51
|
Martin A, Jauvain M, Bergsten E, Demontant V, Lehours P, Barau C, Levy M, Rodriguez C, Sobhani I, Amiot A. Gastric microbiota in patients with gastric MALT lymphoma according to Helicobacter pylori infection. Clin Res Hepatol Gastroenterol 2024; 48:102247. [PMID: 37981222 DOI: 10.1016/j.clinre.2023.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Gastric Mucosa Associated Lymphoid Tissue lymphoma (GML) development is triggered by Helicobacter pylori (H. pylori) infection. Little is known about the impact of H. pylori infection on gastric microbiota. METHODS The gastric microbiota was retrospectively investigated using 16S rRNA gene sequencing in 32 patients with untreated GML (10 H. pylori-positive and 22 H. pylori-negative), 23 with remitted and 18 refractory GML and 35 controls. Differences in microbial diversity, bacterial composition and taxonomic repartition were assessed. RESULTS There was no change in diversity and bacterial composition between GML and control patients taking into account H. pylori status. Differential taxa analysis identified specific changes associated with H. pylori-negative GML: the abundances of Actinobacillus, Lactobacillus and Chryseobacterium were increased while the abundances of Veillonella, Atopobium, Leptotrichia, Catonella, Filifactor and Escherichia_Shigella were increased in control patients. In patients with remitted GML, the genera Haemophilus and Moraxella were significantly more abundant than in refractory patients, while Atopobium and Actinomyces were significantly more abundant in refractory patients. CONCLUSION Detailed analysis of the gastric microbiota revealed significant changes in the bacterial composition of the gastric mucosa in patients with GML that may have a role in gastric lymphomagenesis but not any new pathobionts.
Collapse
Affiliation(s)
- Antoine Martin
- Department of Gastroenterology, Henri-Mondor University Hospital, Universite Paris Est Creteil, AP-HP, EA7375, 51, Avenue du Marechal de Lattre de Tassigny CRETEIL, Creteil F-94010, France
| | - Marine Jauvain
- UMR1312 Bordeaux Institute of Cancer, BRIC, Université de Bordeaux, Bordeaux 33076, France; French National Reference Center for Campylobacters and Helicobacters, Bordeaux Hospital University Center, Bordeaux, France
| | - Emma Bergsten
- Department of Gastroenterology, Henri-Mondor University Hospital, Universite Paris Est Creteil, AP-HP, EA7375, 51, Avenue du Marechal de Lattre de Tassigny CRETEIL, Creteil F-94010, France
| | - Vanessa Demontant
- Genomics Platform and Virology Unit, Henri-Mondor University Hospital, AP-HP, Institut Mondor de Recherche Biomédicale, Universite Paris Est Creteil, INSERM U955, Créteil F-94010 France
| | - Philippe Lehours
- UMR1312 Bordeaux Institute of Cancer, BRIC, Université de Bordeaux, Bordeaux 33076, France; French National Reference Center for Campylobacters and Helicobacters, Bordeaux Hospital University Center, Bordeaux, France
| | - Caroline Barau
- Plateforme de Ressources Biologique, Henri-Mondor University Hospital, AP-HP, University Paris Est Creteil, F-94010, France
| | - Michael Levy
- Department of Gastroenterology, Henri-Mondor University Hospital, Universite Paris Est Creteil, AP-HP, EA7375, 51, Avenue du Marechal de Lattre de Tassigny CRETEIL, Creteil F-94010, France
| | - Christophe Rodriguez
- Genomics Platform and Virology Unit, Henri-Mondor University Hospital, AP-HP, Institut Mondor de Recherche Biomédicale, Universite Paris Est Creteil, INSERM U955, Créteil F-94010 France
| | - Iradj Sobhani
- Department of Gastroenterology, Henri-Mondor University Hospital, Universite Paris Est Creteil, AP-HP, EA7375, 51, Avenue du Marechal de Lattre de Tassigny CRETEIL, Creteil F-94010, France
| | - Aurelien Amiot
- Department of Gastroenterology, Henri-Mondor University Hospital, Universite Paris Est Creteil, AP-HP, EA7375, 51, Avenue du Marechal de Lattre de Tassigny CRETEIL, Creteil F-94010, France.
| |
Collapse
|
52
|
Zheng M, Ye H, Yang X, Shen L, Dang X, Liu X, Gong Y, Wu Q, Wang L, Ge X, Fang X, Hou B, Zhang P, Tang R, Zheng K, Huang XF, Yu Y. Probiotic Clostridium butyricum ameliorates cognitive impairment in obesity via the microbiota-gut-brain axis. Brain Behav Immun 2024; 115:565-587. [PMID: 37981012 DOI: 10.1016/j.bbi.2023.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Obesity is a risk factor for cognitive dysfunction and neurodegenerative disease, including Alzheimer's disease (AD). The gut microbiota-brain axis is altered in obesity and linked to cognitive impairment and neurodegenerative disorders. Here, we targeted obesity-induced cognitive impairment by testing the impact of the probiotic Clostridium butyricum, which has previously shown beneficial effects on gut homeostasis and brain function. Firstly, we characterized and analyzed the gut microbial profiles of participants with obesity and the correlation between gut microbiota and cognitive scores. Then, using an obese mouse model induced by a Western-style diet (high-fat and fiber-deficient diet), the effects of Clostridium butyricum on the microbiota-gut-brain axis and hippocampal cognitive function were evaluated. Finally, fecal microbiota transplantation was performed to assess the functional link between Clostridium butyricum remodeling gut microbiota and hippocampal synaptic protein and cognitive behaviors. Our results showed that participants with obesity had gut microbiota dysbiosis characterized by an increase in phylum Proteobacteria and a decrease in Clostridium butyricum, which were closely associated with cognitive decline. In diet-induced obese mice, oral Clostridium butyricum supplementation significantly alleviated cognitive impairment, attenuated the deficit of hippocampal neurite outgrowth and synaptic ultrastructure, improved hippocampal transcriptome related to synapses and dendrites; a comparison of the effects of Clostridium butyricum in mice against human AD datasets revealed that many of the genes changes in AD were reversed by Clostridium butyricum; concurrently, Clostridium butyricum also prevented gut microbiota dysbiosis, colonic barrier impairment and inflammation, and attenuated endotoxemia. Importantly, fecal microbiota transplantation from donor-obese mice with Clostridium butyricum supplementation facilitated cognitive variables and colonic integrity compared with from donor obese mice, highlighting that Clostridium butyricum's impact on cognitive function is largely due to its ability to remodel gut microbiota. Our findings provide the first insights into the neuroprotective effects of Clostridium butyricum on obesity-associated cognitive impairments and neurodegeneration via the gut microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huaiyu Ye
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lijun Shen
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xuemei Dang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoli Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuying Gong
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qingyuan Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Li Wang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoli Fang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221004, China
| | - Benchi Hou
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China
| | - Peng Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
53
|
Oriuchi M, Lee S, Uno K, Sudo K, Kusano K, Asano N, Hamada S, Hatta W, Koike T, Imatani A, Masamune A. Porphyromonas gingivalis Lipopolysaccharide Damages Mucosal Barrier to Promote Gastritis-Associated Carcinogenesis. Dig Dis Sci 2024; 69:95-111. [PMID: 37943385 DOI: 10.1007/s10620-023-08142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Recent epidemiological studies suggested correlation between gastric cancer (GC) and periodontal disease. AIMS We aim to clarify involvement of lipopolysaccharide of Porphyromonas gingivalis (Pg.), one of the red complex periodontal pathogens, in the GC development. METHODS To evaluate barrier function of background mucosa against the stimulations, we applied biopsy samples from 76 patients with GC using a Ussing chamber system (UCs). K19-Wnt1/C2mE transgenic (Gan) mice and human GC cell-lines ± THP1-derived macrophage was applied to investigate the role of Pg. lipopolysaccharide in inflammation-associated carcinogenesis. RESULTS In the UCs, Pg. lipopolysaccharide reduced the impedance of metaplastic and inflamed mucosa with increases in mRNA expression of toll-like receptor (TLR) 2, tumor necrosis factor (TNF) α, and apoptotic markers. In vitro, Pg. lipopolysaccharide promoted reactive oxidative stress (ROS)-related apoptosis as well as activated TLR2-β-catenin-signaling on MKN7, and it increased the TNFα production on macrophages, respectively. TNFα alone activated TLR2-β-catenin-signaling in MKN7, while it further increased ROS and TNFα in macrophages. Under coculture with macrophages isolated after stimulation with Pg. lipopolysaccharide, β-catenin-signaling in MKN7 was activated with an increase in supernatant TNFα concentration, both of which were decreased by adding a TNFα neutralization antibody into the supernatant. In Gan mice with 15-week oral administration of Pg. lipopolysaccharide, tumor enlargement with β-catenin-signaling activation were observed with an increase in TNFα with macrophage infiltration. CONCLUSIONS Local exposure of Pg. lipopolysaccharide may increase ROS on premalignant gastric mucosa to induce apoptosis-associated barrier dysfunction and to secrete TNFα from activated macrophages, and both stimulation of Pg. lipopolysaccharide and TNFα might activate TLR2-β-catenin-signaling in GC.
Collapse
Affiliation(s)
- Masayoshi Oriuchi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 981-8574, Japan
| | - Sujae Lee
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 981-8574, Japan
| | - Kaname Uno
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 981-8574, Japan.
- Division of Gastroenterology, Tohoku University Hospital, Sendai, Japan.
| | - Koichiro Sudo
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 981-8574, Japan
| | - Keisuke Kusano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 981-8574, Japan
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 981-8574, Japan
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 981-8574, Japan
| | - Waku Hatta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 981-8574, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 981-8574, Japan
| | - Akira Imatani
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 981-8574, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho Aoba-ku, Sendai, Miyagi, 981-8574, Japan
| |
Collapse
|
54
|
Yavorov-Dayliev D, Milagro FI, López-Yoldi M, Clemente I, Riezu-Boj JI, Ayo J, Oneca M, Aranaz P. Pediococcus acidilactici (pA1c®) alleviates obesity-related dyslipidemia and inflammation in Wistar rats by activating beta-oxidation and modulating the gut microbiota. Food Funct 2023; 14:10855-10867. [PMID: 37987083 DOI: 10.1039/d3fo01651j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Due to the importance of the gut microbiota in the regulation of energy homeostasis, probiotics have emerged as an alternative therapy to ameliorate obesity-related disturbances, including cholesterol metabolism dysregulation, dyslipidemia and inflammation. Therefore, the objectives of this study were to evaluate the effect of the probiotic strain Pediococcus acidilactici (pA1c®) on the regulation of adiposity, cholesterol and lipid metabolism, inflammatory markers and gut microbiota composition in diet-induced obese rats. Twenty-nine four-week-old male Wistar rats were divided into three groups: rats fed a control diet (CNT group, n = 8), rats fed a high fat/high sucrose diet (HFS group, n = 11), and rats fed a HFS diet supplemented with pA1c® (pA1c®group, n = 10). Organs and fat depots were weighed, and different biochemical parameters were analysed in serum. Gene expression analyses in the adipose tissue were conducted using real-time quantitative-PCR. Faecal microbiota composition was evaluated using 16S metagenomics. Animals supplemented with pA1c® exhibited a lower proportion of visceral adiposity, a higher proportion of muscle, an improvement in the total-cholesterol/HDL-cholesterol ratio and a decrease in the total cholesterol, triglyceride and aspartate aminotransaminase (AST) serum levels, together with a decrease in several inflammation-related molecules. The expression of key genes related to adipose (Adipoq, Cebpa and Pparg) and glucose (Slc2a1 and Slc2a4) metabolism in the adipose tissue was normalized by pA1c®. Moreover, it was demonstrated that pA1c® supplementation activated fatty acid β-oxidation in the adipose tissue and the liver. Metagenomics demonstrated the presence of pA1c® in the faecal samples, an increase in alpha diversity, an increase in the abundance of beneficial bacteria, and a decrease in the abundance of harmful micro-organisms, including the Streptococcus genus. Thus, our data suggest the potential of pA1c® in the prevention of obesity-related disturbances including hypercholesterolemia, hypertriglyceridemia, inflammation and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Deyan Yavorov-Dayliev
- Genbioma Aplicaciones SL, Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, Esquíroz, Navarra, Spain
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Fermín I Milagro
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, Spain
| | - Miguel López-Yoldi
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Iñigo Clemente
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - José Ignacio Riezu-Boj
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Josune Ayo
- Genbioma Aplicaciones SL, Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, Esquíroz, Navarra, Spain
| | - María Oneca
- Genbioma Aplicaciones SL, Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, Esquíroz, Navarra, Spain
| | - Paula Aranaz
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
55
|
Zhu F, Zhang X, Li P, Zhu Y. Effect of Helicobacter pylori eradication on gastric precancerous lesions: A systematic review and meta-analysis. Helicobacter 2023; 28:e13013. [PMID: 37602719 DOI: 10.1111/hel.13013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND The question of whether eradication of Helicobacter pylori (Hp) can reverse gastric precancerous lesions, including intestinal metaplasia, remains uncertain, leading to ongoing debate. Therefore, a meta-analysis was performed to evaluate the effect of Hp eradication on gastric precancerous lesions. MATERIALS AND METHODS PubMed, Embase, Cochrane Library, Web of Science, Scopus database, and ClinicalTrials.gov were systematically searched from inception to April 2023 for studies that explored the impact of Hp eradication on gastric precancerous lesions. Risk ratios (RRs) and their 95% confidence intervals (95% CIs) were selected as the effect size. We used the random-effects model to assess pooled data. We also performed quality assessments, subgroup analyses, and sensitivity analyses. RESULTS Fifteen studies were included. Compared with placebo, Hp eradication could significantly prevent the progression of gastric precancerous lesions (RR = 0.87, 95% CI: 0.81-0.94, p < 0.01) and reverse them (RR = 1.32, 95% CI: 1.17-1.50, p < 0.01). Then, specific precancerous lesions were further explored. The progression of intestinal metaplasia was significantly prevented by Hp eradication compared to placebo or no treatment (RR = 0.80, 95% CI: 0.69-0.94, p < 0.01). Moreover, compared with placebo or no treatment, Hp eradication also improved chronic atrophic gastritis (RR = 1.84, 95% CI: 1.30-2.61, p < 0.01) and intestinal metaplasia (RR = 1.41, 95% CI: 1.15-1.73, p < 0.01). However, in terms of preventing dysplasia progression (RR = 0.86, 95% CI: 0.37-2.00) and improving dysplasia (RR = 0.89, 95% CI: 0.47-1.70), Hp eradication had no advantage compared to placebo or no treatment. CONCLUSIONS Hp eradication therapy could prevent the progression of gastric precancerous lesions and reverse them. Notably, intestinal metaplasia can be reversed, but this may only be appropriate for patients with epigenetic alterations and milder lesions.
