425 Madison Ave., Room 11-70, New York, NY 10029, USA
| | - Elena Arriazu
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Box 1123, 1425 Madison Ave., Room 11-70, New York, NY 10029, USA
| | - Fernando Magdaleno
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Daniel J. Antoine
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, GB
| | - Rouchelle dela Cruz
- Division of Digestive Diseases, Mount Sinai Beth Israel Medical Center, First Avenue at 16 Street, New York, NY 10003
| | - Neil Theise
- Division of Digestive Diseases, Mount Sinai Beth Israel Medical Center, First Avenue at 16 Street, New York, NY 10003,Department of Pathology, New York University Langone Medical Center, 550 First Ave., New York, NY 10016
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA,Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Box 1123, 1425 Madison Ave., Room 11-70, New York, NY 10029, USA,Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 S. Wood St., Suite 1020N, MC 787, Chicago, IL 60612, USA
| |
Collapse
|
83
|
Abstract
Cell death represents a basic biological paradigm that governs outcomes and long-term sequelae in almost every hepatic disease condition. Acute liver failure is characterized by massive loss of parenchymal cells but is usually followed by restitution ad integrum. By contrast, cell death in chronic liver diseases often occurs at a lesser extent but leads to long-term alterations in organ architecture and function, contributing to chronic hepatocyte turnover, the recruitment of immune cells and activation of hepatic stellate cells. These chronic cell death responses contribute to the development of liver fibrosis, cirrhosis and cancer. It has become evident that, besides apoptosis, necroptosis is a highly relevant form of programmed cell death in the liver. Differential activation of specific forms of programmed cell death might not only affect outcomes in liver diseases but also offer novel opportunities for therapeutic intervention. Here, we summarize the underlying molecular mechanisms and open questions about disease-specific activation and roles of programmed cell death forms, their contribution to response signatures and their detection. We focus on the role of apoptosis and necroptosis in acute liver injury, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH) and liver cancer, and possible translations into clinical applications.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY, USA.
- Institute of Human Nutrition, Columbia University, New York, NY, USA.
| | - Tom Luedde
- Department of Medicine III, Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany.
| |
Collapse
|
84
|
Wang A, Zhou F, Li D, Lu JJ, Wang Y, Lin L. γ-Mangostin alleviates liver fibrosis through Sirtuin 3-superoxide-high mobility group box 1 signaling axis. Toxicol Appl Pharmacol 2018; 363:142-153. [PMID: 30502394 DOI: 10.1016/j.taap.2018.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022]
Abstract
The activation of hepatic stellate cells (HSCs) plays a critical role in liver fibrosis. In the current study, γ-mangostin (γ-man), one of the major xanthones from mangosteen (Garcinia mangostana), was found to alleviate fibrogenesis in human immortalized HSCs (LX-2 cells) and in liver from chronic carbon tetrachloride (CCl4) injured mice. γ-Man suppressed the expression levels of collagen I and α-smooth muscle actin (α-SMA) in LX-2 cells in both dose and time dependent manners. Furthermore, γ-man inhibited NAD(P)H oxidase activity through induction of sirtuin 3 (SIRT3), resulting in reduced intracellular oxidative stress in LX-2 cells. Moreover, γ-man stimulated the expression of histone deacetylase 1, which in turn decreased the acetylation and cytoplasmic shuttling of high mobility group box 1 (HMGB1), to impair autocrine HMGB1-induced HSC activation. In CCl4-injured mice, γ-man enhanced the expression of SIRT3 and decreased the expression of HMGB1, resulting in decreased accumulation of collagen I and α-SMA in liver. Consequently, γ-man might be a potent candidate to treat oxidative stress induced liver fibrosis.
