51
|
Doll JR, Moreno-Fernandez ME, Stankiewicz TE, Wayland JL, Wilburn A, Weinhaus B, Chougnet CA, Giordano D, Cappelletti M, Presicce P, Kallapur SG, Salomonis N, Tilburgs T, Divanovic S. BAFF and APRIL counterregulate susceptibility to inflammation-induced preterm birth. Cell Rep 2023; 42:112352. [PMID: 37027297 PMCID: PMC10551044 DOI: 10.1016/j.celrep.2023.112352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Clinical evidence points to a function for B cell-activating factor (BAFF) in pregnancy. However, direct roles for BAFF-axis members in pregnancy have not been examined. Here, via utility of genetically modified mice, we report that BAFF promotes inflammatory responsiveness and increases susceptibility to inflammation-induced preterm birth (PTB). In contrast, we show that the closely related A proliferation-inducing ligand (APRIL) decreases inflammatory responsiveness and susceptibility to PTB. Known BAFF-axis receptors serve a redundant function in signaling BAFF/APRIL presence in pregnancy. Treatment with anti-BAFF/APRIL monoclonal antibodies or BAFF/APRIL recombinant proteins is sufficient to manipulate susceptibility to PTB. Notably, macrophages at the maternal-fetal interface produce BAFF, while BAFF and APRIL presence divergently shape macrophage gene expression and inflammatory function. Overall, our findings demonstrate that BAFF and APRIL play divergent inflammatory roles in pregnancy and provide therapeutic targets for mitigating risk of inflammation-induced PTB.
Collapse
Affiliation(s)
- Jessica R Doll
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Traci E Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jennifer L Wayland
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Adrienne Wilburn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Benjamin Weinhaus
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Claire A Chougnet
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Daniela Giordano
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA 98195, USA
| | - Monica Cappelletti
- Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Pietro Presicce
- Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Suhas G Kallapur
- Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tamara Tilburgs
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
52
|
Dingle K, Kassem OM, Azizieh F, AbdulHussain G, Raghupathy R. Quantitative analyses of cytokine profiles reveal hormone-mediated modulation of cytokine profiles in recurrent spontaneous miscarriage. Cytokine 2023; 164:156160. [PMID: 36804258 DOI: 10.1016/j.cyto.2023.156160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/21/2023]
Abstract
PURPOSE Cytokines play important roles in pregnancy complications. Some hormones such as estrogen, progesterone, and dydrogesterone have been shown to alter cytokine profiles. Understanding how cytokine profiles are affected by these hormones is therefore an important step towards immunomodulatory therapies for pregnancy complications. We analyse previously published data on the effects of estrogen, progesterone, and dydrogesterone on cytokine balances in women having recurrent spontaneous miscarriages. MATERIALS AND METHODS Levels of eight cytokines (IFN-γ, IL-2, IL-6, IL-10, IL-13, IL-17, IL-23, TNF-α) from n = 22 women presenting unexplained recurrent spontaneous miscarriages were studied. Cytokine values were recorded after in vitro exposure of peripheral blood cells to estrogen, progesterone, and dydrogesterone. We expand on earlier analysis of the dataset by employing different statistical techniques including effect sizes for individual cytokine values, a more powerful statistical test, and adjusting p-values for multiple comparisons. We employ multivariate analysis methods, including to determine the relative magnitude of the effects of the hormone therapies on cytokines. A new statistical method is introduced based on pairwise distances able to accommodate complex relations in cytokine profiles. RESULTS We report several statistically significant differences in individual cytokine values between the control group and each hormone treated group, with estrogen affecting the fewest cytokines, and progesterone and dydrogesterone both affecting seven out of eight cytokines. Exposure to estrogen produces no large effects sizes however, while IFN-γ and IL-17 show large effect sizes for both progesterone and dydrogesterone, among other cytokines. Our new method for identifying which collections (i.e. subsets) of cytokines best distinguish contrasting groups identifies IFN-γ, IL-10 and IL-23 as especially noteworthy for both progesterone and dydrogesterone treatments. CONCLUSIONS While some statistically significant differences in cytokine levels after exposure to estrogen are found, these have small effect sizes and are unlikely to be clinically relevant. Progesterone and dydrogesterone both induce statistically significant and large effect-size differences in cytokine levels, hence therapy with these two progestogens is more likely to be clinically relevant. Univariate and multivariate methods for identifying cytokine importances provide insight into which groups of cytokines are most affected and in what ways by therapies.
Collapse
Affiliation(s)
- Kamaludin Dingle
- Centre for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait; Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
| | - Osama M Kassem
- Centre for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Fawaz Azizieh
- Centre for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | | | - Raj Raghupathy
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
53
|
Moffett A, Shreeve N. Local immune recognition of trophoblast in early human pregnancy: controversies and questions. Nat Rev Immunol 2023; 23:222-235. [PMID: 36192648 PMCID: PMC9527719 DOI: 10.1038/s41577-022-00777-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 02/02/2023]
Abstract
The role of the maternal immune system in reproductive success in humans remains controversial. Here we focus on the events that occur in the maternal decidua during the first few weeks of human pregnancy, because this is the site at which maternal leukocytes initially interact with and can recognize fetal trophoblast cells, potentially involving allorecognition by both T cells and natural killer (NK) cells. NK cells are the dominant leukocyte population in first-trimester decidua, and genetic studies point to a role of allorecognition by uterine NK cells in establishing a boundary between the mother and the fetus. By contrast, definitive evidence that allorecognition by decidual T cells occurs during the first trimester is lacking. Thus, our view is that during the crucial period when the placenta is established, damaging T cell-mediated adaptive immune responses towards placental trophoblast are minimized, whereas NK cell allorecognition contributes to successful implantation and healthy pregnancy.
Collapse
Affiliation(s)
- Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Norman Shreeve
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| |
Collapse
|
54
|
Gut microbiota alters host bile acid metabolism to contribute to intrahepatic cholestasis of pregnancy. Nat Commun 2023; 14:1305. [PMID: 36894566 PMCID: PMC9998625 DOI: 10.1038/s41467-023-36981-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a female pregnancy-specific disorder that is characterized by increased serum bile acid and adverse fetal outcomes. The aetiology and mechanism of ICP are poorly understood; thus, existing therapies have been largely empiric. Here we show that the gut microbiome differed significantly between individuals with ICP and healthy pregnant women, and that colonization with gut microbiome from ICP patients was sufficient to induce cholestasis in mice. The gut microbiomes of ICP patients were primarily characterized by Bacteroides fragilis (B. fragilis), and B. fragilis was able to promote ICP by inhibiting FXR signaling via its BSH activity to modulate bile acid metabolism. B. fragilis-mediated FXR signaling inhibition was responsible for excessive bile acid synthesis and interrupted hepatic bile excretion to ultimately promote the initiation of ICP. We propose that modulation of the gut microbiota-bile acid-FXR axis may be of value for ICP treatment.