Collapse
Affiliation(s)
- Fangyuan Zhu
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Medical University of Anhui, Hefei, China
| | - Xiaoze Zhang
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Medical University of Anhui, Hefei, China
| | - Ping Li
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Medical University of Anhui, Hefei, China
| | - Yaodong Zhu
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Medical University of Anhui, Hefei, China
| |
Collapse
|
56
|
Nakano T, Dohi O, Takagi T, Naito Y, Fukui H, Miyazaki H, Yasuda T, Yoshida T, Azuma Y, Ishida T, Kitae H, Matsumura S, Takayama S, Mizuno N, Kashiwagi S, Mizushima K, Inoue R, Doi T, Hirose R, Inoue K, Yoshida N, Kamada K, Uchiyama K, Ishikawa T, Konishi H, Itoh Y. Characteristics of Gastric Mucosa-Associated Microbiota in Patients with Early Gastric Cancer After Successful Helicobacter pylori Eradication. Dig Dis Sci 2023; 68:4398-4406. [PMID: 37875607 DOI: 10.1007/s10620-023-08154-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is widely recognized as a definite carcinogen in gastric cancer (GC). Although H. pylori eradication reduces the risk of GC, GC recurrence has been detected even after successful H. pylori eradication. Recently, the analysis of gut microbiota was reported. AIMS This study aimed to evaluate the correlation between gastric mucosa-associated microbiota (G-MAM) and early gastric cancer (EGC) after successful H. pylori eradication. METHODS In this pilot study, G-MAM were collected during the esophagogastroduodenoscopy of 17 patients, receiving H. pylori eradication therapy at least 5 years ago. The patients were divided into those with EGC (the EGC group, 8 patients) and those without EGC (the NGC group, 9 patients). Microbial samples in the greater curvature of the pyloric site were obtained using an endoscopic cytology brush, and the G-MAM profiles of each sample were analyzed using 16S rRNA V3-V4 gene sequencing. RESULTS Between the two groups, there was no significant difference in the median age, sex, median period after successful eradication of H. pylori, the α diversity, and the average abundance at the phylum level. At the genus level, the average abundance of Unclassified Oxalobacteraceae, Capnocytophaga, and Haemophilus was significantly lower in the EGC group than in the NGC group (0.89 vs. 0.14%, P < 0.01, 0.28 vs. 0.00%, P < 0.01 and 5.84 vs. 2.16%, P = 0.034, respectively). CONCLUSIONS We demonstrated alternations in the profiles of G-MAM between the two groups. Our results suggest that G-MAM may influence carcinogenesis after successful H. pylori eradication.
Collapse
Affiliation(s)
- Takahiro Nakano
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
- Department of Gastroenterology and Hepatology, Japanese Red Cross Society Kyoto Daiichi Hospital, Kyoto, Japan
| | - Osamu Dohi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hayato Fukui
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hajime Miyazaki
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Yasuda
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takuma Yoshida
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuka Azuma
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tsugitaka Ishida
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hiroaki Kitae
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shinya Matsumura
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shun Takayama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Naoki Mizuno
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Saori Kashiwagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Katsura Mizushima
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Toshifumi Doi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ryohei Hirose
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ken Inoue
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Naohisa Yoshida
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuhiro Kamada
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hideyuki Konishi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
57
|
Lei X, Cui ZY, Huang XJ. Exploration of gastric carcinogenesis from the relationship between bile acids and intestinal metaplasia and intragastric microorganisms (H. pylori and non-H. pylori). J Cancer Res Clin Oncol 2023; 149:16947-16956. [PMID: 37707577 DOI: 10.1007/s00432-023-05407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Gastric cancer (GC) is a prevalent form of cancer, with Helicobacter pylori (H. pylori) infection being the most common risk factor. Recent studies have highlighted the role of long-term irritation of the gastric mucosa caused by bile reflux in the development of cancer. Bile acids (BAs), which are a significant component in bile reflux, have the potential to promote gastric carcinogenesis through various mechanisms. These mechanisms include the induction of intestinal metaplasia (IM), inhibition of H. pylori activity, modification of H. pylori colonization, and alteration of the abundance and composition of microorganisms in the stomach. Defining the mechanism of bile acid-induced gastric carcinogenesis could potentially be an effective approach to prevent GC. Hence, this paper aims to review the mechanism of bile acid-induced IM, the association between BAs and H. pylori infection as well as microorganisms in the stomach, and the correlation between BAs and gastric carcinogenesis. The ultimate goal is to elucidate the role of BAs in the development of GC.
Collapse
Affiliation(s)
- X Lei
- Department of Gastroenterology, The Lanzhou University Second Hospital, No. 82 of Linxia Street, Chengguan District, Lanzhou, 730030, China
| | - Z Y Cui
- Department of Gastroenterology, The Lanzhou University Second Hospital, No. 82 of Linxia Street, Chengguan District, Lanzhou, 730030, China
| | - X J Huang
- Department of Gastroenterology, The Lanzhou University Second Hospital, No. 82 of Linxia Street, Chengguan District, Lanzhou, 730030, China.
| |
Collapse
|
58
|
Li Y, Ouyang Y, He C. Research trends on the relationship between Helicobacter pylori and microbiota: A bibliometric analysis. Helicobacter 2023; 28:e13021. [PMID: 37697432 DOI: 10.1111/hel.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Increasing evidence has indicated that Helicobacter pylori infection is associated with the complex microbiota in the digestive tract of the human body. We aimed to assess the research trends and hotspots in the field of H. pylori and microbiota using a quantitative method. MATERIALS AND METHODS The clinical studies on H. pylori and microbiota published from 2001 to 2022 were extracted from the Web of Science database. We visualized and analyzed countries/regions, institutions, authors, journals, and keywords through VOSviewer and CiteSpace software. The test techniques, specimen type, as well as microbiota variation after H. pylori infection and eradication were also evaluated. RESULTS A total of 98 publications were finally identified, and the number of annual papers increased gradually. China showed its dominant position in the publication outputs, and Nanchang University was the most productive institution. Cong He, Xu Shu, and Yin Zhu published the highest number of papers, whereas Helicobacter was the most productive journal. "Helicobacter pylori" ranked highest in the keyword occurrences. 16S rRNA gene sequencing was the most frequently used method for microbiota analysis. Fecal samples had the highest frequency of use, followed by gastric mucosa and saliva. H. pylori infection was associated with the alterations of microbiota through the digestive tract, characterized by the enrichment of Helicobacter in the stomach. Triple and quadruple therapy were the most utilized eradication regimens, and probiotics supplementation therapy has been proven to reduce side effects and restore microbial diversity. CONCLUSIONS This bibliometric analysis provides an overview of advancements in the field of H. pylori and microbiota. While numerous studies have been conducted on the correlation between H. pylori and the alterations of microbiota, future research is warranted to investigate the mechanisms underlying the interplay between H. pylori and other microbes in the development of related diseases.
Collapse
Affiliation(s)
- Yu Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- HuanKui Academy, Nanchang University, Nanchang, China
| | - Yaobin Ouyang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cong He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
59
|
Xu Q, Liu M, Meng R, Zhao Q, Men X, Lan Y, Xu H. Therapeutic effects and potential mechanisms of endoscopic submucosal injection of mesenchymal stem cells on chronic atrophic gastritis. Sci Rep 2023; 13:20745. [PMID: 38007523 PMCID: PMC10676420 DOI: 10.1038/s41598-023-48088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
Previous studies have demonstrated the rejuvenating and restorative actions of mesenchymal stem cells (MSCs) in multiple diseases, but their role in reversing chronic atrophic gastritis (CAG) is not well understood owing to their low efficiency in homing to the stomach. In this work, we investigated the therapeutic effect of umbilical cord-derived MSCs (UC-MSCs) on CAG by endoscopic submucosal injection and preliminarily explored possible mechanisms in vitro. MSCs and normal saline (NS) were injected into the submucosa of the stomach in randomly grouped CAG rabbits. Therapeutic effects on serum indices and histopathology of the gastric mucosa were analyzed in vivo at 30 and 60 days after MSCs injection. GES-1 cells were co-cultured with MSCs in vitro using a Transwell system and cell viability, proliferation, and migration ability were detected. Additionally, in view of the potential mechanisms, the relative protein expression levels of apoptosis, autophagy and inflammation in vitro were explored by Western Blotting. We found that submucosal injection of MSCs up-regulated serum indices (G-17, PGI and PGI/PGII) and alleviated histopathological damage to the gastric mucosa in CAG rabbits. Co-culture of GES-1 cells with MSCs improved cell viability, proliferation, and migration ability, while suppressing apoptosis. We also observed a reduction in the expression of apoptosis indicators, including Bax and cleaved caspase-3, in GES-1 cells after co-culture with MSCs in vitro. Our findings suggest that submucosal injection of MSCs is a promising approach for reversing CAG, and attenuating apoptosis plays a potential role in this process.
Collapse
Affiliation(s)
- Qianqian Xu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwuweiqi Road, Jinan, 250021, Shandong, People's Republic of China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Mingyue Liu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwuweiqi Road, Jinan, 250021, Shandong, People's Republic of China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Rui Meng
- Department of Gastroenterology, Dezhou People's Hospital, Dezhou, 253000, Shandong, People's Republic of China
- Department of Gastroenterology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, 253000, Shandong, People's Republic of China
| | - Qi Zhao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Xiaoxiao Men
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwuweiqi Road, Jinan, 250021, Shandong, People's Republic of China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Yadi Lan
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwuweiqi Road, Jinan, 250021, Shandong, People's Republic of China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwuweiqi Road, Jinan, 250021, Shandong, People's Republic of China.