Collapse
Affiliation(s)
- Anqi Wang
- Guangdong-Macau Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd, Hengqin New Area, Zhuhai, Guangdong 519031, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Fayang Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Dan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
85
|
Ke MY, Zhang M, Su Q, Wei S, Zhang J, Wang Y, Wu R, Lv Y. Gamma-glutamyl transpeptidase to platelet ratio predicts short-term outcomes in hepatocellular carcinoma patients undergoing minor liver resection. J Surg Res 2018; 231:403-410. [PMID: 30278960 DOI: 10.1016/j.jss.2018.05.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/22/2018] [Accepted: 05/24/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND There is a strong correlation between liver fibrosis and postoperative morbidity after hepatectomy in hepatocellular carcinoma (HCC) patients. The aim of this study was to evaluate which noninvasive fibrosis index (gamma-glutamyl transpeptidase to platelet ratio [GPR], aspartate aminotransferase to platelet ratio index, fibrosis-4 index, or Forns index) was best able to predict complications in patients undergoing hepatectomy for HCC. MATERIALS AND METHODS This retrospective analysis included 275 patients who underwent hepatectomy for HCC from January 2008 to December 2012. Postoperative mortality was defined as death within 90 d after surgery. Complications were grouped into seven grades on the basis of the modified Clavien classification, and major postoperative complications were defined as grade 3 or above. The influence of noninvasive fibrosis indices on postoperative outcomes was assessed by receiver operating characteristic analysis. The primary outcomes were overall complications and major complications, estimated by univariate and multivariate analysis. RESULTS Patients with HCC undergoing anatomical liver resection in the authors' department were evaluated for this study. Finally, 275 patients who underwent minor liver resection (≤2 liver segments) were included. Of these, 231 (84%) were male. The multivariate analysis indicated that the GPR index was not only independently associated with overall complications (hazard ratio, 2.692; 95% confidence interval [CI], 1.626-4.250; P < 0.001) but also independently predictive of major complications (hazard ratio, 1.143; 95% CI, 1.046-1.249; P = 0.03). The areas under the receiver operating characteristic curve for predicting overall complications and major complications for the GPR index were 0.704 (95% CI, 0.643-0.765; P < 0.001) and 0.752 (95% CI, 0.638-0.865; P < 0.001), respectively. CONCLUSIONS The data suggested that the GPR index could be a promising predictor of overall postoperative complications and major complications after minor hepatectomy for HCC.
Collapse
Affiliation(s)
- Meng-Yun Ke
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Mei Zhang
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Qing Su
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Shasha Wei
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Jia Zhang
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Yue Wang
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Rongqian Wu
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China.
| | - Yi Lv
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China.
| |
Collapse
|
86
|
Bellan M, Castello LM, Pirisi M. Candidate Biomarkers of Liver Fibrosis: A Concise, Pathophysiology-oriented Review. J Clin Transl Hepatol 2018; 6:317-325. [PMID: 30271745 PMCID: PMC6160308 DOI: 10.14218/jcth.2018.00006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
Repair of sustained liver injury results in fibrosis (i.e. the accumulation of extracellular matrix proteins), and ultimately the complete distortion of parenchymal architecture of the liver, which we call cirrhosis. Detecting and staging of fibrosis is thus a mainstay in the management of chronic liver diseases, since many clinically relevant decisions, such as starting treatment and/or monitoring for complications including hepatocellular carcinoma, may depend on it. The gold standard for fibrosis staging is liver biopsy, the role of which, however, is questioned nowadays because of cost, hazards and poor acceptance by patients. On the other hand, imaging techniques and/or measurement of direct and indirect serum markers have not proved to be completely satisfactory under all circumstances as alternatives to liver biopsy. Making progress in this field is now more crucial than ever, since treatments for established fibrosis appear on the horizon. Fine dissection of the pathways involved in the pathophysiology of liver diseases has put forward several novel candidate biomarkers of liver fibrosis, such as growth arrest-specific6, Mac-2-binding protein, osteopontin, placental growth factor, growth/differentiation factor 15 and hepatocyte growth factor. All molecules have been suggested to have potential to complement or substitute methods currently used to stage liver diseases. Here, we review the pros and cons for their use in this setting.
Collapse
Affiliation(s)
- Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy
- Division of Internal Medicine, “Sant’Andrea Hospital”, Vercelli, Italy
- IRCAD, Interdisciplinary Research Center of Autoimmune Diseases, Novara, Italy
- *Correspondence to: Mattia Bellan, Department of Translational Medicine, Università del Piemonte Orientale UPO, via Solaroli 17, Novara (NO) 28100, Italy. Tel: +39-321-3733966, Fax: +39-321-3733361, E-mail:
| | - Luigi Mario Castello
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy
- Emergency Medicine Department, “AOU Maggiore della Carità”, Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy
- Division of Internal Medicine, “AOU Maggiore della Carità, Novara, Italy
| |
Collapse
|
87
|
Gaskell H, Ge X, Nieto N. High-Mobility Group Box-1 and Liver Disease. Hepatol Commun 2018; 2:1005-1020. [PMID: 30202816 PMCID: PMC6128227 DOI: 10.1002/hep4.1223] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022] Open
Abstract
High‐mobility group box‐1 (HMGB1) is a ubiquitous protein. While initially thought to be simply an architectural protein due to its DNA‐binding ability, evidence from the last decade suggests that HMGB1 is a key protein participating in the pathogenesis of acute liver injury and chronic liver disease. When it is passively released or actively secreted after injury, HMGB1 acts as a damage‐associated molecular pattern that communicates injury and inflammation to neighboring cells by the receptor for advanced glycation end products or toll‐like receptor 4, among others. In the setting of acute liver injury, HMGB1 participates in ischemia/reperfusion, sepsis, and drug‐induced liver injury. In the context of chronic liver disease, it has been implicated in alcoholic liver disease, liver fibrosis, nonalcoholic steatohepatitis, and hepatocellular carcinoma. Recently, specific posttranslational modifications have been identified that could condition the effects of the protein in the liver. Here, we provide a detailed review of how HMGB1 signaling participates in acute liver injury and chronic liver disease.
