51
|
Krause KE, Dinh KV, Nielsen TG. Increased tolerance to oil exposure by the cosmopolitan marine copepod Acartia tonsa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:87-94. [PMID: 28688259 DOI: 10.1016/j.scitotenv.2017.06.139] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/19/2017] [Accepted: 06/17/2017] [Indexed: 06/07/2023]
Abstract
Oil contamination is an environmental hazard to marine ecosystems, but marine organism tolerance to oil after many generations of exposure remains poorly known. We studied the effects of transgenerational oil exposure on fitness-related traits in a cosmopolitan neritic copepod, Acartia tonsa. Copepods were exposed to an oil compound, the PAH pyrene, at concentrations of 1, 10, 100 and 100+(the saturated pyrene concentration in seawater)nM over two generations and measured survival, sex ratio, size at maturity, grazing rate and reproductive success. Exposure to the pyrene concentration of 100+nM resulted in 100% mortality before adulthood in the first generation. At the pyrene concentration of 100nM, pyrene reduced grazing rate, increased mortality, reduced the size of females and caused lower egg production and hatching success. Importantly, we found strong evidence for increased tolerance to pyrene exposure in the second generation: the reduction in size at maturity of females was less pronounced in the second generation and survival, egg production and hatching success were recovered to control levels in the second generation. The increased tolerance of copepods to oil contamination may dampen the direct ecological consequences of a coastal oil spill, but it raises the concern whether a larger fraction of oil components accumulated in survived copepods, may be transferred up the food web.
Collapse
Affiliation(s)
- Kamille Elvstrøm Krause
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, bygning 201, Lyngby Campus, 2800 Kgs. Lyngby, Denmark
| | - Khuong V Dinh
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, bygning 201, Lyngby Campus, 2800 Kgs. Lyngby, Denmark.
| | - Torkel Gissel Nielsen
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, bygning 201, Lyngby Campus, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
52
|
Akbar S, Du J, Lin H, Kong X, Sun S, Tian X. Understanding interactive inducible defenses of Daphnia and its phytoplankton prey. HARMFUL ALGAE 2017; 66:47-56. [PMID: 28602253 DOI: 10.1016/j.hal.2017.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/02/2017] [Accepted: 05/06/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacterial and zooplankton inducible defenses are important but understudied process that regulate the trophic interactions of freshwater ecosystem. Daphnia due to its large size is considered an important zooplankton with the high potential to control cyanobacterial blooms. It has been shown that Daphnia through maternal induction transfer tolerance to their next generation against Microcystis toxicity. Maternal induction has been investigated in different Daphnia species without considering phenotypic plasticity of prey. Laboratory experiments were performed to explore cyanobacteria-Daphnia inducible defenses in order to better understand their interactions. Two Daphnia species were fed either with Microcystis aeruginosa PCC7806 (Ma) or Microcystis flos-aquae (Mf) mixed with Chlorella vulgaris (Cv) (exposed Daphnia), and or pure Cv (unexposed Daphnia). Exposed prey cultures were produced by prior exposure to Daphnia infochemicals. Neonates produced by exposed and unexposed Daphnia were fed with mixed diet (Microcystis+Cv) of either exposed and or unexposed prey. Growth parameters and toxin production of exposed prey cultures were significantly different than that of control. Exposed Daphnia fecundity and survival was higher as compared to unexposed Daphnia. Growth and reproduction was reduced in exposed Daphnia when fed with exposed prey as compared to those fed with unexposed prey. This study provides information on the interactive inducible defenses between cyanobacteria and its grazer under laboratory conditions and may increase our understanding of cyanobacteria and Daphnia interactions in the freshwater ecosystem.
Collapse
Affiliation(s)
- Siddiq Akbar
- School of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Jingjing Du
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Hong Lin
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xiangshi Kong
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Shucun Sun
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xingjun Tian
- School of Life Sciences, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
53
|
Höhn DP, Lucas CH, Thatje S. Respiratory response to temperature of three populations of Aurelia aurita polyps in northern Europe. PLoS One 2017; 12:e0177913. [PMID: 28545145 PMCID: PMC5435318 DOI: 10.1371/journal.pone.0177913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/05/2017] [Indexed: 11/19/2022] Open
Abstract
The benthic life stage (polyp or scyphistoma) of the bloom-forming jellyfish, Aurelia aurita (Linnaeus, 1759), also known as the moon jellyfish, contributes to the seasonal occurrence and abundance of medusa blooms via asexual reproduction. A. aurita is widely distributed in coastal areas in northern Europe, and one of the most studied jellyfish species. While the physiology of the visible medusa is largely understood, understanding of the physiology of the perennial benthic life-stage is scarce. To measure the physiological tolerance of A. aurita, the scyphistoma's temperature sensitivity across its distributional range was investigated. Respiration rates of polyps from three northern European locations exposed to 11 temperatures between 2 and 22°C were measured. There was a significant difference in respiration rate among the three polyp populations, which may reflect on differences in their thermal tolerance window. A critical temperature was reached at 14°C with the metabolic rate decreasing below and above that temperature. This pattern was less pronounced in the Norwegian population but polyps were able to survive, at least temporarily, those temperatures exceeding their natural range. While polyps collected from northern Norway, with a narrow environmental thermal window, displayed a low baseline metabolism with a Q10 value of 1.2, polyps from southern England and Scotland had Q10 values of 1.6 and 2.5, respectively. Differences in polyps' respiration rates across their distributional range suggest that populations have evolved adaptations to local environmental thermal conditions.
Collapse
Affiliation(s)
- Danja P. Höhn
- National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
- * E-mail:
| | - Cathy H. Lucas
- National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
| | - Sven Thatje
- National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
54
|
Yang H, Meng Y, Song Y, Tan Y, Warren A, Li J, Lin X. Salinity fluctuation influencing biological adaptation: growth dynamics and Na + /K + -ATPase activity in a euryhaline bacterium. J Basic Microbiol 2017; 57:617-624. [PMID: 28493363 DOI: 10.1002/jobm.201700124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 11/06/2022]
Abstract
Although salinity fluctuation is a prominent characteristic of many coastal ecosystems, its effects on biological adaptation have not yet been fully recognized. To test the salinity fluctuations on biological adaptation, population growth dynamics and Na+ /K+ -ATPase activity were investigated in the euryhaline bacterium Idiomarina sp. DYB, which was acclimated at different salinity exposure levels, exposure times, and shifts in direction of salinity. Results showed: (1) bacterial population growth dynamics and Na+ /K+ -ATPase activity changed significantly in response to salinity fluctuation; (2) patterns of variation in bacterial growth dynamics were related to exposure times, levels of salinity, and shifts in direction of salinity change; (3) significant tradeoffs were detected between growth rate (r) and carrying capacity (K) on the one hand, and Na+ /K+ -ATPase activity on the other; and (4) beneficial acclimation was confirmed in Idiomarina sp. DYB. In brief, this study demonstrated that salinity fluctuation can change the population growth dynamics, Na+ /K+ -ATPase activity, and tradeoffs between r, K, and Na+ /K+ -ATPase activity, thus facilitating bacterial adaption in a changing environment. These findings provide constructive information for determining biological response patterns to environmental change.
