51
|
Weichseldorfer M, Affram Y, Heredia A, Tagaya Y, Benedetti F, Zella D, Reitz M, Romerio F, Latinovic OS. Anti-HIV Activity of Standard Combined Antiretroviral Therapy in Primary Cells Is Intensified by CCR5-Targeting Drugs. AIDS Res Hum Retroviruses 2020; 36:835-841. [PMID: 32623916 DOI: 10.1089/aid.2020.0064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of combined antiretroviral therapy (cART) against HIV-1 is evidenced by reduction of plasma viremia, disease progression, viral transmission, and mortality. However, major challenges still remain in HIV-1 management, especially the emergence of resistant strains and the persistence of viral reservoirs, apparent after cART treatment interruption. Efforts are ongoing to explore the most effective means to intensify cART and successfully control residual viral replication. We anticipate that the reduction by cART of HIV-1 reservoirs could be further enhanced by combining cART with entry inhibitors and drugs that silence CCR5 expression. CCR5-targeting drugs are attractive option because of their low side effects when combined with other antiretroviral drugs. The concept that their inclusion would be effective has been supported by the reduction in two long terminal repeat unintegrated circular DNA, a marker for new infections, when CCR5-targeting drugs are added to standard antiretroviral treatment. This study is, in part, an extension of our previous study demonstrating greater preservation of human CD4+ T-cells and CD4+/CD8+ cell ratios in HIV-infected CD34+ NSG mice when CCR5-targeting drugs were included with standard cART. In this study, we treated HIV-1-infected cell cultures with cART or cART plus CCR5-targeting drugs (maraviroc and rapamycin). We found that treatment intensification with CCR5-targeting drugs led to a significant reduction of HIV-1 replication in peripheral blood ononuclear cells (PBMCs), as judged by measured viral DNA copies and p24 levels. Our data provide proof of principle for the benefit of adding CCR5-targeting drugs to traditional, standard cART to further lower viremia and subsequently reduce viral reservoirs in clinical settings, while potentially lowering side effects by reducing cART concentrations.
Collapse
Affiliation(s)
- Matthew Weichseldorfer
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Yvonne Affram
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Alonso Heredia
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Yutaka Tagaya
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Francesca Benedetti
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Davide Zella
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Marvin Reitz
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Fabio Romerio
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Olga S. Latinovic
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
52
|
Vallejo-Gracia A, Chen IP, Perrone R, Besnard E, Boehm D, Battivelli E, Tezil T, Krey K, Raymond KA, Hull PA, Walter M, Habrylo I, Cruz A, Deeks S, Pillai S, Verdin E, Ott M. FOXO1 promotes HIV latency by suppressing ER stress in T cells. Nat Microbiol 2020; 5:1144-1157. [PMID: 32541947 PMCID: PMC7483895 DOI: 10.1038/s41564-020-0742-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/15/2020] [Indexed: 01/13/2023]
Abstract
Quiescence is a hallmark of CD4+ T cells latently infected with human immunodeficiency virus 1 (HIV-1). While reversing this quiescence is an effective approach to reactivate latent HIV from T cells in culture, it can cause deleterious cytokine dysregulation in patients. As a key regulator of T-cell quiescence, FOXO1 promotes latency and suppresses productive HIV infection. We report that, in resting T cells, FOXO1 inhibition impaired autophagy and induced endoplasmic reticulum (ER) stress, thereby activating two associated transcription factors: activating transcription factor 4 (ATF4) and nuclear factor of activated T cells (NFAT). Both factors associate with HIV chromatin and are necessary for HIV reactivation. Indeed, inhibition of protein kinase R-like ER kinase, an ER stress sensor that can mediate the induction of ATF4, and calcineurin, a calcium-dependent regulator of NFAT, synergistically suppressed HIV reactivation induced by FOXO1 inhibition. Thus, our studies uncover a link of FOXO1, ER stress and HIV infection that could be therapeutically exploited to selectively reverse T-cell quiescence and reduce the size of the latent viral reservoir.
Collapse
Affiliation(s)
- Albert Vallejo-Gracia
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA, USA
- University of California San Francisco, San Francisco, CA, USA
| | - Irene P Chen
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA, USA
- University of California San Francisco, San Francisco, CA, USA
| | | | - Emilie Besnard
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Daniela Boehm
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA, USA
- University of California San Francisco, San Francisco, CA, USA
| | | | - Tugsan Tezil
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Karsten Krey
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA, USA
- Ludwig Maximilian University, Munich, Germany
| | | | - Philip A Hull
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA, USA
| | - Marius Walter
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Ireneusz Habrylo
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA, USA
- University of California San Francisco, San Francisco, CA, USA
| | - Andrew Cruz
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Steven Deeks
- University of California San Francisco, San Francisco, CA, USA
| | - Satish Pillai
- University of California San Francisco, San Francisco, CA, USA
- Vitalant Research Institute, San Francisco, CA, USA
| | - Eric Verdin
- University of California San Francisco, San Francisco, CA, USA
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA, USA.
- University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
53
|
Abstract
Autosis is an autophagy-dependent, nonapoptotic, and non-necrotic form of cell death that is characterized by unique morphological and biochemical features, including the presence of ballooning of perinuclear space (PNS) and sensitivity to cardiac glycosides, respectively. Autotic cell death may be initiated by excessive accumulation of autophagosomes rather than lysosomal degradation. Autosis is stimulated during the late phase of reperfusion after a period of ischemia in the heart when up-regulation of rubicon in the presence of continuous autophagosome production induces massive accumulation of autophagosomes. Suppression of autosis, which may reduce death of cardiomyocytes during the late phase of reperfusion, in combination with inhibition of apoptosis and necrosis targeting the early phase of injury, may enhance the effectiveness of treatment for I/R injury in the heart.
Excessive autophagy induces a defined form of cell death called autosis, which is characterized by unique morphological features, including ballooning of perinuclear space and biochemical features, including sensitivity to cardiac glycosides. Autosis is observed during the late phase of reperfusion after a period of ischemia and contributes to myocardial injury. This review discusses unique features of autosis, the involvement of autosis in myocardial injury, and the molecular mechanism of autosis. Because autosis promotes myocardial injury under some conditions, a better understanding of autosis may lead to development of novel interventions to protect the heart against myocardial stress.
Collapse
Key Words
- ATG, autophagy-related
- ATPase, adenosine triphosphatase
- ER, endoplasmic reticulum
- HIV, human immunodeficiency virus
- I/R, ischemia-reperfusion
- LBR, lamin B receptor
- Na+,K+–adenosine triphosphatase
- PI3K, phosphatidylinositol 3 kinase
- PNS, perinuclear space
- Tat, transactivation of transcription
- autophagic cell death
- autophagic flux
- autosis
- beclin 1
- rubicon
Collapse
|
54
|
Andhavarapu S, Katuri A, Bryant J, Patel V, Gupta U, Asemu G, Makar TK. Intersecting roles of ER stress, mitochondrial dysfunction, autophagy, and calcium homeostasis in HIV-associated neurocognitive disorder. J Neurovirol 2020; 26:664-675. [PMID: 32804309 DOI: 10.1007/s13365-020-00861-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/22/2020] [Accepted: 05/19/2020] [Indexed: 01/04/2023]
Abstract
HIV-associated neurocognitive disorder (HAND) is a collective term describing the spectrum of neurocognitive deficits that arise from HIV infection. Although the introduction to highly active antiretroviral therapy (HAART) has prolonged the lifespan of HIV patients, neurocognitive impairments remain prevalent, as patients are left perpetually with HIV. Currently, physicians face a challenge in treating HAND patients, so a greater understanding of the mechanisms underlying HAND pathology has been a growing focus in HIV research. Recent research has revealed the role disrupted calcium homeostasis in HIV-mediated neurotoxicity. Calcium plays a well-established role in the crosstalk between the mitochondrion and ER as well as in regulating autophagy, and ER stress, mitochondrial dysfunction, and impaired autophagic activity are considered hallmarks in several neurodegenerative and neurocognitive disorders. Therefore, it is paramount that the intricate inter-organelle signaling in relation to calcium homeostasis during HIV infection and the development of HAND is elucidated. This review consolidates current knowledge regarding the neuropathology of neurocognitive disorders and HIV infection with a focus on the underlying role of calcium during ER stress, mitochondrial dysfunction, and autophagy associated with the progression of HAND. The details of this intricate crosstalk during HAND remain relatively unknown; further research in this field can potentially aid in the development of improved therapy for patients suffering from HAND.
Collapse
Affiliation(s)
- Sanketh Andhavarapu
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Akhil Katuri
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Vivek Patel
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Udit Gupta
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Girma Asemu
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA
| | - Tapas K Makar
- Institute of Human Virology, University of Maryland, 725 W Lombard St, Baltimore, MD, 21201, USA. .,VA Medical Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
55
|
Resop RS, Fromentin R, Newman D, Rigsby H, Dubrovsky L, Bukrinsky M, Chomont N, Bosque A. Fingolimod inhibits multiple stages of the HIV-1 life cycle. PLoS Pathog 2020; 16:e1008679. [PMID: 32790802 PMCID: PMC7425850 DOI: 10.1371/journal.ppat.1008679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Antiretroviral drugs that target various stages of the Human Immunodeficiency Virus (HIV) life cycle have been effective in curbing the AIDS epidemic. However, drug resistance, off-target effects of antiretroviral therapy (ART), and varying efficacy in prevention underscore the need to develop novel and alternative therapeutics. In this study, we investigated whether targeting the signaling molecule Sphingosine-1-phosphate (S1P) would inhibit HIV-1 infection and generation of the latent reservoir in primary CD4 T cells. We show that FTY720 (Fingolimod), an FDA-approved functional antagonist of S1P receptors, blocks cell-free and cell-to-cell transmission of HIV and consequently reduces detectable latent virus. Mechanistically, FTY720 impacts the HIV-1 life cycle at two levels. Firstly, FTY720 reduces the surface density of CD4, thereby inhibiting viral binding and fusion. Secondly, FTY720 decreases the phosphorylation of the innate HIV restriction factor SAMHD1 which is associated with reduced levels of total and integrated HIV, while reducing the expression of Cyclin D3. In conclusion, targeting the S1P pathway with FTY720 could be a novel strategy to inhibit HIV replication and reduce the seeding of the latent reservoir.
Collapse
Affiliation(s)
- Rachel S. Resop
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Rémi Fromentin
- Centre de recherche du CHUM and Department of microbiology, infectiology and immunology, Université de Montréal, Montreal, Canada
| | - Daniel Newman
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Hawley Rigsby
- Centre de recherche du CHUM and Department of microbiology, infectiology and immunology, Université de Montréal, Montreal, Canada
| | - Larisa Dubrovsky
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Nicolas Chomont
- Centre de recherche du CHUM and Department of microbiology, infectiology and immunology, Université de Montréal, Montreal, Canada
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
56
|
Curreli F, Ahmed S, Victor SMB, Debnath AK. Identification of Combinations of Protein Kinase C Activators and Histone Deacetylase Inhibitors That Potently Reactivate Latent HIV. Viruses 2020; 12:v12060609. [PMID: 32503121 PMCID: PMC7354613 DOI: 10.3390/v12060609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Combination antiretroviral therapy (cART) is successful in maintaining undetectable levels of HIV in the blood; however, the persistence of latent HIV reservoirs has become the major barrier for a HIV cure. Substantial efforts are underway in finding the best latency-reversing agents (LRAs) to purge the latent viruses from the reservoirs. We hypothesize that identifying the right combination of LRAs will be the key to accomplishing that goal. In this study, we evaluated the effect of combinations of three protein kinase C activators (prostratin, (-)-indolactam V, and TPPB) with four histone deacetylase inhibitors (AR-42, PCI-24781, givinostat, and belinostat) on reversing HIV latency in different cell lines including in a primary CD4+ T-cell model. Combinations including indolactam and TPPB with AR-42 and PCI produced a strong synergistic effect in reactivating latent virus as indicated by higher p24 production and envelope gp120 expression. Furthermore, treatment with TPPB and indolactam greatly downregulated the cellular receptor CD4. Indolactam/AR-42 combination emerged from this study as the best combination that showed a strong synergistic effect in reactivating latent virus. Although AR-42 alone did not downregulate CD4 expression, indolactam/AR-42 showed the most efficient downregulation. Our results suggest that indolactam/AR-42 is the most effective combination, showing a strong synergistic effect in reversing HIV latency combined with the most efficient CD4 downregulation.