Collapse
|
55
|
Emerging Roles of Endocannabinoids as Key Lipid Mediators for a Successful Pregnancy. Int J Mol Sci 2023; 24:ijms24065220. [PMID: 36982295 PMCID: PMC10048990 DOI: 10.3390/ijms24065220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, Cannabis use/misuse for treating pregnancy-related symptoms and other chronic conditions has increased among pregnant women, favored by decriminalization and/or legalization of its recreational uses in addition to its easy accessibility. However, there is evidence that prenatal Cannabis exposure might have adverse consequences on pregnancy progression and a deleterious impact on proper neurodevelopmental trajectories in the offspring. Maternal Cannabis use could interfere with the complex and finely controlled role performed by the endocannabinoid system in reproductive physiology, impairing multiple gestational processes from blastocyst implantation to parturition, with long-lasting intergenerational effects. In this review, we discuss current clinical and preclinical evidence regarding the role of endocannabinoids in development, function, and immunity of the maternal–fetal interface, focusing on the impact of Cannabis constituents on each of these gestational processes. We also discuss the intrinsic limitations of the available studies and the future perspectives in this challenging research field.
Collapse
|
56
|
Fang S, Cai C, Bai Y, Zhang L, Yang L. Early Pregnancy Regulates Expression of IkappaB Family in Ovine Spleen and Lymph Nodes. Int J Mol Sci 2023; 24:ijms24065156. [PMID: 36982231 PMCID: PMC10049502 DOI: 10.3390/ijms24065156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Early pregnancy modulates the maternal immune system, including the spleen and lymph nodes, which participate in maternal innate and adaptive immune responses. Methods: Ovine spleens and lymph nodes were sampled at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation, and qRT-PCR, Western blot and immunohistochemistry analysis were used to analyze the expression of the IκB family, including BCL-3, IκBα, IκBβ, IκBε, IKKγ, IκBNS and IκBζ. Early pregnancy induced expression of BCL-3, IκBα, IκBε, IKKγ and IκBζ, and expression of BCL-3, IκBβ and IκBNS peaked at day 16 of pregnancy in the spleen. However, early pregnancy suppressed the expression of BCL-3 and IκBNS, but stimulated the expression of IκBβ and IκBζ, and expression levels of IκBα, IκBβ, IκBε and IKKγ peaked in lymph nodes at days 13 and/or 16 of pregnancy. Early pregnancy changed the expression of the IκB family in the maternal spleen and lymph node in a tissue-specific manner, suggesting that the modulation of the IκB family may be involved in regulation of maternal functions of the spleen and lymph nodes, which are necessary for the establishment of maternal immune tolerance during early pregnancy in sheep.
Collapse
Affiliation(s)
- Shengya Fang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Chunjiang Cai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Ying Bai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
57
|
Weng J, Couture C, Girard S. Innate and Adaptive Immune Systems in Physiological and Pathological Pregnancy. BIOLOGY 2023; 12:402. [PMID: 36979094 PMCID: PMC10045867 DOI: 10.3390/biology12030402] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
The dynamic immunological changes occurring throughout pregnancy are well-orchestrated and important for the success of the pregnancy. One of the key immune adaptations is the maternal immune tolerance towards the semi-allogeneic fetus. In this review, we provide a comprehensive overview of what is known about the innate and adaptive immunological changes in pregnancy and the role(s) of specific immune cells during physiological and pathological pregnancy. Alongside this, we provided details of remaining questions and challenges, as well as future perspectives for this growing field of research. Understanding the immunological changes that occur can inform potential strategies on treatments for the optimal health of the neonate and pregnant individual both during and after pregnancy.
Collapse
Affiliation(s)
- Jessica Weng
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Camille Couture
- Department of Microbiology, Infectiology and Immunology, Universite de Montreal, Ste-Justine Hospital Research Center, Montreal, QC H3T 1C5, Canada
| | - Sylvie Girard
- Department of Obstetrics & Gynecology, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
58
|
The Influence of Maternal KIR Haplotype on the Reproductive Outcomes after Single Embryo Transfer in IVF Cycles in Patients with Recurrent Pregnancy Loss and Implantation Failure-A Single Center Experience. J Clin Med 2023; 12:jcm12051905. [PMID: 36902692 PMCID: PMC10004330 DOI: 10.3390/jcm12051905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
(1) Background: Recurrent pregnancy loss (RPL) and recurrent implantation failure (RIF) have in common a deficient maternal adaptation to the semi-allogeneic fetus, in which killer immunoglobulin-like receptor (KIR) family expressed by natural killer (NK) cells play an important role. The aim of this study was to evaluate the influence of maternal KIR haplotype on the reproductive outcomes after single embryo transfer in IVF cycles in patients with RPL and RIF. (2) Methods: Patients with RIF and RPL who presented at Origyn Fertility Center from Iasi, Romania, were prospectively enrolled between January 2020 and December 2022. Clinical and paraclinical data was examined. Descriptive statistics and a conditional logistic regression model were used to analyze our data. (3) Results: Patients with a KIR AA haplotype had significantly more chances of miscarriage if they underwent an IVF procedure (aOR: 4.15, 95% CI: 1.39-6.50, p = 0.032) compared with those who spontaneously achieved a pregnancy. Moreover, it appeared that the same haplotype increased the chances of obtaining a pregnancy for patients who underwent an IVF procedure (aOR: 2.57, 95% CI: 0.85-6.75, p = 0.023). (4) Conclusions: Determination of KIR haplotype could be beneficial for patients with RPL or RIF in order to offer an individualized management.
Collapse
|
59
|
Rao VA, Kurian NK, Rao KA. Cytokines, NK cells and regulatory T cell functions in normal pregnancy and reproductive failures. Am J Reprod Immunol 2023; 89:e13667. [PMID: 36480305 DOI: 10.1111/aji.13667] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 10/22/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE OF THE REVIEW Pregnancy brings about an intricate assortment of dynamic changes, which causes proper connection of genetically discordant maternal and foetal tissues. Uterine NK cells are immune cells populating the endometrium and play a major role in implantation and also regulate placentation. This review mainly aims explore the role of uterine NK cells in implantation and how it is affecting in adverse pregnancy outcomes. RECENT FINDINGS Though the functions of uterine NK (uNK) cells are not clearly understood, NK cell activity plays a vital role during immunomodulation which is the main step in implantation and sustaining the early pregnancy. Cytokines, cell surface receptors of NK cells and hormones such as progesterone modulate the NK cell activity in turn affect the implantation of the embryo. Altered NK cell activity (number and functionality) would be an important attributing factor in adverse pregnancy outcomes. Furthermore, T regulatory cells and cytokines also modulate the immune responses in the decidua which in turn contributes to successful implantation of embryos. SUMMARY Immunological responses and interactions in the Foetus-maternal interface is crucial in the successful implantation of allogenic foetus resulting in a healthy pregnancy. NK cells, Treg cells and cytokines play a major role in successful implantation which remains an enigma. Comprehending pregnancy-induced immunological changes at the foetus-maternal interface will allow newer therapeutic strategies to improve pregnancy outcomes.