Collapse
Affiliation(s)
- Harriet Gaskell
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Xiaodong Ge
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Natalia Nieto
- Department of Pathology University of Illinois at Chicago Chicago IL.,Department of Medicine University of Illinois at Chicago Chicago IL
| |
Collapse
|
88
|
High-mobility group box 1 induces endoplasmic reticulum stress and activates hepatic stellate cells. J Transl Med 2018; 98:1200-1210. [PMID: 29959419 DOI: 10.1038/s41374-018-0085-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis is a worldwide clinical issue. The activation of hepatic stellate cells (HSCs) is the central event during the hepatic fibrotic response. However, the exact mechanisms related to HSC activation and the connection between hepatocytes and HSCs remain unclear. We elucidated the mechanism by which the nuclear-damage-associated molecular pattern molecule, high-mobility group box 1 (HMGB1) was released from the impaired hepatocytes and induced endoplasmic reticulum stress to activate HSCs. In this work, we demonstrated that HMGB1 can be released from hepatocytes and the released HMGB1 activates the HSCs via ER stress at the transcriptional level which was dependent on the activation of both the TLR4 and RAGE signaling pathways rather than the TLR2 signaling pathway. HMGB1 induction of proinflammatory cytokines interleukin (IL)-1β and IL-18 release was dependent on ER stress. In vivo, stable inhibition of HMGB1 suppressed liver fibrosis. These results suggest that under damage condition, HMGB1 can be secreted from injured hepatocytes and activates TLR4- and RAGE signaling pathways to induce ER stress which activates HSCs. Moreover, HMGB1 can produce multiple inflammatory mediators through ER stress, which, in turn, promote liver fibrosis.
Collapse
|
89
|
HMGB1-induced autophagy facilitates hepatic stellate cells activation: a new pathway in liver fibrosis. Clin Sci (Lond) 2018; 132:1645-1667. [PMID: 29907694 DOI: 10.1042/cs20180177] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
High-mobility group box-1 (HMGB1) plays a context-dependent role in autophagy, which is required for hepatic stellate cells (HSCs) activation. However, the significance of HMGB1-induced HSCs autophagy in liver fibrosis has not been elucidated. Here, we first documented an enrichment of peripheral and intrahepatic HMGB1 signal in hepatitis B virus (HBV)-related liver fibrosis progression, and presented a direct evidence of anatomic proximity of HMGB1 with a-SMA (a marker for HSCs activation) in cirrhotic liver specimens. Then, we demonstrated the autophagy-inducing effects by serum-sourced HMGB1 in both primary murine HSCs and human HSCs cell line (LX-2), reflected by increased number of autophagic vacuoles (AVs) under the transmission electron microscope (TEM) and up-regulated protein expression of lipidated microtubule-associated light chain 3 (LC3-II) (a marker for autophagosome) in Western blot analysis. Intriguingly, there is a possible translocation of endogenous HMGB1 from the nucleus to cytoplasm to extracellular space, during exogenous HMGB1-induced HSCs autophagy. Meanwhile, the dose- and time-dependent effects by recombinant HMGB1 (rHMGB1) in enhancing LX-2 autophagy and fibrogenesis have been revealed with activated extracellular regulated protein kinase (ERK)/c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) and restrained mammalian target of rapamycin (mTOR)/STAT3 signaling pathways. Additionally, the ERK or JNK inhibitor could not only inhibit rHMGB1-induced autophagy and fibrogenesis in LX-2 cells, but also restore the suppressed mTOR and STAT3 pathways. Furthermore, using LC3-siRNA transfected LX-2, we found HMGB1-induced fibrogenesis is dependent on its autophagy-inducing effects. Finally, we elucidated the involvement of extracellular HMGB1-receptor for advenced glycation end product (RAGE) axis and endogenous HMGB1 in exogenous HMGB1-induced effects. Our findings could open new perspectives in developing an antifibrotic therapy by targetting the HSCs autophagy.