Collapse
Affiliation(s)
- Hao Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| | - Yang Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| | - Youxin Song
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| | - Yalin Tan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, UK
| | - Jiqiu Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| | - Xiaofeng Lin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| |
Collapse
|
55
|
Calosi P, Melatunan S, Turner LM, Artioli Y, Davidson RL, Byrne JJ, Viant MR, Widdicombe S, Rundle SD. Regional adaptation defines sensitivity to future ocean acidification. Nat Commun 2017; 8:13994. [PMID: 28067268 PMCID: PMC5227702 DOI: 10.1038/ncomms13994] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/18/2016] [Indexed: 11/22/2022] Open
Abstract
Physiological responses to temperature are known to be a major determinant of species distributions and can dictate the sensitivity of populations to global warming. In contrast, little is known about how other major global change drivers, such as ocean acidification (OA), will shape species distributions in the future. Here, by integrating population genetics with experimental data for growth and mineralization, physiology and metabolomics, we demonstrate that the sensitivity of populations of the gastropod Littorina littorea to future OA is shaped by regional adaptation. Individuals from populations towards the edges of the natural latitudinal range in the Northeast Atlantic exhibit greater shell dissolution and the inability to upregulate their metabolism when exposed to low pH, thus appearing most sensitive to low seawater pH. Our results suggest that future levels of OA could mediate temperature-driven shifts in species distributions, thereby influencing future biogeography and the functioning of marine ecosystems. Global warming is expected to lead to shifts in species' geographic ranges to track preferred temperatures. Here, the authors show that populations of the common periwinkle vary in their sensitivity to ocean acidification, another major global change driver, which could further restrict range shifts caused by warming.
Collapse
Affiliation(s)
- Piero Calosi
- Département de Biologie Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec G5L 3A1, Canada.,Marine Biology &Ecology Research Centre, School of Marine Science and Engineering, Plymouth University, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - Sedercor Melatunan
- Marine Biology &Ecology Research Centre, School of Marine Science and Engineering, Plymouth University, Drake Circus, Plymouth, Devon PL4 8AA, UK.,Faculty of Fisheries and Marine Science, University of Pattimura, Kampus Poka, Ambon 97233, Indonesia
| | - Lucy M Turner
- Marine Biology &Ecology Research Centre, School of Marine Science and Engineering, Plymouth University, Drake Circus, Plymouth, Devon PL4 8AA, UK.,Department of Marine Sciences, University of Gothenburg, Box 460, Gothenburg 405 30, Sweden
| | - Yuri Artioli
- Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK
| | - Robert L Davidson
- NERC Biomolecular Analysis Facility-Metabolomics Node (NBAF-B), University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jonathan J Byrne
- NERC Biomolecular Analysis Facility-Metabolomics Node (NBAF-B), University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mark R Viant
- NERC Biomolecular Analysis Facility-Metabolomics Node (NBAF-B), University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.,School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Stephen Widdicombe
- Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK
| | - Simon D Rundle
- Marine Biology &Ecology Research Centre, School of Marine Science and Engineering, Plymouth University, Drake Circus, Plymouth, Devon PL4 8AA, UK
| |
Collapse
|
56
|
Short-term molecular and physiological responses to heat stress in neritic copepods Acartia tonsa and Eurytemora affinis. Comp Biochem Physiol A Mol Integr Physiol 2017; 203:348-358. [DOI: 10.1016/j.cbpa.2016.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/26/2016] [Accepted: 11/03/2016] [Indexed: 11/22/2022]
|
57
|
Zhan Y, Hu W, Zhang W, Liu M, Duan L, Huang X, Chang Y, Li C. The impact of CO 2-driven ocean acidification on early development and calcification in the sea urchin Strongylocentrotus intermedius. MARINE POLLUTION BULLETIN 2016; 112:291-302. [PMID: 27522173 DOI: 10.1016/j.marpolbul.2016.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/21/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
The impact of CO2-driven ocean acidification(OA) on early development and calcification in the sea urchin Strongylocentrotus intermedius cultured in northern Yellow Sea was investigated by comparing fertilization success, early cleavage rate, hatching rate of blastulae, larvae survival rate at 70h post-fertilization, larval morphology and calcification under present natural seawater condition (pH=8.00±0.03) and three laboratory-controlled acidified conditions (OA1, △pH=-0.3units; OA2, △pH=-0.4units; OA3, △pH=-0.5units) projected by IPCC for 2100. Results showed that pH decline had no effect on the overall fertilization, however, with decreased pH, delayed early embryonic cleavage, reduced hatching rate of blastulae and four-armed larvae survival rate at 70h post-fertilization, impaired larval symmetry, shortened larval spicules, and corrosion spicule structure were observed in all OA-treated groups as compared to control, which indicated that CO2-driven OA affected early development and calcification in S. intermedius negatively.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Wanbin Hu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Minbo Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Lizhu Duan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Xianya Huang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China.
| | - Cong Li
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China
| |
Collapse
|
58
|
Calosi P, De Wit P, Thor P, Dupont S. Will life find a way? Evolution of marine species under global change. Evol Appl 2016; 9:1035-1042. [PMID: 27695513 PMCID: PMC5039318 DOI: 10.1111/eva.12418] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/22/2022] Open
Abstract
Projections of marine biodiversity and implementation of effective actions for its maintenance in the face of current rapid global environmental change are constrained by our limited understanding of species’ adaptive responses, including transgenerational plasticity, epigenetics and natural selection. This special issue presents 13 novel studies, which employ experimental and modelling approaches to (i) investigate plastic and evolutionary responses of marine species to major global change drivers; (ii) ask relevant broad eco‐evolutionary questions, implementing multiple species and populations studies; (iii) show the advantages of using advanced experimental designs and tools; (iv) construct novel model organisms for marine evolution; (v) help identifying future challenges for the field; and (vi) highlight the importance of incorporating existing evolutionary theory into management solutions for the marine realm. What emerges is that at least some populations of marine species have the ability to adapt to future global change conditions. However, marine organisms’ capacity for adaptation appears finite, due to evolutionary trade‐offs and possible rapid losses in genetic diversity. This further corroborates the idea that acquiring an evolutionary perspective on how marine life will respond to the selective pressure of future global changes will guide us in better identifying which conservation efforts will be most needed and most effective.