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
60
|
Liang D, Tang S, Liu L, Zhao M, Ma X, Zhao Y, Shen C, Liu Q, Tang J, Zeng J, Chen N. Tanshinone I attenuates gastric precancerous lesions by inhibiting epithelial mesenchymal transition through the p38/STAT3 pathway. Int Immunopharmacol 2023; 124:110902. [PMID: 37699302 DOI: 10.1016/j.intimp.2023.110902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Gastric precancerous lesions (GPLs) are omens for gastric cancer (GC), which developing with a series of pathological changes of gastric mucosa. Reversing epithelial-mesenchymal transition (EMT) in gastric mucosa is the main approach to restrain GPLs from evolving into cancer. Tanshinone I (Tan-I), the active ingredients of traditional Chinese herb Salvia miltiorrhiza, has exhibited anticancer effect. PURPOSE To investigate the effect and mechanism of Tan-I in intervening GPLs, and provide a new therapeutic strategy for prevention of GC. METHODS Gastric mucosal epithelial cells were treated with the N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) to construct MNNG-induced cell (MC cell) of gastric mucosa that undergoing EMT process. Then, this study explored the effect and mechanism of Tan-I in vitro. Subsequently, this study constructed GPL mice to clarify the exact efficacy and mechanism of Tan-I on GPLs. RESULTS Tan-I inhibited MC cell proliferation, invasion and migration. Simultaneously, the aberrant expression of E-cadherin and N-cadherin were reversed. Tan-I attenuated inflammation by reducing the release of nitric oxide, TNFα and IL-1β. Tan-I reversed the EMT and inflammatory processes by regulating p38 and STAT3. CONCLUSION This study showed that Tan-I inhibited the progression of GPLs by reversing the EMT process and reducing inflammation by restraining the p38/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Dan Liang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Caifei Shen
- Department of Endoscopy Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
61
|
Bortoluzzi C, Perez-Calvo E, Olsen PB, van der Vaart S, van Eerden E, Schmeisser J, Eising I, Segobola P, Sorbara JOB. Effect of microbial muramidase supplementation in diets formulated with different fiber profiles for broiler chickens raised under various coccidiosis management programs. Poult Sci 2023; 102:102955. [PMID: 37572621 PMCID: PMC10440566 DOI: 10.1016/j.psj.2023.102955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/14/2023] Open
Abstract
The objective of the present study was to determine the effects of muramidase (MUR) supplemented to diets formulated with different fiber sources (inert or fermentable) on the growth performance and intestinal parameters of broiler chickens raised under different coccidiosis management programs. A total of 2,208 male Ross 308 broilers were housed in 96 floor pens and distributed into a 2 × 3 × 2 factorial arrangement in a completely randomized block design with 2 sources of fiber (inert or fermentable fiber), 3 coccidiosis management programs (none, vaccine, or Salinomycin), and with or without supplementation of MUR at 35,000 LSU(F)/kg of diet. Body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) were calculated for each feeding phase (d 0-14, d 14-28, d 28-36) and from d 0 to 36. On d 17 and d 31, samples were taken to analyze several parameters. The experimental data were analyzed with 3-way ANOVA considering the main effect of fiber source, coccidiosis program, inclusion of MUR, and their interactions using JMP 16.2. 16S rDNA sequencing of the ileal and cecal content was carried out to analyze the diversity, composition, and predictive function of the microbiota. From d 0 to 36, BWG increased (P = 0.05) by 2.5% in birds supplemented with Salinomycin (P = 0.04), and by 2.2% with MUR supplementation (P = 0.02). Salinomycin and MUR improved FCR (P < 0.0001) when compared to nonsupplemented birds. The supplementation of MUR, regardless of the coccidiosis management program, reduced the intestinal viscosity (P = 0.03). On d 31, the highest blood concentration of carotenoids was observed in chickens fed diets supplemented with Salinomycin. MUR led to significant changes in the diversity, composition, and predictive function of the ileal microbiota, mainly on d 31. The results observed herein further explain the positive effects of MUR on the growth performance of broiler chickens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irene Eising
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | | | | |
Collapse
|
62
|
Ma R, Li Q, Yu G, Wang J, Li Y, Xu X, Zhu Y, Dong M, Gao Y, Li L, Li Z. A multi-omics study to investigate the progression of the Correa pathway in gastric mucosa in the context of cirrhosis. Gut Pathog 2023; 15:45. [PMID: 37752551 PMCID: PMC10521386 DOI: 10.1186/s13099-023-00571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Patients with liver cirrhosis (LC) are prone to gastric mucosa damage. We investigated the alterations of gastric mucosa in LC patients and their possible mechanisms through multi-omics. RESULTS We observed significant gastric mucosa microbial dysbiosis in LC subjects. Gastric mucosal microbiomes of LC patients contained a higher relative abundance of Streptococcus, Neisseria, Prevotella, Veillonella, and Porphyromonas, as well as a decreased abundance in Helicobacter and Achromobacter, than control subjects. The LC patients had higher levels of bile acids (BAs) and long-chain acylcarnitines (long-chain ACs) in serum. The gastric mucosal microbiomes were associated with serum levels of BAs and long-chain ACs. Transcriptome analyses of gastric mucosa revealed an upregulation of endothelial cell specific molecule 1, serpin family E member 1, mucin 2, caudal type homeobox 2, retinol binding protein 2, and defensin alpha 5 in LC group. Besides, the bile secretion signaling pathway was significantly upregulated in the LC group. CONCLUSIONS The alterations in the gastric mucosal microbiome and transcriptome of LC patients were identified. The impaired energy metabolism in gastric mucosal cells and bile acids might aggravate the inflammation of gastric mucosa and even exacerbate the Correa's cascade process. The gastric mucosal cells might reduce bile acid toxicity by bile acid efflux and detoxification. TRIAL REGISTRATION ChiCTR2100051070.
Collapse
Affiliation(s)
- Ruiguang Ma
- Department of Gastroenterology, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, China
| | - Qian Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, China
| | - Guoxian Yu
- School of Software, Shandong University, Jinan, China
| | - Jun Wang
- SDU-NTU Joint Centre for AI Research, Shandong University, Jinan, China
| | - Yueyue Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, China
| | - Xinyan Xu
- Department of Gastroenterology, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, China
| | - Yiqing Zhu
- Department of Gastroenterology, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, China
| | - Min Dong
- Department of Gastroenterology, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, China
| | - Yanjing Gao
- Department of Gastroenterology, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, China.
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, China.
| |
Collapse
|
63
|
Zhang L, Wang K, Liang S, Cao J, Yao M, Qin L, Qu C, Miao J. Beneficial effect of ζ-carotene-like compounds on acute UVB irradiation by alleviating inflammation and regulating intestinal flora. Food Funct 2023; 14:8331-8350. [PMID: 37606633 DOI: 10.1039/d3fo02502k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
ζ-Carotene is a key intermediate in the carotenoid pathway, but owing to its low content and difficulties in isolation, its application is restricted. In this study, three genes (pnCrtE, pnCrtB, and pnCrtP) in the carotenoid pathway of Antarctic moss were identified, recombined, and expressed in Escherichia coli (E. coli) BL21(DE3). The expression product was identified as one of the ζ-carotenes by UV absorbance spectrum, thin layer chromatography (TLC), and super-high-performance liquid chromatography-mass spectrum (UPLC-MS), and was called a ζ-carotene-like compound (CLC). Excessive exposure to ultraviolet B (UVB) irradiation is one of the main risk factors for skin photodamage. The purpose of this study was to investigate the preventive and therapeutic effects of CLC on UVB-induced skin photodamage in mice. In this paper, through histological examinations (hematoxylin-eosin, HE; Masson and TdT-mediated dUTP Nick-End Labeling, Tunel), biochemical index detection (reactive oxygen species, ROS; inflammatory factors; cyclobutyl pyrimidine dimers, CPDs and hyaluronic acid, HA), quantitative real time polymerase chain reaction (qRT-PCR), immunohistochemistry and intestinal content flora, etc., it is concluded that CLC has the potential to enhance skin antioxidant capacity by activating the nuclear transcription factor/antioxidant reaction element (Nrf2/ARE) pathway and also reduce skin inflammation and aging by inhibiting the mitogen-activated protein kinase (MAPK) pathway. Moreover, the regulation of intestinal flora may potentially mitigate skin damage induced by UVB radiation. This research not only developed a green and sustainable platform for the efficient synthesis of CLC but also laid a foundation for its application in functional food and medicine for skin resistance against UVB damage.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Shaoxin Liang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Mengke Yao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| |
Collapse
|
64
|
Yue K, Sheng D, Xue X, Zhao L, Zhao G, Jin C, Zhang L. Bidirectional Mediation Effects between Intratumoral Microbiome and Host DNA Methylation Changes Contribute to Stomach Adenocarcinoma. Microbiol Spectr 2023; 11:e0090423. [PMID: 37260411 PMCID: PMC10434028 DOI: 10.1128/spectrum.00904-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023] Open
Abstract
The induction of aberrant DNA methylation is the major pathway by which Helicobacter pylori infection induces stomach adenocarcinoma (STAD). The involvement of the non-H. pylori gastric microbiota in this mechanism remains to be examined. RNA sequencing data, clinical information, and DNA methylation data were obtained from The Cancer Genome Atlas (TCGA) STAD project. The Kraken 2 pipeline was employed to explore the microbiome profiles. The microbiome was associated with occurrence, distal metastasis, and prognosis, and differential methylation changes related to distal metastasis and prognosis were analyzed. Bi-directional mediation effects of the intratumoral microbiome and host DNA methylation changes on the metastasis and prognosis of STAD were identified by mediation analysis. The expression of the ZNF215 gene was verified by real-time quantitative PCR (RT-qPCR). A cell counting kit 8 (CCK8) cell proliferation experiment and a cell clone formation experiment were used to evaluate the proliferation and invasion abilities of gastric cells. Our analysis revealed that H. pylori and other cancer-related microorganisms were related to the occurrence, progression, or prognosis of STAD. The related methylated genes were particularly enriched in related cancer pathways. Kytococcus sedentarius and Actinomyces oris, which interacted strongly with methylation changes in immune genes, were associated with prognosis. Cell experiments verified that Staphylococcus saccharolyticus could promote the proliferation and cloning of gastric cells by regulating the gene expression level of the ZNF215 gene. Our study suggested that the bi-directional mediation effect between intratumoral microorganisms and host epigenetics was key to the distal metastasis of cancer cells and survival deterioration in the tumor microenvironment of stomach tissues of patients with STAD. IMPORTANCE The burgeoning field of oncobiome research declared that members of the intratumoral microbiome besides Helicobacter pylori existed in tumor tissues and participated in the occurrence and development of gastric cancer, and the methylation of host DNA may be a potential target of microbes and their metabolites. Current research focuses mostly on species composition, but the functional genes of the members of the microbiota are also key to their interaction with the host. Therefore, we focused on characterizing the species composition and functional gene composition of microbes in gastric cancer, and we suggest that microbes may further participate in the occurrence and development of cancer by influencing abnormal epigenetic changes in the host. Some key bioinformatics analysis results were verified by in vitro experiments. Thus, we consider that the tumor microbiota-host epigenetic axis of gastric cancer microorganisms and the host explains the mechanism of the microbiota participating in cancer occurrence and development, and we make some verifiable experimental predictions.
Collapse
Affiliation(s)
- Kaile Yue
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dashuang Sheng
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinxin Xue
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lanlan Zhao
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoping Zhao
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chuandi Jin
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Zhang
- Microbiome-X, National Institute of Health Data Science of China, Shandong University, Jinan, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
65
|
Tjandra D, Busuttil RA, Boussioutas A. Gastric Intestinal Metaplasia: Challenges and the Opportunity for Precision Prevention. Cancers (Basel) 2023; 15:3913. [PMID: 37568729 PMCID: PMC10417197 DOI: 10.3390/cancers15153913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
GIM is a persistent, premalignant lesion whereby gastric mucosa is replaced by metaplastic mucosa resembling intestinal tissue, arising in the setting of chronic inflammation, particularly in the context of Helicobacter pylori. While the overall rates of progression to gastric adenocarcinoma are low, estimated at from 0.25 to 2.5%, there are features that confer a much higher risk and warrant follow-up. In this review, we collate and summarise the current knowledge regarding the pathogenesis of GIM, and the clinical, endoscopic and histologic risk factors for cancer. We examine the current state-of-practice with regard to the diagnosis and management of GIM, which varies widely in the published guidelines and in practice. We consider the emerging evidence in population studies, artificial intelligence and molecular markers, which will guide future models of care. The ultimate goal is to increase the detection of early gastric dysplasia/neoplasia that can be cured while avoiding unnecessary surveillance in very low-risk individuals.
Collapse
Affiliation(s)
- Douglas Tjandra
- Central Clinical School, Monash University, 99 Commercial Rd, Melbourne, VIC 3004, Australia;
- Department of Gastroenterology, The Alfred Hospital, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Rita A. Busuttil
- Central Clinical School, Monash University, 99 Commercial Rd, Melbourne, VIC 3004, Australia;
- Department of Gastroenterology, The Alfred Hospital, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Alex Boussioutas
- Central Clinical School, Monash University, 99 Commercial Rd, Melbourne, VIC 3004, Australia;
- Department of Gastroenterology, The Alfred Hospital, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| |
Collapse
|
66
|
Livzan MA, Mozgovoi SI, Gaus OV, Shimanskaya AG, Kononov AV. Histopathological Evaluation of Gastric Mucosal Atrophy for Predicting Gastric Cancer Risk: Problems and Solutions. Diagnostics (Basel) 2023; 13:2478. [PMID: 37568841 PMCID: PMC10417051 DOI: 10.3390/diagnostics13152478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Patients suffering from chronic gastritis and developing gastric mucosa atrophy are at increased risk of the development of gastric cancer. The diagnosis of chronic atrophic gastritis (CAG) is a complex procedure involving a detailed history taking, a thorough physical examination and the use of laboratory and instrumental diagnostic methods among which the endoscopy of the upper digestive tract is the cornerstone because it allows the assessment of the topography of gastritis and identification of erosions and areas of intestinal metaplasia with the use of NBI endoscopy. However, the diagnosis of CAG requires morphological examination of the gastric mucosa. So, in addition to assessing macroscopic changes in the gastric mucosa, it is necessary to take biopsy specimens in accordance with the protocols for their morphological and immunohistochemical examination. In the absence of specific diagnostic stigmas of CAG, close cooperation between a clinician, endoscopist and pathologist is necessary. The article presents systematized data on the histopathological assessment of the gastric mucosa atrophy to predict the risk of gastric cancer.