Collapse
|
90
|
Mortezaee K. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and liver fibrosis: A review. Cell Biochem Funct 2018; 36:292-302. [PMID: 30028028 DOI: 10.1002/cbf.3351] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are key producer of reactive oxygen species in liver cells. Hepatic stellate cells (HSCs) and Kupffer cells (KCs) are the two key cells for expression of NOX in liver. KCs produce only NOX2, while HSCs produce NOX1, 2, and 4, all of which play essential roles in the process of fibrogenesis within liver. These NOX subtypes are contributed to induction of liver fibrosis by acting through multiple pathways including induction of HSC activation, proliferation, survival and migration, stimulation of hepatocyte apoptosis, enhancement of fibrogenic mediators, and mediation of an inflammatory cascade in both KCs and HSCs. SIGNIFICANCE KCs and HSCs are two key cells for production of NOX in liver in relation to the pathology of liver fibrosis. NOX subtypes 1, 2, and 4 are inducers of fibrogenesis in liver. NOX activation favors hepatocyte apoptosis, HSC activation, and KC-mediated inflammatory cascade in liver, all of which are responsible for generation of liver fibrosis.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
91
|
Khambu B, Huda N, Chen X, Antoine DJ, Li Y, Dai G, Köhler UA, Zong WX, Waguri S, Werner S, Oury TD, Dong Z, Yin XM. HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J Clin Invest 2018; 128:2419-2435. [PMID: 29558368 DOI: 10.1172/jci91814] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy is important for liver homeostasis, and the deficiency leads to injury, inflammation, ductular reaction (DR), fibrosis, and tumorigenesis. It is not clear how these events are mechanistically linked to autophagy deficiency. Here, we reveal the role of high-mobility group box 1 (HMGB1) in two of these processes. First, HMGB1 was required for DR, which represents the expansion of hepatic progenitor cells (HPCs) implicated in liver repair and regeneration. DR caused by hepatotoxic diets (3,5-diethoxycarbonyl-1,4-dihydrocollidine [DDC] or choline-deficient, ethionine-supplemented [CDE]) also depended on HMGB1, indicating that HMGB1 may be generally required for DR in various injury scenarios. Second, HMGB1 promoted tumor progression in autophagy-deficient livers. Receptor for advanced glycation end product (RAGE), a receptor for HMGB1, was required in the same two processes and could mediate the proliferative effects of HMBG1 in isolated HPCs. HMGB1 was released from autophagy-deficient hepatocytes independently of cellular injury but depended on NRF2 and the inflammasome, which was activated by NRF2. Pharmacological or genetic activation of NRF2 alone, without disabling autophagy or causing injury, was sufficient to cause inflammasome-dependent HMGB1 release. In conclusion, HMGB1 release is a critical mechanism in hepatic pathogenesis under autophagy-deficient conditions and leads to HPC expansion as well as tumor progression.
Collapse
Affiliation(s)
- Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoyun Chen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Daniel J Antoine
- MRC Center for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Yong Li
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Guoli Dai
- Department of Biology, Purdue University School of Science, Indianapolis, Indiana, USA
| | - Ulrike A Köhler
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey, USA
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
92
|
Hernandez C, Huebener P, Pradere JP, Antoine DJ, Friedman RA, Schwabe RF. HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J Clin Invest 2018; 128:2436-2451. [PMID: 29558367 DOI: 10.1172/jci91786] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/13/2018] [Indexed: 12/15/2022] Open
Abstract
Cell death is a key driver of disease progression and carcinogenesis in chronic liver disease (CLD), highlighted by the well-established clinical correlation between hepatocellular death and risk for the development of cirrhosis and hepatocellular carcinoma (HCC). Moreover, hepatocellular death is sufficient to trigger fibrosis and HCC in mice. However, the pathways through which cell death drives CLD progression remain elusive. Here, we tested the hypothesis that high-mobility group box 1 (HMGB1), a damage-associated molecular pattern (DAMP) with key roles in acute liver injury, may link cell death to injury responses and hepatocarcinogenesis in CLD. While liver-specific HMGB1 deficiency did not significantly affect chronic injury responses such as fibrosis, regeneration, and inflammation, it inhibited ductular/progenitor cell expansion and hepatocyte metaplasia. HMGB1 promoted ductular expansion independently of active secretion in a nonautonomous fashion, consistent with its role as a DAMP. Liver-specific HMGB1 deficiency reduced HCC development in 3 mouse models of chronic injury but not in a model lacking chronic liver injury. As with CLD, HMGB1 ablation reduced the expression of progenitor and oncofetal markers, a key determinant of HCC aggressiveness, in tumors. In summary, HMGB1 links hepatocyte death to ductular reaction, progenitor signature, and hepatocarcinogenesis in CLD.