Collapse
Affiliation(s)
- Piero Calosi
- Département de Biologie Chimie et Géographie Universitè du Québec à Rimouski Rimouski QC Canada
| | - Pierre De Wit
- Department of Marine Sciences University of Gothenburg Strömstad Sweden
| | - Peter Thor
- Norwegian Polar Institute Fram Centre Tromsø Norway
| | - Sam Dupont
- Department of Biological and Environmental Sciences University of Gothenburg Fiskebäckskil Sweden
| |
Collapse
|
59
|
Shu L, Laurila A, Suter MJF, Räsänen K. Molecular phenotyping of maternally mediated parallel adaptive divergence withinRana arvalisandRana temporaria. Mol Ecol 2016; 25:4564-79. [DOI: 10.1111/mec.13786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Longfei Shu
- Department of Aquatic Ecology; Eawag; Duebendorf 8600 Switzerland
- Institute of Integrative Biology; ETH Zürich; Zürich 8092 Switzerland
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics; Evolutionary Biology Center; Uppsala University; Uppsala 75236 Sweden
| | - Marc J.-F. Suter
- Department of Environmental Toxicology; Eawag; Duebendorf 8600 Switzerland
- Department of Environmental Systems Science; ETH Zürich; Zürich 8092 Switzerland
| | - Katja Räsänen
- Department of Aquatic Ecology; Eawag; Duebendorf 8600 Switzerland
- Institute of Integrative Biology; ETH Zürich; Zürich 8092 Switzerland
| |
Collapse
|
60
|
Bach LT, Taucher J, Boxhammer T, Ludwig A, Achterberg EP, Algueró-Muñiz M, Anderson LG, Bellworthy J, Büdenbender J, Czerny J, Ericson Y, Esposito M, Fischer M, Haunost M, Hellemann D, Horn HG, Hornick T, Meyer J, Sswat M, Zark M, Riebesell U. Influence of Ocean Acidification on a Natural Winter-to-Summer Plankton Succession: First Insights from a Long-Term Mesocosm Study Draw Attention to Periods of Low Nutrient Concentrations. PLoS One 2016; 11:e0159068. [PMID: 27525979 PMCID: PMC4985126 DOI: 10.1371/journal.pone.0159068] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/27/2016] [Indexed: 11/24/2022] Open
Abstract
Every year, the oceans absorb about 30% of anthropogenic carbon dioxide (CO2) leading to a re-equilibration of the marine carbonate system and decreasing seawater pH. Today, there is increasing awareness that these changes–summarized by the term ocean acidification (OA)–could differentially affect the competitive ability of marine organisms, thereby provoking a restructuring of marine ecosystems and biogeochemical element cycles. In winter 2013, we deployed ten pelagic mesocosms in the Gullmar Fjord at the Swedish west coast in order to study the effect of OA on plankton ecology and biogeochemistry under close to natural conditions. Five of the ten mesocosms were left unperturbed and served as controls (~380 μatm pCO2), whereas the others were enriched with CO2-saturated water to simulate realistic end-of-the-century carbonate chemistry conditions (~760 μatm pCO2). We ran the experiment for 113 days which allowed us to study the influence of high CO2 on an entire winter-to-summer plankton succession and to investigate the potential of some plankton organisms for evolutionary adaptation to OA in their natural environment. This paper is the first in a PLOS collection and provides a detailed overview on the experimental design, important events, and the key complexities of such a “long-term mesocosm” approach. Furthermore, we analyzed whether simulated end-of-the-century carbonate chemistry conditions could lead to a significant restructuring of the plankton community in the course of the succession. At the level of detail analyzed in this overview paper we found that CO2-induced differences in plankton community composition were non-detectable during most of the succession except for a period where a phytoplankton bloom was fueled by remineralized nutrients. These results indicate: (1) Long-term studies with pelagic ecosystems are necessary to uncover OA-sensitive stages of succession. (2) Plankton communities fueled by regenerated nutrients may be more responsive to changing carbonate chemistry than those having access to high inorganic nutrient concentrations and may deserve particular attention in future studies.
Collapse
Affiliation(s)
- Lennart T. Bach
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- * E-mail:
| | - Jan Taucher
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Tim Boxhammer
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Andrea Ludwig
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | | | - María Algueró-Muñiz
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Leif G. Anderson
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jessica Bellworthy
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Ocean and Earth Sciences, University of Southampton, Southampton, United Kingdom
| | - Jan Büdenbender
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Jan Czerny
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Ylva Ericson
- The University Centre in Svalbard (UNIS), Longyearbyen, Norway
| | - Mario Esposito
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Ocean and Earth Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Mathias Haunost
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Dana Hellemann
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Henriette G. Horn
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Thomas Hornick
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Experimental Limnology, Stechlin, Germany
| | - Jana Meyer
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Michael Sswat
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Maren Zark
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Research Group for Marine Geochemistry (ICBM-MPI Bridging Group), Carl von Ossietzky University, Oldenburg, Germany
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
61
|
Lucey NM, Lombardi C, Florio M, DeMarchi L, Nannini M, Rundle S, Gambi MC, Calosi P. An in situ assessment of local adaptation in a calcifying polychaete from a shallow CO 2 vent system. Evol Appl 2016; 9:1054-1071. [PMID: 27695515 PMCID: PMC5039320 DOI: 10.1111/eva.12400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/23/2016] [Indexed: 01/03/2023] Open
Abstract
Ocean acidification (OA) is likely to exert selective pressure on natural populations. Our ability to predict which marine species will adapt to OA and what underlies this adaptive potential is of high conservation and resource management priority. Using a naturally low‐pH vent site in the Mediterranean Sea (Castello Aragonese, Ischia) mirroring projected future OA conditions, we carried out a reciprocal transplant experiment to investigate the relative importance of phenotypic plasticity and local adaptation in two populations of the sessile, calcifying polychaete Simplaria sp. (Annelida, Serpulidae, Spirorbinae): one residing in low pH and the other from a nearby ambient (i.e. high) pH site. We measured a suite of fitness‐related traits (i.e. survival, reproductive output, maturation, population growth) and tube growth rates in laboratory‐bred F2 generation individuals from both populations reciprocally transplanted back into both ambient and low‐pH in situ habitats. Both populations showed lower expression in all traits, but increased tube growth rates, when exposed to low‐pH compared with high‐pH conditions, regardless of their site of origin suggesting that local adaptation to low‐pH conditions has not occurred. We also found comparable levels of plasticity in the two populations investigated, suggesting no influence of long‐term exposure to low pH on the ability of populations to adjust their phenotype. Despite high variation in trait values among sites and the relatively extreme conditions at the low pH site (pH < 7.36), response trends were consistent across traits. Hence, our data suggest that, for Simplaria and possibly other calcifiers, neither local adaptations nor sufficient phenotypic plasticity levels appear to suffice in order to compensate for the negative impacts of OA on long‐term survival. Our work also emphasizes the utility of field experiments in natural environments subjected to high level of pCO2 for elucidating the potential for adaptation to future scenarios of OA.