Collapse
|
57
|
Monel B, McKeon A, Lamothe-Molina P, Jani P, Boucau J, Pacheco Y, Jones RB, Le Gall S, Walker BD. HIV Controllers Exhibit Effective CD8 + T Cell Recognition of HIV-1-Infected Non-activated CD4 + T Cells. Cell Rep 2020; 27:142-153.e4. [PMID: 30943397 PMCID: PMC6449512 DOI: 10.1016/j.celrep.2019.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/25/2018] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Even with sustained antiretroviral therapy, resting CD4+ T cells remain a persistent reservoir of HIV infection, representing a critical barrier to curing HIV. Here, we demonstrate that CD8+ T cells recognize infected, non-activated CD4+ T cells in the absence of de novo protein production, as measured by immune synapse formation, degranulation, cytokine production, and killing of infected cells. Immune recognition is induced by HLA-I presentation of peptides derived from incoming viral particles, and recognition occurred either following cell-free virus infection or following cell-to-cell spread. CD8+ T cells from HIV controllers mediate more effective immune recognition than CD8+ T cells from progressors. These results indicate that non-activated HIV-infected CD4+ T cells can be targeted by CD8+ T cells directly after HIV entry, before reverse transcription, and thus before the establishment of latency, and suggest a mechanism whereby the immune response may reduce the size of the HIV reservoir.
Collapse
Affiliation(s)
- Blandine Monel
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Annmarie McKeon
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Pedro Lamothe-Molina
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Priya Jani
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Julie Boucau
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Yovana Pacheco
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - R Brad Jones
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sylvie Le Gall
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
58
|
van der Sluis RM, Egedal JH, Jakobsen MR. Plasmacytoid Dendritic Cells as Cell-Based Therapeutics: A Novel Immunotherapy to Treat Human Immunodeficiency Virus Infection? Front Cell Infect Microbiol 2020; 10:249. [PMID: 32528903 PMCID: PMC7264089 DOI: 10.3389/fcimb.2020.00249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) play a critical role in mediating innate and adaptive immune responses. Since their discovery in the late 1970's, DCs have been recognized as the most potent antigen-presenting cells (APCs). DCs have a superior capacity for acquiring, processing, and presenting antigens to T cells and they express costimulatory or coinhibitory molecules that determine immune activation or anergy. For these reasons, cell-based therapeutic approaches using DCs have been explored in cancer and infectious diseases but with limited success. In humans, DCs are divided into heterogeneous subsets with distinct characteristics. Two major subsets are CD11c+ myeloid (m)DCs and CD11c− plasmacytoid (p)DCs. pDCs are different from mDCs and play an essential role in the innate immune system via the production of type I interferons (IFN). However, pDCs are also able to take-up antigens and effectively cross present them. Given the rarity of pDCs in blood and technical difficulties in obtaining them from human blood samples, the understanding of human pDC biology and their potential in immunotherapeutic approaches (e.g. cell-based vaccines) is limited. However, due to the recent advancements in cell culturing systems that allow for the generation of functional pDCs from CD34+ hematopoietic stem and progenitor cells (HSPC), studying pDCs has become easier. In this mini-review, we hypothesize about the use of pDCs as a cell-based therapy to treat HIV by enhancing anti-HIV-immune responses of the adaptive immune system and enhancing the anti-viral responses of the innate immune system. Additionally, we discuss obstacles to overcome before this approach becomes clinically applicable.
Collapse
Affiliation(s)
- Renée M van der Sluis
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
59
|
Epigenetics, HIV, and Cardiovascular Disease Risk. Curr Probl Cardiol 2020; 46:100615. [PMID: 32507271 DOI: 10.1016/j.cpcardiol.2020.100615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV) is currently considered a risk factor for cardiovascular disease (CVD). With the advent of antiretroviral treatment and prevention, HIV-related morbidity and mortality rates have decreased significantly. Prolonged life expectancy heralded higher prevalence of diseases of aging, including CVD-associated morbidity and mortality, having an earlier onset in people living with HIV (PLHIV) compared to their noninfected counterparts. Several epigenetic biomarkers are now available as predictors of health and disease, with DNA methylation being one of the most widely studied. Epigenetic biomarkers are changes in gene expression without alterations to the intrinsic DNA sequence, with the potential to predict risk of future CVD, as well as the outcome and response to therapy among PLHIV. We sought to review the available literature referencing epigenetic markers to determine underlying biomechanism predisposing high-risk PLHIV to CVD, elucidating areas of possible intervention.
Collapse
|
60
|
Bowen A, Sweeney EE, Fernandes R. Nanoparticle-Based Immunoengineered Approaches for Combating HIV. Front Immunol 2020; 11:789. [PMID: 32425949 PMCID: PMC7212361 DOI: 10.3389/fimmu.2020.00789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) serves as an effective strategy to combat HIV infections by suppressing viral replication in patients with HIV/AIDS. However, HAART does not provide HIV/AIDS patients with a sterilizing or functional cure, and introduces several deleterious comorbidities. Moreover, the virus is able to persist within latent reservoirs, both undetected by the immune system and unaffected by HAART, increasing the risk of a viral rebound. The field of immunoengineering, which utilizes varied bioengineering approaches to interact with the immune system and potentiate its therapeutic effects against HIV, is being increasingly investigated in HIV cure research. In particular, nanoparticle-based immunoengineered approaches are especially attractive because they offer advantages including the improved delivery and functionality of classical HIV drugs such as antiretrovirals and experimental drugs such as latency-reversing agents (LRAs), among others. Here, we present and discuss the current state of the field in nanoparticle-based immunoengineering approaches for an HIV cure. Specifically, we discuss nanoparticle-based methods for improving HAART as well as latency reversal, developing vaccines, targeting viral fusion, enhancing gene editing approaches, improving adoptively transferred immune-cell mediated reservoir clearance, and other therapeutic and prevention approaches. Although nanoparticle-based immunoengineered approaches are currently at the stage of preclinical testing, the promising findings obtained in these studies demonstrate the potential of this emerging field for developing an HIV cure.
Collapse
Affiliation(s)
- Allan Bowen
- The George Washington Cancer Center, The George Washington University, Washington, DC, United States
| | - Elizabeth E. Sweeney
- The George Washington Cancer Center, The George Washington University, Washington, DC, United States
| | - Rohan Fernandes
- The George Washington Cancer Center, The George Washington University, Washington, DC, United States
- Department of Medicine, The George Washington University, Washington, DC, United States
| |
Collapse
|
61
|
Talotta R, Atzeni F, Laska MJ. Retroviruses in the pathogenesis of systemic lupus erythematosus: Are they potential therapeutic targets? Autoimmunity 2020; 53:177-191. [PMID: 32321325 DOI: 10.1080/08916934.2020.1755962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is characterised by the hyper-activation of immunologic pathways related to the antiviral response. Exogenous and endogenous retroviruses, by integrating their DNA templates in the host cell genome, may epigenetically control the transcription of genes involved in the immune response. Furthermore, their nucleic acids or neo-synthesized proteins could stimulate the sensor molecules placed upstream the inflammatory cascade. Exogenous retroviruses, like human immunodeficiency virus, have been associated to SLE-like manifestations or to a fair SLE diagnosis. In addition, there is some evidence confirming a pathogenic role of human endogenous retroviruses in SLE. In line with these data, the use of antiretroviral agents could represent an attractive opportunity in the future therapeutic algorithms of this disease, but studies are still missing.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "Gaetano Martino", Messina, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "Gaetano Martino", Messina, Italy
| | | |
Collapse
|
62
|
X-Linked RNA-Binding Motif Protein Modulates HIV-1 Infection of CD4 + T Cells by Maintaining the Trimethylation of Histone H3 Lysine 9 at the Downstream Region of the 5' Long Terminal Repeat of HIV Proviral DNA. mBio 2020; 11:mBio.03424-19. [PMID: 32317327 PMCID: PMC7175097 DOI: 10.1128/mbio.03424-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
HIV-1 latency featuring silence of transcription from HIV-1 proviral DNA represents a major obstacle for HIV-1 eradication. Reversible repression of HIV-1 5′-LTR-mediated transcription represents the main mechanism for HIV-1 to maintain latency. The 5′-LTR-driven HIV gene transcription can be modulated by multiple host factors and mechanisms. The hnRNPs are known to regulate gene expression. A member of the hnRNP family, RBMX, has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5′-LTR-driven transcription of viral genome in CD4+ T cells and maintains viral latency. These findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies. Reversible repression of HIV-1 5′ long terminal repeat (5′-LTR)-mediated transcription represents the main mechanism for HIV-1 to maintain latency. Identification of host factors that modulate LTR activity and viral latency may help develop new antiretroviral therapies. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are known to regulate gene expression and possess multiple physiological functions. hnRNP family members have recently been identified as the sensors for viral nucleic acids to induce antiviral responses, highlighting the crucial roles of hnRNPs in regulating viral infection. A member of the hnRNP family, X-linked RNA-binding motif protein (RBMX), has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5′-LTR-driven transcription of viral genome in CD4+ T cells. Mechanistically, RBMX binds to HIV-1 proviral DNA at the LTR downstream region and maintains the repressive trimethylation of histone H3 lysine 9 (H3K9me3), leading to a blockage of the recruitment of the positive transcription factor phosphorylated RNA polymerase II (RNA pol II) and consequential impediment of transcription elongation. This RBMX-mediated modulation of HIV-1 transcription maintains viral latency by inhibiting viral reactivation from an integrated proviral DNA. Our findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies.
Collapse
|
63
|
Chen C, Lu X, Wu N. RNA sequencing of CD4 T-cells reveals the relationships between lncRNA-mRNA co-expression in elite controller vs. HIV-positive infected patients. PeerJ 2020; 8:e8911. [PMID: 32341894 PMCID: PMC7182024 DOI: 10.7717/peerj.8911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/15/2020] [Indexed: 12/27/2022] Open
Abstract
Background Elite controller refers to a patient with human immunodeficiency virus infection with an undetected viral load in the absence of highly active antiretroviral therapy. Studies on gene expression and regulation in these individuals are limited but significant, and have helped researchers and clinicians to understand the interrelationships between HIV and its host. Methods We collected CD4 T-cell samples from two elite controllers (ECs), two HIV-positive infected patients (HPs), and two healthy controls (HCs) to perform second-generation transcriptome sequencing. Using the Cufflinks software, we calculated the Fragments Per Kilobase of transcript per Million fragments mapped (FPKM) and identified differentially expressed (DE) mRNAs and long non-coding RNAs (lncRNAs), with corrected P value < 0.05 (based on a false discovery rate (FDR) < 0.05). We then constructed a protein-protein interaction network using cytoHubba and a long non-coding RNA-mRNA co-expression network based on the Pearson correlation coefficient. Results In total, 1109 linear correlations of DE lncRNAs targeting DE mRNAs were found and several interesting interactions were identified as being associated with viral infections and immune responses within the networks based on these correlations. Among these lncRNA-mRNA relationships, hub mRNAs including HDAC6, MAPK8, MAPK9, ATM and their corresponding annotated co-expressed lncRNAs presented strong correlations with the MAPK-NF-kappa B pathway, which plays a role in the reactivation and replication of the virus. Conclusions Using RNA-sequencing, we systematically analyzed the expression profiles of lncRNAs and mRNAs from CD4+ T cells from ECs, HPs, and HCs, and constructed a co-expression network based on the relationships among DE transcripts and database annotations. This was the first study to examine gene transcription in elite controllers and to study their functional relationships. Our results provide a reference for subsequent functional verification at the molecular or cellular level.
Collapse
Affiliation(s)
- Chaoyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
64
|
Jin H, Li D, Lin MH, Li L, Harrich D. Tat-Based Therapies as an Adjuvant for an HIV-1 Functional Cure. Viruses 2020; 12:v12040415. [PMID: 32276443 PMCID: PMC7232260 DOI: 10.3390/v12040415] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/18/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV) establishes a chronic infection that can be well controlled, but not cured, by combined antiretroviral therapy (cART). Interventions have been explored to accomplish a functional cure, meaning that a patient remains infected but HIV is undetectable in the blood, with the aim of allowing patients to live without cART. Tat, the viral transactivator of transcription protein, plays a critical role in controlling HIV transcription, latency, and viral rebound following the interruption of cART treatment. Therefore, a logical approach for controlling HIV would be to block Tat. Tackling Tat with inhibitors has been a difficult task, but some recent discoveries hold promise. Two anti-HIV proteins, Nullbasic (a mutant of Tat) and HT1 (a fusion of HEXIM1 and Tat functional domains) inhibit viral transcription by interfering with the interaction of Tat and cellular factors. Two small molecules, didehydro-cortistatin A (dCA) and triptolide, inhibit Tat by different mechanisms: dCA through direct binding and triptolide through enhanced proteasomal degradation. Finally, two Tat-based vaccines under development elicit Tat-neutralizing antibodies. These vaccines have increased the levels of CD4+ cells and reduced viral loads in HIV-infected people, suggesting that the new vaccines are therapeutic. This review summarizes recent developments of anti-Tat agents and how they could contribute to a functional cure for HIV.