Collapse
Affiliation(s)
| | - Noble K Kurian
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Kamini A Rao
- Department, of Reproductive Medicine, Bangalore, India
| |
Collapse
|
60
|
Polcz VE, Rincon JC, Hawkins RB, Barrios EL, Efron PA, Moldawer LL, Larson SD. TRAINED IMMUNITY: A POTENTIAL APPROACH FOR IMPROVING HOST IMMUNITY IN NEONATAL SEPSIS. Shock 2023; 59:125-134. [PMID: 36383390 PMCID: PMC9957873 DOI: 10.1097/shk.0000000000002054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ABSTRACT Sepsis, a dysregulated host immune response to infection, is one of the leading causes of neonatal mortality worldwide. Improved understanding of the perinatal immune system is critical to improve therapies to both term and preterm neonates at increased risk of sepsis. Our narrative outlines the known and unknown aspects of the human immune system through both the immune tolerant in utero period and the rapidly changing antigen-rich period after birth. We will highlight the key differences in innate and adaptive immunity noted through these developmental stages and how the unique immune phenotype in early life contributes to the elevated risk of overwhelming infection and dysregulated immune responses to infection upon exposure to external antigens shortly after birth. Given an initial dependence on neonatal innate immune host responses, we will discuss the concept of innate immune memory, or "trained immunity," and describe several potential immune modulators, which show promise in altering the dysregulated immune response in newborns and improving resilience to sepsis.
Collapse
Affiliation(s)
- Valerie E Polcz
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | | | | | | | | | | | | |
Collapse
|
61
|
Chen Z, Yang H, Fu H, Wu L, Liu M, Jiang H, Liu Q, Wang Y, Xiong S, Zhou M, Sun X, Chen C, Huang L. Gut bacterial species in late trimester of pregnant sows influence the occurrence of stillborn piglet through pro-inflammation response. Front Immunol 2023; 13:1101130. [PMID: 36741405 PMCID: PMC9890068 DOI: 10.3389/fimmu.2022.1101130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Maternal gut microbiota is an important regulator for the metabolism and immunity of the fetus during pregnancy. Recent studies have indicated that maternal intestinal microbiota is closely linked to the development of fetus and infant health. Some bacterial metabolites are considered to be directly involved in immunoregulation of fetus during pregnancy. However, the detailed mechanisms are largely unknown. In this study, we exploited the potential correlation between the gut microbiota of pregnant sows and the occurrence of stillborn piglets by combining the 16S rRNA gene and metagenomic sequencing data, and fecal metabolome in different cohorts. The results showed that several bacterial species from Bacteroides, potential pathogens, and LPS-producing bacteria exhibited significantly higher abundances in the gut of sows giving birth to stillborn piglets. Especially, Bacteroides fragilis stood out as the key driver in both tested cohorts and showed the most significant association with the occurrence of stillborn piglets in the DN1 cohort. However, several species producing short-chain fatty acids (SCFAs), such as Prevotella copri, Clostridium butyricum and Faecalibacterium prausnitzii were enriched in the gut of normal sows. Functional capacity analysis of gut microbiome revealed that the pathways associated with infectious diseases and immune diseases were enriched in sows giving birth to stillborn piglets. However, energy metabolism had higher abundance in normal sows. Fecal metabolome profiling analysis found that Lysophosphatidylethanolamine and phosphatidylethanolamine which are the main components of cell membrane of Gram-negative bacteria showed significantly higher concentration in stillbirth sows, while SCFAs had higher concentration in normal sows. These metabolites were significantly associated with the stillborn-associated bacterial species including Bacteroides fragilis. Lipopolysaccharide (LPS), IL-1β, IL-6, FABP2, and zonulin had higher concentration in the serum of stillbirth sows, indicating increased intestinal permeability and pro-inflammatory response. The results from this study suggested that certain sow gut bacterial species in late trimester of pregnancy, e.g., an excess abundance of Bacteroides fragilis, produced high concentration of LPS which induced sow pro-inflammatory response and might cause the death of the relatively weak piglets in a farrow. This study provided novel evidences about the effect of maternal gut microbiota on the fetus development and health.
Collapse
Affiliation(s)
| | - Hui Yang
- *Correspondence: Lusheng Huang, ; Congying Chen, ; Hui Yang,
| | | | | | | | | | | | | | | | | | | | - Congying Chen
- *Correspondence: Lusheng Huang, ; Congying Chen, ; Hui Yang,
| | - Lusheng Huang
- *Correspondence: Lusheng Huang, ; Congying Chen, ; Hui Yang,
| |
Collapse
|
62
|
Bao S, Chen Z, Qin D, Xu H, Deng X, Zhang R, Ma J, Lu Z, Jiang S, Zhang X. Single-cell profiling reveals mechanisms of uncontrolled inflammation and glycolysis in decidual stromal cell subtypes in recurrent miscarriage. Hum Reprod 2023; 38:57-74. [PMID: 36355621 DOI: 10.1093/humrep/deac240] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/08/2022] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Do distinct subpopulations of decidual stromal cells (DSCs) exist and if so, are given subpopulations enriched in recurrent miscarriage (RM)? SUMMARY ANSWER Three subpopulations of DSCs were identified from which inflammatory DSCs (iDSCs) and glycolytic DSCs (glyDSCs) are significantly enriched in RM, with implicated roles in driving decidual inflammation and immune dysregulation. WHAT IS KNOWN ALREADY DSCs play crucial roles in establishing and maintaining a successful pregnancy; dysfunction of DSCs has been considered as one of the key reasons for the development of RM. STUDY DESIGN, SIZE, DURATION We collected 15 early decidual samples from five healthy donors (HDs) and ten RM patients to perform single-cell RNA sequencing (scRNA-seq). A total of 43 RM patients and 37 HDs were enrolled in the validation cohort. PARTICIPANTS/MATERIALS, SETTING, METHODS Non-immune cells and immune cells of decidual tissues were sorted by flow cytometry to perform scRNA-seq. We used tissue microarrays (TMA) to validate three distinct subpopulations of DSCs. The expression of inflammatory and glycolytic proteins by DSCs was validated by immunohistochemistry (IHC) and multiplex immunohistochemistry (mIHC). Different subsets of decidual NK (dNK) cells and macrophages were also validated by multicolor flow cytometry and mIHC. Cell ligand-receptor and spatial analyses between DSCs and immune cells were analyzed by mIHC. MAIN RESULTS AND THE ROLE OF CHANCE We classify the DSCs into three subtypes based on scRNA-seq data: myofibroblastic (myDSCs), inflammatory (iDSCs) and glycolytic (glyDSCs), with the latter two being significantly enriched in RM patients. The distribution patterns of DSC subtypes in the RM and HD groups were validated by mIHC. Single-cell analyses indicate that the differentiation of iDSCs and glyDSCs may be coupled with the degrees of hypoxia. Consequently, we propose a pathological model in which a vicious circle is formed and fueled by hypoxic stress, uncontrolled inflammation and aberrant glycolysis. Furthermore, our results show that the inflammatory SPP1+ macrophages and CD18+ dNK cells are preferentially increased in the decidua of RM patients. Cell ligand-receptor and mIHC spatial analyses uncovered close interactions between pathogenic DSCs and inflammatory SPP1+ macrophages and CD18+ NK cells in RM patients. LARGE SCALE DATA The raw single-cell sequence data reported in this paper were deposited at the National Omics Data Encyclopedia (www.biosino.org), under the accession number OEP002901. LIMITATIONS, REASONS FOR CAUTION The number of decidual samples for scRNA-seq was limited and in-depth functional studies on DSCs are warranted in future studies. WIDER IMPLICATIONS OF THE FINDINGS Identification of three DSC subpopulations opens new avenues for further investigation of their roles in RM patients. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Strategic Priority Research Program (No. XDB29030302), Frontier Science Key Research Project (QYZDB-SSW-SMC036), Chinese Academy of Sciences; National Key Research and Development Program of China (2021YFE0200600), National Natural Science Foundation of China (No. 31770960), Shanghai Municipal Science and Technology Major Project (No. 2019SHZDZX02, HS2021SHZX001), and Shanghai Committee of Science and Technology (17411967800). All authors report no conflict of interest.