Collapse
Affiliation(s)
- Noelle M Lucey
- Department of Earth and Environmental Sciences University of Pavia PaviaItaly; Marine Environment Research Centre ENEALa SpeziaItaly; Marine Biology and Ecology Research Centre Plymouth University Plymouth UK
| | | | - Maurizio Florio
- Department of Earth and Environmental Sciences University of Pavia Pavia Italy; Marine Environment Research Centre ENEALa Spezia Italy
| | - Lucia DeMarchi
- CNR-ISMARLa Spezia Italy; Department of Biology University of Aveiro Aveiro Portugal
| | - Matteo Nannini
- Marine Environment Research Centre ENEALa SpeziaItaly; Department of Biology University of Pisa Pisa Italy
| | - Simon Rundle
- Marine Biology and Ecology Research Centre Plymouth University Plymouth UK
| | - Maria Cristina Gambi
- Department Integrative Marine Ecology Villa Dohrn-Benthic Ecology Center Stazione Zoologica "Anton Dohrn" Ischia Napoli Italy
| | - Piero Calosi
- Département de Biologie, Chimie et Géographie Université du Québec à Rimouski Rimouski Quebec Canada
| |
Collapse
|
62
|
Foo SA, Byrne M. Acclimatization and Adaptive Capacity of Marine Species in a Changing Ocean. ADVANCES IN MARINE BIOLOGY 2016; 74:69-116. [PMID: 27573050 DOI: 10.1016/bs.amb.2016.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To persist in an ocean changing in temperature, pH and other stressors related to climate change, many marine species will likely need to acclimatize or adapt to avoid extinction. If marine populations possess adequate genetic variation in tolerance to climate change stressors, species might be able to adapt to environmental change. Marine climate change research is moving away from single life stage studies where individuals are directly placed into projected scenarios ('future shock' approach), to focus on the adaptive potential of populations in an ocean that will gradually change over coming decades. This review summarizes studies that consider the adaptive potential of marine invertebrates to climate change stressors and the methods that have been applied to this research, including quantitative genetics, laboratory selection studies and trans- and multigenerational experiments. Phenotypic plasticity is likely to contribute to population persistence providing time for genetic adaptation to occur. Transgenerational and epigenetic effects indicate that the environmental and physiological history of the parents can affect offspring performance. There is a need for long-term, multigenerational experiments to determine the influence of phenotypic plasticity, genetic variation and transgenerational effects on species' capacity to persist in a changing ocean. However, multigenerational studies are only practicable for short generation species. Consideration of multiple morphological and physiological traits, including changes in molecular processes (eg, DNA methylation) and long-term studies that facilitate acclimatization will be essential in making informed predictions of how the seascape and marine communities will be altered by climate change.
Collapse
Affiliation(s)
- S A Foo
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
| | - M Byrne
- Schools of Medical and Biological Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
63
|
Rapid evolution of tolerance to toxic Microcystis in two cladoceran grazers. Sci Rep 2016; 6:25319. [PMID: 27122137 PMCID: PMC4848493 DOI: 10.1038/srep25319] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/15/2016] [Indexed: 01/17/2023] Open
Abstract
Evolutionary adaptation could assist organisms to cope with environmental changes, yet few experimental systems allow us to directly track evolutionary trajectory. Using experimental evolution, evolutionary tolerance to Microcystis aeruginosa was investigated in two cladocerans (Daphnia pulex and Simocephalus vetulus) to test the hypothesis that cladoceran grazers rapidly adapt to toxic cyanobacteria. After exposure for either three or six months, both grazers evolved a higher tolerance. The intrinsic rate of population increases in S. vetulus feeding on cyanobacteria was negatively correlated with that on green algae, which suggests that evolutionary adaptation in tolerance would carry a cost in the absence of cyanobacteria. However, the cyanobacterial selection resulted in a general increase in D. pulex when fed both cyanobacteria and green algae. Following a three-month relaxation of selection, S. vetulus in the selection line exhibited reverse evolution back to their original state when their diets were switched back to pure green algae. The present experimental evolution, both forwards and reverse, not only demonstrates the evolutionary responses of cladoceran grazers to toxic cyanobacterial cells in the laboratory, but also indicates that the grazer-cyanobacteria interaction would be an effective system to empirically study rapid evolution to environmental changes.
Collapse
|
64
|
Ger KA, Urrutia-Cordero P, Frost PC, Hansson LA, Sarnelle O, Wilson AE, Lürling M. The interaction between cyanobacteria and zooplankton in a more eutrophic world. HARMFUL ALGAE 2016; 54:128-144. [PMID: 28073472 DOI: 10.1016/j.hal.2015.12.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 06/06/2023]
Abstract
As blooms of cyanobacteria expand and intensify in freshwater systems globally, there is increasing interest in their ecological effects. In addition to being public health hazards, cyanobacteria have long been considered a poor quality food for key zooplankton grazers that link phytoplankton to higher trophic levels. While past laboratory studies have found negative effects of nutritional constraints and defensive traits (i.e., toxicity and colonial or filamentous morphology) on the fitness of large generalist grazers (i.e., Daphnia), cyanobacterial blooms often co-exist with high biomass of small-bodied zooplankton in nature. Indeed, recent studies highlight the remarkable diversity and flexibility in zooplankton responses to cyanobacterial prey. Reviewed here are results from a wide range of laboratory and field experiments examining the interaction of cyanobacteria and a diverse zooplankton taxa including cladocerans, copepods, and heterotrophic protists from temperate to tropical freshwater systems. This synthesis shows that longer exposure to cyanobacteria can shift zooplankton communities toward better-adapted species, select for more tolerant genotypes within a species, and induce traits within the lifetime of individual zooplankton. In turn, the function of bloom-dominated plankton ecosystems, the coupling between primary producers and grazers, the stability of blooms, and the potential to use top down biomanipulation for controlling cyanobacteria depend largely on the species, abundance, and traits of interacting cyanobacteria and zooplankton. Understanding the drivers and consequences of zooplankton traits, such as physiological detoxification and selective vs. generalist grazing behavior, are therefore of major importance for future studies. Ultimately, co-evolutionary dynamics between cyanobacteria and their grazers may emerge as a critical regulator of blooms.