Collapse
Affiliation(s)
- Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
| | - Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
| | - Min-Hsuan Lin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
- Correspondence: ; Tel.: +617-3845-3679
| |
Collapse
|
65
|
Nguyen W, Jacobson J, Jarman KE, Blackmore TR, Sabroux HJ, Lewin SR, Purcell DF, Sleebs BE. Optimization of 5-substituted thiazolyl ureas and 6-substituted imidazopyridines as potential HIV-1 latency reversing agents. Eur J Med Chem 2020; 195:112254. [PMID: 32251744 DOI: 10.1016/j.ejmech.2020.112254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/13/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
A persistent latent reservoir of virus in CD4+ T cells is a major barrier to cure HIV. Activating viral transcription in latently infected cells using small molecules is one strategy being explored to eliminate latency. We previously described the use of a FlpIn.FM HEK293 cellular assay to identify and then optimize the 2-acylaminothiazole class to exhibit modest activation of HIV gene expression. Here, we implement two strategies to further improve the activation of viral gene expression and physicochemical properties of this class. Firstly, we explored rigidification of the central oxy-carbon linker with a variety of saturated heterocycles, and secondly, investigated bioisosteric replacement of the 2-acylaminothiazole moiety. The optimization process afforded lead compounds (74 and 91) from the 2-piperazinyl thiazolyl urea and the imidazopyridine class. The lead compounds from each class demonstrate potent activation of HIV gene expression in the FlpIn.FM HEK293 cellular assay (both with LTR EC50s of 80 nM) and in the Jurkat Latency 10.6 cell model (LTR EC50 220 and 320 nM respectively), but consequently activate gene expression non-specifically in the FlpIn.FM HEK293 cellular assay (CMV EC50 70 and 270 nM respectively) manifesting in cellular cytotoxicity. The lead compounds have potential for further development as novel latency reversing agents.
Collapse
Affiliation(s)
- William Nguyen
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Jonathan Jacobson
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute of Infection and Immunity, University of Melbourne, Parkville, Victoria, 3000, Australia
| | - Kate E Jarman
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Timothy R Blackmore
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Helene Jousset Sabroux
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Sharon R Lewin
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute of Infection and Immunity, University of Melbourne, Parkville, Victoria, 3000, Australia; The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Parkville, Victoria, 3000, Australia; Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, 3004, Australia
| | - Damian F Purcell
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute of Infection and Immunity, University of Melbourne, Parkville, Victoria, 3000, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
66
|
Li BX, Zhang H, Liu Y, Li Y, Zheng JJ, Li WX, Feng K, Sun M, Dai SX. Novel pathways of HIV latency reactivation revealed by integrated analysis of transcriptome and target profile of bryostatin. Sci Rep 2020; 10:3511. [PMID: 32103135 PMCID: PMC7044323 DOI: 10.1038/s41598-020-60614-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/12/2020] [Indexed: 01/17/2023] Open
Abstract
The reactivation of HIV latency cell will be necessary to curing HIV infection. Although many latency-reversal agents (LRAs) have proven effective to reactivate the latency cell, there is a lack of any systematic analysis of the molecular targets of these LRAs and related pathways in the context of transcriptome. In this study, we performed an integrated analysis of the target profile of bryostatin and transcriptome of the reactivated CD4+ T cells after exposing to bryostatin. The result showed a distinct gene expression profile between latency cells and bryostatin reactivated cells. We found bryostatin can target multiple types of protein other than only protein kinase C. Functional network analysis of the target profile and differential expressed genes suggested that bryostatin may activate a few novel pathways such as pyrimidine metabolism, purine metabolism and p53 signaling pathway, besides commonly known pathways DNA replication, cell cycle and so on. The results suggest that bryostatin may reactivate the HIV-latent cells through up-regulation of pyrimidine and purine metabolism or through starting the cell-cycle arrest and apoptosis induced by up-regulation of p53 signaling pathway. Our study provides some novel insights into the role of bryostatin and its affected pathways in controlling HIV latency and reactivation.
Collapse
Affiliation(s)
- Bing-Xiang Li
- Institute of Medical Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Kunming, China
| | - Han Zhang
- Institute of Medical Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Kunming, China
| | - Yubin Liu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ya Li
- Yunnan Key Laboratory of Laboratory Medicine, Yunnan Institute of Laboratory Diagnosis, Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jun-Juan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wen-Xing Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Kai Feng
- Institute of Medical Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Kunming, China
| | - Ming Sun
- Institute of Medical Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Kunming, China.
| | - Shao-Xing Dai
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
67
|
P-TEFb as A Promising Therapeutic Target. Molecules 2020; 25:molecules25040838. [PMID: 32075058 PMCID: PMC7070488 DOI: 10.3390/molecules25040838] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) was first identified as a general factor that stimulates transcription elongation by RNA polymerase II (RNAPII), but soon afterwards it turned out to be an essential cellular co-factor of human immunodeficiency virus (HIV) transcription mediated by viral Tat proteins. Studies on the mechanisms of Tat-dependent HIV transcription have led to radical advances in our knowledge regarding the mechanism of eukaryotic transcription, including the discoveries that P-TEFb-mediated elongation control of cellular transcription is a main regulatory step of gene expression in eukaryotes, and deregulation of P-TEFb activity plays critical roles in many human diseases and conditions in addition to HIV/AIDS. P-TEFb is now recognized as an attractive and promising therapeutic target for inflammation/autoimmune diseases, cardiac hypertrophy, cancer, infectious diseases, etc. In this review article, I will summarize our knowledge about basic P-TEFb functions, the regulatory mechanism of P-TEFb-dependent transcription, P-TEFb’s involvement in biological processes and diseases, and current approaches to manipulating P-TEFb functions for the treatment of these diseases.
Collapse
|
68
|
DeMarino C, Cowen M, Pleet ML, Pinto DO, Khatkar P, Erickson J, Docken SS, Russell N, Reichmuth B, Phan T, Kuang Y, Anderson DM, Emelianenko M, Kashanchi F. Differences in Transcriptional Dynamics Between T-cells and Macrophages as Determined by a Three-State Mathematical Model. Sci Rep 2020; 10:2227. [PMID: 32042107 PMCID: PMC7010665 DOI: 10.1038/s41598-020-59008-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
HIV-1 viral transcription persists in patients despite antiretroviral treatment, potentially due to intermittent HIV-1 LTR activation. While several mathematical models have been explored in the context of LTR-protein interactions, in this work for the first time HIV-1 LTR model featuring repressed, intermediate, and activated LTR states is integrated with generation of long (env) and short (TAR) RNAs and proteins (Tat, Pr55, and p24) in T-cells and macrophages using both cell lines and infected primary cells. This type of extended modeling framework allows us to compare and contrast behavior of these two cell types. We demonstrate that they exhibit unique LTR dynamics, which ultimately results in differences in the magnitude of viral products generated. One of the distinctive features of this work is that it relies on experimental data in reaction rate computations. Two RNA transcription rates from the activated promoter states are fit by comparison of experimental data to model predictions. Fitting to the data also provides estimates for the degradation/exit rates for long and short viral RNA. Our experimentally generated data is in reasonable agreement for the T-cell as well macrophage population and gives strong evidence in support of using the proposed integrated modeling paradigm. Sensitivity analysis performed using Latin hypercube sampling method confirms robustness of the model with respect to small parameter perturbations. Finally, incorporation of a transcription inhibitor (F07#13) into the governing equations demonstrates how the model can be used to assess drug efficacy. Collectively, our model indicates transcriptional differences between latently HIV-1 infected T-cells and macrophages and provides a novel platform to study various transcriptional dynamics leading to latency or activation in numerous cell types and physiological conditions.
Collapse
MESH Headings
- Anti-HIV Agents/pharmacology
- Anti-HIV Agents/therapeutic use
- Cell Line
- Drug Resistance, Viral/drug effects
- Drug Resistance, Viral/genetics
- Drug Resistance, Viral/immunology
- Gene Expression Regulation, Viral/immunology
- HIV Infections/blood
- HIV Infections/drug therapy
- HIV Infections/immunology
- HIV Long Terminal Repeat/genetics
- HIV-1/drug effects
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Macrophages/immunology
- Macrophages/virology
- Models, Genetic
- Models, Immunological
- Primary Cell Culture
- RNA, Viral/genetics
- RNA, Viral/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
- Transcription, Genetic/drug effects
- Transcription, Genetic/immunology
- Virus Replication/drug effects
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Daniel O Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - James Erickson
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Steffen S Docken
- Department of Mathematics, University of California Davis, Davis, CA, USA
| | - Nicholas Russell
- Department of Mathematical Sciences, University of Delaware, Newark, DE, USA
| | - Blake Reichmuth
- Department of Mathematical Sciences, George Mason University, Fairfax, VA, USA
| | - Tin Phan
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Daniel M Anderson
- Department of Mathematical Sciences, George Mason University, Fairfax, VA, USA.
| | - Maria Emelianenko
- Department of Mathematical Sciences, George Mason University, Fairfax, VA, USA.
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
69
|
Abbar B, Baron M, Katlama C, Marcelin AG, Veyri M, Autran B, Guihot A, Spano JP. Immune checkpoint inhibitors in people living with HIV: what about anti-HIV effects? AIDS 2020; 34:167-175. [PMID: 31634190 DOI: 10.1097/qad.0000000000002397] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
: Immune checkpoint inhibitors (ICPi) have shown major therapeutic successes when used in various cancers. In the HIV field a double benefit of such ICPi should result from their dual ability to restore in-vitro HIV-specific CD8 T-cell functions and to enhance HIV production from reservoir cells, thus fulfilling the goals of the 'shock and kill' concept proposed as an HIV cure therapeutic strategy. We conducted a systematic review to identify studies reporting the tolerance profile of ICPi and their effects on HIV plasma loads (pVL), CD4 cell count, HIV reservoirs (cell-associated HIV-DNA) and/or HIV-specific CD8 T cells in PLWH. Thirty-one articles were included for a total 176 participants. Twelve percent of the participants experienced severe adverse events and 49% nonsevere adverse events. pVL remained stable in 91.9% participant, showed increases in 5.8% participant, and decreases in 2.3%. CD4 cell count remained stable in 60.7% participants, showed increases in 24.6%, and decreases in 14.7%. Regarding ICPi effects on HIV-DNA and HIV-specific immunity, we identified three distinct profiles: profile I, transient pVL increases followed by a boost in HIV-specific CD8 T cells concomitant to a decrease in HIV-DNA, reported in one participant. Profile II: increase in HIV-specific CD8 T cells without changes in pVL or HIV-DNA, reported in three participants. III: no effect, reported in five participants. In conclusion, the clinical, virological and immunological safety profiles of ICPi reported in about 200 PLWH appear to be favorable but there are still modest results in terms of HIV cure strategy.
Collapse
Affiliation(s)
- Baptiste Abbar
- Department of Immunology, Pitié Salpêtrière Hospital, AP-HP, CIMI, UMR 1135
| | - Marine Baron
- Department of Immunology, Pitié Salpêtrière Hospital, AP-HP, CIMI, UMR 1135
| | | | | | - Marianne Veyri
- Department of Medical Oncology, Pitié Salpêtrière Hospital, AP-HP, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, Paris, France
| | - Brigitte Autran
- Department of Immunology, Pitié Salpêtrière Hospital, AP-HP, CIMI, UMR 1135
| | - Amélie Guihot
- Department of Immunology, Pitié Salpêtrière Hospital, AP-HP, CIMI, UMR 1135
| | - Jean-Philippe Spano
- Department of Medical Oncology, Pitié Salpêtrière Hospital, AP-HP, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, Paris, France
| |
Collapse
|
70
|
HIV-1 Latency and Latency Reversal: Does Subtype Matter? Viruses 2019; 11:v11121104. [PMID: 31795223 PMCID: PMC6950696 DOI: 10.3390/v11121104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cells that are latently infected with HIV-1 preclude an HIV-1 cure, as antiretroviral therapy does not target this latent population. HIV-1 is highly genetically diverse, with over 10 subtypes and numerous recombinant forms circulating worldwide. In spite of this vast diversity, much of our understanding of latency and latency reversal is largely based on subtype B viruses. As such, most of the development of cure strategies targeting HIV-1 are solely based on subtype B. It is currently assumed that subtype does not influence the establishment or reactivation of latent viruses. However, this has not been conclusively proven one way or the other. A better understanding of the factors that influence HIV-1 latency in all viral subtypes will help develop therapeutic strategies that can be applied worldwide. Here, we review the latest literature on subtype-specific factors that affect viral replication, pathogenesis, and, most importantly, latency and its reversal.