Collapse
Affiliation(s)
- Maria A. Livzan
- Department of Internal Medicine and Gastroenterology, Omsk Sate Medical University, 644099 Omsk, Russia;
| | - Sergei I. Mozgovoi
- Department of Pathological Anatomy, Omsk Sate Medical University, 644099 Omsk, Russia
| | - Olga V. Gaus
- Department of Internal Medicine and Gastroenterology, Omsk Sate Medical University, 644099 Omsk, Russia;
| | - Anna G. Shimanskaya
- Department of Pathological Anatomy, Omsk Sate Medical University, 644099 Omsk, Russia
| | - Alexei V. Kononov
- Department of Pathological Anatomy, Omsk Sate Medical University, 644099 Omsk, Russia
| |
Collapse
|
67
|
Xu Y, Walduck AK, Pan H. Editorial: The pathogenesis and treatment of Helicobacter pylori-induced diseases. Front Cell Infect Microbiol 2023; 13:1219503. [PMID: 37469603 PMCID: PMC10352097 DOI: 10.3389/fcimb.2023.1219503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Affiliation(s)
- Yifei Xu
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Anna K. Walduck
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, Australia
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
68
|
Kim T, Croce CM. MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies. Exp Mol Med 2023; 55:1314-1321. [PMID: 37430087 PMCID: PMC10394030 DOI: 10.1038/s12276-023-01050-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023] Open
Abstract
As a type of short noncoding RNAs, microRNA (miRNA) undoubtedly plays a crucial role in cancer development. Since the discovery of the identity and clinical functions of miRNAs, over the past few decades, the roles of miRNAs in cancer have been actively investigated. Numerous pieces of evidence indicate that miRNAs are pivotal factors in most types of cancer. Recent cancer research focused on miRNAs has identified and characterized a large cohort of miRNAs commonly dysregulated in cancer or exclusively dysregulated in specific types of cancer. These studies have suggested the potential of miRNAs as biomarkers in the diagnosis and prognostication of cancer. Moreover, many of these miRNAs have oncogenic or tumor-suppressive functions. MiRNAs have been the focus of research given their potential clinical applications as therapeutic targets. Currently, various oncology clinical trials using miRNAs in screening, diagnosis, and drug testing are underway. Although clinical trials studying miRNAs in various diseases have been reviewed before, there have been fewer clinical trials related to miRNAs in cancer. Furthermore, updated results of recent preclinical studies and clinical trials of miRNA biomarkers and drugs in cancer are needed. Therefore, this review aims to provide up-to-date information on miRNAs as biomarkers and cancer drugs in clinical trials.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Anatomy, Histology & Developmental Biology, International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, China.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
69
|
Yang HJ. [Gastric Cancer and Gastric Microbiome]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 81:235-242. [PMID: 37350518 DOI: 10.4166/kjg.2023.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Gastric cancer remains a significant disease burden in Korea, with Helicobacter pylori infections being the most crucial risk factor. With the advent of next-generation sequencing, the role of gastric microbiota in gastric cancer has attracted increasing attention. Studies have shown that the gastric microbiota of patients with gastric cancer differs in composition from that of the controls, with reduced microbial diversity. Lactic acid bacteria and oral microflora are often enriched in gastric cancer and are believed to induce chronic inflammation or promote the production of nitroso compounds. This review focuses on recent studies comparing the gastric microbiome in gastric cancer patients and controls.
Collapse
Affiliation(s)
- Hyo-Joon Yang
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
70
|
Ni R, Luo Y, Jiang L, Mao X, Feng Y, Tuersun S, Hu Z, Zhu Y. Repairing gastric ulcer with hyaluronic acid/extracellular matrix composite through promoting M2-type polarization of macrophages. Int J Biol Macromol 2023:125556. [PMID: 37364804 DOI: 10.1016/j.ijbiomac.2023.125556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/19/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
The treatment of gastric ulcer and perforation using synthetic and biomaterials has been a clinical challenge. In this work, a drug-carrying layer of hyaluronic acid was combined with a gastric submucosal decellularized extracellular matrix called gHECM. The regulation of macrophage polarization by the extracellular matrix's components was then investigated. This work proclaims how gHECM responds to inflammation and aids in the regeneration of the gastric lining by altering the phenotype of surrounding macrophages and stimulating the body's whole immune response. In a nutshell, gHECM promotes tissue regeneration by changing the phenotype of macrophages around the site of injury. In particular, gHECM reduces the production of pro-inflammatory cytokines, decreases the percentage of M1 macrophages, and further encourages differentiation of macrophage subpopulation to the M2 phenotype and the release of anti-inflammatory cytokines, which could block the NF-κB pathway. Activated macrophages are capable of immediately delivering through spatial barriers, modulating the peripheral immune system, influencing the inflammatory microenvironment, and ultimately promoting the recovery of inflammation and healing of ulcers. They contribute to the secreted cytokines that act on local tissues or enhance the chemotactic ability of macrophages through paracrine secretion. In this study, we focused on the immunological regulatory network of macrophage polarization to further develop the mechanisms behind this process. Nevertheless, the signaling pathways involved in this process need to be further explored and identified. We think that our research will encourage more investigation into how the decellularized matrix affects immune modulation and will help the decellularized matrix perform better as a new class of natural biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Renhao Ni
- Ningbo University, Health Science Center, Ningbo 315211, China
| | - Yang Luo
- Ningbo University, Health Science Center, Ningbo 315211, China
| | - Lingjing Jiang
- Ningbo University, Health Science Center, Ningbo 315211, China
| | - Xufeng Mao
- Department of Orthopedics, the First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Yuyao Feng
- Ningbo University, Health Science Center, Ningbo 315211, China
| | | | - Zeming Hu
- Ningbo University, Health Science Center, Ningbo 315211, China
| | - Yabin Zhu
- Ningbo University, Health Science Center, Ningbo 315211, China.
| |
Collapse
|
71
|
Tawfik SA, Azab M, Ramadan M, Shabayek S, Abdellah A, Al Thagfan SS, Salah M. The Eradication of Helicobacter pylori Was Significantly Associated with Compositional Patterns of Orointestinal Axis Microbiota. Pathogens 2023; 12:832. [PMID: 37375522 DOI: 10.3390/pathogens12060832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is significantly linked to various diseases that seriously impact human health, such as gastric ulcers, chronic gastritis and gastric adenocarcinoma. METHODS The compositional shifts in bacterial communities of the orointestinal axis were surveyed pre/post-eradication of H. pylori. In total, 60 samples, including stool and salivary specimens, were collected from 15 H. pylori-positive individuals (HPP) before beginning and 2 months after receiving the eradication therapy. The V3-V4 regions of the 16S rRNA gene were sequenced using MiSeq. RESULTS Overall, oral microbiomes were collectively more diverse than the gut microbiomes (Kruskal-Wallis; p = 3.69 × 10-5). Notably, the eradication of H. pylori was associated with a significant reduction in the bacterial diversity along the orointestinal axis (Wilcoxon rank sum test; p = 6.38 × 10-3). Interestingly, the oral microbiome of HPP showed a positive correlation between Proteobacteria and Fusobacteria, in addition to a significant predominance of Streptococcus, in addition to Eubacterium_eligens, Haemophilus, Ruminococcaceae, Actinomyces and Staphylococcus. On the other hand, Fusobacterium, Veillonella, Catenibacterium, Neisseria and Prevotella were significantly enriched upon eradication of H. pylori. Generally, Bacteroidetes and Fusobacteria positively coexisted during H. pylori infection along the orointestinal axis (r = 0.67; p = 0.0006). The eradication of H. pylori was positively linked to two distinctive orotypes (O3 and O4). Orotype O4 was characterized by a robust abundance of Veillonella and Fusobacteria. The gut microbiomes during H. pylori infection showed a remarkable predominance of Clostridium_sensu_stricto_1 and Escherichia_Shigella. Likewise, Bifidobacterium and Faecalibacterium were significantly enriched upon eradication of H. pylori. CONCLUSIONS Finally, the impact of eradication therapy clearly existed on the representation of certain genera, especially in the oral microbiome, which requires particular concern in order to counteract and limit their subsequent threats.
Collapse
Affiliation(s)
- Sally Ali Tawfik
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Marwa Azab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ali Abdellah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Sultan S Al Thagfan
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al Madinah Al Munaearah 42353, Saudi Arabia
| | - Mohammed Salah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| |
Collapse
|
72
|
Miri AH, Kamankesh M, Rad-Malekshahi M, Yadegar A, Banar M, Hamblin MR, Haririan I, Aghdaei HA, Zali MR. Factors associated with treatment failure, and possible applications of probiotic bacteria in the arsenal against Helicobacter pylori. Expert Rev Anti Infect Ther 2023; 21:617-639. [PMID: 37171213 DOI: 10.1080/14787210.2023.2203382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Helicobacter pylori is a widespread helical Gram-negative bacterium, which causes a variety of stomach disorders, such as peptic ulcer, chronic atrophic gastritis, and gastric cancer. This microbe frequently colonizes the mucosal layer of the human stomach and survives in the inhospitable microenvironment, by adapting to this hostile milieu. AREAS COVERED In this extensive review, we describe conventional antibiotic treatment regimens used against H. pylori including, empirical, tailored, and salvage therapies. Then, we present state-of-the-art information about reasons for treatment failure against H. pylori. Afterward, the latest advances in the use of probiotic bacteria against H. pylori infection are discussed. Finally, we propose a polymeric bio-platform to provide efficient delivery of probiotics for H. pylori infection. EXPERT OPINION For effective probiotic delivery systems, it is necessary to avoid the early release of probiotics at the acidic stomach pH, to protect them against enzymes and antimicrobials, and precisely target H. pylori bacteria which have colonized the antrum area of the stomach (basic pH).
Collapse
Affiliation(s)
- Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Kamankesh
- Polymer Chemistry Department, School of Science, University of Tehran, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Banar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg Doornfontein, Johannesburg, South Africa
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
73
|
Malfertheiner P, Camargo MC, El-Omar E, Liou JM, Peek R, Schulz C, Smith SI, Suerbaum S. Helicobacter pylori infection. Nat Rev Dis Primers 2023; 9:19. [PMID: 37081005 PMCID: PMC11558793 DOI: 10.1038/s41572-023-00431-8] [Citation(s) in RCA: 314] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/22/2023]
Abstract
Helicobacter pylori infection causes chronic gastritis, which can progress to severe gastroduodenal pathologies, including peptic ulcer, gastric cancer and gastric mucosa-associated lymphoid tissue lymphoma. H. pylori is usually transmitted in childhood and persists for life if untreated. The infection affects around half of the population in the world but prevalence varies according to location and sanitation standards. H. pylori has unique properties to colonize gastric epithelium in an acidic environment. The pathophysiology of H. pylori infection is dependent on complex bacterial virulence mechanisms and their interaction with the host immune system and environmental factors, resulting in distinct gastritis phenotypes that determine possible progression to different gastroduodenal pathologies. The causative role of H. pylori infection in gastric cancer development presents the opportunity for preventive screen-and-treat strategies. Invasive, endoscopy-based and non-invasive methods, including breath, stool and serological tests, are used in the diagnosis of H. pylori infection. Their use depends on the specific individual patient history and local availability. H. pylori treatment consists of a strong acid suppressant in various combinations with antibiotics and/or bismuth. The dramatic increase in resistance to key antibiotics used in H. pylori eradication demands antibiotic susceptibility testing, surveillance of resistance and antibiotic stewardship.
Collapse
Affiliation(s)
- Peter Malfertheiner
- Medical Department II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.
- Medical Department Klinik of Gastroenterology, Hepatology and Infectiology, Otto-von-Guericke Universität, Magdeburg, Germany.
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Emad El-Omar
- Microbiome Research Centre, St George & Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jyh-Ming Liou
- Department of Internal Medicine, National Taiwan University Cancer Center, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Richard Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christian Schulz
- Medical Department II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Munich, Germany
| | - Stella I Smith
- Department of Molecular Biology and Biotechnology, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Sebastian Suerbaum
- DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- National Reference Center for Helicobacter pylori, Munich, Germany
| |
Collapse
|
74
|
Lopes C, Almeida TC, Pimentel-Nunes P, Dinis-Ribeiro M, Pereira C. Linking dysbiosis to precancerous stomach through inflammation: Deeper than and beyond imaging. Front Immunol 2023; 14:1134785. [PMID: 37063848 PMCID: PMC10102473 DOI: 10.3389/fimmu.2023.1134785] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Upper gastrointestinal endoscopy is considered the gold standard for gastric lesions detection and surveillance, but it is still associated with a non-negligible rate of missing conditions. In the Era of Personalized Medicine, biomarkers could be the key to overcome missed lesions or to better predict recurrence, pushing the frontier of endoscopy to functional endoscopy. In the last decade, microbiota in gastric cancer has been extensively explored, with gastric carcinogenesis being associated with progressive dysbiosis. Helicobacter pylori infection has been considered the main causative agent of gastritis due to its interference in disrupting the acidic environment of the stomach through inflammatory mediators. Thus, does inflammation bridge the gap between gastric dysbiosis and the gastric carcinogenesis cascade and could the microbiota-inflammation axis-derived biomarkers be the answer to the unmet challenge of functional upper endoscopy? To address this question, in this review, the available evidence on the role of gastric dysbiosis and chronic inflammation in precancerous conditions of the stomach is summarized, particularly targeting the nuclear factor-κB (NF-κB), toll-like receptors (TLRs) and cyclooxygenase-2 (COX-2) pathways. Additionally, the potential of liquid biopsies as a non-invasive source and the clinical utility of studied biomarkers is also explored. Overall, and although most studies offer a mechanistic perspective linking a strong proinflammatory Th1 cell response associated with, but not limited to, chronic infection with Helicobacter pylori, promising data recently published highlights not only the diagnostic value of microbial biomarkers but also the potential of gastric juice as a liquid biopsy pushing forward the concept of functional endoscopy and personalized care in gastric cancer early diagnosis and surveillance.