Collapse
Affiliation(s)
- Celine Hernandez
- Department of Medicine, Columbia University, New York, New York, USA
| | - Peter Huebener
- Department of Medicine, Columbia University, New York, New York, USA.,Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean-Philippe Pradere
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
| | - Daniel J Antoine
- MRC Centre for Inflammation Research, University of Edinburgh, United Kingdom
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
93
|
Zhuang S, Hua X, He K, Zhou T, Zhang J, Wu H, Ma X, Xia Q, Zhang J. Inhibition of GSK‐3β induces AP‐1‐mediated osteopontin expression to promote cholestatic liver fibrosis. FASEB J 2018. [DOI: 10.1096/fj.201701137r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shaoyong Zhuang
- Department of Liver SurgeryShanghai Jiao‐Tong UniversityShanghaiChina
- Liver Transplantation CenterShanghai Jiao‐Tong UniversityShanghaiChina
| | - Xiangwei Hua
- Division of Gastroenterology and HepatologyShanghai Institute of Digestive DiseaseRen Ji HospitalSchool of MedicineShanghai Jiao‐Tong UniversityShanghaiChina
| | - Kang He
- Department of Liver SurgeryShanghai Jiao‐Tong UniversityShanghaiChina
- Liver Transplantation CenterShanghai Jiao‐Tong UniversityShanghaiChina
| | - Tao Zhou
- Department of Liver SurgeryShanghai Jiao‐Tong UniversityShanghaiChina
- Liver Transplantation CenterShanghai Jiao‐Tong UniversityShanghaiChina
| | - Jiang Zhang
- Key Laboratory of Gastroenterology and HepatologyMinistry of HealthShanghai Jiao‐Tong UniversityShanghaiChina
| | - Haoyu Wu
- Department of Liver SurgeryShanghai Jiao‐Tong UniversityShanghaiChina
- Liver Transplantation CenterShanghai Jiao‐Tong UniversityShanghaiChina
| | - Xiong Ma
- Institute of Transplantation ScienceThe Affiliated Hospital of Qingdao UniversityShandongChina
- Department of Medicine IIUniversity of Munich‐Campus GrosshadernMunichGermany
| | - Qiang Xia
- Department of Liver SurgeryShanghai Jiao‐Tong UniversityShanghaiChina
- Liver Transplantation CenterShanghai Jiao‐Tong UniversityShanghaiChina
| | - Jianjun Zhang
- Department of Liver SurgeryShanghai Jiao‐Tong UniversityShanghaiChina
- Liver Transplantation CenterShanghai Jiao‐Tong UniversityShanghaiChina
| |
Collapse
|
94
|
Magdaleno F, Ge X, Fey H, Lu Y, Gaskell H, Blajszczak CC, Aloman C, Fiel MI, Nieto N. Osteopontin deletion drives hematopoietic stem cell mobilization to the liver and increases hepatic iron contributing to alcoholic liver disease. Hepatol Commun 2018; 2:84-98. [PMID: 29404515 PMCID: PMC5776866 DOI: 10.1002/hep4.1116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate the role of osteopontin (OPN) in hematopoietic stem cell (HPSC) mobilization to the liver and its contribution to alcoholic liver disease (ALD). We analyzed young (14-16 weeks) and old (>1.5 years) wild-type (WT) littermates and global Opn knockout (Opn-/- ) mice for HPSC mobilization to the liver. In addition, WT and Opn-/- mice were chronically fed the Lieber-DeCarli diet for 7 weeks. Bone marrow (BM), blood, spleen, and liver were analyzed by flow cytometry for HPSC progenitors and polymorphonuclear neutrophils (PMNs). Chemokines, growth factors, and cytokines were measured in serum and liver. Prussian blue staining for iron deposits and naphthol AS-D chloroacetate esterase staining for PMNs were performed on liver sections. Hematopoietic progenitors were lower in liver and BM of young compared to old Opn-/- mice. Granulocyte colony-stimulating factor and macrophage colony-stimulating factor were increased in Opn-/- mice, suggesting potential migration of HPSCs from the BM to the liver. Furthermore, ethanol-fed Opn-/- mice showed significant hepatic PMN infiltration and hemosiderin compared to WT mice. As a result, ethanol feeding caused greater liver injury in Opn-/- compared to WT mice. Conclusion: Opn deletion promotes HPSC mobilization, PMN infiltration, and iron deposits in the liver and thereby enhances the severity of ALD. The age-associated contribution of OPN to HPSC mobilization to the liver, the prevalence of PMNs, and accumulation of hepatic iron, which potentiates oxidant stress, reveal novel signaling mechanisms that could be targeted for therapeutic benefit in patients with ALD. (Hepatology Communications 2018;2:84-98).