Collapse
|
71
|
Read DF, Atindaana E, Pyaram K, Yang F, Emery S, Cheong A, Nakama KR, Burnett C, Larragoite ET, Battivelli E, Verdin E, Planelles V, Chang CH, Telesnitsky A, Kidd JM. Stable integrant-specific differences in bimodal HIV-1 expression patterns revealed by high-throughput analysis. PLoS Pathog 2019; 15:e1007903. [PMID: 31584995 PMCID: PMC6795456 DOI: 10.1371/journal.ppat.1007903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/16/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
HIV-1 gene expression is regulated by host and viral factors that interact with viral motifs and is influenced by proviral integration sites. Here, expression variation among integrants was followed for hundreds of individual proviral clones within polyclonal populations throughout successive rounds of virus and cultured cell replication, with limited findings using CD4+ cells from donor blood consistent with observations in immortalized cells. Tracking clonal behavior by proviral “zip codes” indicated that mutational inactivation during reverse transcription was rare, while clonal expansion and proviral expression states varied widely. By sorting for provirus expression using a GFP reporter in the nef open reading frame, distinct clone-specific variation in on/off proportions were observed that spanned three orders of magnitude. Tracking GFP phenotypes over time revealed that as cells divided, their progeny alternated between HIV transcriptional activity and non-activity. Despite these phenotypic oscillations, the overall GFP+ population within each clone was remarkably stable, with clones maintaining clone-specific equilibrium mixtures of GFP+ and GFP- cells. Integration sites were analyzed for correlations between genomic features and the epigenetic phenomena described here. Integrants inserted in the sense orientation of genes were more frequently found to be GFP negative than those in the antisense orientation, and clones with high GFP+ proportions were more distal to repressive H3K9me3 peaks than low GFP+ clones. Clones with low frequencies of GFP positivity appeared to expand more rapidly than clones for which most cells were GFP+, even though the tested proviruses were Vpr-. Thus, much of the increase in the GFP- population in these polyclonal pools over time reflected differential clonal expansion. Together, these results underscore the temporal and quantitative variability in HIV-1 gene expression among proviral clones that are conferred in the absence of metabolic or cell-type dependent variability, and shed light on cell-intrinsic layers of regulation that affect HIV-1 population dynamics. Very few HIV-1 infected cells persist in patients for more than a couple days, but those that do pose life-long health risks. Strategies designed to eliminate these cells have been based on assumptions about what viral properties allow infected cell survival. However, such approaches for HIV-1 eradication have not yet shown therapeutic promise, possibly because many assumptions about virus persistence are based on studies involving a limited number of infected cell types, the averaged behavior of cells in diverse populations, or snapshot views. Here, we developed a high-throughput approach to study hundreds of distinct HIV-1 infected cells and their progeny over time in an unbiased way. This revealed that each virus established its own pattern of gene expression that, upon infected cell division, was stably transmitted to all progeny cells. Expression patterns consisted of alternating waves of activity and inactivity, with the extent of activity differing among infected cell families over a 1000-fold range. The dynamics and variability among infected cells and within complex populations that the work here revealed has not previously been evident, and may help establish more accurate correlates of persistent HIV-1 infection.
Collapse
Affiliation(s)
- David F. Read
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Edmond Atindaana
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Legon, Greater Accra Region, Ghana
| | - Kalyani Pyaram
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Feng Yang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sarah Emery
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Anna Cheong
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Katherine R. Nakama
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Cleo Burnett
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Erin T. Larragoite
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Emilie Battivelli
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Eric Verdin
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (C-HC); (AT); (JMK)
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (C-HC); (AT); (JMK)
| | - Jeffrey M. Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (C-HC); (AT); (JMK)
| |
Collapse
|
72
|
Panaampon J, Kudo E, Kariya R, Okada S. Ephedrine enhances HIV-1 reactivation from latency through elevating tumor necrosis factor receptor II (TNFRII) expression. Heliyon 2019; 5:e02490. [PMID: 31687583 PMCID: PMC6819846 DOI: 10.1016/j.heliyon.2019.e02490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/02/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022] Open
Abstract
HIV-1 persists during antiretroviral therapy (ART) due to long-lived and proliferating latently-infected host cells, with the outcome being an incomplete cure. The latently-infected cells, or reservoir cells, are transcriptionally absent and invisible to the immune response. Elimination of latency is one strategy in activating virus production, making it visible to immune clearance. We previously showed that Ephedrae herba reactivated HIV-1 from latency. In this study, we used ephedrine, a major component of Ephedra herba, to reactivate HIV-1 from latency. The results showed that ephedrine enhances HIV-1 reactivation in the presence of TNFα. Combination treatment demonstrates a synergistic effect of HIV-1 reactivation compared to TNFα alone. Ephedrine treatment shows a higher TNFRII expression level, which is related to increased HIV-1 reactivation. However, the mechanism of ephedrine in HIV-1 reactivation is still unclear, and may be related to TNFRII receptor expression. Our results indicate that ephedrine enhances HIV-1 reactivation from latency in combination with TNFα treatment. This new reagent could be a promising latency reversal agent (LRA).
Collapse
|
73
|
Darcis G, Berkhout B, Pasternak AO. The Quest for Cellular Markers of HIV Reservoirs: Any Color You Like. Front Immunol 2019; 10:2251. [PMID: 31616425 PMCID: PMC6763966 DOI: 10.3389/fimmu.2019.02251] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Combination antiretroviral therapy (ART) suppresses human immunodeficiency virus (HIV) replication and improves immune function, but is unable to eradicate the virus. Therefore, development of an HIV cure has become one of the main priorities of the HIV research field. The main obstacle for an HIV cure is the formation of latent viral reservoirs, where the virus is able to “hide” despite decades of therapy, just to reignite active replication once therapy is stopped. Revealing HIV hiding places is thus central to HIV cure research, but the absence of markers of these reservoir cells greatly complicates the search for a cure. Identification of one or several marker(s) of latently infected cells would represent a significant step forward toward a better description of the cell types involved and improved understanding of HIV latency. Moreover, it could provide a “handle” for selective therapeutic targeting of the reservoirs. A number of cellular markers of HIV reservoir have recently been proposed, including immune checkpoint molecules, CD2, and CD30. CD32a is perhaps the most promising of HIV reservoir markers as it is reported to be associated with a very prominent enrichment in HIV DNA, although this finding has been challenged. In this review, we provide an update on the current knowledge about HIV reservoir markers. We specifically highlight studies that characterized markers of persistently infected cells in the lymphoid tissues.
Collapse
Affiliation(s)
- Gilles Darcis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
74
|
Abbink P, Mercado NB, Nkolola JP, Peterson RL, Tuyishime H, McMahan K, Moseley ET, Borducchi EN, Chandrashekar A, Bondzie EA, Agarwal A, Belli AJ, Reimann KA, Keele BF, Geleziunas R, Lewis MG, Barouch DH. Lack of therapeutic efficacy of an antibody to α 4β 7 in SIVmac251-infected rhesus macaques. Science 2019; 365:1029-1033. [PMID: 31488689 PMCID: PMC6768629 DOI: 10.1126/science.aaw8562] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
Sustained virologic control of human immunodeficiency virus type 1 (HIV-1) infection after discontinuation of antiretroviral therapy (ART) is a major goal of the HIV-1 cure field. A recent study reported that administration of an antibody against α4β7 induced durable virologic control after ART discontinuation in 100% of rhesus macaques infected with an attenuated strain of simian immunodeficiency virus (SIV) containing a stop codon in nef We performed similar studies in 50 rhesus macaques infected with wild-type, pathogenic SIVmac251. In animals that initiated ART during either acute or chronic infection, anti-α4β7 antibody infusion had no detectable effect on the viral reservoir or viral rebound after ART discontinuation. These data demonstrate that anti-α4β7 antibody administration did not provide therapeutic efficacy in the model of pathogenic SIVmac251 infection of rhesus macaques.
Collapse
Affiliation(s)
- Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Noe B Mercado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph P Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca L Peterson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hubert Tuyishime
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Edward T Moseley
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Esther A Bondzie
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Arshi Agarwal
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aaron J Belli
- MassBiologics of the University of Massachusetts Medical School, Boston, MA 02126, USA
| | - Keith A Reimann
- MassBiologics of the University of Massachusetts Medical School, Boston, MA 02126, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | | | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| |
Collapse
|
75
|
Spatially clustered loci with multiple enhancers are frequent targets of HIV-1 integration. Nat Commun 2019; 10:4059. [PMID: 31492853 PMCID: PMC6731298 DOI: 10.1038/s41467-019-12046-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
HIV-1 recurrently targets active genes and integrates in the proximity of the nuclear pore compartment in CD4+ T cells. However, the genomic features of these genes and the relevance of their transcriptional activity for HIV-1 integration have so far remained unclear. Here we show that recurrently targeted genes are proximal to super-enhancer genomic elements and that they cluster in specific spatial compartments of the T cell nucleus. We further show that these gene clusters acquire their location during the activation of T cells. The clustering of these genes along with their transcriptional activity are the major determinants of HIV-1 integration in T cells. Our results provide evidence of the relevance of the spatial compartmentalization of the genome for HIV-1 integration, thus further strengthening the role of nuclear architecture in viral infection.
Collapse
|
76
|
Barclay RA, Khatkar P, Mensah G, DeMarino C, Chu JSC, Lepene B, Zhou W, Gillevet P, Torkzaban B, Khalili K, Liotta L, Kashanchi F. An Omics Approach to Extracellular Vesicles from HIV-1 Infected Cells. Cells 2019; 8:cells8080787. [PMID: 31362387 PMCID: PMC6724219 DOI: 10.3390/cells8080787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
Human Immunodeficiency Virus-1 (HIV-1) is the causative agent of Acquired Immunodeficiency Syndrome (AIDS), infecting nearly 37 million people worldwide. Currently, there is no definitive cure, mainly due to HIV-1's ability to enact latency. Our previous work has shown that exosomes, a small extracellular vesicle, from uninfected cells can activate HIV-1 in latent cells, leading to increased mostly short and some long HIV-1 RNA transcripts. This is consistent with the notion that none of the FDA-approved antiretroviral drugs used today in the clinic are transcription inhibitors. Furthermore, these HIV-1 transcripts can be packaged into exosomes and released from the infected cell. Here, we examined the differences in protein and nucleic acid content between exosomes from uninfected and HIV-1-infected cells. We found increased cyclin-dependent kinases, among other kinases, in exosomes from infected T-cells while other kinases were present in exosomes from infected monocytes. Additionally, we found a series of short antisense HIV-1 RNA from the 3' LTR that appears heavily mutated in exosomes from HIV-1-infected cells along with the presence of cellular noncoding RNAs and cellular miRNAs. Both physical and functional validations were performed on some of the key findings. Collectively, our data indicate distinct differences in protein and RNA content between exosomes from uninfected and HIV-1-infected cells, which can lead to different functional outcomes in recipient cells.