Collapse
Affiliation(s)
- Catarina Lopes
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- CINTESIS – Center for Health Technology and Services Research, University of Porto, Porto, Portugal
- ICBAS-UP – Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Tatiana C. Almeida
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Pedro Pimentel-Nunes
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Department of Gastroenterology, Unilabs, Porto, Portugal
| | - Mário Dinis-Ribeiro
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Department of Gastroenterology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Carina Pereira
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- CINTESIS – Center for Health Technology and Services Research, University of Porto, Porto, Portugal
- *Correspondence: Carina Pereira,
| |
Collapse
|
75
|
Xi J, Li Y, Zhang H, Bai Z. Dynamic variations of the gastric microbiota: Key therapeutic points in the reversal of Correa's cascade. Int J Cancer 2023; 152:1069-1084. [PMID: 36029278 DOI: 10.1002/ijc.34264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
Correa's cascade is a dynamic process in the development of intestinal-type gastric cancer (GC), and its pathological features, gastric microbiota and interactions between microorganisms and their hosts vary at different developmental stages. The characteristics of cells, tissues and gastric microbiota before or after key therapeutic points are critical for monitoring malignant transformation and early tumour reversal. This review summarises the pathological features of gastric mucosa, characteristics of gastric microbiota, specific microbial markers, microbe-microbe interactions and microbe-host interactions at different stages in Correa's cascade. The markers related to each Correa's cascade point were analysed in detail. We attempted to identify key therapeutic points for early cancer reversal and provide a novel approach to reduce the incidence of GC and improve precise treatment.
Collapse
Affiliation(s)
- Jiahui Xi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumour, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhongtian Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
76
|
Yu T, Lu T, Deng W, Yao D, He C, Luo P, Song J. Microbiome and function alterations in the gastric mucosa of asymptomatic patients with Helicobacter pylori infection. Helicobacter 2023; 28:e12965. [PMID: 36890119 DOI: 10.1111/hel.12965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Most patients with Helicobacter pylori (H. pylori) infection have no clinical symptoms, numerous studies reported the gastric microbiome in H. pylori-infected patients, but asymptomatic patients have not been distinguished. How the microbiome and function changes in asymptomatic patients with H. pylori infection remains poorly understood. METHODS A total of 29 patients were divided into H. pylori-infected asymptomatic group (10 patients), H. pylori-infected symptomatic group (11 patients) and H. pylori-uninfected group (8 patients). Gastric mucosa specimens were taken for histopathological examination, special staining, and 16 S rDNA sequencing. High-throughput results were evaluated by community composition analysis, indicator species analysis, alpha diversity analysis, beta diversity analysis, and function prediction. RESULTS The gastric microbiota composition at phylum and genus level of H. pylori-infected asymptomatic patients were similar with H. pylori-infected symptomatic group, but different from H. pylori-uninfected patients. The diversity and richness of gastric microbial community declined significantly in H. pylori-infected asymptomatic group comparing with H. pylori-uninfected group. Sphingomonas may be an indicator between symptomatic and asymptomatic patients with H. pylori infection, the AUC value of Sphingomonas is 0.79. Interactions between species increased and altered notably after H. pylori infection. More genera were affected by Helicobacter in H. pylori-infected asymptomatic patients. The function condition changed significantly in asymptomatic patients with H. pylori infection, there was no difference comparing with symptomatic ones. Amino acid metabolism and lipid metabolism strengthened but carbohydrate metabolism remained constant after H. pylori infection. The metabolism of fatty acid and bile acid was disturbed after infection with H. pylori. CONCLUSION The gastric microbiota composition and function mode changed significantly after H. pylori infection regardless of the presence of clinical symptoms, there was no difference between H. pylori-infected asymptomatic and symptomatic patients. The difference in gastric microbiota composition and interactions between species might be responsible for presence of digestive symptoms.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Tianyu Lu
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Wei Deng
- Department of Pathology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Danping Yao
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Cheng He
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Peng Luo
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Jian Song
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, China
| |
Collapse
|
77
|
Wang B, Zhou W, Zhang H, Wang W, Zhang B, Li S. Exploring the effect of Weifuchun capsule on the toll-like receptor pathway mediated HES6 and immune regulation against chronic atrophic gastritis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115930. [PMID: 36403744 DOI: 10.1016/j.jep.2022.115930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Weifuchun capsule (WFC) is a traditional Chinese patent medicine for chronic atrophic gastritis (CAG) in clinic. However, the mechanism of action of WFC for CAG still remains unclear due to its complex composition. AIM OF THE STUDY The study was projected to uncover the mechanism of action of WFC and the corresponding pharmacodynamic substance of WFC against CAG as well as providing a standard example for the research of traditional Chinese medicine (TCM) from the perspective of the network and the system. MATERIALS AND METHODS We identified the compounds of WFC through LC-MS/MS analysis and performed a systematic network targets analysis for WFC in the treatment of CAG which thoroughly described the mechanism of action of WFC for CAG. Based on analysis integrating omics data and algorithms, we focused on the specific immune regulatory role of WFC in the treatment of CAG, especially on a hub pathway, Toll-like receptor signaling pathway and thus deciphered the role of WFC in immune regulation, anti-inflammation and mediation of HES6. In experiments part, MNNG-GES-1-cell line and rat models were used to validate our findings. RESULTS In this study, compounds of WFC are identified through LC‒MS/MS and network target analysis is performed to dissect the specific immunoregulatory effect as well as mediation of HES6, a newly discovered biomolecule related to gastritis carcinoma progression, of WFC on CAG through the Toll-like receptor signaling pathway. Based on cell line and rat models, we verify the mechanism of action of WFC for CAG in inhibiting inflammatory cytokines, regulating immune cells like T cells and macrophages, related genes including TLR2 and CD14. It is also validated that WFC inhibits the expression of HES6 (P < 0.05). CONCLUSION Based on the combination of computational strategy and experiments, our study offers a comprehensive analysis to reveal the role of WFC in regulating immune response, inhibiting inflammation in the treatment of CAG, and provides a standard example for the research of TCM from the perspective of the network and the system.
Collapse
Affiliation(s)
- Boyang Wang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China
| | - Wuai Zhou
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China
| | - Huan Zhang
- TCM Network Pharmacology Department, Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, 300457, Tianjin, China
| | - Weihua Wang
- Center of Pharmaceutical Technology, Tsinghua University, China
| | - Bo Zhang
- TCM Network Pharmacology Department, Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, 300457, Tianjin, China.
| | - Shao Li
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
78
|
Feng X, Li Z, Guo W, Hu Y. The effects of traditional Chinese medicine and dietary compounds on digestive cancer immunotherapy and gut microbiota modulation: A review. Front Immunol 2023; 14:1087755. [PMID: 36845103 PMCID: PMC9945322 DOI: 10.3389/fimmu.2023.1087755] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
Digestive tract-related cancers account for four of the top ten high-risk cancers worldwide. In recent years, cancer immunotherapy, which exploits the innate immune system to attack tumors, has led to a paradigm shifts in cancer treatment. Gut microbiota modification has been widely used to regulate cancer immunotherapy. Dietary compounds and traditional Chinese medicine (TCM) can alter the gut microbiota and its influence on toxic metabolite production, such as the effect of iprindole on lipopolysaccharide (LPS), and involvement in various metabolic pathways that are closely associated with immune reactions. Therefore, it is an effective strategy to explore new immunotherapies for gastrointestinal cancer to clarify the immunoregulatory effects of different dietary compounds/TCMs on intestinal microbiota. In this review, we have summarized recent progress regarding the effects of dietary compounds/TCMs on gut microbiota and their metabolites, as well as the relationship between digestive cancer immunotherapy and gut microbiota. We hope that this review will act as reference, providing a theoretical basis for the clinical immunotherapy of digestive cancer via gut microbiota modulation.
Collapse
Affiliation(s)
- Xiaoli Feng
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhao Li
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weihong Guo
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China,*Correspondence: Weihong Guo, ; Yanfeng Hu,
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China,*Correspondence: Weihong Guo, ; Yanfeng Hu,
| |
Collapse
|
79
|
Tang B, Hu Y, Chen J, Su C, Zhang Q, Huang C. Oral and fecal microbiota in patients with diarrheal irritable bowel syndrome. Heliyon 2023; 9:e13114. [PMID: 36711269 PMCID: PMC9880401 DOI: 10.1016/j.heliyon.2023.e13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Background This study aimed at investigating the characteristics and correlation between oral (tongue coating) and fecal microbiota in patients with diarrheal irritable bowel syndrome (IBS-D). Methods Fifty-two IBS-D patients were chosen, with ten healthy volunteers serving as the normal control group. Tongue coating samples and fecal samples of subjects were sequenced for the 16S rRNA gene (V4-V5). Bioinformatics analysis was done on the test data to investigate oral and fecal microbiota composition characteristics in IBS-D patients. Results The microbial richness of tongue coating in IBS-D group was lower than that in the normal control group (P < 0.05). The beta diversity of tongue coating microbiota and fecal microbiota was significantly different in the IBS-D group compared to the normal control group (P < 0.05). Pseudomonadales (Pseudomonadaceae and Pseudomonas), Moraxellaceae, Parvimonas, Peptostreptococcus, and Alloprevotella were considerably high in number the tongue coating samples of the IBS-D group in comparison to the normal control group. Similarly, the fecal samples from the IBS-D group were significantly enriched in Alphaproteobacteria, Pseudomonadales (Pseudomonadaceae and Pseudomonas), Acidaminococcaceae, Phascolarctobacterium, Alloprevotella, and Escherichia compared to the normal control group. Conclusions The oral and fecal microbiotas of IBS-D patients differ from those of the control group; hence studying IBS-D from the perspective of the oral-gut microbiome axis is an interesting research avenue.
Collapse
Affiliation(s)
- Binbin Tang
- Second Outpatient Department, Tongde Hospital of Zhejiang Province, Hangzhou, China,Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yunlian Hu
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China,First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Jianhui Chen
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China,First Clinical College, Hubei University of Chinese Medicine, Wuhan, China,Corresponding author. Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.
| | - Chengxia Su
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China,First Clinical College, Hubei University of Chinese Medicine, Wuhan, China,Corresponding author. First Clinical College, Hubei University of Chinese Medicine, Wuhan, China.
| | - Qian Zhang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China,First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Chaoqun Huang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China,First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
80
|
Wei Q, Zhang Q, Wu Y, Han S, Yin L, Zhang J, Gao Y, Shen H, Zhuang J, Chu J, Liu J, Wei Y. Analysis of bacterial diversity and community structure in gastric juice of patients with advanced gastric cancer. Discov Oncol 2023; 14:7. [PMID: 36662326 PMCID: PMC9860007 DOI: 10.1007/s12672-023-00612-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The occurrence and development of gastric cancer are related to microorganisms, which can be used as potential biomarkers of gastric cancer. OBJECTIVE To screen the microbiological markers of gastric cancer from the microorganisms of gastric juice. METHODS Gastric juice samples were collected from 61 healthy people and 78 patients with gastric cancer (48 cases of early gastric cancer and 30 cases of advanced gastric cancer). The bacterial 16 S rRNA V1-V4 region of gastric juice samples was sequenced. The Shannon index, Simpson index, Ace index and Chao index were used to analyze the diversity of gastric juice samples. The RDP classifier Bayesian algorithm was used to analyze the community structure of 97% OTU representative sequences with similar levels. Linear discriminant analysis and ST-test were used to analyze the differences. Six machine learning algorithms, including the logistic regression algorithm, random forest algorithm, neural network algorithm, support vector machine algorithm, Catboost algorithm and gradient lifting tree algorithm, were used to construct risk prediction models for gastric cancer and advanced gastric cancer. RESULTS The microbiota diversity and the abundance of bacteria was different in the healthy group, early gastric cancer and advanced gastric cancer (P < 0.05). The top five abundant bacteria among the three groups were Streptococcus, Rhodococcus, Prevotella, Pseudomonas and Helicobacter. Bacterial flora such as Streptococcus, Rhodococcus and Ochrobactrum were significantly different between the healthy group and the gastric cancer group. The accuracy of the random forest prediction model is the highest (82.73% correct). The bacteria with the highest predictive value included Streptococcus, Lactobacillus and Ochrobactrum. The abundance of bacteria such as Fusobacterium, Capnocytophaga, Atopobium, Corynebacterium was high in the advanced gastric cancer group. CONCLUSION Gastric juice bacteria can be used as potential biomarkers to predict the occurrence and development of gastric cancer.