Collapse
Affiliation(s)
| | - Xiaodong Ge
- Department of PathologyUniversity of Illinois at ChicagoChicagoIL
- Division of Liver Diseases, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Holger Fey
- Division of Digestive DiseasesRush University Medical CenterChicagoIL
| | - Yongke Lu
- Division of Liver Diseases, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Harriet Gaskell
- Department of PathologyUniversity of Illinois at ChicagoChicagoIL
| | | | - Costica Aloman
- Division of Digestive DiseasesRush University Medical CenterChicagoIL
| | - M. Isabel Fiel
- Department of PathologyIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Natalia Nieto
- Department of PathologyUniversity of Illinois at ChicagoChicagoIL
- Division of Liver Diseases, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNY
- Department of Medicine, Division of Gastroenterology and HepatologyUniversity of Illinois at ChicagoChicagoIL
| |
Collapse
|
95
|
Chen Y, Ou Y, Dong J, Yang G, Zeng Z, Liu Y, Liu B, Li W, He X, Lan T. Osteopontin promotes collagen I synthesis in hepatic stellate cells by miRNA-129-5p inhibition. Exp Cell Res 2017; 362:343-348. [PMID: 29196165 DOI: 10.1016/j.yexcr.2017.11.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Activation of hepatic stellate cells (HSCs) is an essential event in the initiation and progression of liver fibrosis. HSCs are believed to be the major source of collagen-producing myofibroblasts in fibrotic livers. A key feature in the pathogenesis of liver fibrosis is fibrillar Collagen I (Col 1) deposition. Osteopontin (OPN), an extracellular matrix (ECM) cytokine expressed in HSCs, could drive fibrogenesis by modulating the HSC pro-fibrogenic phenotype and Col 1 expression. Here, we aimed to investigate the molecular mechanism of OPN regulating the activation of HSCs. Our results showed that hepatic expression of OPN was increased in patients with liver fibrosis. In addition, hepatic OPN was positively correlated with Col 1 and α-SMA. Recombinant OPN (rOPN) upregulated Col 1 and α-SMA expression in LX-2 cells. However, OPN knockdown downregulated Col 1 expression. The 3'-UTR of the collagen 1 (Col 1) was identified to bind miR-129-5p. Transfection of miR-129-5p mimic in HSC resulted in a marked reduction of Col 1 expression. Conversely, a decrease in miR-129-5p in HSCs transfected by anti-sense miR-129-5p (AS-miR-129-5p) caused Col 1 upregulation. Furthermore, luciferase reporter assay showed that miR-129-5p directly target the 3'-UTR of Col1α1 mRNA via repressing its post-transcriptional activities. Finally, miR-129-5p level was decreased in fibrotic liver of human, and reduced by rOPN treatment. In contrast, miR-129-5p was induced in HSCs transfected by OPN siRNA. These data suggested that OPN induces Col 1 expression via suppression of miR-129-5p in HSCs.
Collapse
Affiliation(s)
- Yinghua Chen
- Organ Transplantation Center, the First Affiliat ed Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yitao Ou
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiale Dong
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guizhi Yang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhi Zeng
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Liu
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bing Liu
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weidong Li
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoshun He
- Organ Transplantation Center, the First Affiliat ed Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| | - Tian Lan
- Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
96
|
Kelsh-Lasher RM, Ambesi A, Bertram C, McKeown-Longo PJ. Integrin α4β1 and TLR4 Cooperate to Induce Fibrotic Gene Expression in Response to Fibronectin's EDA Domain. J Invest Dermatol 2017; 137:2505-2512. [PMID: 28842322 DOI: 10.1016/j.jid.2017.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/27/2017] [Accepted: 08/07/2017] [Indexed: 01/28/2023]
Abstract
Alternative splicing of fibronectin increases expression of the EDA+ isoform of fibronectin (EDA+Fn), a damage-associated molecular pattern molecule, which promotes fibro-inflammatory disease through the activation of toll-like receptors. Our studies indicate that the fibronectin EDA domain drives two waves of gene expression in human dermal fibroblasts. The first wave, seen at 2 hours, consisted of inflammatory genes, VCAM1, and tumor necrosis factor. The second wave, evaluated at 24 hours, was composed of the fibrosis-associated cytokines IL-10 and IL-13 and extracellular matrix genes fibronectin and osteopontin. Gene expression was coordinately regulated by the α4β1 integrin and the innate immune receptor toll-like receptor 4. Additionally, we found a significant toll-like receptor 4/α4β1-dependent enrichment in the ratio of EDA+Fn to total fibronectin in response to EDA, consistent with EDA+Fn initiating further production of EDA+Fn. Our data also suggest that the EDA/α4β1 integrin interaction primes the cell for an enhanced response to toll-like receptor 4 ligands. Our studies provide evidence that remodeling of the fibronectin matrix in injured or diseased tissue elicits an EDA-dependent fibro-inflammatory response in dermal fibroblasts. The data suggest a paradigm of damage-associated molecular pattern-based signaling whereby damage-associated molecular pattern binding integrins cooperate with innate immune receptors to stimulate inflammation and fibrosis.