Collapse
Affiliation(s)
- Robert A Barclay
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Pooja Khatkar
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Gifty Mensah
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Catherine DeMarino
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Jeffery S C Chu
- Applied Biological Materials Inc., 1-3671 Viking Way, Richmond, BC V6V 2J5, Canada
| | | | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Patrick Gillevet
- Microbiome Analysis Center, George Mason University, Manassas, VA 20110, USA
| | - Bahareh Torkzaban
- Center for Neurovirology, Temple University, Philadelphia, PA 19122, USA
| | - Kamel Khalili
- Center for Neurovirology, Temple University, Philadelphia, PA 19122, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
77
|
Niu Q, Liu Z, Alamer E, Fan X, Chen H, Endsley J, Gelman BB, Tian B, Kim JH, Michael NL, Robb ML, Ananworanich J, Zhou J, Hu H. Structure-guided drug design identifies a BRD4-selective small molecule that suppresses HIV. J Clin Invest 2019; 129:3361-3373. [PMID: 31329163 PMCID: PMC6668673 DOI: 10.1172/jci120633] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
HIV integrates its provirus into the host genome and establishes latent infection. Antiretroviral therapy (ART) can control HIV viremia, but cannot eradicate or cure the virus. Approaches targeting host epigenetic machinery to repress HIV, leading to an aviremic state free of ART, are needed. Bromodomain and extraterminal (BET) family protein BRD4 is an epigenetic reader involved in HIV transcriptional regulation. Using structure-guided drug design, we identified a small molecule (ZL0580) that induced epigenetic suppression of HIV via BRD4. We showed that ZL0580 induced HIV suppression in multiple in vitro and ex vivo cell models. Combination treatment of cells of aviremic HIV-infected individuals with ART and ZL0580 revealed that ZL0580 accelerated HIV suppression during ART and delayed viral rebound after ART cessation. Mechanistically different from the BET/BRD4 pan-inhibitor JQ1, which nonselectively binds to BD1 and BD2 domains of all BET proteins, ZL0580 selectively bound to BD1 domain of BRD4. We further demonstrate that ZL0580 induced HIV suppression by inhibiting Tat transactivation and transcription elongation as well as by inducing repressive chromatin structure at the HIV promoter. Our findings establish a proof of concept for modulation of BRD4 to epigenetically suppress HIV and provide a promising chemical scaffold for the development of probes and/or therapeutic agents for HIV epigenetic silencing.
Collapse
Affiliation(s)
- Qingli Niu
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology
| | - Edrous Alamer
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| | - Xiuzhen Fan
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology
| | - Janice Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| | | | - Bing Tian
- Department of Internal Medicine, Sealy Center for Molecular Medicine, UTMB, Galveston, Texas, USA
| | - Jerome H. Kim
- International Vaccine Institute, Gwanak-gu, Seoul, South Korea
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Merlin L. Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jintanat Ananworanich
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- Department of Global Health, The University of Amsterdam, Amsterdam, Netherlands
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences
| |
Collapse
|
78
|
Inzaule SC, Hamers RL, Bertagnolio S, Siedner MJ, Rinke de Wit TF, Gupta RK. Pretreatment HIV drug resistance in low- and middle-income countries. Future Virol 2019. [DOI: 10.2217/fvl-2018-0208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pretreatment HIV drug resistance (PDR) has been increasing with scale-up of antiretroviral therapy (ART) in low- and middle-income countries. Delay in responding to rising levels of PDR is projected to fuel a worldwide increase in mortality, HIV incidence and ART costs. Strategies to curb the rise in PDR include using antiretrovirals (ARVs) with high-genetic barrier to resistance in first-line therapy and for prophylaxis in HIV exposed infants, enhancing HIV drug resistance surveillance in populations initiating, receiving ART, and in those on pre-exposure prophylaxis, universal access and effective use of viral-load tests, improving adherence and retention and minimizing ART programmatic quality gaps. In this review, we assess the drivers of PDR, and potential strategies to mitigate its rise in prevalence and impact in low- and middle-income countries.
Collapse
Affiliation(s)
- Seth C Inzaule
- Amsterdam Institute for Global Health & Development, Department of Global Health and Development, Amsterdam UMC, University of Amsterdam, 1105 BM, North Holland, The Netherlands
| | - Raph L Hamers
- Amsterdam Institute for Global Health & Development, Department of Global Health and Development, Amsterdam UMC, University of Amsterdam, 1105 BM, North Holland, The Netherlands
- Eijkman-Oxford Clinical Research Unit, and Faculty of Medicine Universitas Indonesia, Jalan Diponegoro 69, Jakarta, 10430, Indonesia
- Nuffield Department of Medicine, Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Silvia Bertagnolio
- HIV/AIDS Department & Global Hepatitis Programme, World Health Organization, 20 avenue Appia, 1211 Geneva, 27, Switzerland
| | - Mark J Siedner
- Massachusetts General Hospital, Harvard University, 02114 Boston, MA, USA
- Department of Medicine, University of Cambridge, Cambridge, CB2 OXY, UK
| | - Tobias F Rinke de Wit
- Amsterdam Institute for Global Health & Development, Department of Global Health and Development, Amsterdam UMC, University of Amsterdam, 1105 BM, North Holland, The Netherlands
- Joep Lange Institute, 1105 BM, North Holland, The Netherlands
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, CB2 OXY, UK
- Africa Health Research Institute, 719 Umbilo Road, Durban, KZN, South Africa
| |
Collapse
|
79
|
Abstract
PURPOSE OF REVIEW The long-lived HIV reservoir remains a major obstacle for an HIV cure. Current techniques to analyze this reservoir are generally population-based. We highlight recent developments in methods visualizing HIV, which offer a different, complementary view, and provide indispensable information for cure strategy development. RECENT FINDINGS Recent advances in fluorescence in situ hybridization techniques enabled key developments in reservoir visualization. Flow cytometric detection of HIV mRNAs, concurrently with proteins, provides a high-throughput approach to study the reservoir on a single-cell level. On a tissue level, key spatial information can be obtained detecting viral RNA and DNA in situ by fluorescence microscopy. At total-body level, advancements in non-invasive immuno-positron emission tomography (PET) detection of HIV proteins may allow an encompassing view of HIV reservoir sites. HIV imaging approaches provide important, complementary information regarding the size, phenotype, and localization of the HIV reservoir. Visualizing the reservoir may contribute to the design, assessment, and monitoring of HIV cure strategies in vitro and in vivo.
Collapse
Affiliation(s)
- Julia Niessl
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, St-Denis Street, Room 09-456, Montreal, QC, H2X 0A9, Canada
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA
| | - Amy E Baxter
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, St-Denis Street, Room 09-456, Montreal, QC, H2X 0A9, Canada
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA
| | - Daniel E Kaufmann
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, St-Denis Street, Room 09-456, Montreal, QC, H2X 0A9, Canada.
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA.
| |
Collapse
|
80
|
Chavali SS, Bonn-Breach R, Wedekind JE. Face-time with TAR: Portraits of an HIV-1 RNA with diverse modes of effector recognition relevant for drug discovery. J Biol Chem 2019; 294:9326-9341. [PMID: 31080171 DOI: 10.1074/jbc.rev119.006860] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Small molecules and short peptides that potently and selectively bind RNA are rare, making the molecular structures of these complexes highly exceptional. Accordingly, several recent investigations have provided unprecedented structural insights into how peptides and proteins recognize the HIV-1 transactivation response (TAR) element, a 59-nucleotide-long, noncoding RNA segment in the 5' long terminal repeat region of viral transcripts. Here, we offer an integrated perspective on these advances by describing earlier progress on TAR binding to small molecules, and by drawing parallels to recent successes in the identification of compounds that target the hepatitis C virus internal ribosome entry site (IRES) and the flavin-mononucleotide riboswitch. We relate this work to recent progress that pinpoints specific determinants of TAR recognition by: (i) viral Tat proteins, (ii) an innovative lab-evolved TAR-binding protein, and (iii) an ultrahigh-affinity cyclic peptide. New structural details are used to model the TAR-Tat-super-elongation complex (SEC) that is essential for efficient viral transcription and represents a focal point for antiviral drug design. A key prediction is that the Tat transactivation domain makes modest contacts with the TAR apical loop, whereas its arginine-rich motif spans the entire length of the TAR major groove. This expansive interface has significant implications for drug discovery and design, and it further suggests that future lab-evolved proteins could be deployed to discover steric restriction points that block Tat-mediated recruitment of the host SEC to HIV-1 TAR.
Collapse
Affiliation(s)
- Sai Shashank Chavali
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Rachel Bonn-Breach
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Joseph E Wedekind
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
81
|
Cherne MD, Hall J, Kellner A, Chong CF, Cole AL, Cole AM. Avirulins, a Novel Class of HIV-1 Reverse Transcriptase Inhibitors Effective in the Female Reproductive Tract Mucosa. Viruses 2019; 11:v11050408. [PMID: 31052477 PMCID: PMC6563246 DOI: 10.3390/v11050408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/25/2022] Open
Abstract
While extensive research efforts have decreased human immunodeficiency virus (HIV) transmissions and mortalities, new challenges have arisen in the fight to eradicate HIV. Drug resistance to antiretroviral therapy threatens infected individuals, while the prevalence of heterosexual transmission creates an urgent need for therapies effective in the female reproductive tract (FRT) mucosa. We screened a library of 2095 small molecule compounds comprising a unique chemical space, purchased from Asinex Corporation, for antiviral activity against human immunodeficiency virus type 1 (HIV-1) strain BaL and identified several molecular representatives of a unique class of HIV-1 inhibitors, which we termed “Avirulins.” We determined that Avirulins were active against clinical isolates of HIV-1 from genetically variant subtypes, several of which have reduced sensitivity to other antivirals. Avirulins displayed specific dose-dependent inhibition of the HIV-1 drug target, reverse transcriptase (RT). Avirulins were effective against several nucleoside RT-inhibitor resistant strains of HIV-1, as well as one nonnucleoside RT-inhibitor resistant strain containing a 106A mutation, suggesting a noncompetitive mechanism of action. Drugs, which are damaging to the FRT, can increase the risk of HIV-1 transmission. We therefore explored the cytotoxicity of Avirulins against epithelial cells derived from the FRT and found no significant toxicity, even at the highest concentrations tested. Importantly, Avirulin antiviral activity was not diminished in human cervico–vaginal fluid, suggesting retained potency in the milieu of the FRT. Based on these promising results, Avirulins should be valuable chemical scaffolds for development into next-generation treatments and preventatives that target HIV-1.
Collapse
Affiliation(s)
- Michelle D Cherne
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | - Jesse Hall
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | - Alisha Kellner
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | - Christine F Chong
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | - Amy L Cole
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | - Alexander M Cole
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
82
|
Aguilera LU, Rodríguez-González J. Modeling the effect of tat inhibitors on HIV latency. J Theor Biol 2019; 473:20-27. [PMID: 31004612 DOI: 10.1016/j.jtbi.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
Abstract
Even in the presence of a successful combination therapy stalling the progress of AIDS, developing a cure for this disease is still an open question. One of the major steps towards a cure would be to be able to eradicate latent HIV reservoirs present in patients. During the last decade, multiple findings point to the dominant role of the viral protein Tat in the establishment of latency. Here we present a mathematical study to understand the potential role of Tat inhibitors as virus-suppressing agents. For this aim, we implemented a computational model that reproduces intracellular dynamics. Simulating an HIV-infected cell and its intracellular feedback we observed that removing Tat protein from the system via inhibitors resulted in a temporary and reversible viral suppression. In contrast, we observed that compounds that interact with Tat protein and disrupt the integrated viral genome produced a more permanent viral suppression.