Collapse
Affiliation(s)
- Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zechuan Chen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Dengke Qin
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihui Xu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Xujing Deng
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruixiu Zhang
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqiang Ma
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Zhouping Lu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shan Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
| |
Collapse
|
63
|
Wang H, Jiang J, Jin T, Wang Y, Li M, Huang S, Xie J, Chen Z, Guo Y, Zheng J, Jiang Y, Mo Z. Associations of circulation levels of cytokines with birthweight, preterm birth, spontaneous miscarriages, and stillbirth: A Mendelian randomization analysis. Front Genet 2023; 14:1113804. [PMID: 36891154 PMCID: PMC9986262 DOI: 10.3389/fgene.2023.1113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Background: The association between immune imbalances and adverse pregnancy outcomes has been extensive investigated by observational studies, but remain unclear. Thus, this study aimed to establish the causality of the circulation levels of cytokines on adverse pregnancy outcomes, such as offspring's birthweight (BW), preterm birth (PTB), spontaneous miscarriage (SM), and stillbirth (SB). Methods: Two-sample Mendelian randomization (MR) analysis was employed to investigate potential causal relations between 41 cytokines and pregnancy outcomes on the basis of previously published GWAS datasets. Multivariable MR (MVMR) analysis was implemented to investigate the effect of the composition of cytokine networks on the pregnancy outcomes. Potential risk factors were further estimated to explore the potential mediators. Results: Genetic correlation analysis based on large GWAS data sources revealed that genetically predicted MIP1b (β = -0.027, S.E. = 0.010, p = 0.009) and MCSF (β = -0.024, S.E. = 0.011, p = 0.029) were associated with reduced offspring's BW, MCP1 (OR: 0.90, 95% CI: 0.83-0.97, p = 0.007) was associated with reduced SM risk, SCF (β = -0.014, S.E. = 0.005, p = 0.012) associated with decreased number of SB in MVMR. The univariable MR showed that GROa (OR: 0.92, 95% CI: 0.87-0.97, p = 0.004) was associated with decreased PTB risk. Except for the MCSF-BW association, all above associations surpassed the Bonferroni corrected threshold. The MVMR results revealed that MIF, SDF1a, MIP1b, MCSF and IP10 composed cytokine networks, associated with offspring's BW. Risk factors analysis indicated that the above causal associations might be mediated by smoking behaviors. Conclusion: These findings suggest the causal associations of several cytokines with adverse pregnancy outcomes, which were potentially mediated by smoking and obesity. Some of the results did not been corrected through multiple tests and larger samples verification is required in further studies.
Collapse
Affiliation(s)
- Honghong Wang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Department of Pharmacy, Liuzhou Maternity and Child Healthcare Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China.,Department of Pharmacy, Liuzhou Hospital of Guangzhou Women and Children's Medical Center, Liuzhou, Guangxi, China
| | - Jinghang Jiang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,The Reproductive Medicine Center, Jingmen No. 2 People's Hospital, JingChu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | - Tingwei Jin
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yifu Wang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Mingli Li
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Shengzhu Huang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Juanjuan Xie
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhongyuan Chen
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Yi Guo
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Zheng
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China.,Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
64
|
Hu J, Guo Q, Liu C, Yu Q, Ren Y, Wu Y, Li Q, Li Y, Liu J. Immune cell profiling of preeclamptic pregnant and postpartum women by single-cell RNA sequencing. Int Rev Immunol 2022; 43:1-12. [PMID: 36369864 DOI: 10.1080/08830185.2022.2144291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/30/2022] [Indexed: 11/15/2022]
Abstract
Preeclampsia (PE), a leading cause of maternal and fetal morbidity and mortality, is closely related to the immune system alterations. However, little is known about the landscape and heterogeneity of maternal immune system at single-cell level among PE patients. In this study, peripheral blood mononuclear cells (PBMCs) were isolated from three early-onset preeclamptic pregnant women and two healthy control, respectively. Single-cell RNA sequencing was performed on 10× genomics platform and single-cell transcriptomes were obtained to characterize immune cell subgroups at the pregnant and postpartum stages. In total, 80,429 single-cell transcriptomes were obtained. 19 cellular compositions were identified, which were categorized into six cell types including T cells, natural killer (NK) cells, B cells, monocytes, plasmacytoid dendritic cells and conventional dendritic cells. There were excessive activation of B cells, monocytes and NK cells in PE patients at the pregnant stage based on comparative analysis. Lower immune response activation was noticed in CD4+ and CD8+ T cells in PE patients, especially the low-activation of memory T cells at the pregnant and postpartum stages. PE patients showed high activation of B cells in pregnancy persisted postpartum and lower activation of memory T cells, indicating their persistent effects on the pathogenesis and recurrence risk of PE. This study provide a broad characterization of the single-cell transcriptome of PBMCs in PE, which contributes to identification of immune imbalance for its monitoring and treatment.