Collapse
Affiliation(s)
- Kemal Ali Ger
- Department of Ecology, Center for Biosciences, Federal University of Rio Grande do Norte, RN, Brazil.
| | - Pablo Urrutia-Cordero
- Center for Environmental and Climate Research, Lund University, Lund, Sweden; Department of Biology, Lund University, Lund, Sweden
| | - Paul C Frost
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | | | - Orlando Sarnelle
- Department of Fisheries and Wildlife, 163A Natural Resources Building, Michigan State University, East Lansing, MI 48824, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Miquel Lürling
- Department of Environmental Sciences, Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, The Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology - Royal Netherlands Academy of Arts and Science, Wageningen, The Netherlands
| |
Collapse
|
65
|
Chew LL, Chong VC, Wong RCS, Lehette P, Ng CC, Loh KH. Three decades of sea water abstraction by Kapar power plant (Malaysia): What impacts on tropical zooplankton community? MARINE POLLUTION BULLETIN 2015; 101:69-84. [PMID: 26581817 DOI: 10.1016/j.marpolbul.2015.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Zooplankton samples collected before (1985-86) and after (2013-14) the establishment of Kapar power station (KPS) were examined to test the hypothesis that increased sea surface temperature (SST) and other water quality changes have altered the zooplankton community structure. Elevated SST and reduced pH were detected between before and after impact pairs, with the greatest impact at the station closest to KPS. Present PAHs and heavy metal concentrations are unlikely causal factors. Water parameter changes did not affect diversity but community structure of the zooplankton. Tolerant small crustaceans, salps and larvaceans likely benefited from elevated temperature, reduced pH and shift to a more significant microbial loop exacerbated by eutrophication, while large crustaceans were more vulnerable to such changes. It is predicted that any further rise in SST will remove more large-bodied crustacean zooplankton, the preferred food for fish larvae and other meroplankton, with grave consequences to fishery production.
Collapse
Affiliation(s)
- L L Chew
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - V C Chong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - R C S Wong
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - P Lehette
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - C C Ng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - K H Loh
- Institute of Ocean and Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
66
|
Chirgwin E, Monro K, Sgro CM, Marshall DJ. Revealing hidden evolutionary capacity to cope with global change. GLOBAL CHANGE BIOLOGY 2015; 21:3356-3366. [PMID: 25781417 DOI: 10.1111/gcb.12929] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The extent to which global change will impact the long-term persistence of species depends on their evolutionary potential to adapt to future conditions. While the number of studies that estimate the standing levels of adaptive genetic variation in populations under predicted global change scenarios is growing all the time, few studies have considered multiple environments simultaneously and even fewer have considered evolutionary potential in multivariate context. Because conditions will not be constant, adaptation to climate change is fundamentally a multivariate process so viewing genetic variances and covariances over multivariate space will always be more informative than relying on bivariate genetic correlations between traits. A multivariate approach to understanding the evolutionary capacity to cope with global change is necessary to avoid misestimating adaptive genetic variation in the dimensions in which selection will act. We assessed the evolutionary capacity of the larval stage of the marine polychaete Galeolaria caespitosa to adapt to warmer water temperatures. Galeolaria is an important habitat-forming species in Australia, and its earlier life-history stages tend to be more susceptible to stress. We used a powerful quantitative genetics design that assessed the impacts of three temperatures on subsequent survival across over 30 000 embryos across 204 unique families. We found adaptive genetic variation in the two cooler temperatures in our study, but none in the warmest temperature. Based on these results, we would have concluded that this species has very little capacity to evolve to the warmest temperature. However, when we explored genetic variation in multivariate space, we found evidence that larval survival has the potential to evolve even in the warmest temperatures via correlated responses to selection across thermal environments. Future studies should take a multivariate approach to estimating evolutionary capacity to cope with global change lest they misestimate a species' true adaptive potential.
Collapse
Affiliation(s)
- Evatt Chirgwin
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Keyne Monro
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Carla M Sgro
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Dustin J Marshall
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| |
Collapse
|
67
|
Hong BC, Shurin JB. Latitudinal variation in the response of tidepool copepods to mean and daily range in temperature. Ecology 2015; 96:2348-59. [DOI: 10.1890/14-1695.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
68
|
Finiguerra M, Avery DE, Dam HG. Determining the Advantages, Costs, and Trade-Offs of a Novel Sodium Channel Mutation in the Copepod Acartia hudsonica to Paralytic Shellfish Toxins (PST). PLoS One 2015; 10:e0130097. [PMID: 26075900 PMCID: PMC4468163 DOI: 10.1371/journal.pone.0130097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 05/15/2015] [Indexed: 11/21/2022] Open
Abstract
The marine copepod Acartia hudsonica was shown to be adapted to dinoflagellate prey, Alexandrium fundyense, which produce paralytic shellfish toxins (PST). Adaptation to PSTs in other organisms is caused by a mutation in the sodium channel. Recently, a mutation in the sodium channel in A. hudsonica was found. In this study, we rigorously tested for advantages, costs, and trade-offs associated with the mutant isoform of A. hudsonica under toxic and non-toxic conditions. We combined fitness with wild-type: mutant isoform ratio measurements on the same individual copepod to test our hypotheses. All A. hudsonica copepods express both the wild-type and mutant sodium channel isoforms, but in different proportions; some individuals express predominantly mutant (PMI) or wild-type isoforms (PWI), while most individuals express relatively equal amounts of each (EI). There was no consistent pattern of improved performance as a function of toxin dose for egg production rate (EPR), ingestion rate (I), and gross growth efficiency (GGE) for individuals in the PMI group relative to individuals in the PWI expression group. Neither was there any evidence to indicate a fitness benefit to the mutant isoform at intermediate toxin doses. No clear advantage under toxic conditions was associated with the mutation. Using a mixed-diet approach, there was also no observed relationship between individual wild-type: mutant isoform ratios and among expression groups, on both toxic and non-toxic diets, for eggs produced over three days. Lastly, expression of the mutant isoform did not mitigate the negative effects of the toxin. That is, the reductions in EPR from a toxic to non-toxic diet for copepods were independent of expression groups. Overall, the results did not support our hypotheses; the mutant sodium channel isoform does not appear to be related to adaptation to PST in A. hudsonica. Other potential mechanisms responsible for the adaptation are discussed.