Collapse
Affiliation(s)
- Luis U Aguilera
- Department of Modeling of Biological Processes, COS Heidelberg / Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg 69120, Germany; Colorado State University
| | - Jesús Rodríguez-González
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Via del Conocimiento 201, Parque PIIT, Apodaca CP 66600 NL, México.
| |
Collapse
|
83
|
Vansant G, Vranckx LS, Zurnic I, Van Looveren D, Van de Velde P, Nobles C, Gijsbers R, Christ F, Debyser Z. Impact of LEDGIN treatment during virus production on residual HIV-1 transcription. Retrovirology 2019; 16:8. [PMID: 30940165 PMCID: PMC6444612 DOI: 10.1186/s12977-019-0472-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/23/2019] [Indexed: 11/24/2022] Open
Abstract
Background Persistence of latent, replication-competent provirus is the main impediment towards the cure of HIV infection. One of the critical questions concerning HIV latency is the role of integration site selection in HIV expression. Inhibition of the interaction between HIV integrase and its chromatin tethering cofactor LEDGF/p75 is known to reduce integration and to retarget residual provirus to regions resistant to reactivation. LEDGINs, small molecule inhibitors of the interaction between HIV integrase and LEDGF/p75, provide an interesting tool to study the underlying mechanisms. During early infection, LEDGINs block the interaction with LEDGF/p75 and allosterically inhibit the catalytic activity of IN (i.e. the early effect). When present during virus production, LEDGINs interfere with proper maturation due to enhanced IN oligomerization in the progeny virions (i.e. the late effect). Results We studied the effect of LEDGINs present during virus production on the transcriptional state of the residual virus. Infection of cells with viruses produced in the presence of LEDGINs resulted in a residual reservoir that was refractory to activation. Integration of residual provirus was less favored near epigenetic markers associated with active transcription. However, integration near H3K36me3 and active genes, both targeted by LEDGF/p75, was not affected. Also in primary cells, LEDGIN treatment induced a reservoir resistant to activation due to a combined early and late effect. Conclusion LEDGINs present a research tool to study the link between integration and transcription, an essential question in retrovirology. LEDGIN treatment during virus production altered integration of residual provirus in a LEDGF/p75-independent manner, resulting in a reservoir that is refractory to activation. Electronic supplementary material The online version of this article (10.1186/s12977-019-0472-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerlinde Vansant
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Lenard S Vranckx
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Irena Zurnic
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Dominique Van Looveren
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Belgium
| | - Paulien Van de Velde
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Christopher Nobles
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Belgium
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium.
| |
Collapse
|
84
|
Katuri A, Bryant J, Heredia A, Makar TK. Role of the inflammasomes in HIV-associated neuroinflammation and neurocognitive disorders. Exp Mol Pathol 2019; 108:64-72. [PMID: 30922769 DOI: 10.1016/j.yexmp.2019.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 02/01/2023]
Abstract
HIV associated neurocognitive disorders (HAND) is a unique form of neurological impairment that stems from HIV. This disease and its characteristics can be accredited to incorporation of DNA and mRNA of HIV-1 into the CNS. A proper understanding of the intricacies of HAND and the underlying mechanisms associated with corresponding immune reactions are vital for the potential development of a reliable treatment for HAND. A common phenomenon observed in CNS cells, specifically microglia, that are infected with HAND is inflammation, which is a consequence of the activation of innate immune response due to a variety of stimuli, in this case, being the HIV infection. The CNS based inflammation is mediated by the production of cytokines, chemokines, reactive oxygen species, and secondary messengers, which occurs at CNS glia, endothelial cells and peripherally derived immune cells. Inflammasomes play a significant role with regard to neuroinflammation due to their ability to dictate the activation of various inflammatory responses. Certain stimuli can result in the activation of caspase-1; hence, leading to the processing of interleukin-1β and interleukin-18 pro-inflammatory cytokines. The processed IL-1β and IL-18 activate signaling pathways that begin the process of neuroinflammation. Due to the fact that the NLRP3 inflammasome is the most abundant in the CNS, it is the most extensively investigated inflammasome with regard to the nervous system. Due to the importance of neuroinflammation in the evolution of HAND and proliferation of neuroinflammation due to HAND, it can be concluded that there exists a relationship between HAND and inflammasomes. The aim of our review is to consolidate current knowledge of important mechanisms in HAND, specifically related to its relationship with neuroinflammation and inflammasomes to shed light on a possible improved treatment for HAND.
Collapse
Affiliation(s)
- Akhil Katuri
- Department of Neurology, University of Maryland, Baltimore, MD 21201, United States of America
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201, United States of America
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201, United States of America
| | - Tapas K Makar
- Department of Neurology, University of Maryland, Baltimore, MD 21201, United States of America; VA Medical Center, Baltimore, MD 21201, United States of America.
| |
Collapse
|
85
|
Novel therapies/hopes for HIV cure in perinatally acquired HIV-positive adolescents. Curr Opin HIV AIDS 2019; 13:281-287. [PMID: 29547411 DOI: 10.1097/coh.0000000000000455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Successful roll-out of paediatric antiretroviral therapy (ART) has led to a significant increase in survival of adolescents and young people growing up with HIV. Those on suppressive ART since childhood represent a unique group particularly well positioned to interrupt ART and achieve post-treatment control (PTC), or HIV remission. This maybe a consequence of early and sustained treatment since infancy, the small size of the HIV reservoir, the presence of a functioning thymus and a more 'flexible' immune system better able to respond to novel immune therapeutic interventions when compared with adults who acquired HIV at a time of immunological maturity and thymic involution. RECENT FINDINGS In the past year, there have been additional case reports of post-treatment viral control amongst perinatally acquired HIV adolescents and young adults (PaHIV-AYA). In this article, we review and compare the characteristics of PTC in PaHIV-AYA and discuss the potential implications of these observations for the growing population of adolescents living with HIV. The correlation between low levels of HIV DNA and seroreversion may provide a feasible screening tool to select candidates most suitable for future intervention studies and viral remission. CONCLUSION Whilst it is premature to anticipate an HIV cure, there is much anticipation that with early ART and additional interventions to perturb the residual viral reservoir, future viral remission off ART might be feasible for PaHIV-AYA. However, given the safety and effectiveness of current ART, a critical debate must evaluate the risks against benefits of any novel intervention, especially amongst adolescents as they become sexually active.
Collapse
|
86
|
Liu S, Sun J, Li Z, Qin L, Liu G, Li K, Wu H, Dong T, Zhang Y. T Cell Therapy Targeted on HLA-A02 Restricted HIV Antigen Epitopes: An Open Label Cellular Therapy Trial Using CD8+ T Cell. Front Immunol 2019; 10:437. [PMID: 30941124 PMCID: PMC6435000 DOI: 10.3389/fimmu.2019.00437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 02/19/2019] [Indexed: 01/30/2023] Open
Abstract
Objective: To test the safety and efficacy of a T cell therapy de novo targeting HLA-A02 restricted HIV antigen epitopes. Design: This was a prospective open label clinical trial, which enrolled 28 HIV+ participants and 24 of them finished the trial. The study was publicly registered at Chinese Clinical Trial Registry, www.chictr.org.cn(ChiCTR-ICR-15005775). Method: Autologous peripheral blood mononuclear cells were co-cultured with HLA-A02 restricted HIV antigen epitopes peptides to produce cell product for this therapy. The trial was divided into five time-points with the same interval period for infusion of the cell products or monitoring parameters. Symptoms, vital signs, and blood samples were collected to analyze the safety and efficacy of this therapy. Results: Two cases of adverse effects happened during this trial in test group, which recovered without medical intervention. There was no severe adverse effect that occurred. Both symptoms and laboratory tests have no statistical significant difference between test and control group. Flowcytometry analysis showed the expression of the PD-1 and CD95 molecule on the cell surface were downregulated post-treatment in the test group. Conclusions: This autologous HIV-antigen specific effector CD8+ T cellular therapy was safe. It might have an impact on immune suppression that can provide useful reference to future cell therapy trials.
Collapse
Affiliation(s)
- Sai Liu
- Biomarkers of Infection Related Diseases Beijing Key Laboratory, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Jianping Sun
- Biomarkers of Infection Related Diseases Beijing Key Laboratory, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Center of Infectious Disease, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Ling Qin
- Biomarkers of Infection Related Diseases Beijing Key Laboratory, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Guihai Liu
- Biomarkers of Infection Related Diseases Beijing Key Laboratory, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Kang Li
- Biomarkers of Infection Related Diseases Beijing Key Laboratory, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Center of Infectious Disease, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Tao Dong
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Yonghong Zhang
- Biomarkers of Infection Related Diseases Beijing Key Laboratory, Beijing You'An Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
87
|
Interferon Alpha Enhances NK Cell Function and the Suppressive Capacity of HIV-Specific CD8 + T Cells. J Virol 2019; 93:JVI.01541-18. [PMID: 30404799 DOI: 10.1128/jvi.01541-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/29/2018] [Indexed: 12/23/2022] Open
Abstract
Current shock-and-kill strategies for the eradication of the HIV-1 reservoir have resulted in blips of viremia but not in a decrease in the size of the latent reservoir in patients on suppressive antiretroviral therapy (ART). This discrepancy could potentially be explained by an inability of the immune system to kill HIV-1-infected cells following the reversal of latency. Furthermore, some studies have suggested that certain latency-reversing agents (LRAs) may inhibit CD8+ T cell and natural killer (NK) cell responses. In this study, we tested the hypothesis that alpha interferon (IFN-α) could improve the function of NK cells from chronic progressors (CP) on ART. We show here that IFN-α treatment enhanced cytokine secretion, polyfunctionality, degranulation, and the cytotoxic potential of NK cells from healthy donors (HD) and CP. We also show that this cytokine enhanced the viral suppressive capacity of NK cells from HD and elite controllers or suppressors. Furthermore, IFN-α enhanced global CP CD8+ T cell cytokine responses and the suppressive capacity of ES CD8+ T cells. Our data suggest that IFN-α treatment may potentially be used as an immunomodulatory agent in HIV-1 cure strategies.IMPORTANCE Data suggest that HIV+ individuals unable to control infection fail to do so due to impaired cytokine production and/cytotoxic effector cell function. Consequently, the success of cure agendas such as the shock-and-kill strategy will probably depend on enhancing patient effector cell function. In this regard, NK cells are of particular interest since they complement the function of CD8+ T cells. Here, we demonstrate the ability of short-course alpha interferon (IFN-α) treatments to effectively enhance such effector functions in chronic progressor NK cells without inhibiting their general CD8+ T cell function. These results point to the possibility of exploring such short-course IFN-α treatments for the enhancement of effector cell function in HIV+ patients in future cure strategies.
Collapse
|
88
|
Katuri A, Bryant JL, Patel D, Patel V, Andhavarapu S, Asemu G, Davis H, Makar TK. HIVAN associated tubular pathology with reference to ER stress, mitochondrial changes, and autophagy. Exp Mol Pathol 2018; 106:139-148. [PMID: 30605635 DOI: 10.1016/j.yexmp.2018.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/25/2018] [Accepted: 12/29/2018] [Indexed: 12/31/2022]
Abstract
Human immunodeficiency virus associated nephropathy (HIVAN) is a unique form of a renal parenchymal disorder. This disease and its characteristics can be accredited to incorporation of DNA and mRNA of human immunodeficiency virus type 1 into the renal parenchymal cells. A proper understanding of the intricacies of HIVAN and the underlying mechanisms associated with renal function and disorders is vital for the potential development of a reliable treatment for HIVAN. Specifically, the renal tubule segment of the kidney is characterized by its transport capabilities and its ability to reabsorb water and salts into the blood. However, the segment is also known for certain disorders, such as renal tubular epithelial cell infection and microcyst formation, which are also closely linked to HIVAN. Furthermore, certain organelles, like the endoplasmic reticulum (ER), mitochondria, and lysosome, are vital for certain underlying mechanisms in kidney cells. A paradigm of the importance of said organelles can be seen in documented cases of HIVAN where the renal disorder results increased ER stress due to HIV viral propagation. This balance can be restored through the synthesis of secretory proteins, but, in return, the secretion requires more energy; therefore, there is a noticeable increase in mitochondrial stress. The increased ER changes and mitochondrial stress will greatly upregulate the process of autophagy, which involves the cell's lysosomes. In conjunction, we found that ER stress and mitochondrial changes are associated in the Tg26 animal model of HIVAN. The aim of our review is to consolidate current knowledge of important mechanisms in HIVAN, specifically related to the renal tubules' association with ER stress, mitochondrial changes and autophagy. Although the specific regulatory mechanism detailing the cross-talk between the various organelles is unknown in HIVAN, the continued research in this field may potentially shed light on a possible improved treatment for HIVAN.
Collapse
Affiliation(s)
- Akhil Katuri
- Department of Neurology, University of Maryland, Baltimore, MD 21201, United States
| | - Joseph L Bryant
- Animal Model Division, Institute of Human Virology, Baltimore, MD 21201, United States
| | - Dhruvil Patel
- Department of Neurology, University of Maryland, Baltimore, MD 21201, United States
| | - Vivek Patel
- Department of Neurology, University of Maryland, Baltimore, MD 21201, United States
| | - Sanketh Andhavarapu
- Department of Neurology, University of Maryland, Baltimore, MD 21201, United States
| | - Girma Asemu
- Animal Model Division, Institute of Human Virology, Baltimore, MD 21201, United States
| | - Harry Davis
- Animal Model Division, Institute of Human Virology, Baltimore, MD 21201, United States
| | - Tapas K Makar
- Department of Neurology, University of Maryland, Baltimore, MD 21201, United States; VA Medical Center, Baltimore, MD 21201, United States.
| |
Collapse
|
89
|
Marian CA, Stoszko M, Wang L, Leighty MW, de Crignis E, Maschinot CA, Gatchalian J, Carter BC, Chowdhury B, Hargreaves DC, Duvall JR, Crabtree GR, Mahmoudi T, Dykhuizen EC. Small Molecule Targeting of Specific BAF (mSWI/SNF) Complexes for HIV Latency Reversal. Cell Chem Biol 2018; 25:1443-1455.e14. [PMID: 30197195 PMCID: PMC6404985 DOI: 10.1016/j.chembiol.2018.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/24/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
Abstract
The persistence of a pool of latently HIV-1-infected cells despite combination anti-retroviral therapy treatment is the major roadblock for a cure. The BAF (mammalian SWI/SNF) chromatin remodeling complex is involved in establishing and maintaining viral latency, making it an attractive drug target for HIV-1 latency reversal. Here we report a high-throughput screen for inhibitors of BAF-mediated transcription in cells and the subsequent identification of a 12-membered macrolactam. This compound binds ARID1A-specific BAF complexes, prevents nucleosomal positioning, and relieves transcriptional repression of HIV-1. Through this mechanism, these compounds are able to reverse HIV-1 latency in an in vitro T cell line, an ex vivo primary cell model of HIV-1 latency, and in patient CD4+ T cells without toxicity or T cell activation. These macrolactams represent a class of latency reversal agents with unique mechanism of action, and can be combined with other latency reversal agents to improve reservoir targeting.