Collapse
Affiliation(s)
- Jing Hu
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Guo
- Berry Genomics Corporation, Beijing, China
| | - Congcong Liu
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Yu
- Berry Genomics Corporation, Beijing, China
| | - Yuan Ren
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yueni Wu
- Berry Genomics Corporation, Beijing, China
| | - Qin Li
- Berry Genomics Corporation, Beijing, China
| | - Yuezhen Li
- Berry Genomics Corporation, Beijing, China
| | - Juntao Liu
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
65
|
Bane S, Simard JF, Wall-Wieler E, Butwick AJ, Carmichael SL. Subsequent risk of stillbirth, preterm birth, and small for gestational age: A cross-outcome analysis of adverse birth outcomes. Paediatr Perinat Epidemiol 2022; 36:815-823. [PMID: 35437809 DOI: 10.1111/ppe.12881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Stillbirth, preterm birth, and small for gestational age (SGA) birth have an increased recurrence risk. The occurrence of one of these biologically related outcomes could also increase the risk for another one of these outcomes in a subsequent pregnancy. OBJECTIVES We assessed cross-outcome risks for subsequent stillbirth, preterm birth, and SGA. METHODS We used live birth and fetal death records to identify singleton, sequential birth pairs in California (1997-2017). Stillbirth was defined as delivery at ≥20 weeks of gestation of a foetus that died in utero; preterm birth as live birth at 20-36 weeks; and small for gestational age as sex-specific birthweight <10th percentile for gestational age. Risk ratios (RR) were computed using modified Poisson regression and adjusted for potential confounders. Sensitivity analyses included analysing a cohort restricted to primiparous index births and using inverse-probability censoring weights. RESULTS Of 3,108,532 birth pairs, 16,668 (0.5%), 260,596 (8.4%) and 331,109 (10.7%) of index births were stillborn, preterm and SGA, respectively. Among individuals with an index stillbirth, the adjusted RRs were 1.90 (95% confidence interval [CI] 1.83, 1.98) for subsequent preterm and 1.35 (95% CI 1.28, 1.41) for subsequent SGA. Among those with index preterm birth, the adjusted RRs were 2.02 (95% CI 1.92, 2.13) for stillbirth and 1.42 (95% CI 1.41, 1.44) for SGA. Among those with index SGA, the adjusted RRs were 1.54 (95% CI 1.46, 1.63) for stillbirth and 1.45 (95% CI 1.44, 1.47) for preterm birth. Similar results were reported for sensitivity analyses. CONCLUSIONS Individuals experiencing stillbirth, preterm birth, or SGA in one pregnancy had an increased risk of one of these biologically related outcomes in a subsequent pregnancy. These findings could encourage enhanced surveillance for individuals who experience stillbirth, preterm birth, or SGA and desire a subsequent pregnancy.
Collapse
Affiliation(s)
- Shalmali Bane
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA
| | - Julia F Simard
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Elizabeth Wall-Wieler
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alexander J Butwick
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Suzan L Carmichael
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.,Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
66
|
Benkhalifa M, Joao F, Duval C, Montjean D, Bouricha M, Cabry R, Bélanger MC, Bahri H, Miron P, Benkhalifa M. Endometrium Immunomodulation to Prevent Recurrent Implantation Failure in Assisted Reproductive Technology. Int J Mol Sci 2022; 23:ijms232112787. [PMID: 36361577 PMCID: PMC9654171 DOI: 10.3390/ijms232112787] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2022] Open
Abstract
After more than four decades of assisted reproductive technology (ART) practice worldwide, today more than 60% of women undergoing in vitro fertilization (IVF) treatments fail to become pregnant after the first embryo transfer and nearly 20% of patients are suffering from unexplained recurrent implantation failures (RIFs) and repeated pregnancy loss (RPL). The literature reported different causes of RIF–RPL, mainly multifactorial, endometrial and idiopathic. RIF remains a black box because of the complicated categorization and causes of this physio-pathological dysregulation of implantation and pregnancy process after ovarian stimulation. Many options were suggested as solutions to treat RIF–RPL with controversial results on their usefulness. In this article, we reviewed different possible therapeutic options to improve implantation rates and clinical outcomes. Based on our experience we believe that endometrium immunomodulation after intrauterine insemination of activated autologous peripheral blood mononuclear cells (PBMCs) or platelet-rich plasma (PRP) can be a promising therapeutic solution. On the other hand, peripheral lymphocyte balance typing, specific cytokines and interleukins profiling can be proposed as predictive biomarkers of implantation before embryo transfer.
Collapse
Affiliation(s)
- Mustapha Benkhalifa
- HB Laboratory, Tunis TN 1007, Tunisia
- Faculty of Sciences of Bizerte, University of Carthage, Bizerte TN 7021, Tunisia
| | - Fabien Joao
- Fertilys Reproductive Center, Laval, QC H7S 1Z5, Canada
| | - Cynthia Duval
- Fertilys Reproductive Center, Laval, QC H7S 1Z5, Canada
| | | | - Molka Bouricha
- Department of Reproductive Medicine, Reproductive Biology & Genetics, University Hospital and School of Medicine Picardie University Jules Verne, 80054 Amiens, France
| | - Rosalie Cabry
- Department of Reproductive Medicine, Reproductive Biology & Genetics, University Hospital and School of Medicine Picardie University Jules Verne, 80054 Amiens, France
| | | | | | - Pierre Miron
- Fertilys Reproductive Center, Laval, QC H7S 1Z5, Canada
| | - Moncef Benkhalifa
- Department of Reproductive Medicine, Reproductive Biology & Genetics, University Hospital and School of Medicine Picardie University Jules Verne, 80054 Amiens, France
- PeriTox Laboratory, CURS, Amiens Sud, 80480 Salouël, France
- Correspondence: ; Tel.: +33-677-867-390
| |
Collapse
|
67
|
Germolec DR, Lebrec H, Anderson SE, Burleson GR, Cardenas A, Corsini E, Elmore SE, Kaplan BL, Lawrence BP, Lehmann GM, Maier CC, McHale CM, Myers LP, Pallardy M, Rooney AA, Zeise L, Zhang L, Smith MT. Consensus on the Key Characteristics of Immunotoxic Agents as a Basis for Hazard Identification. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:105001. [PMID: 36201310 PMCID: PMC9536493 DOI: 10.1289/ehp10800] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND Key characteristics (KCs), properties of agents or exposures that confer potential hazard, have been developed for carcinogens and other toxicant classes. KCs have been used in the systematic assessment of hazards and to identify assay and data gaps that limit screening and risk assessment. Many of the mechanisms through which pharmaceuticals and occupational or environmental agents modulate immune function are well recognized. Thus KCs could be identified for immunoactive substances and applied to improve hazard assessment of immunodulatory agents. OBJECTIVES The goal was to generate a consensus-based synthesis of scientific evidence describing the KCs of agents known to cause immunotoxicity and potential applications, such as assays to measure the KCs. METHODS A committee of 18 experts with diverse specialties identified 10 KCs of immunotoxic agents, namely, 1) covalently binds to proteins to form novel antigens, 2) affects antigen processing and presentation, 3) alters immune cell signaling, 4) alters immune cell proliferation, 5) modifies cellular differentiation, 6) alters immune cell-cell communication, 7) alters effector function of specific cell types, 8) alters immune cell trafficking, 9) alters cell death processes, and 10) breaks down immune tolerance. The group considered how these KCs could influence immune processes and contribute to hypersensitivity, inappropriate enhancement, immunosuppression, or autoimmunity. DISCUSSION KCs can be used to improve efforts to identify agents that cause immunotoxicity via one or more mechanisms, to develop better testing and biomarker approaches to evaluate immunotoxicity, and to enable a more comprehensive and mechanistic understanding of adverse effects of exposures on the immune system. https://doi.org/10.1289/EHP10800.