Collapse
Affiliation(s)
- Michael Finiguerra
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
| | - David E. Avery
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
| | - Hans G. Dam
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
| |
Collapse
|
69
|
Thor P, Dupont S. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. GLOBAL CHANGE BIOLOGY 2015; 21:2261-71. [PMID: 25430823 DOI: 10.1111/gcb.12815] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 05/09/2023]
Abstract
Ocean acidification (OA) caused by anthropogenic CO2 emission is projected for thousands of years to come, and significant effects are predicted for many marine organisms. While significant evolutionary responses are expected during such persistent environmental change, most studies consider only short-term effects. Little is known about the transgenerational effects of parental environments or natural selection on the capacity of populations to counter detrimental OA effects. In this study, six laboratory populations of the calanoid copepod Pseudocalanus acuspes were established at three different CO2 partial pressures (pCO2 of 400, 900 and 1550 μatm) and grown for two generations at these conditions. Our results show evidence of alleviation of OA effects as a result of transgenerational effects in P. acuspes. Second generation adults showed a 29% decrease in fecundity at 900 μatm CO2 compared to 400 μatm CO2 . This was accompanied by a 10% increase in metabolic rate indicative of metabolic stress. Reciprocal transplant tests demonstrated that this effect was reversible and the expression of phenotypic plasticity. Furthermore, these tests showed that at a pCO2 exceeding the natural range experienced by P. acuspes (1550 μatm), fecundity would have decreased by as much as 67% compared to at 400 μatm CO2 as a result of this plasticity. However, transgenerational effects partly reduced OA effects so that the loss of fecundity remained at a level comparable to that at 900 μatm CO2 . This also relieved the copepods from metabolic stress, and respiration rates were lower than at 900 μatm CO2 . These results highlight the importance of tests for transgenerational effects to avoid overestimation of the effects of OA.
Collapse
Affiliation(s)
- Peter Thor
- Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway
| | | |
Collapse
|
70
|
Mechanistic basis of adaptive maternal effects: egg jelly water balance mediates embryonic adaptation to acidity in Rana arvalis. Oecologia 2015; 179:617-28. [DOI: 10.1007/s00442-015-3332-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 04/25/2015] [Indexed: 02/04/2023]
|
71
|
Dang LX, Li Y, Liu F, Zhang Y, Yang WD, Li HY, Liu JS. Chemical Response of the Toxic Dinoflagellate Karenia mikimotoi
Against Grazing by Three Species of Zooplankton. J Eukaryot Microbiol 2015; 62:470-80. [DOI: 10.1111/jeu.12201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/08/2014] [Accepted: 11/08/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Lin-Xi Dang
- College of Life Sciences and Technology; Jinan University; Guangzhou 510632 China
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; Guangzhou 510632 China
| | - Yue Li
- College of Life Sciences and Technology; Jinan University; Guangzhou 510632 China
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; Guangzhou 510632 China
| | - Fei Liu
- College of Life Sciences and Technology; Jinan University; Guangzhou 510632 China
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; Guangzhou 510632 China
| | - Yong Zhang
- College of Life Sciences and Technology; Jinan University; Guangzhou 510632 China
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; Guangzhou 510632 China
| | - Wei-Dong Yang
- College of Life Sciences and Technology; Jinan University; Guangzhou 510632 China
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; Guangzhou 510632 China
| | - Hong-Ye Li
- College of Life Sciences and Technology; Jinan University; Guangzhou 510632 China
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; Guangzhou 510632 China
| | - Jie-Sheng Liu
- College of Life Sciences and Technology; Jinan University; Guangzhou 510632 China
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; Guangzhou 510632 China
| |
Collapse
|
72
|
Evolution of Marine Organisms under Climate Change at Different Levels of Biological Organisation. WATER 2014. [DOI: 10.3390/w6113545] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
73
|
Alva-Basurto JC, Arias-González JE. Modelling the effects of climate change on a Caribbean coral reef food web. Ecol Modell 2014. [DOI: 10.1016/j.ecolmodel.2014.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
74
|
Finiguerra M, Avery DE, Dam HG. No evidence for induction or selection of mutant sodium channel expression in the copepod Acartia husdsonica challenged with the toxic dinoflagellate Alexandrium fundyense. Ecol Evol 2014; 4:3470-81. [PMID: 25535562 PMCID: PMC4228620 DOI: 10.1002/ece3.1197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/04/2014] [Accepted: 07/25/2014] [Indexed: 12/29/2022] Open
Abstract
Some species in the dinoflagellate genus Alexandrium spp. produce a suite of neurotoxins that block sodium channels, known as paralytic shellfish toxins (PST), which have deleterious effects on grazers. Populations of the ubiquitous copepod grazer Acartia hudsonica that have co-occurred with toxic Alexandrium spp. are better adapted than naïve populations. The mechanism of adaptation is currently unknown. We hypothesized that a mutation in the sodium channel could account for the grazer adaptation. We tested two hypotheses: (1) Expression of the mutant sodium channel could be induced by exposure to toxic Alexandrium fundyense; (2) in the absence of induction, selection exerted by toxic A. fundyense would favor copepods that predominantly express the mutant isoform. In the copepod A. hudsonica, both isoforms are expressed in all individuals in varying proportions. Thus, in addition to comparing expression ratios of wild-type to mutant isoforms for individual copepods, we also partitioned copepods into three groups: those that predominantly express the mutant (PMI) isoform, the wild-type (PWI) isoform, or both isoforms approximately equally (EI). There were no differences in isoform expression between individuals that were fed toxic and nontoxic food after three and 6 days; induction of mutant isoform expression did not occur. Furthermore, the hypothesis that mutant isoform expression responds to toxic food was also rejected. That is, no consistent evidence showed that the wild-type to mutant isoform ratios decreased, or that the relative proportion of PMI individuals increased, due to the consumption of toxic food over four generations. However, in the selected line that was continuously exposed to toxic food sources, egg production rate increased, which suggested that adaptation occurred but was unrelated to sodium channel isoform expression.