Collapse
Affiliation(s)
- Christine A Marian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Mateusz Stoszko
- Department of Biochemistry, Erasmus University Medical Center, Ee634, P.O. Box 2040, 3000CA Rotterdam, the Netherlands
| | - Lili Wang
- The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Matthew W Leighty
- The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Elisa de Crignis
- Department of Biochemistry, Erasmus University Medical Center, Ee634, P.O. Box 2040, 3000CA Rotterdam, the Netherlands
| | - Chad A Maschinot
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Jovylyn Gatchalian
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Benjamin C Carter
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Basudev Chowdhury
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Diana C Hargreaves
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeremy R Duvall
- The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Gerald R Crabtree
- HHMI and the Departments of Developmental Biology and Pathology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA.
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee634, P.O. Box 2040, 3000CA Rotterdam, the Netherlands.
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA.
| |
Collapse
|
90
|
Wei X, Zhang G, Ran D, Krishnan N, Fang RH, Gao W, Spector SA, Zhang L. T-Cell-Mimicking Nanoparticles Can Neutralize HIV Infectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802233. [PMID: 30252965 PMCID: PMC6334303 DOI: 10.1002/adma.201802233] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/27/2018] [Indexed: 05/18/2023]
Abstract
To improve human immunodeficiency virus (HIV) treatment and prevention, therapeutic strategies that can provide effective and broad-spectrum neutralization against viral infection are highly desirable. Inspired by recent advances of cell-membrane coating technology, herein, plasma membranes of CD4+ T cells are collected and coated onto polymeric cores. The resulting T-cell-membrane-coated nanoparticles (denoted as "TNPs") inherit T cell surface antigens critical for HIV binding, such as CD4 receptor and CCR5 or CXCR4 coreceptors. The TNPs act as decoys for viral attack and neutralize HIV by diverting the viruses away from their intended host targets. This decoy strategy, which simulates host cell functions for viral neutralization rather than directly suppressing viral replication machinery, has the potential to overcome HIV genetic diversity while not eliciting high selective pressure. In this study, it is demonstrated that TNPs selectively bind with gp120, a key envelope glycoprotein of HIV, and inhibit gp120-induced killing of bystander CD4+ T cells. Furthermore, when added to HIV viruses, TNPs effectively neutralize the viral infection of peripheral mononuclear blood cells and human-monocyte-derived macrophages in a dose-dependent manner. Overall, by leveraging natural T cell functions, TNPs show great potential as a new therapeutic agent against HIV infection.
Collapse
Affiliation(s)
- Xiaoli Wei
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gang Zhang
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Danni Ran
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Stephen A Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
91
|
Wei X, Zhang G, Ran D, Krishnan N, Fang RH, Gao W, Spector SA, Zhang L. T-Cell-Mimicking Nanoparticles Can Neutralize HIV Infectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018. [PMID: 30252965 DOI: 10.1002/adma.v30.4510.1002/adma.201802233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
To improve human immunodeficiency virus (HIV) treatment and prevention, therapeutic strategies that can provide effective and broad-spectrum neutralization against viral infection are highly desirable. Inspired by recent advances of cell-membrane coating technology, herein, plasma membranes of CD4+ T cells are collected and coated onto polymeric cores. The resulting T-cell-membrane-coated nanoparticles (denoted as "TNPs") inherit T cell surface antigens critical for HIV binding, such as CD4 receptor and CCR5 or CXCR4 coreceptors. The TNPs act as decoys for viral attack and neutralize HIV by diverting the viruses away from their intended host targets. This decoy strategy, which simulates host cell functions for viral neutralization rather than directly suppressing viral replication machinery, has the potential to overcome HIV genetic diversity while not eliciting high selective pressure. In this study, it is demonstrated that TNPs selectively bind with gp120, a key envelope glycoprotein of HIV, and inhibit gp120-induced killing of bystander CD4+ T cells. Furthermore, when added to HIV viruses, TNPs effectively neutralize the viral infection of peripheral mononuclear blood cells and human-monocyte-derived macrophages in a dose-dependent manner. Overall, by leveraging natural T cell functions, TNPs show great potential as a new therapeutic agent against HIV infection.
Collapse
Affiliation(s)
- Xiaoli Wei
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gang Zhang
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Danni Ran
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Stephen A Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
92
|
Carrillo J, Clotet B, Blanco J. Antibodies and Antibody Derivatives: New Partners in HIV Eradication Strategies. Front Immunol 2018; 9:2429. [PMID: 30405624 PMCID: PMC6205993 DOI: 10.3389/fimmu.2018.02429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022] Open
Abstract
Promptly after primoinfection, HIV generates a pool of infected cells carrying transcriptionally silent integrated proviral DNA, the HIV-1 reservoir. These cells are not cleared by combined antiretroviral therapy (cART), and persist lifelong in treated HIV-infected individuals. Defining clinical strategies to eradicate the HIV reservoir and cure HIV-infected individuals is a major research field that requires a deep understanding of the mechanisms of seeding, maintenance and destruction of latently infected cells. Although CTL responses have been classically associated with the control of HIV replication, and hence with the size of HIV reservoir, broadly neutralizing antibodies (bNAbs) have emerged as new players in HIV cure strategies. Several reasons support this potential role: (i) over the last years a number of bNAbs with high potency and ability to cope with the extreme variability of HIV have been identified; (ii) antibodies not only block HIV replication but mediate effector functions that may contribute to the removal of infected cells and to boost immune responses against HIV; (iii) a series of new technologies have allowed for the in vitro design of improved antibodies with increased antiviral and effector functions. Recent studies in non-human primate models and in HIV-infected individuals have shown that treatment with recombinant bNAbs isolated from HIV-infected individuals is safe and may have a beneficial effect both on the seeding of the HIV reservoir and on the inhibition of HIV replication. These promising data and the development of antibody technology have paved the way for treating HIV infection with engineered monoclonal antibodies with high potency of neutralization, wide coverage of HIV diversity, extended plasma half-life in vivo and improved effector functions. The exciting effects of these newly designed antibodies in vivo, either alone or in combination with other cure strategies (latency reversing agents or therapeutic vaccines), open a new hope in HIV eradication.
Collapse
Affiliation(s)
- Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol, Badalona, Spain.,Chair in AIDS and Related Illnesses, Centre for Health and Social Care Research (CEES), Faculty of Medicine, Universitat de Vic - Universitat Central de Catalunya, Vic, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol, Badalona, Spain.,Chair in AIDS and Related Illnesses, Centre for Health and Social Care Research (CEES), Faculty of Medicine, Universitat de Vic - Universitat Central de Catalunya, Vic, Spain
| |
Collapse
|
93
|
Doi N, Miura T, Mori H, Sakawaki H, Koma T, Adachi A, Nomaguchi M. CXCR4- and CCR5-Tropic HIV-1 Clones Are Both Tractable to Grow in Rhesus Macaques. Front Microbiol 2018; 9:2510. [PMID: 30405570 PMCID: PMC6200915 DOI: 10.3389/fmicb.2018.02510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/02/2018] [Indexed: 01/08/2023] Open
Abstract
A major issue for present HIV-1 research is to establish model systems that reflect or mimic viral replication and pathogenesis actually observed in infected humans. To this end, various strategies using macaques as infection targets have long been pursued. In particular, experimental infections of rhesus macaques by HIV-1 derivatives have been believed to be best suited, if practicable, for studies on interaction of HIV-1 and humans under various circumstances. Recently, through in vitro genetic manipulations and viral cell-adaptations, we have successfully generated a series of HIV-1 derivatives with CXCR4-tropism or CCR5-tropism that grow in macaque cells to various degrees. Of these viruses, those with best replicative potentials can grow comparably with a pathogenic SIVmac in macaque cells by counteracting major restriction factors TRIM5, APOBEC3, and tetherin proteins. In this study, rhesus macaques were challenged with CXCR4-tropic (MN4/LSDQgtu) or CCR5-tropic (gtu + A4CI1) virus. The two viruses were found to productively infect rhesus macaques, being rhesus macaque-tropic HIV-1 (HIV-1rmt). However, plasma viral RNA was reduced to be an undetectable level in infected macaques at 5–6 weeks post-infection and thereafter. While replicated similarly well in rhesus peripheral blood mononuclear cells, MN4/LSDQgtu grew much better than gtu + A4CI1 in the animals. To the best of our knowledge, this is the first report demonstrating that HIV-1 derivatives (variants) grow in rhesus macaques. These viruses certainly constitute firm bases for generating HIV-1rmt clones pathogenic for rhesus monkeys, albeit they grow more poorly than pathogenic SIVmac and SHIV clones reported to date.
Collapse
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Tomoyuki Miura
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromi Mori
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromi Sakawaki
- Non-human Primate Experimental Facility, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takaaki Koma
- Department of Microbiology, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Akio Adachi
- Department of Microbiology, Kansai Medical University, Hirakata, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
94
|
Wang Z, Wang W, Cui YC, Pan Q, Zhu W, Gendron P, Guo F, Cen S, Witcher M, Liang C. HIV-1 Employs Multiple Mechanisms To Resist Cas9/Single Guide RNA Targeting the Viral Primer Binding Site. J Virol 2018; 92:e01135-18. [PMID: 30068653 PMCID: PMC6158435 DOI: 10.1128/jvi.01135-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/26/2018] [Indexed: 12/23/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) gene-editing technology has been used to inactivate viral DNA as a new strategy to eliminate chronic viral infections, including HIV-1. This utility of CRISPR-Cas9 is challenged by the high heterogeneity of HIV-1 sequences, which requires the design of the single guide RNA (sgRNA; utilized by the CRISPR-Cas9 system to recognize the target DNA) to match a specific HIV-1 strain in an HIV patient. One solution to this challenge is to target the viral primer binding site (PBS), which HIV-1 copies from cellular tRNA3 Lys in each round of reverse transcription and is thus conserved in almost all HIV-1 strains. In this study, we demonstrate that PBS-targeting sgRNA directs Cas9 to cleave the PBS DNA, which evokes deletions or insertions (indels) and strongly diminishes the production of infectious HIV-1. While HIV-1 escapes from PBS-targeting Cas9/sgRNA, unique resistance mechanisms are observed that are dependent on whether the plus or the minus strand of the PBS DNA is bound by sgRNA. Characterization of these viral escape mechanisms will inform future engineering of Cas9 variants that can more potently and persistently inhibit HIV-1 infection.IMPORTANCE The results of this study demonstrate that the gene-editing complex Cas9/sgRNA can be programmed to target and cleave HIV-1 PBS DNA, and thus, inhibit HIV-1 infection. Given that almost all HIV-1 strains have the same PBS, which is copied from the cellular tRNA3 Lys during reverse transcription, PBS-targeting sgRNA can be used to inactivate HIV-1 DNA of different strains. We also discovered that HIV-1 uses different mechanisms to resist Cas9/sgRNAs, depending on whether they target the plus or the minus strand of PBS DNA. These findings allow us to predict that a Cas9 variant that uses the CCA sequence as the protospacer adjacent motif (PAM) should more strongly and persistently suppress HIV-1 replication. Together, these data have identified the PBS as the target DNA of Cas9/sgRNA and have predicted how to improve Cas9/sgRNA to achieve more efficient and sustainable suppression of HIV-1 infection, therefore improving the capacity of Cas9/sgRNA in curing HIV-1 infection.