Collapse
Affiliation(s)
- Rhiannon M Kelsh-Lasher
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Anthony Ambesi
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Ceyda Bertram
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Paula J McKeown-Longo
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
97
|
Re-expression of pro-fibrotic, embryonic preserved mediators in irradiated arterial vessels of the head and neck region. Strahlenther Onkol 2017; 193:951-960. [DOI: 10.1007/s00066-017-1192-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/28/2017] [Indexed: 01/19/2023]
|
98
|
Ruberti S, Bianchi E, Guglielmelli P, Rontauroli S, Barbieri G, Tavernari L, Fanelli T, Norfo R, Pennucci V, Fattori GC, Mannarelli C, Bartalucci N, Mora B, Elli L, Avanzini MA, Rossi C, Salmoiraghi S, Zini R, Salati S, Prudente Z, Rosti V, Passamonti F, Rambaldi A, Ferrari S, Tagliafico E, Vannucchi AM, Manfredini R. Involvement of MAF/SPP1 axis in the development of bone marrow fibrosis in PMF patients. Leukemia 2017; 32:438-449. [PMID: 28745329 PMCID: PMC5808097 DOI: 10.1038/leu.2017.220] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 06/16/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023]
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hyperplastic megakaryopoiesis and myelofibrosis. We recently described the upregulation of MAF (v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog) in PMF CD34+ hematopoietic progenitor cells (HPCs) compared to healthy donor. Here we demonstrated that MAF is also upregulated in PMF compared with the essential thrombocytemia (ET) and polycytemia vera (PV) HPCs. MAF overexpression and knockdown experiments shed some light into the role of MAF in PMF pathogenesis, by demonstrating that MAF favors the megakaryocyte and monocyte/macrophage commitment of HPCs and leads to the increased expression of proinflammatory and profibrotic mediators. Among them, we focused our further studies on SPP1 and LGALS3. We assessed SPP1 and LGALS3 protein levels in 115 PMF, 47 ET and 24 PV patients plasma samples and we found that SPP1 plasma levels are significantly higher in PMF compared with ET and PV patients. Furthermore, in vitro assays demonstrated that SPP1 promotes fibroblasts and mesenchymal stromal cells proliferation and collagen production. Strikingly, clinical correlation analyses uncovered that higher SPP1 plasma levels in PMF patients correlate with a more severe fibrosis degree and a shorter overall survival. Collectively our data unveil that MAF overexpression contributes to PMF pathogenesis by driving the deranged production of the profibrotic mediator SPP1.
Collapse
Affiliation(s)
- S Ruberti
- Department of Life Sciences, Centre for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - E Bianchi
- Department of Life Sciences, Centre for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - P Guglielmelli
- Department of Experimental and Clinical Medicine, CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, AOU Careggi, University of Florence, Florence, Italy
| | - S Rontauroli
- Department of Life Sciences, Centre for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - G Barbieri
- Department of Life Sciences, Centre for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - L Tavernari
- Department of Life Sciences, Centre for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - T Fanelli
- Department of Experimental and Clinical Medicine, CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, AOU Careggi, University of Florence, Florence, Italy
| | - R Norfo
- Department of Life Sciences, Centre for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy.,Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - V Pennucci
- Department of Life Sciences, Centre for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - G Corbizi Fattori
- Department of Experimental and Clinical Medicine, CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, AOU Careggi, University of Florence, Florence, Italy.,GenOMec, University of Siena, Siena, Italy
| | - C Mannarelli
- Department of Experimental and Clinical Medicine, CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, AOU Careggi, University of Florence, Florence, Italy.,GenOMec, University of Siena, Siena, Italy
| | - N Bartalucci
- Department of Experimental and Clinical Medicine, CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, AOU Careggi, University of Florence, Florence, Italy
| | - B Mora
- Division of Hematology, Ospedale ASST Sette Laghi, Universita degli Studi dell'Insubria, Varese, Italy
| | - L Elli
- Division of Hematology, Ospedale ASST Sette Laghi, Universita degli Studi dell'Insubria, Varese, Italy
| | - M A Avanzini
- Department of Pediatric Onco-Hematology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - C Rossi
- Department of Life Sciences, Centre for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - S Salmoiraghi
- Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - R Zini
- Department of Life Sciences, Centre for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - S Salati