Collapse
Affiliation(s)
- Qiang Wei
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Zhejiang Province, 313000, Huzhou, People's Republic of China
| | - Qi Zhang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Zhejiang Province, 313000, Huzhou, People's Republic of China
| | - Yinhang Wu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Shuwen Han
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Zhejiang Province, 313000, Huzhou, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, People's Republic of China
| | - Lei Yin
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Zhejiang Province, 313000, Huzhou, People's Republic of China
| | - Jinyu Zhang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Zhejiang Province, 313000, Huzhou, People's Republic of China
| | - Yuhai Gao
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Zhejiang Province, 313000, Huzhou, People's Republic of China
| | - Hong Shen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Zhejiang Province, 313000, Huzhou, People's Republic of China
| | - Jing Zhuang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Zhejiang Province, 313000, Huzhou, People's Republic of China
| | - Jian Chu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jiang Liu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Zhejiang Province, 313000, Huzhou, People's Republic of China.
| | - Yunhai Wei
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Zhejiang Province, 313000, Huzhou, People's Republic of China.
| |
Collapse
|
81
|
Guo Y, Cao XS, Zhou MG, Yu B. Gastric microbiota in gastric cancer: Different roles of Helicobacter pylori and other microbes. Front Cell Infect Microbiol 2023; 12:1105811. [PMID: 36704105 PMCID: PMC9871904 DOI: 10.3389/fcimb.2022.1105811] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. The gastric microbiota plays a critical role in the development of GC. First, Helicobacter pylori (H. pylori) infection is considered a major risk factor for GC. However, recent studies based on microbiota sequencing technology have found that non-H. pylori microbes also exert effects on gastric carcinogenesis. Following the infection of H. pylori, gastric microbiota dysbiosis could be observed; the stomach is dominated by H. pylori and the abundances of non-H. pylori microbes reduce substantially. Additionally, decreased microbial diversity, alterations in the microbial community structure, negative interactions between H. pylori and other microbes, etc. occur, as well. With the progression of gastric lesions, the number of H. pylori decreases and the number of non-H. pylori microbes increases correspondingly. Notably, H. pylori and non-H. pylori microbes show different roles in different stages of gastric carcinogenesis. In the present mini-review, we provide an overview of the recent findings regarding the role of the gastric microbiota, including the H. pylori and non-H. pylori microbes, in the development of GC.
Collapse
Affiliation(s)
- Yang Guo
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xue-Shan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Meng-Ge Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Bo Yu
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
82
|
Li X, Zhao C, Li C, Zhang M, Xie Y, Feng F, Yao W, Wang N. Detection and analysis of lung microbiota in mice with lung cancer lacking the NLRP3 gene. Biochem Biophys Res Commun 2023; 639:117-125. [PMID: 36481355 DOI: 10.1016/j.bbrc.2022.11.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
To explore whether the lung microbiota have changed in the process of NLRP3 inflammasome promoting cancer, we constructed a murine lung cancer model using tracheal instillation of benzo(a)pyrene and an equal volume of tricaprylin, and characterized lung microbiota in bronchoalveolar lavage fluid from 24 SPF wild-type and NLRP3 gene knockout (NLRP3-/-) C57BL/6 mice. 16SrDNA sequencing was used to analyze the changes in the microbiota. The wild-type and the NLRP3-/- lung cancer group had statistically significant differences in tumor formation rate, tumor number, and tumor size. At the phylum and the genus level, the relative abundance of Proteobacteria and Sphingomonas were the highest in each group respectively. Simpson (P = 0.002) and Shannon (P = 0.008) indexes showed that the diversity of microbiota in the lung cancer group was lower than that in the control group under the NLRP3-/- background. According to the ANOSIM and MRPP analysis, there was a difference between the NLRP3-/- lung cancer group and the NLRP3-/- control group (P < 0.05). The knockout of the NLRP3 gene caused changes in the lung microbiota of mice. There may be a regulatory relationship between the NLRP3 inflammasome and the lung microbiota, which affects the occurrence and development of lung cancer.
Collapse
Affiliation(s)
- Xinyan Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Congcong Zhao
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chao Li
- President's Office, Shandong Cancer Hospital, Jinan, 250117, China
| | - Mengmeng Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanchen Xie
- Henan Red Cross Blood Center, Zhengzhou, 450053, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wu Yao
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Na Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
83
|
Yu Q, Shi H, Ding Z, Wang Z, Yao H, Lin R. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation in Helicobacter pylori-associated gastritis by regulating ROS and autophagy. Cell Commun Signal 2023; 21:1. [PMID: 36597090 PMCID: PMC9809066 DOI: 10.1186/s12964-022-00954-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/06/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The NLRP3 inflammasome activation is the molecular basis of Helicobacter pylori (Hp)-associated gastritis. Tripartite motif (TRIM) 31 is involved in diverse pathological events. However, whether TRIM31 plays a role in the activation of NLRP3 inflammasome in Hp infection is not clarified. METHODS A mouse model of chronic Hp infection was established, and the gastric tissues were subjected to the polymerase chain reaction, western blotting, histopathological analysis, and RNA sequencing. The mitochondrial membrane potential and ROS in the human gastric epithelium GES-1 cells with or without Hp infection were measured by flow cytometry. GES-1 cells with or without TRIM31 knockdown were transfected with mCherry-EGFP-LC3 adenovirus. After rapamycin and bafilomycin A1 stimulation, autophagy flux in the above primed GES-1 cells was assessed by laser confocal microscope. Lysosomal acidification and expression levels of cathepsin B and cathepsin D in GES-1 cells with Hp infection were measured. RESULTS NLRP3 inflammasome was activated in the gastric tissues of mice with chronic Hp infection in vivo and the GES-1 cells with Hp infection in vitro. TRIM31 was downregulated in Hp infection. TRIM31 negatively regulated the NLRP3 inflammasome activation. Enhanced ROS, impaired autophagy flux, and decreased expression of lysosomal cathepsin B and cathepsin D were observed in TRIM31-deficient GES-1 cells with Hp infection. In turn, inhibition of ROS led to the decreased expression of NLRP3 inflammasome. CONCLUSIONS Together, our data identified that TRIM31 negatively regulated the activation of NLRP3 inflammasome in Hp-associated gastritis by affecting ROS and autophagy of gastric epithelial cells. Video abstract.
Collapse
Affiliation(s)
- Qiao Yu
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Huiying Shi
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhen Ding
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhe Wang
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Hailing Yao
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Rong Lin
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
84
|
Yang J, He Q, Lu F, Chen K, Ni Z, Wang H, Zhou C, Zhang Y, Chen B, Bo Z, Li J, Yu H, Wang Y, Chen G. A distinct microbiota signature precedes the clinical diagnosis of hepatocellular carcinoma. Gut Microbes 2023; 15:2201159. [PMID: 37089022 PMCID: PMC10128432 DOI: 10.1080/19490976.2023.2201159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Oral, gut, and tumor microbiota have been implicated as important regulators in the carcinogenesis and progression of gastrointestinal malignancies. However, few studies focused on the existence and association of resident microbes within different body regions. Herein, we aim to reveal the durability of the oral-gut-tumor microbiome and its diagnostic performance in hepatocellular carcinoma (HCC). Our study included two cohorts: a retrospective discovery cohort of 364 HBV-HCC patients and 160 controls with oral or fecal samples, a prospective validation cohort of 91 cases, and 124 controls for matching samples, as well as 48 HBV, and 39 HBV-cirrhosis patients for gut microbial patterns examined by 16S rRNA gene sequencing. With the random forest analysis, 10 oral and 9 gut genera that could distinguish HCC from controls in the retrospective cohort were validated among the prospective matching participants, with area under the curve (AUC) values of 0.7971 and 0.8084, respectively. When influential taxa were merged, the AUC of the consistent classifier increased to 0.9405. The performance continued to improve to 0.9811 when combined with serum levels of alpha-fetoprotein (AFP). Specifically, microbial biomarkers represented by Streptococcus displayed a constantly increasing trend during the disease transition. Furthermore, the presence of several dominant microbiota species was confirmed in hepatic tumor and non-tumor tissues with fluorescence in situ hybridization (FISH) and 5 R 16S rRNA gene sequencing. Overall, our findings based on the oral-gut-tumor microbiota provide a reliable approach for the early detection of HCC.
Collapse
Affiliation(s)
- Jinhuan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qikuan He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fei Lu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Kaiwen Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - ZhiHao Ni
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Haoyue Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Chen Zhou
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yaosheng Zhang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialiang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University; Chashan High Education Zone, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
85
|
Wang Z, Shao SL, Xu XH, Zhao X, Wang MY, Chen A, Cong HY. Helicobacter pylori and gastric microbiota homeostasis: progress and prospects. Future Microbiol 2023; 18:137-157. [PMID: 36688318 DOI: 10.2217/fmb-2022-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Helicobacter pylori, a Gram-negative microaerobic bacteria belonging to the phylum Proteobacteria, can colonize in the stomach and duodenum, and cause a series of gastrointestinal diseases such as gastritis, gastric ulcer and even gastric cancer. At present, the high diversity of the microorganisms in the stomach has been confirmed with culture-independent methods; some researchers have also studied the stomach microbiota composition at different stages of H. pylori carcinogenesis. Here, we mainly review the possible role of H. pylori-mediated microbiota changes in the occurrence and development of gastric cancer to provide new ideas for preventing H. pylori infection and regulating microecological imbalance.
Collapse
Affiliation(s)
- Zan Wang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Shu-Li Shao
- Department of Central Lab, Weihai Municipal Hospital. Weihai, Shandong, 264200, People's Republic of China
| | - Xiao-Han Xu
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Xue Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Ming-Yi Wang
- Department of Central Lab, Weihai Municipal Hospital. Weihai, Shandong, 264200, People's Republic of China
| | - Ai Chen
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China.,Department of Central Lab, Weihai Municipal Hospital. Weihai, Shandong, 264200, People's Republic of China
| | - Hai-Yan Cong
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China.,Department of Central Lab, Weihai Municipal Hospital. Weihai, Shandong, 264200, People's Republic of China
| |
Collapse
|
86
|
Bhat MH, Hajam YA, Neelam, Kumar R, Diksha. Microbial Diversity and Their Role in Human Health and Diseases. ROLE OF MICROBES IN SUSTAINABLE DEVELOPMENT 2023:1-33. [DOI: 10.1007/978-981-99-3126-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
87
|
Zhang L, Zhao M, Fu X. Gastric microbiota dysbiosis and Helicobacter pylori infection. Front Microbiol 2023; 14:1153269. [PMID: 37065152 PMCID: PMC10098173 DOI: 10.3389/fmicb.2023.1153269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is one of the most common causes of gastric disease. The persistent increase in antibiotic resistance worldwide has made H. pylori eradication challenging for clinicians. The stomach is unsterile and characterized by a unique niche. Communication among microorganisms in the stomach results in diverse microbial fitness, population dynamics, and functional capacities, which may be positive, negative, or neutral. Here, we review gastric microecology, its imbalance, and gastric diseases. Moreover, we summarize the relationship between H. pylori and gastric microecology, including non-H. pylori bacteria, fungi, and viruses and the possibility of facilitating H. pylori eradication by gastric microecology modulation, including probiotics, prebiotics, postbiotics, synbiotics, and microbiota transplantation.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
88
|
Ivashkin VТ, Ulyanin AI, Mayev IV, Kozlov RS, Livzan MA, Abdulkhakov SR, Alekseyeva OP, Alekseyenko SA, Bordin DS, Dekhnich NN, Korochyanskaya NV, Lapina TL, Poluektova EA, Simanenkov VI, Trukhmanov AS, Khlynov IB, Tsukanov VV, Sheptulin AA. Modern Approaches to <i>H. pylori</i> Eradication Therapy in Adults (Literature Review and Resolution of Experts Council). RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2022; 32:7-19. [DOI: https:/doi.org/10.22416/1382-4376-2022-32-6-7-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Aim: to analyze current approaches to H. pylori eradication therapy in adults and present the materials of Experts Council held on December 9, 2022 in Moscow.General statements. H. pylori infection is the main etiological factor of gastritis, peptic ulcer, and gastric cancer. Eradication of H. pylori is recognized as a necessary measure to reduce the incidence of these diseases. The approaches to selecting an eradication regimen should be optimized to take into account epidemiological trends and achieve better treatment outcomes. The updated Maastricht VI Consensus Report presents the means to overcome the difficulties in selecting an approach to the treatment of H. pylori infection. However, eradication therapy remains challenging due to adverse events (primarily antibiotic-associated diarrhea), poor treatment tolerance and patient compliance. Eradication therapy can be optimized by supplementing treatment regimens with strain-specific probiotics that reduce adverse events, improve patient compliance and eradication rates, such as Saccharomyces boulardii CNCM I-745 strain with established efficacy.Conclusion. The inclusion of certain probiotics in eradication regimens improves treatment tolerance, reduces the risk of adverse events, improves patient compliance and eradication rates.