Collapse
Affiliation(s)
- Michael Finiguerra
- Department of Marine Sciences, University of Connecticut1080 Shennecossett Road, Groton, Connecticut, 06340-6098
| | - David E Avery
- Department of Arts and Sciences, Maine Maritime Academy54 Pleasant Street, Castine, Maine, 04420
| | - Hans G Dam
- Department of Marine Sciences, University of Connecticut1080 Shennecossett Road, Groton, Connecticut, 06340-6098
| |
Collapse
|
75
|
Contrasting physiological responses of two populations of the razor clam Tagelus dombeii with different histories of exposure to paralytic shellfish poisoning (PSP). PLoS One 2014; 9:e105794. [PMID: 25153329 PMCID: PMC4143311 DOI: 10.1371/journal.pone.0105794] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/24/2014] [Indexed: 11/27/2022] Open
Abstract
This study describes the physiological performance of two populations of the razor clam Tagelus dombeii from two geographic areas with different histories of exposure to paralytic shellfish poisoning (PSP) linked to the toxic dinoflagellate Alexandrium catenella. Clams from Melinka-Aysén, which are frequently exposed to PSP, were not affected by the presence of toxins in the diet. However, clams from Corral-Valdivia, which have never been exposed to PSP, exhibited significantly reduced filtration activity and absorption, affecting the energy allocated to scope for growth (SFG). Ammonia excretion and oxygen uptake were not affected significantly by the presence of A. catenella in the diet. Measurements of energy acquisition and expenditure were performed during a 12-day intoxication period. According to three-way repeated measure ANOVAs, the origin of the clams had a highly significant effect on all physiological variables, and the interaction between diet and origin was significant for the clearance and absorption rates and for the scope for growth. The scope for growth index showed similar positive values for both the toxic and non-toxic individuals from the Melinka-Aysén population. However, it was significantly reduced in individuals from Corral-Valdivia when exposed to the diet containing A. catenella. The absence of differences between the physiological response of the toxic and non-toxic clams from Melinka-Aysén may be related to the frequent presence of A. catenella in the environment, indicating that this bivalve does not suffer negative consequences from PSP. By contrast, A. catenella has a negative effect on the physiological performance, primarily on the energy gained from the environment, on T. dombeii from Corral-Valdivia. This study supports the hypothesis that the history of PSP exposure plays an important role in the physiological performance and fitness of filter feeding bivalves.
Collapse
|
76
|
Suckling CC, Clark MS, Beveridge C, Brunner L, Hughes AD, Harper EM, Cook EJ, Davies AJ, Peck LS. Experimental influence of pH on the early life-stages of sea urchins II: increasing parental exposure times gives rise to different responses. INVERTEBR REPROD DEV 2014. [DOI: 10.1080/07924259.2013.875951] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
77
|
Suckling C, Clark M, Peck L, Cook E. Experimental influence of pH on the early life-stages of sea urchins I: different rates of introduction give rise to different responses. INVERTEBR REPROD DEV 2014. [DOI: 10.1080/07924259.2013.875950] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
78
|
Reusch TBH. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants. Evol Appl 2014; 7:104-22. [PMID: 24454551 PMCID: PMC3894901 DOI: 10.1111/eva.12109] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/29/2013] [Indexed: 12/13/2022] Open
Abstract
I summarize marine studies on plastic versus adaptive responses to global change. Due to the lack of time series, this review focuses largely on the potential for adaptive evolution in marine animals and plants. The approaches were mainly synchronic comparisons of phenotypically divergent populations, substituting spatial contrasts in temperature or CO2 environments for temporal changes, or in assessments of adaptive genetic diversity within populations for traits important under global change. The available literature is biased towards gastropods, crustaceans, cnidarians and macroalgae. Focal traits were mostly environmental tolerances, which correspond to phenotypic buffering, a plasticity type that maintains a functional phenotype despite external disturbance. Almost all studies address coastal species that are already today exposed to fluctuations in temperature, pH and oxygen levels. Recommendations for future research include (i) initiation and analyses of observational and experimental temporal studies encompassing diverse phenotypic traits (including diapausing cues, dispersal traits, reproductive timing, morphology) (ii) quantification of nongenetic trans-generational effects along with components of additive genetic variance (iii) adaptive changes in microbe-host associations under the holobiont model in response to global change (iv) evolution of plasticity patterns under increasingly fluctuating environments and extreme conditions and (v) joint consideration of demography and evolutionary adaptation in evolutionary rescue approaches.
Collapse
Affiliation(s)
- Thorsten B H Reusch
- GEOMAR Helmholtz-Centre for Ocean Research Kiel, Marine Ecology - Evolutionary Ecology of Marine Fishes Kiel, Germany
| |
Collapse
|
79
|
Yampolsky LY, Schaer TMM, Ebert D. Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton. Proc Biol Sci 2013; 281:20132744. [PMID: 24352948 DOI: 10.1098/rspb.2013.2744] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many organisms have geographical distributions extending from the tropics to near polar regions or can experience up to 30°C temperature variation within the lifespan of an individual. Two forms of evolutionary adaptation to such wide ranges in ambient temperatures are frequently discussed: local adaptation and phenotypic plasticity. The freshwater planktonic crustacean Daphnia magna, whose range extends from South Africa to near arctic sites, shows strong phenotypic and genotypic variation in response to temperature. In this study, we use D. magna clones from 22 populations (one clone per population) ranging from latitude 0° (Kenya) to 66° North (White Sea) to explore the contributions of phenotypic plasticity and local adaptation to high temperature tolerance. Temperature tolerance was studied as knockout time (time until immobilization, T(imm)) at 37°C in clones acclimatized to either 20°C or 28°C. Acclimatization to 28°C strongly increased T(imm), testifying to adaptive phenotypic plasticity. At the same time, Timm significantly correlated with average high temperature at the clones' sites of origin, suggesting local adaptation. As earlier studies have found that haemoglobin expression contributes to temperature tolerance, we also quantified haemoglobin concentration in experimental animals and found that both acclimatization temperature (AccT) and temperature at the site of origin are positively correlated with haemoglobin concentration. Furthermore, Daphnia from warmer climates upregulate haemoglobin much more strongly in response to AccT, suggesting local adaptation for plasticity in haemoglobin expression. Our results show that both local adaptation and phenotypic plasticity contribute to temperature tolerance, and elucidate a possible role of haemoglobin in mediating these effects that differs along a cold-warm gradient.
Collapse
Affiliation(s)
- Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, , Johnson City, TN 37614-1710, USA, Zoological Institute, Basel University, , Vesalgasse 1, Basel 4051, Switzerland
| | | | | |
Collapse
|
80
|
Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. Proc Natl Acad Sci U S A 2013; 110:E4960-7. [PMID: 24297880 DOI: 10.1073/pnas.1315162110] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Arctic Ocean already experiences areas of low pH and high CO2, and it is expected to be most rapidly affected by future ocean acidification (OA). Copepods comprise the dominant Arctic zooplankton; hence, their responses to OA have important implications for Arctic ecosystems, yet there is little data on their current under-ice winter ecology on which to base future monitoring or make predictions about climate-induced change. Here, we report results from Arctic under-ice investigations of copepod natural distributions associated with late-winter carbonate chemistry environmental data and their response to manipulated pCO2 conditions (OA exposures). Our data reveal that species and life stage sensitivities to manipulated OA conditions were correlated with their vertical migration behavior and with their natural exposures to different pCO2 ranges. Vertically migrating adult Calanus spp. crossed a pCO2 range of >140 μatm daily and showed only minor responses to manipulated high CO2. Oithona similis, which remained in the surface waters and experienced a pCO2 range of <75 μatm, showed significantly reduced adult and nauplii survival in high CO2 experiments. These results support the relatively untested hypothesis that the natural range of pCO2 experienced by an organism determines its sensitivity to future OA and highlight that the globally important copepod species, Oithona spp., may be more sensitive to future high pCO2 conditions compared with the more widely studied larger copepods.