Collapse
Affiliation(s)
- Dori R. Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Herve Lebrec
- Translational Safety & Bioanalytical Sciences, Amgen Research, South San Francisco, California, USA
| | - Stacey E. Anderson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Gary R. Burleson
- Burleson Research Technologies, Inc., Morrisville, North Carolina, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sarah E. Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California, USA
| | - Barbara L.F. Kaplan
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - B. Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
| | - Geniece M. Lehmann
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Curtis C. Maier
- In Vitro In Vivo Translation, Research and Development, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - L. Peyton Myers
- Division of Pharm/Tox, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Federal Food and Drug Administration, Silver Spring, Maryland, USA
| | - Marc Pallardy
- Inserm, Inflammation microbiome immunosurveillance, Université Paris-Saclay, Châtenay-Malabry, France
| | - Andrew A. Rooney
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
68
|
Qin D, Xu H, Chen Z, Deng X, Jiang S, Zhang X, Bao S. The peripheral and decidual immune cell profiles in women with recurrent pregnancy loss. Front Immunol 2022; 13:994240. [PMID: 36177021 PMCID: PMC9513186 DOI: 10.3389/fimmu.2022.994240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Recurrent pregnancy loss (RPL) affects 1-2% of couples of reproductive age. Immunological analysis of the immune status in RPL patients might contribute to the diagnosis and treatment of RPL. However, the exact immune cell composition in RPL patients is still unclear. Here, we used flow cytometry to investigate the immune cell profiles of peripheral blood and decidual tissue of women who experienced RPL. We divided peripheral immune cells into 14 major subgroups, and the percentages of T, natural killer T (NKT)-like and B cells in peripheral blood were increased in RPL patients. The decidual immune cells were classified into 14 major subpopulations and the percentages of decidual T, NKT-like cells and CD11chi Mφ were increased, while those of CD56hi decidual NK cells and CD11clo Mφ were decreased in RPL patients. The spearmen correlation analysis showed that the proportion of peripheral and decidual immune cells did not show significant correlations with occurrences of previous miscarriages. By using flow cytometry, we depicted the global peripheral and decidual immune landscape in RPL patients. The abnormalities of peripheral and decidual immune cells may be involved in RPL, but the correlations with the number of previous miscarriages need further verification.
Collapse
Affiliation(s)
- Dengke Qin
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihui Xu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Zechuan Chen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Xujing Deng
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shan Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Shihua Bao, ; Xiaoming Zhang,
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Shihua Bao, ; Xiaoming Zhang,
| |
Collapse
|
69
|
Chen M, Shi JL, Zheng ZM, Lin Z, Li MQ, Shao J. Galectins: Important Regulators in Normal and Pathologic Pregnancies. Int J Mol Sci 2022; 23:ijms231710110. [PMID: 36077508 PMCID: PMC9456357 DOI: 10.3390/ijms231710110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Galectins (Gal) are characterized by their affinity for galactoside structures on glycoconjugates. This relationship is mediated by carbohydrate recognition domains, which are multifunctional regulators of basic cellular biological processes with high structural similarity among family members. They participate in both innate and adaptive immune responses, as well as in reproductive immunology. Recently, the discovery that galectins are highly expressed at the maternal–fetal interface has garnerd the interest of experts in human reproduction. Galectins are involved in a variety of functions such as maternal–fetal immune tolerance, angiogenesis, trophoblast invasion and placental development and are considered to be important mediators of successful embryo implantation and during pregnancy. Dysregulation of these galectins is associated with abnormal and pathological pregnancies (e.g., preeclampsia, gestational diabetes mellitus, fetal growth restriction, preterm birth). Our work reviews the regulatory mechanisms of galectins in normal and pathological pregnancies and has implications for clinicians in the prevention, diagnosis and treatment of pregnancy-related diseases.
Collapse
Affiliation(s)
- Min Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Jia-Lu Shi
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zi-Meng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zhi Lin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Correspondence: (M.-Q.L.); (J.S.)
| | - Jun Shao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
- Correspondence: (M.-Q.L.); (J.S.)
| |
Collapse
|
70
|
Cheng W, Zhang L, Sa P, Luo J, Li M. Transcriptomic analysis reveals the effects of maternal selenium deficiency on placental transport, hormone synthesis, and immune response in mice. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6674774. [PMID: 36002020 DOI: 10.1093/mtomcs/mfac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/19/2022] [Indexed: 11/14/2022]
Abstract
Selenium deficiency has been considered to increase the risk of gestational complications. Our previous work showed that maternal selenium deficiency suppressed proliferation, induced autophagy dysfunction and apoptosis in the placenta of mice. However, other effects of maternal selenium deficiency on the placenta and the underlying mechanisms remain unclear. In the present study, dietary selenium deficiency in dams significantly suppressed glutathione peroxidase (GSH-Px) activity, total antioxidant capacity (T-AOC), and increased malondialdehyde (MDA) content in the placentae, confirming the oxidative stress in the placenta. By transcriptome sequencing analysis, the DEGs were involved in many biological processes, including ion transport, lipid metabolic process, immune response, transmembrane transport, and others. According to the KEGG analysis, the DEGs were primarily enriched in metabolic pathways, PI3K-Akt signaling pathway, and others. Among these, the steroid hormone biosynthesis pathway enriched the most DEGs. Hsd3b1, an ER enzyme involved in progesterone synthesis, was validated downregulated. Consistently, the progesterone content in the serum of the selenium-deficient group was decreased. Ion transporters and transmembrane transporters, such as Heph, Trf, Slc39a8, Slc23a1, Atp7b, and Kcnc1, were reduced in the selenium-deficient placentae. Immune response-related genes, including Ccl3, Ccl8, Cxcl10, and Cxcl14, were increased in the selenium-deficient placentae, along with an increase in macrophage number. These results suggested that maternal selenium deficiency may impair progesterone biosynthesis, reduce nutrient transporters expression, and promote immune response by increasing the oxidative stress of the placentae. This present study provides a novel insight into the possible cause of placenta disorder during pregnancy.