Collapse
Affiliation(s)
- V. Т. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. I. Ulyanin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I. V. Mayev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | | | | | - S. R. Abdulkhakov
- Kazan (Volga Region) Federal University; Kazan State Medical University
| | - O. P. Alekseyeva
- Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko
| | | | - D. S. Bordin
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry; A.S. Loginov Moscow Clinical Scientific Center; Tver State Medical University
| | | | | | - T. L. Lapina
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E. A. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - A. S. Trukhmanov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - V. V. Tsukanov
- Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, an autonomous branch of the Research Institute of Medical Problems of the North
| | - A. A. Sheptulin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
89
|
Ivashkin VТ, Ulyanin AI, Mayev IV, Kozlov RS, Livzan MA, Abdulkhakov SR, Alekseyeva OP, Alekseyenko SA, Bordin DS, Dekhnich NN, Korochyanskaya NV, Lapina TL, Poluektova EA, Simanenkov VI, Trukhmanov AS, Khlynov IB, Tsukanov VV, Sheptulin AA. Modern Approaches to <i>H. pylori</i> Eradication Therapy in Adults (Literature Review and Resolution of Experts Council). RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2022; 32:7-19. [DOI: 10.22416/1382-4376-2022-32-6-7-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Aim: to analyze current approaches to H. pylori eradication therapy in adults and present the materials of Experts Council held on December 9, 2022 in Moscow.General statements. H. pylori infection is the main etiological factor of gastritis, peptic ulcer, and gastric cancer. Eradication of H. pylori is recognized as a necessary measure to reduce the incidence of these diseases. The approaches to selecting an eradication regimen should be optimized to take into account epidemiological trends and achieve better treatment outcomes. The updated Maastricht VI Consensus Report presents the means to overcome the difficulties in selecting an approach to the treatment of H. pylori infection. However, eradication therapy remains challenging due to adverse events (primarily antibiotic-associated diarrhea), poor treatment tolerance and patient compliance. Eradication therapy can be optimized by supplementing treatment regimens with strain-specific probiotics that reduce adverse events, improve patient compliance and eradication rates, such as Saccharomyces boulardii CNCM I-745 strain with established efficacy.Conclusion. The inclusion of certain probiotics in eradication regimens improves treatment tolerance, reduces the risk of adverse events, improves patient compliance and eradication rates.
Collapse
Affiliation(s)
- V. Т. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. I. Ulyanin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I. V. Mayev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | | | | | - S. R. Abdulkhakov
- Kazan (Volga Region) Federal University; Kazan State Medical University
| | - O. P. Alekseyeva
- Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko
| | | | - D. S. Bordin
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry; A.S. Loginov Moscow Clinical Scientific Center; Tver State Medical University
| | | | | | - T. L. Lapina
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E. A. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - A. S. Trukhmanov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - V. V. Tsukanov
- Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, an autonomous branch of the Research Institute of Medical Problems of the North
| | - A. A. Sheptulin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
90
|
Chen YH, Chen SCJ, Wang JW, Liu CS, Wu JY, Wu DC, Su YC. Exhaled Hydrogen after Lactulose Hydrogen Breath Test in Patient with Duodenal Ulcer Disease-A Pilot Study for Helicobacter-pylori-Associated Gastroduodenal Disease. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010045. [PMID: 36675994 PMCID: PMC9863152 DOI: 10.3390/life13010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVES The precipitating mechanism(s) from the inactive to the active stage of duodenal ulcer disease (DU) is unclear. It has been shown that hydrogen gas from colonic fermentation provides an important energy source for Helicobacter pylori (Hp) colonization. The lactulose hydrogen breath test (LHBT) is a useful tool to assess the small intestinal and/or colon fermentation. This study examines the association(s) between the status of gastroduodenal disease and the result of a lactulose hydrogen breath test (LHBT). MATERIALS AND METHODS We enrolled Hp-positive active duodenal ulcer (aDU) patients, inactive DU (iDU) patients and patients with a positive Hp infection without structural gastroduodenal lesion, i.e., simple gastritis (SG Hp+). The patients with simple gastritis without Hp infection (SG Hp-) served as controls. Histological examinations of the gastric mucosa and lactulose hydrogen breath test (LHBT) were performed. RESULTS SG Hp+ patients tend to have advanced gastritis (pangastritis or corpus-predominant gastritis) compared with SG Hp- patients (7/29 vs. 0/14, p = 0.08). More iDU patients had advanced gastritis than either the SG Hp+ (7/9 vs. 7/29, p = 0.006) or aDU patients (7/9 vs. 6/24, p = 0.013). In comparison with the aDU patients, the iDU patients were also older (52.1 ± 12.6 vs. 42.2 ± 11.9 years, p = 0.02) and had a lower mean area under the curve value of the LHBT(AUC) (209.1 ± 86.0 vs. 421.9 ± 70.9, p = 0.023). CONCLUSION aDU patients with a positive Hp infection have a lower grade of gastric mucosa damage than iDU patients and tend to have a higher level of exhaled hydrogen after LHBT.
Collapse
Affiliation(s)
- Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
| | - Sharon Chia-Ju Chen
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
| | - Jiunn-Wei Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
| | - Chiang-Shin Liu
- Department of Pathology, National Cheng Kung University Hospital, Tainan 70403, Taiwan
| | - Jeng-Yih Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
| | - Yu-Chung Su
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80756, Taiwan
- Correspondence: ; Tel.: +886-7-3121101-7451
| |
Collapse
|
91
|
Koga Y. Microbiota in the stomach and application of probiotics to gastroduodenal diseases. World J Gastroenterol 2022; 28:6702-6715. [PMID: 36620346 PMCID: PMC9813937 DOI: 10.3748/wjg.v28.i47.6702] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/28/2022] [Accepted: 11/25/2022] [Indexed: 12/19/2022] Open
Abstract
The stomach is a hostile environment for most microbes because strong gastric acid kills indigenous microorganisms. Thus, the mass of indigenous microbes detected by traditional culturing method in a highly acidic stomach is reported to be very small. However, in a stomach with less acidity due to atrophic changes of the gastric mucosa, the number of live gastric microbiota dramatically increases and their composition changes. A probiotic is defined as a live microorganism that, when administered in adequate amounts, confers a health benefit on the host. The administration of probiotics to the stomach has thus far been considered impractical, mainly due to the strong acidity in the stomach. The identification of candidate probiotic strains with sufficient resistance to acidity and the ability to achieve close proximity to the gastric mucosa could enable the application of probiotics to the stomach. The utilization of probiotics alone for Helicobacter pylori (H. pylori) infection significantly improves gastric mucosal inflammation and decreases the density of H. pylori on the mucosa, although complete eradication of H. pylori has not yet been demonstrated. The use of probiotics in combination with antimicrobial agents significantly increases the H. pylori eradication rate, especially when the H. pylori strains are resistant to antimicrobial agents. While H. pylori has been considered the most important pathogenic bacterium for the development of gastric cancer, bacteria other than H. pylori are also suggested to be causative pathogens that promote the development of gastric cancer, even after the eradication of H. pylori. Increased non-H. pylori Gram-negative bacteria in the stomach with weak acidity accompanying atrophic gastritis may perpetuate gastric mucosal inflammation and accelerate carcinogenic progression, even after H. pylori eradication. Probiotics restore the acidity in this stomach environment and may therefore prevent the development of gastric cancer by termination of Gram-negative bacteria-induced inflammation. Functional dyspepsia (FD) is defined as the presence of symptoms that are thought to originate in the gastroduodenal region in the absence of any organic, systematic or metabolic diseases. Accumulating evidence has pointed out the duodenum as a target region underlying the pathophysiology of FD. A randomized placebo-controlled clinical trial using a probiotic strain (LG21) demonstrated a significant improving effect on major FD symptoms. One of the possible mechanisms of this effect is protection of the duodenal mucosa from injurious intestinal bacteria through the resolution of small intestinal bacterial over growth.
Collapse
Affiliation(s)
- Yasuhiro Koga
- Japanese Society for Probiotic Science, Isehara 259-1143, Japan
| |
Collapse
|
92
|
Milivojevic V, Babic I, Kekic D, Rankovic I, Sagdati S, Panic N, Spasic IS, Krstic M, Milosavljevic T, Moreira L, Nyssen OP, Mégraud F, O' Morain C, Gisbert J. Current Trends in the Management of Helicobacter pylori Infection in Serbia: Preliminary Results from the European Registry on H. pylori Management. Dig Dis 2022; 41:377-386. [PMID: 37253341 DOI: 10.1159/000528389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/07/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is the most common chronic bacterial infection. Treatment effectiveness remains a subject of debate considering bacterial antimicrobial resistance. Our aim was to analyze the diagnostic methods and eradication treatments for H. pylori infection in Serbia. METHODS An observational multicenter prospective study was conducted in Serbia, as part of the European Registry on H. pylori Management (Hp-EuReg). Demographics, treatment indication, diagnostic methods, previous eradication attempts, and treatment were collected at AEG-REDCap e-CRF. Modified intention-to-treat (mITT) and per-protocol (PP) effectiveness analyses were performed. Safety, compliance, and bacterial antimicrobial resistance rates were reported. Data were quality checked. RESULTS Overall, 283 patients were included, with a mean age of 55 ± 15 years. Dyspepsia (n = 214, 77%) was the most frequent treatment indication, and histology (n = 144, 51%) was the most used diagnostic method. Overall eradication rate was 95% (PP) and 94% (mITT). Most prevalent first-line therapy was quadruple PPI + clarithromycin + amoxicillin + metronidazole, with a 96% effectiveness (p < 0.001). Second-line main treatment choice was triple amoxicillin + levofloxacin, with a 95% effectiveness (p < 0.05). Single-capsule Pylera® was the most prescribed third-line therapy, with 100% effectiveness (p < 0.05). Longer treatment duration was associated with a higher eradication rate in first-line therapy (p < 0.05). Clarithromycin and quinolone resistance rates in first-line were 24% and 8.3%, respectively. The overall adverse events' incidence rate was 13.4%, and therapy compliance was 97%. CONCLUSIONS Considering the high eradication rate, 14-day non-bismuth quadruple concomitant therapy is a reasonable first-line choice, while quinolone-based therapy and single-capsule Pylera® should be considered as rescue therapy options.
Collapse
Affiliation(s)
- Vladimir Milivojevic
- Clinic for Gastroenterology and Hepatology, University Clinical Centre of Serbia, Belgrade, Serbia
- Medical Faculty University of Belgrade, Belgrade, Serbia
| | - Ivana Babic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Dusan Kekic
- Medical Faculty University of Belgrade, Belgrade, Serbia
- Institute of Microbiology and Immunology, Belgrade, Serbia
| | - Ivan Rankovic
- Clinic for Gastroenterology and Hepatology, University Clinical Centre of Serbia, Belgrade, Serbia
- Medical Faculty University of Belgrade, Belgrade, Serbia
| | | | - Nikola Panic
- Medical Faculty University of Belgrade, Belgrade, Serbia
- University Medical Centre Dr Dragiša Mišović, Belgrade, Serbia
| | | | - Miodrag Krstic
- Clinic for Gastroenterology and Hepatology, University Clinical Centre of Serbia, Belgrade, Serbia
- Medical Faculty University of Belgrade, Belgrade, Serbia
| | | | - Leticia Moreira
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic de Barcelona, IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), University of Barcelona, Barcelona, Spain
| | - Olga Perez Nyssen
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | | | | | - Javier Gisbert
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
93
|
Wei Y, Jiang C, Han Y, Song W, Li X, Yin X. Characteristics and background mucosa status of early gastric cancer after Helicobacter pylori eradication: A narrative review. Medicine (Baltimore) 2022; 101:e31968. [PMID: 36482539 PMCID: PMC9726367 DOI: 10.1097/md.0000000000031968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (H pylori) eradication treatment can reduce the risk of gastric cancer. However, early gastric cancer (EGC) can still be detected after eradication. Meanwhile, EGC after eradication is challenging to diagnose by an endoscopist in some cases due to the lack of apparent characteristics and the complex mucosal status. This review aims to summarize the endoscopic and histological characteristics and the mucosal risk factors for gastric cancer after H pylori eradication. The literature was searched for possible reported gastric cancer after eradication in "PubMed." These included related clinical studies and reviews, and unrelated or non-English articles were excluded. Endoscopically, EGC displays a small, reddish and depressed lesion, indistinct border, "gastritis-like" appearance and submucosal invasion. Histologically, it is divided into surface differentiation, nontumorous epithelium, and intestinal type. The risk factors include severe gastric atrophy, intestinal metaplasia in the corpus, and map-like redness. In conclusion, these studies on the characteristics and risk mucosal factors of patients with gastric cancer after H pylori eradication will drive the establishment of a novel endoscopic surveillance and diagnosis system for H pylori-eradicated patients.