Collapse
|
81
|
Individual-based model of the phenology of egg-bearing copepods: Application to Eurytemora affinis from the Seine estuary, France. Ecol Modell 2013. [DOI: 10.1016/j.ecolmodel.2013.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
82
|
Fitzer SC, Caldwell GS, Clare AS, Upstill-Goddard RC, Bentley MG. Response of copepods to elevated pCO2 and environmental copper as co-stressors--a multigenerational study. PLoS One 2013; 8:e71257. [PMID: 23951121 PMCID: PMC3737157 DOI: 10.1371/journal.pone.0071257] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/27/2013] [Indexed: 11/23/2022] Open
Abstract
We examined the impacts of ocean acidification and copper as co-stressors on the reproduction and population level responses of the benthic copepod Tisbe battagliai across two generations. Naupliar production, growth, and cuticle elemental composition were determined for four pH values: 8.06 (control); 7.95; 7.82; 7.67, with copper addition to concentrations equivalent to those in benthic pore waters. An additive synergistic effect was observed; the decline in naupliar production was greater with added copper at decreasing pH than for decreasing pH alone. Naupliar production modelled for the two generations revealed a negative synergistic impact between ocean acidification and environmentally relevant copper concentrations. Conversely, copper addition enhanced copepod growth, with larger copepods produced at each pH compared to the impact of pH alone. Copepod digests revealed significantly reduced cuticle concentrations of sulphur, phosphorus and calcium under decreasing pH; further, copper uptake increased to toxic levels that lead to reduced naupliar production. These data suggest that ocean acidification will enhance copper bioavailability, resulting in larger, but less fecund individuals that may have an overall detrimental outcome for copepod populations.
Collapse
Affiliation(s)
- Susan C Fitzer
- School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | | | | | |
Collapse
|
83
|
Peijnenburg KTCA, Goetze E. High evolutionary potential of marine zooplankton. Ecol Evol 2013; 3:2765-81. [PMID: 24567838 PMCID: PMC3930040 DOI: 10.1002/ece3.644] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 11/17/2022] Open
Abstract
Open ocean zooplankton often have been viewed as slowly evolving species that have limited capacity to respond adaptively to changing ocean conditions. Hence, attention has focused on the ecological responses of zooplankton to current global change, including range shifts and changing phenology. Here, we argue that zooplankton also are well poised for evolutionary responses to global change. We present theoretical arguments that suggest plankton species may respond rapidly to selection on mildly beneficial mutations due to exceptionally large population size, and consider the circumstantial evidence that supports our inference that selection may be particularly important for these species. We also review all primary population genetic studies of open ocean zooplankton and show that genetic isolation can be achieved at the scale of gyre systems in open ocean habitats (100s to 1000s of km). Furthermore, population genetic structure often varies across planktonic taxa, and appears to be linked to the particular ecological requirements of the organism. In combination, these characteristics should facilitate adaptive evolution to distinct oceanographic habitats in the plankton. We conclude that marine zooplankton may be capable of rapid evolutionary as well as ecological responses to changing ocean conditions, and discuss the implications of this view. We further suggest two priority areas for future research to test our hypothesis of high evolutionary potential in open ocean zooplankton, which will require (1) assessing how pervasive selection is in driving population divergence and (2) rigorously quantifying the spatial and temporal scales of population differentiation in the open ocean. Recent attention has focused on the ecological responses of open ocean zooplankton to current global change, including range shifts and changing phenology. Here, we argue that marine zooplankton also are well poised for evolutionary responses to global change.
Collapse
Affiliation(s)
- Katja T C A Peijnenburg
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam P.O. Box 94248, 1090 GE, Amsterdam, The Netherlands ; Department Marine Zoology, Naturalis Biodiversity Center P.O. Box 9517, 2300 RA, Leiden, The Netherlands
| | - Erica Goetze
- Department of Oceanography School of Ocean and Earth Science and Technology, University of Hawaii at Manoa Honolulu, Hawaii, 96822
| |
Collapse
|
84
|
Elliott DT, Pierson JJ, Roman MR. Predicting the effects of coastal hypoxia on vital rates of the planktonic copepod Acartia tonsa Dana. PLoS One 2013; 8:e63987. [PMID: 23691134 PMCID: PMC3656935 DOI: 10.1371/journal.pone.0063987] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/09/2013] [Indexed: 11/19/2022] Open
Abstract
We describe a model predicting the effects of low environmental oxygen on vital rates (egg production, somatic growth, and mortality) of the coastal planktonic copepod Acartia tonsa. Hypoxic conditions can result in respiration rate being directly limited by oxygen availability. We hypothesized that A. tonsa egg production, somatic growth, and ingestion rates would all respond in a similar manner to low oxygen conditions, as a result of oxygen dependent changes in respiration rate. Rate data for A. tonsa egg production, somatic growth, and ingestion under low environmental oxygen were compiled from the literature and from supplementary experiments. The response of these rates to oxygen was compared by converting all to the analogous units in terms of oxygen utilization, which we termed analogous respiration rate. These analogous respiration rates, along with published measurements of respiration rates, were used to parameterize and evaluate the relationship between A. tonsa respiration rate and environmental oxygen. At 18 °C, our results suggest that A. tonsa experiences sub-lethal effects of hypoxia below an oxygen partial pressure of 8.1 kPa (~3.1 mg L(-1) = 2.3 mL L(-1)). The results of this study can be used to predict the effects of hypoxia on A. tonsa growth and mortality as related to environmental temperature and oxygen partial pressure. Such predictions will be useful as a way to incorporate the effects of coastal hypoxia into population, community, or ecosystem level models that include A. tonsa. This approach can also be used to characterize the effects of hypoxia on other aquatic organisms.
Collapse
Affiliation(s)
- David T Elliott
- University of Maryland Center for Environmental Science, Horn Point Laboratory, Cambridge, Maryland, United States of America.
| | | | | |
Collapse
|
85
|
Marine Ecosystems, Biogeochemistry, and Climate. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-391851-2.00031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
|