Collapse
Affiliation(s)
- Wanpeng Cheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lantian Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.,Department of Anatomy, Basic Medical College, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Peiyue Sa
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.,Department of Anatomy, Basic Medical College, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jing Luo
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Mengdi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.,Department of Anatomy, Basic Medical College, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
71
|
Obukhova PS, Ziganshina MM, Shilova NV, Chinarev AA, Pazynina GV, Nokel AY, Terenteva AV, Khasbiullina NR, Sukhikh GT, Ragimov AA, Salimov EL, Butvilovskaya VI, Polyakova SM, Saha J, Bovin NV. Antibodies Against Unusual Forms of Sialylated Glycans. Acta Naturae 2022; 14:85-92. [PMID: 35923565 PMCID: PMC9307978 DOI: 10.32607/actanaturae.11631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that in the blood of healthy donors (1) there are
no natural antibodies against sialylated glycoproteins, which contain
Neu5Acα (N-acetylneuraminic acid) as the most widespread form of human
sialic acid, and (2) there is a moderate level of antibodies capable of binding
unnatural oligosaccharides, where Neu5Ac is beta-linked to a typical mammalian
glycan core. In the present study, we investigated antibodies against
βNeu5Ac in more detail and verified the presence of Kdn (2-keto-3-deoxy-
D-glycero-D-galacto-nonulosonic acid) as a possible cause behind their
appearance in humans, taking into account the expected cross-reactivity to Kdn
glycans, which are found in bacterial glycoconjugates in both the α- and
β-forms. We observed the binding of peripheral blood immunoglobulins to
sialyllactosamines (where “sialyl” is Kdn or neuraminic acid) in
only a very limited number of donors, while the binding to monosaccharide Kdn
occurred in all samples, regardless of the configuration of the glycosidic bond
of the Kdn moiety. In some individuals, the binding level of some of the
immunoglobulins was high. This means that bacterial Kdn glycoconjugates are
very unlikely to induce antibodies to βNeu5Ac glycans in humans. To
determine the reason for the presence of these antibodies, we focused on
noninfectious pathologies, as well as on a normal state in which a significant
change in the immune system occurs: namely, pregnancy. As a result, we found
that 2/3 of pregnant women have IgM in the blood against
Neu5Acβ2-3Galβ1-4GlcNAcβ. Moreover, IgG class antibodies against
Neu5Acβ2-3Galβ1-4GlcNAcβ and
Neu5Acβ2-6Galβ1-4GlcNAcβ were also detected in eluates from the
placenta. Presumably, these antibodies block fetal antigens.
Collapse
Affiliation(s)
- P. S. Obukhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - M. M. Ziganshina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - N. V. Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - A. A. Chinarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - G. V. Pazynina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. Y. Nokel
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - A. V. Terenteva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - N. R. Khasbiullina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - G. T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health care of the Russian Federation (Sechenov University), Moscow, 119991 Russia
| | - A. A. Ragimov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health care of the Russian Federation (Sechenov University), Moscow, 119991 Russia
| | - E. L. Salimov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health care of the Russian Federation (Sechenov University), Moscow, 119991 Russia
| | - V. I. Butvilovskaya
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - S. M. Polyakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Synthaur LLC, Moscow, 117997 Russia
| | - J. Saha
- Centre of Biomedical Research, Sanjay Gandhi PostGraduate Institute of Medical Science, Lucknow, 226014 India
| | - N. V. Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Centre for Kode Technology Innovation, Auckland University of Technology, Auckland, 1010 New Zealand
| |
Collapse
|
72
|
Zhang L, Zhang T, Yang Z, Cai C, Hao S, Yang L. Expression of nuclear factor kappa B in ovine maternal inguinal lymph nodes during early pregnancy. BMC Vet Res 2022; 18:266. [PMID: 35821130 PMCID: PMC9275262 DOI: 10.1186/s12917-022-03373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Pregnancy-induced immunological changes contribute to the maternal immune tolerance. Nuclear factor kappa B (NF-κB) pathway participates in regulating both innate and adaptive immunities, and lymph nodes play key roles in adaptive immune reaction. However, it is unclear whether early pregnancy changes the expression of NF-κB family in maternal lymph node in sheep. METHODS In this study, the samples of inguinal lymph nodes were collected from ewes on day 16 of the estrous cycle, and on days 13, 16 and 25 of pregnancy, and expression of NF-κB family, including NF-κB p105 (NFKB1), NF-κB p100 (NFKB2), p65 (RELA), RelB (RELB) and c-Rel (REL), were analyzed through real-time quantitative PCR, Western blot and immunohistochemical analysis. RESULTS The expression levels of NF-κB p105 and c-Rel downregulated, but NF-κB p100 upregulated on day 25 of pregnancy. The expression levels of p65, RelB and c-Rel peaked at day 13 of pregnancy, and expression level of RelB was higher during early pregnancy comparing to day 16 of the estrous cycle. In addition, p65 protein was located in the subcapsular sinus and lymph sinuses. CONCLUSION This paper reported for the first time that early pregnancy has effects on the expression of NF-κB family, which may contribute to the maternal immunoregulation through blood circulation and lymph circulation during early pregnancy in sheep.
Collapse
Affiliation(s)
- Leying Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China
| | - Taipeng Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China
| | - Zhen Yang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China
| | - Chunjiang Cai
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China
| | - Shaopeng Hao
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China
| | - Ling Yang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China.
| |
Collapse
|
73
|
Pregnancy Loss. PHYSICIAN ASSISTANT CLINICS 2022. [DOI: 10.1016/j.cpha.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
74
|
Jin J, Du X, Zhou L, Yao D, Zou Q. SPI1-related protein inhibits cervical cancer cell progression and prevents macrophage cell migration. J Obstet Gynaecol Res 2022; 48:2419-2430. [PMID: 35770729 DOI: 10.1111/jog.15336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
AIM The functions and molecular mechanisms of SPI1-related protein (SPIB) were examined in cervical cancer (CC) cells. METHODS Genes related to miscarriage and prognosis in CC were identified by Kaplan-Meier and differential expression analysis, respectively. Cell proliferation, apoptosis, migration, and invasion were examined by cell counting kit-8, flow cytometry, transwell migration, and transwell invasion assays, respectively. The potential functions and molecular mechanisms of SPIB in CC were speculated by gene set enrichment analysis (GSEA) analysis. The mRNA and protein levels of genes were examined by RT-qPCR and western blot assays, respectively. The effect of SPIB on macrophage cells was tested by macrophage recruitment assay and bioinformatics analysis. RESULTS A total of 753 dysregulated genes were identified in 88 TCGA CC samples with a history of one or more miscarriages versus 208 CC samples with no miscarriage history. Also, 91 genes related to CC prognosis were identified. SPIB, a gene related to both miscarriage and CC prognosis, inhibited Hela cell proliferation, migration, and invasion, and facilitated Hela cell apoptosis. GSEA analysis disclosed that SPIB might play vital roles in immunity, chemokine signaling pathway, and macrophage chemotaxis/activation in CC. Moreover, SPIB inhibited C-X-C motif chemokine ligand 8 (CXCL8), C-C motif chemokine ligand 17 (CCL17), and C-C motif chemokine ligand 25 (CCL25) expression in Hela cells, and SPIB overexpression in Hela cells hampered THP-1 cell migration. Higher SPIB expression was associated with less M2 macrophage infiltration in CC. CONCLUSIONS SPIB inhibited CC-cell progression and hindered macrophage cell migration in CC.