Collapse
Affiliation(s)
- Yali Wei
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chen Jiang
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yiping Han
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Wen Song
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaoyu Li
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaoyan Yin
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
94
|
Bao Z, Wu G, Du J, Ye Y, Zheng Y, Wang Y, Ji R. The comparative efficacy and safety of 9 traditional Chinese medicines combined with standard quadruple therapy for Helicobacter pylori-associated gastritis: a systematic review and network meta-analysis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1349. [PMID: 36660649 PMCID: PMC9843361 DOI: 10.21037/atm-22-5421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023]
Abstract
Background There are 9 traditional Chinese medicines (TCMs) combined with standard quadruple (SQ) available for the treatment of Helicobacter pylori (Hp)-associated gastritis, but their relative efficacy and best options in clinical decision making are unknown due to a lack of high-quality head-to-head randomized controlled trials (RCTs). This study aimed to explore which formulas are the most effective and/or safest for Hp-associated gastritis. Methods We performed a search of electronic databases including PubMed, Web of Science, Cochrane Library, Embase, Chinese databases and South Korean database from inception to March 2022 to identify all relevant RCTs on the comparison between TCM combined with SQ and SQ for Hp-associated gastritis. Efficacy outcomes were the eradication rate of Hp and therapeutic response rate, and safety outcome was incidence of adverse reactions. Publication bias was assessed quantitatively using Egger's regression analysis and qualitatively using trim-and-fill method. Quality assessment was performed using Cochrane Risk of Bias, version 2 (ROB 2) tool. The Bayesian methods were applied to compare each treatment. Results A total of 55 trials with 6,187 patients were involved. The experimental group included 9 TCMs combined with SQ. The control group was SQ. The pair-wise meta-analysis demonstrated that compared with control group, 8 TCMs combined with SQ could statistically improve the eradication rate of Hp in patients with gastritis, 9 TCMs combined with SQ could significantly improve the therapeutic response rate. Additionally, Banxia Xiexin decoction combined with SQ (BXS) could statistically decrease the incidence of adverse reactions. The network meta-analysis results showed that BXS, Xiangsha Liujunzi combined with SQ (XSS), and Huangqi Jianzhong decoction combined with SQ (HQS) was the best measures to effectively eradicate Hp, enhance therapeutic effect, and decrease adverse reactions, respectively. The results of trim-and-fill method indicated that the results were stable and less affected by publication bias. Conclusions Compared with SQ, TCM combined with SQ generally has a better clinical effect and higher safety in patients with Hp-associated gastritis. BXS, XSS, and HQS are recommended based on the patient's condition and needs in clinical practice. Further high-quality double-blinded RCTs are warranted to validate the conclusions.
Collapse
Affiliation(s)
- Zhixian Bao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China;,Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China;,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Guobing Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China;,Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China;,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jie Du
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yuwei Ye
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China;,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ya Zheng
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China;,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China;,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Rui Ji
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China;,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
95
|
Qu QY, Song XY, Lin L, Gong ZH, Xu W, Xiao WJ. L-Theanine Modulates Intestine-Specific Immunity by Regulating the Differentiation of CD4+ T Cells in Ovalbumin-Sensitized Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14851-14863. [PMID: 36394825 DOI: 10.1021/acs.jafc.2c06171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ovalbumin (OVA), a common food protein, can cause deadly allergies with intestine-specific immune reactions. L-Theanine (LTA) shows great potential for regulating intestinal immunity. To investigate the regulatory effect of LTA intervention on intestine-specific immunity, a 41 day experiment was performed on BALB/c OVA-sensitized mice. The results show that injecting female mice intraperitoneally with 50 μg of OVA and administering 30 mg of OVA 4 times can successfully establish an OVA-sensitized mouse model. LTA intervention significantly increased weight gain and thymus index (p < 0.05), decreased allergy and diarrhea scores (p < 0.05), and improved jejunum structure. Meanwhile, the histological score and degranulation of mast cells decreased. LTA intervention increased Clostridiales, Lachnospiraceae, Lactobacillus, Prevotella, and Ruminococcus abundance while decreasing Helicobacter abundance. Flow cytometry and Western blotting results indicated that 200 and 400 mg/kg of LTA upregulated the expression of T-bet and Foxp3 proteins (p < 0.05), thus promoting the differentiation of jejunum CD4+ T cells to Th1 and Tregs and increasing the cytokines IFN-γ, IL-10, and TGF-β (p < 0.05). We found that 200 and 400 mg/kg of LTA downregulated the expression of RORγt and GATA3, thus inhibiting the differentiation of Th2 and Th17 cells and decreasing cytokines IL-4, IL-5, IL-13 TNF-α, IL-6, and IL-17A (p < 0.05). LTA inhibited the degranulation of mast cells and significantly decreased the serum levels of OVA-IgE, HIS, and mouse MCPT-1 (p < 0.05). Therefore, LTA intervention alleviated OVA allergy by improving intestine-specific immunity.
Collapse
Affiliation(s)
- Qing-Yun Qu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Xian-Ying Song
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Ling Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Zhi-Hua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Wei Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Wen-Jun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| |
Collapse
|
96
|
Kim HN, Kim MJ, Jacobs JP, Yang HJ. Altered Gastric Microbiota and Inflammatory Cytokine Responses in Patients with Helicobacter pylori-Negative Gastric Cancer. Nutrients 2022; 14:nu14234981. [PMID: 36501012 PMCID: PMC9740132 DOI: 10.3390/nu14234981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
The role of the gastric mucosal microbiome in Helicobacter pylori-negative gastric cancer (GC) remains unclear. Therefore, we aimed to characterize the microbial alterations and host inflammatory cytokine responses in H. pylori-negative GC. Gastric mucosal samples were obtained from 137 H. pylori-negative patients with GC (n = 45) and controls (chronic gastritis or intestinal metaplasia, n = 92). We performed 16S rRNA gene sequencing (n = 67), a quantitative reverse transcription-polymerase chain reaction to determine the relative mRNA expression levels of TNF (tumor necrosis factor), IL1B (interleukin 1 beta), IL6 (interleukin 6), CXCL8 (C-X-C motif chemokine ligand 8), IL10 (interleukin 10), IL17A (interleukin 17A), TGFB1 (transforming growth factor beta 1) (n = 113), and the correlation analysis between sequencing and expression data (n = 47). Gastric mucosal microbiota in patients with GC showed reduced diversity and a significantly different composition compared to that of the controls. Lacticaseibacillus was significantly enriched, while Haemophilus and Campylobacter were depleted in the cancer group compared to the control group. These taxa could distinguish the two groups in a random forest algorithm. Moreover, the combined relative abundance of these taxa, a GC microbiome index, significantly correlated with gastric mucosal IL1B expression, which was elevated in the cancer group. Overall, altered gastric mucosal microbiota was found to be associated with increased mucosal IL1B expression in H. pylori-negative GC.
Collapse
Affiliation(s)
- Han-Na Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
| | - Min-Jeong Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Jonathan P. Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Hyo-Joon Yang
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
- Division of Gastroenterology, Department of Internal Medicine and Gastrointestinal Cancer Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
- Correspondence:
| |
Collapse
|
97
|
Navashenaq JG, Shabgah AG, Banach M, Jamialahmadi T, Penson PE, Johnston TP, Sahebkar A. The interaction of Helicobacter pylori with cancer immunomodulatory stromal cells: New insight into gastric cancer pathogenesis. Semin Cancer Biol 2022; 86:951-959. [PMID: 34600095 DOI: 10.1016/j.semcancer.2021.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 01/27/2023]
Abstract
Gastric cancer is the fourth most common cause of cancer-linked deaths in the world. Gastric tumor cells have biological characteristics such as rapid proliferation, high invasiveness, and drug resistance, which result in recurrence and poor survival. Helicobacter pylori (H. pylori) has been proposed as a first-class carcinogen for gastric cancer according to the 1994 world health organization (WHO) classification. One of the important mechanisms by which H. pylori affects the gastric environment and promotes carcinogenesis is triggering inflammation. H. pylori induces an inflammatory response and a plethora of different signal transduction processes, leading to gastric mucosal disturbance, chronic gastritis, and a multi-step complex pathway that initiates carcinogenesis. It seems undeniable that the interaction between various cell types, including immune cells, gastric epithelium, glands, and stem cells, is vital for the progression and development of carcinogenesis concerning H. pylori. The interactions of H. pylori with surrounding cells play a key role in cancer progression. In this review, we discuss the interplay between H. pylori and tumor-supportive cells, including mesenchymal stem cells (MSCs), cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid derived-suppressor cells (MDSCs) in gastric cancer. It is hoped that clarifying the specific mechanisms for 'cross-talk' between H. pylori and these cells will provide promising strategies for developing new treatments.
Collapse
Affiliation(s)
| | | | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
98
|
Zhang X, Wang H, Peng S, Kang J, Xie Z, Tang R, Xing Y, He Y, Yuan H, Xie C, Liu Y. Effect of microplastics on nasal and intestinal microbiota of the high-exposure population. Front Public Health 2022; 10:1005535. [PMID: 36388272 PMCID: PMC9650105 DOI: 10.3389/fpubh.2022.1005535] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/04/2022] [Indexed: 01/27/2023] Open
Abstract
Background Microplastic has become a growing environmental problem. A balanced microbial environment is an important factor in human health. This study is the first observational cross-sectional study focusing on the effects of microplastics on the nasal and gut microbiota in a highly exposed population. Methods We recruited 20 subjects from a Plastic Factory (microplastics high-exposure area) and the other 20 from Huanhuaxi Park (microplastics low-exposure area) in Chengdu, China. We performed the microplastic analysis of soil, air, and intestinal secretions by laser infrared imaging, and microbiological analysis of nasal and intestinal secretions by 16S rDNA sequencing. Results The result shows that the detected points of microplastics in the environment of the high-exposure area were significantly more than in the low-exposure area. Polyurethane was the main microplastic component detected. The microplastic content of intestinal secretions in the high-exposure group was significantly higher than in the low-exposure group. Specifically, the contents of polyurethane, silicone resin, ethylene-vinyl acetate copolymer, and polyethylene in the high-exposure group were significantly higher than in the low-exposure group. Moreover, high exposure may increase the abundance of nasal microbiotas, which are positively associated with respiratory tract diseases, such as Klebsiella and Helicobacter, and reduce the abundance of those beneficial ones, such as Bacteroides. Simultaneously, it may increase the abundance of intestinal microbiotas, which are positively associated with digestive tract diseases, such as Bifidobacterium, Streptococcus, and Sphingomonas, and reduce the abundance of intestinal microbiotas, which are beneficial for health, such as Ruminococcus Torquesgroup, Dorea, Fusobacterium, and Coprococcus. A combined analysis revealed that high exposure to microplastics may not only lead to alterations in dominant intestinal and nasal microbiotas but also change the symbiotic relationship between intestinal and nasal microbiotas. Conclusion The results innovatively revealed how microplastics can affect the intestinal and nasal microecosystems. Clinical trial registration ChiCTR2100049480 on August 2, 2021.
Collapse
Affiliation(s)
- Xiyu Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Heting Wang
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sihan Peng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Kang
- Proctology Department, University of Traditional Chinese Medicine, Chengdu, China
| | - Ziyan Xie
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruobing Tang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiqian Xing
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuchi He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haipo Yuan
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Chunguang Xie
| | - Ya Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China,Ya Liu
| |
Collapse
|
99
|
Abate M, Vos E, Gonen M, Janjigian YY, Schattner M, Laszkowska M, Tang L, Maron SB, Coit DG, Vardhana S, Vanderbilt C, Strong VE. A Novel Microbiome Signature in Gastric Cancer: A Two Independent Cohort Retrospective Analysis. Ann Surg 2022; 276:605-615. [PMID: 35822725 PMCID: PMC9463093 DOI: 10.1097/sla.0000000000005587] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
OBJECTIVE The microbiome is hypothesized to have a significant impact on cancer development. In gastric cancer (GC), Helicobacter pylori is an established class I carcinogen. However, additional organisms in the intratumoral microbiome play an important role in GC pathogenesis and progression. In this study, we characterize the full spectrum of the microbes present within GC and identify distinctions among molecular subtypes. METHODS A microbiome bioinformatics pipeline that is generalizable across multiple next-generation sequencing platforms was developed. Microbial profiles for alpha diversity and enrichment were generated for 2 large, demographically distinct cohorts: (1) internal Memorial Sloan Kettering Cancer Center (MSKCC) and (2) The Cancer Genome Atlas (TCGA) cohorts. A total of 520 GC samples were compared with select tumor-adjacent nonmalignant samples. Microbiome differences among the GC molecular subtypes were identified. RESULTS Compared with nonmalignant samples, GC had significantly decreased microbial diversity in both MSKCC and TCGA cohorts ( P <0.05). Helicobacter , Lactobacillus , Streptococcus , Prevotella , and Bacteroides were significantly more enriched in GC samples when compared with nonmalignant tissue ( P <0.05). Microsatellite instability-high GC had distinct microbial enrichment compared with other GC molecular subtypes. CONCLUSION Distinct patterns of microbial diversity and species enrichment were identified in patients with GC. Given the varied spectrum of disease progression and treatment response of GC, understanding unique microbial signatures will provide the landscape to explore key microbial targets for therapy.
Collapse
Affiliation(s)
- Miseker Abate
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center , New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- New York Presbyterian Hospital, Weill Cornell Medicine, Department of Surgery
| | - Elvira Vos
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center , New York, NY
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yelena Y. Janjigian
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Mark Schattner
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Monika Laszkowska
- Gastroenterology, Hepatology, and Nutrition Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Laura Tang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Steven B. Maron
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Daniel G. Coit
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center , New York, NY
| | - Santosh Vardhana
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chad Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vivian E. Strong
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center , New York, NY
| |
Collapse
|
100
|
Hu Y, Zhuang Y, Gou HY, Xie C, Ge ZM. Editorial: The interactions between gastrointestinal microbiota and Helicobacter pylori in diseases. Front Cell Infect Microbiol 2022; 12:1043906. [PMID: 36237428 PMCID: PMC9552202 DOI: 10.3389/fcimb.2022.1043906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yi Hu
- Department Of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department Of Gastroenterology, Shenzhen Hospital of The First Affiliated Hospital of Nanchang University, Shenzhen, China
| | - Yuan Zhuang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hong-Yan Gou
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Chuan Xie
- Department Of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhong-Ming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|