Collapse
Affiliation(s)
- Zhen Wang
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
| | - Wenzhou Wang
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- Department of Microbiology & Immunology, McGill University, Montreal, Canada
| | - Ya Cheng Cui
- Department of Medicine, McGill University, Montreal, Canada
| | - Qinghua Pan
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada
| | - Weijun Zhu
- Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Canada
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Michael Witcher
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
- Department of Microbiology & Immunology, McGill University, Montreal, Canada
| |
Collapse
|
95
|
Raja R, Lata S, Trivedi S, Banerjea AC. Serum deprivation/starvation leads to reactivation of HIV-1 in latently infected monocytes via activating ERK/JNK pathway. Sci Rep 2018; 8:14496. [PMID: 30262819 PMCID: PMC6160481 DOI: 10.1038/s41598-018-32316-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/03/2018] [Indexed: 01/04/2023] Open
Abstract
Despite the high success rate, antiretroviral therapy does not cure the disease completely due to presence of latent viral reservoirs. Although several studies have addressed this issue earlier, the role of serum starvation/deprivation in HIV-1 latency has not been studied. So, we investigated the role of serum starvation in regulating HIV-1 latency. The impact of serum starvation on HIV-1 latency was assessed in latently infected monocytes U1 and T-cells J1.1. Serum starvation breaks HIV-1 latency in U1 cells. Under similar conditions, J1.1 cells failed to show reactivation of virus. We investigated the involvement of cell death pathway and autophagy during the serum starvation in viral reactivation. Inhibition of these pathways did not affect viral reactivation. Furthermore, other crucial factors like NF-κB, SP1 and AKT did not play any role in regulating viral latency. Here, we report that serum deprivation up-regulates ERK/JNK pathway. This leads to phosphorylation of c-Jun which plays an important role in viral reactivation. Treatment of cells with U0126, an ERK kinase inhibitor, potently inhibited viral replication. In summary, we show that serum starvation leads to reactivation of HIV-1 in latently infected monocytes through the ERK/JNK pathway.
Collapse
Affiliation(s)
- Rameez Raja
- Laboratory of Virology, National Institute of Immunology, New Delhi, India.,Lerner Research Institute, Cleveland Clinic, Ohio, USA
| | - Sneh Lata
- Laboratory of Virology, National Institute of Immunology, New Delhi, India
| | - Shubhendu Trivedi
- Laboratory of Virology, National Institute of Immunology, New Delhi, India
| | - Akhil C Banerjea
- Laboratory of Virology, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
96
|
CHANG CC, NARANBHAI V, STERN J, ROCHE M, DANTANARAYANA A, KE R, TENNAKOON S, SOLOMON A, HOH R, HARTOGENSIS W, HECHT FM, SIKARIS K, PRICE DJ, ELLIOTT JH, DEEKS SG, CHURCHILL M, CAMERON PU, HENGARTNER N, PERELSON AS, LEWIN SR. Variation in cell-associated unspliced HIV RNA on antiretroviral therapy is associated with the circadian regulator brain-and-muscle-ARNT-like-1. AIDS 2018; 32:2119-2128. [PMID: 30005017 PMCID: PMC6173794 DOI: 10.1097/qad.0000000000001937] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE(S) To determine whether variation in cell-associated unspliced (CA-US) HIV RNA in HIV-infected individuals on antiretroviral therapy (ART) has a circadian basis. METHODS Prospective observational study of HIV-infected individuals on ART. Blood was collected on three occasions and CA-US HIV RNA and mRNA of the circadian-locomotor-output-cycles-kaput (CLOCK)-associated genes quantified by real time PCR. CLOCK-associated proteins were over-expressed in a cell line stably transfected with an HIV long-terminal repeat (LTR) luciferase reporter. RESULTS Using a mixed effects model, there was a significant increase in log-CA-US RNA at the third visit compared with the first visit (effect size of 0.619 with standard error (SE) of 0.098, P < 0.001) and an independent effect of time of blood draw (effect size 0.051 (SE 0.025), P = 0.040). The CLOCK-associated gene, brain-and-muscle-ARNT-like-1 (BMAL-1) had a significant relationship with log CA-US HIV RNA (effect size 8.508 (SE 3.777), P = 0.028) and also with time (P = 0.045). Over expression of BMAL-1 and CLOCK in a cell line stably transfected with an HIV-LTR luciferase reporter resulted in an increase in luciferase expression and this was reduced following mutation of the second E-box in the HIV-LTR. CONCLUSION The basal level of HIV transcription on ART can vary significantly and is modulated by the circadian regulator BMAL-1, amongst other factors.
Collapse
Affiliation(s)
- Christina C CHANG
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Vivek NARANBHAI
- Nuffield Dept. of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jared STERN
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Michael ROCHE
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Ashanti DANTANARAYANA
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Ruian KE
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM
| | - Surekha TENNAKOON
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Ajantha SOLOMON
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Rebecca HOH
- School of Medicine, University of California San Francisco, San Francisco, CA
| | - Wendy HARTOGENSIS
- Division of Biostatistics, University of California San Francisco, San Francisco, CA
| | - Frederick M HECHT
- Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, CA
| | | | - David J PRICE
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne
| | - Julian H ELLIOTT
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Steven G DEEKS
- School of Medicine, University of California San Francisco, San Francisco, CA
| | - Melissa CHURCHILL
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Paul U CAMERON
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Nicolas HENGARTNER
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM
| | - Alan S. PERELSON
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM
| | - Sharon R LEWIN
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
97
|
Abstract
The benefits of combination antiretroviral therapy (cART) for HIV replication and transmission control have led to its universal recommendation. Many people living with HIV are, however, still undiagnosed or diagnosed late, especially in sub-Saharan Africa, where the HIV disease burden is highest. Further expansion in HIV treatment options, incorporating women-centred approaches, is essential to make individualised care a reality. With a longer life expectancy than before, people living with HIV are at an increased risk of developing non-AIDS comorbidities, such as cardiovascular diseases and cancers. Antiretroviral strategies are evolving towards a decrease in drug burden, and some two-drug combinations have proven efficacy for maintenance therapy. Investigational immune checkpoint inhibitors and broadly neutralising antibodies with effector functions have energised the HIV cure research field as the search for an effective vaccine continues. In this Seminar, we review advances and challenges relating to the goal of an AIDS-free world.
Collapse
Affiliation(s)
- Jade Ghosn
- Inserm UMR-S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Babafemi Taiwo
- Division of Infectious Diseases and Center for Global Health, Northwestern University, Chicago, Illinois, USA
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Brigitte Autran
- Inserm UMR-S 1135, Centre de Recherches en Immunologie et Maladies Infectieus, CIMI-Paris, Université Pierre et Marie Curie, Paris, France
| | - Christine Katlama
- Inserm UMR-S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, France; Paris-Sorbonne University, Paris, France; Assistance Publique-Hôpitaux de Paris, Department of Infectious Diseases, Hôpital Pitié Salpêtrière, Paris, France.
| |
Collapse
|
98
|
Helal M, Dadachova E. Radioimmunotherapy as a Novel Approach in HIV, Bacterial, and Fungal Infectious Diseases. Cancer Biother Radiopharm 2018; 33:330-335. [PMID: 30133305 DOI: 10.1089/cbr.2018.2481] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the past several decades, many antimicrobial agents have been used in treating different fungal, bacterial, and viral infections. However, these agents have faced challenges such as pronounced side-effect profiles and pathogen resistance. In addition, a cure for many chronic infections such as human immunodeficiency virus (HIV) has not been achieved, and the incidence of opportunistic infections in immunocompromised patients has increased significantly in the past decades. Therefore, an alternative strategy for combating these infections is needed. Radioimmunotherapy (RIT) has been proposed to be a valuable tool in the management of such infections. The side-effects associated with RIT are minimal as the targeted antigens are only expressed on microbial or infected cells. RIT demonstrated impressive potency in eradicating pathogens in animal models and patient samples. Cryptococcus neoformans, HIV, and Bacillus anthracis are few examples of infections for which RIT has been an effective treatment using radionuclides such as bismuth-213 (213Bi) or rhenium-188 (188Re).
Collapse
Affiliation(s)
- Muath Helal
- University of Saskatchewan , Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
99
|
Zhang G, Luk BT, Hamidy M, Zhang L, Spector SA. Induction of a Na +/K +-ATPase-dependent form of autophagy triggers preferential cell death of human immunodeficiency virus type-1-infected macrophages. Autophagy 2018; 14:1359-1375. [PMID: 29962265 DOI: 10.1080/15548627.2018.1476014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although antiretroviral therapy is highly effective in suppressing human immunodeficiency virus type-1 (HIV) replication, treatment has failed to eliminate viral reservoirs and discontinuation of treatment results in viral reactivation. Here, we demonstrate that peptides Tat-vFLIP-α2 and Tat-Beclin 1/BECN1 which have been shown to induce a Na+/K+-ATPase- and a macroautophagy/autophagy-dependent form of cell death, autosis, can preferentially kill HIV-infected macrophages while preventing virological rebound. To improve bioavailability and drug delivery, Tat-vFLIP-α2 was encapsulated into biodegradable PLGA (poly lactic-co-glycolic acid)-lipid-PEG (polyethylene glycol) nanoparticles for long-lasting intracellular delivery. After a single dose of NP-vFLIP-α2, HIV-infected macrophages were preferentially killed in a dose-dependent manner compared to uninfected or untreated HIV-infected cells with complete inhibition of HIV infection at 10 μM of peptide. HIV-infected macrophages treated with NP-vFLIP-α2 exhibited increased markers of autophagy including LC3B lipidation, SQSTM1/p62 degradation and Na+/K+-ATPase expression compared to untreated uninfected or infected cells. Moreover, the increased cell death observed in HIV-infected cells was not altered by treatment with bafilomycin A1 (BAF) or the caspase inhibitor Z-VAD-FMK, but could be reversed following treatment with the Na+/K+-ATPase inhibitor, digoxin, or knockdown of ATG5 or ATG7. NP-vFLIP-α2 induced preferential killing was also detected in HIV-infected macrophages under antiretroviral suppression without inducing viral reactivation. Additionally, we found that Na+/K+-ATPase was upregulated in HIV-infected cells, which enhanced NP-vFLIP-α2 induced cell death. These findings provide a novel strategy to eradicate HIV-infected macrophages by selectively killing infected cells through the induction of Na+/K+-ATPase dependent autophagy, while preventing reactivation of virus and new infection of uninfected bystander cells.
Collapse
Affiliation(s)
- Gang Zhang
- a Division of Infectious Diseases, Department of Pediatrics , University of California San Diego , La Jolla , CA , USA
| | - Brian T Luk
- b Department of NanoEngineering and Moores Cancer Center , University of California San Diego , La Jolla , CA , USA
| | - Morcel Hamidy
- a Division of Infectious Diseases, Department of Pediatrics , University of California San Diego , La Jolla , CA , USA
| | - Liangfang Zhang
- b Department of NanoEngineering and Moores Cancer Center , University of California San Diego , La Jolla , CA , USA
| | - Stephen A Spector
- a Division of Infectious Diseases, Department of Pediatrics , University of California San Diego , La Jolla , CA , USA.,c Division of Infectious Diseases , Rady Children's Hospital , San Diego , CA , USA
| |
Collapse
|
100
|
Haworth KG, Schefter LE, Norgaard ZK, Ironside C, Adair JE, Kiem HP. HIV infection results in clonal expansions containing integrations within pathogenesis-related biological pathways. JCI Insight 2018; 3:99127. [PMID: 29997284 DOI: 10.1172/jci.insight.99127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/08/2018] [Indexed: 12/18/2022] Open
Abstract
The genomic integration of HIV into cells results in long-term persistence of virally infected cell populations. This integration event acts as a heritable mark that can be tracked to monitor infected cells that persist over time. Previous reports have documented clonal expansion in people and have linked them to proto-oncogenes; however, their significance or contribution to the latent reservoir has remained unclear. Here, we demonstrate that a directed pattern of clonal expansion occurs in vivo, specifically in gene pathways important for viral replication and persistence. These biological processes include cellular division, transcriptional regulation, RNA processing, and posttranslational modification pathways. This indicates preferential expansion when integration events occur within genes or biological pathways beneficial for HIV replication and persistence. Additionally, these expansions occur quickly during unsuppressed viral replication in vivo, reinforcing the importance of early intervention for individuals to limit reservoir seeding of clonally expanded HIV-infected cells.
Collapse
Affiliation(s)
- Kevin G Haworth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lauren E Schefter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Zachary K Norgaard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Christina Ironside
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jennifer E Adair
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine and
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine and.,Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|