- Department of Life Sciences, Centre for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - Z Prudente
- Department of Life Sciences, Centre for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - V Rosti
- Center for the Study of Myelofibrosis, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - F Passamonti
- Division of Hematology, Ospedale ASST Sette Laghi, Universita degli Studi dell'Insubria, Varese, Italy
| | - A Rambaldi
- Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - S Ferrari
- Department of Life Sciences, Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - E Tagliafico
- Department of Life Sciences, Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - A M Vannucchi
- Department of Experimental and Clinical Medicine, CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, AOU Careggi, University of Florence, Florence, Italy
| | - R Manfredini
- Department of Life Sciences, Centre for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
99
|
Abstract
Although acute liver failure (ALF) is a rare disease, it continues to have high mortality and morbidity rates due to its many causes. High mobility group box 1 (HMGB1), originally reported as a ubiquitous non-histone chromosomal protein, is a multi-functional protein with varying functions depending on its location, such as in the nucleus, cytoplasm and extracellular space. The role of extracellular HMGB1 as an inflammatory mediator has been well studied, and the elevation of serum HMGB1 has been reported in several diseases that are closely associated with ALF. Areas covered: In this review, we focus on the relationship between causes of acute liver failure, such as viral infection, drug-induced liver injury, ischemia/reperfusion injury, and acute-on-chronic liver failure, and the role of HMGB1. Furthermore, we also consolidate and summarize the current reports of HMGB1-targeting therapies in hepatic injury models. Expert commentary: HMGB1 could be a novel therapeutic candidate for ALF, and the clinical testing of HMGB1-targeting therapies for ALF patients is expected.
Collapse
Affiliation(s)
- Tetsu Yamamoto
- a Department of Digestive and General Surgery , Shimane University Faculty of Medicine , Izumo , Japan
| | - Yoshitsugu Tajima
- a Department of Digestive and General Surgery , Shimane University Faculty of Medicine , Izumo , Japan
| |
Collapse
|
100
|
Dong J, Ma Q. Osteopontin enhances multi-walled carbon nanotube-triggered lung fibrosis by promoting TGF-β1 activation and myofibroblast differentiation. Part Fibre Toxicol 2017; 14:18. [PMID: 28595626 PMCID: PMC5465601 DOI: 10.1186/s12989-017-0198-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/29/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Carbon nanotubes (CNTs) have been used in a variety of applications because of their unique properties and functions. However, many CNTs have been shown to induce lung fibrosis in experimental animals with some at a potency greater than that of silica, raising concern over possible toxic effects of CNT exposure in humans. Research into the mechanisms by which CNTs induce pulmonary fibrosis is warranted in order to facilitate the understanding, monitoring, and treatment of CNT-induced lung lesions that might occur in exposed populations. The current study focuses on investigating the role of osteopontin (OPN) in the development of lung fibrosis upon exposure to multi-walled carbon nanotubes (MWCNTs). METHODS C57BL/6J (WT) and Opn knockout (KO) mice were exposed to MWCNTs by pharyngeal aspiration to examine the acute and chronic effects of MWCNT exposure. The role of OPN and its mode of action in lung fibrosis development were analyzed at the cellular and molecular levels in vivo and in vitro. RESULTS OPN was highly and persistently induced in both the acute and chronic phases of the response to MWCNT exposure in mouse lungs. Comparison between WT and Opn KO mice revealed that OPN critically regulated MWCNT-induced lung fibrosis as indicated by reduced fibrotic focus formation and myofibroblast accumulation in Opn KO lungs. At the molecular level, OPN promotes the expression and activation of TGF-β1, stimulates the differentiation of myofibroblasts from fibroblasts, and increases the production of fibrous matrix proteins in lungs and cultured lung cells exposed to MWCNTs. CONCLUSION OPN is highly induced in CNT-exposed lungs and plays critical roles in TGF-β1 signaling activation and myofibroblast differentiation to promote fibrosis development from MWCNT exposure. This study reveals an OPN-dependent mechanism to promote MWCNT-induced lung fibrosis. The findings raise the possibility of using OPN as a biomarker to monitor CNT exposure and as a drug target to halt fibrosis development.
Collapse
Affiliation(s)
- Jie Dong
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Mailstop 3014, 1095 Willowdale Road, Morgantown, WV 26505 USA
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Mailstop 3014, 1095 Willowdale Road, Morgantown, WV 26505 USA
| |
Collapse
|