Collapse
Affiliation(s)
- Jing Jin
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan City, PR China
| | - Xin Du
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan City, PR China
| | - Limin Zhou
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan City, PR China
| | - Dongmei Yao
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan City, PR China
| | - Qian Zou
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan City, PR China
| |
Collapse
|
75
|
Evaluation of Th17 and Treg cytokines in patients with unexplained recurrent pregnancy loss. J Clin Transl Res 2022; 8:256-265. [PMID: 35813894 PMCID: PMC9260344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/28/2021] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
Background and Aim The Th17/Treg balance in peripheral blood and reproductive tissues may have a role in the etiology of unexplained recurrent pregnancy loss (URPL). In this study, we evaluated the major cytokine of Treg cells transforming growth factor-beta (TGF-β), and their specific transcription factor Forkhead box P3 (FOXP3), as well as the most highlighted cytokine of Th17 cells (interleukin [IL]-17A) in both URPL patients and healthy women. Methods Samples were extracted from the peripheral blood, endocervix, endometrium, and vagina of 14 patients with URPL and 12 normal non-pregnant women as a control (normal) group. Quantitative reverse transcription polymerase chain reaction was used to determine gene expression. Enzyme-linked immunosorbent assay was used to determine the levels of cytokines in the serum and cervicovaginal fluid. Results We found that in the URPL group, FOXP3 gene expression was considerably higher in peripheral blood than in the normal group (P=0.043). TGF-β levels in the cervicovaginal fluid were different in the URPL and normal groups (P=0.015). In comparison to the control group, women with URPL had significantly greater IL-17 gene expression in the peripheral blood (P=0.01). Conclusion Lower TGF-β levels in the cervicovaginal fluid of patients compared to controls may be related with increased IL-17 and FOXP3 mRNA levels in patients with URPL. Dysregulation of local immune responses in reproductive tissues may represent dysregulation of systemic regulatory immunological responses in the pathogenesis of URPL. Relevance for Patients Dysregulation of immune responses may play a role in the pathogenesis of URPL at least in some patients with URPL. We conclude that the breakdown of tolerance in the local immune responses is more critical than the breakdown of tolerance in systemic tolerance in the pathogenesis of URPL. Therefore, modulating immune responses in the endometrium and decidua may be the focus of future therapeutic approaches in URPL. The impact of seminal plasma on the expansion of Tregs may provide a novel therapeutic intervention that has already been used in assisted reproductive technologies. Therefore, we suggest that transvaginal TGF-β in women with URPL may induce maternal tolerance which leads to the successful pregnancy.
Collapse
|
76
|
Chen D, Wang W, Wu L, Liang L, Wang S, Cheng Y, Zhang T, Chai C, Luo Q, Sun C, Zhao W, Lv Z, Gao Y, Wu X, Sun N, Zhang Y, Zhang J, Chen Y, Tong J, Wang X, Bai Y, Sun C, Jin X, Niu J. Single-cell atlas of peripheral blood mononuclear cells from pregnant women. Clin Transl Med 2022; 12:e821. [PMID: 35522918 PMCID: PMC9076016 DOI: 10.1002/ctm2.821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/09/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
Background During pregnancy, mother–child interactions trigger a variety of subtle changes in the maternal body, which may be reflected in the status of peripheral blood mononuclear cells (PBMCs). Although these cells are easy to access and monitor, a PBMC atlas for pregnant women has not yet been constructed. Methods We applied single‐cell RNA sequencing (scRNA‐seq) to profile 198,356 PBMCs derived from 136 pregnant women (gestation weeks 6 to 40) and a control cohort. We also used scRNA‐seq data to establish a transcriptomic clock and thereby predicted the gestational age of normal pregnancy. Results We identified reconfiguration of the peripheral immune cell phenotype during pregnancy, including interferon‐stimulated gene upregulation, activation of RNA splicing‐related pathways and immune activity of cell subpopulations. We also developed a cell‐type‐specific model to predict gestational age of normal pregnancy. Conclusions We constructed a single‐cell atlas of PBMCs in pregnant women spanning the entire gestation period, which should help improve our understanding of PBMC composition turnover in pregnant women.
Collapse
Affiliation(s)
- Dongsheng Chen
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Wu
- Department of Obstetrics and Gynecology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Langchao Liang
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiyou Wang
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yunfeng Cheng
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China
| | | | - Chaochao Chai
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Chengcheng Sun
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wandong Zhao
- BGI-Shenzhen, Shenzhen, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhiyuan Lv
- BGI-Shenzhen, Shenzhen, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ya Gao
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Engineering Laboratory for Birth Defects Screening, BGI-Shenzhen, Shenzhen, China
| | - Xiaoxia Wu
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Ning Sun
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yiwei Zhang
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jing Zhang
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yixuan Chen
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jianing Tong
- Department of Obstetrics and Gynecology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiangdong Wang
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China.,Fudan University Shanghai Medical College, Shanghai, China
| | | | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianmin Niu
- Department of Obstetrics and Gynecology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
77
|
Zhang L, Long X, Yin Y, Wang J, Zhu H, Chen J, Wang Y, Chen Y, Wang X. Histone methyltransferase Nsd2 ensures maternal-fetal immune tolerance by promoting regulatory T-cell recruitment. Cell Mol Immunol 2022; 19:634-643. [PMID: 35322173 PMCID: PMC9061842 DOI: 10.1038/s41423-022-00849-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/21/2022] [Indexed: 11/08/2022] Open
Abstract
Regulatory T cells (Tregs) are fundamentally important for maintaining systemic immune homeostasis and are also required for immune tolerance at the maternal-fetal interface during pregnancy. Recent studies have suggested that epigenetic regulation is critically involved in Treg development and function. However, the role of H3K36me has not yet been investigated. Here, we found that the H3K36me2 methyltransferase Nsd2 was highly expressed in Tregs. Although loss of Nsd2 did not impair systemic Treg development or function, the level of Tregs at the maternal-fetal interface was significantly decreased in pregnant Nsd2 conditional knockout mice. Consequently, maternal-fetal immune tolerance was disrupted in the absence of Nsd2 in Tregs, and the pregnant mice showed severe fetal loss. Mechanistically, Nsd2 was found to upregulate CXCR4 expression via H3K36me2 modification to promote Treg cell recruitment into the decidua and suppress the anti-fetal immune response. Overall, our data identified Nsd2 as a critical epigenetic regulator of Treg recruitment for maternal-fetal tolerance.
Collapse
Affiliation(s)
- Le Zhang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
- Analysis Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuehui Long
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuye Yin
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huamin Zhu
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingjing Chen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuliang Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Chen
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, Jiangsu, China.
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiaoming Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
78
|
Sarkesh A, Sorkhabi AD, Ahmadi H, Abdolmohammadi-Vahid S, Parhizkar F, Yousefi M, Aghebati-Maleki L. Allogeneic lymphocytes immunotherapy in female infertility: Lessons learned and the road ahead. Life Sci 2022; 299:120503. [PMID: 35381221 DOI: 10.1016/j.lfs.2022.120503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
The endometrium is an essential tissue in the normal immunologic dialogue between the mother and the conceptus, which is necessary for the proper establishment and maintenance of a successful pregnancy. It's become evident that the maternal immune system plays a key role in the normal pregnancy's initiation, maintenance, and termination. In this perspective, the immune system contributes to regulating all stages of pregnancy, thus immunological dysregulation is thought to be one of the major etiologies of implantation failures. Many researchers believe that immune therapies are useful tactics for improving the live births rate in certain situations. Lymphocyte immunotherapy (LIT) is an active form of immunotherapy that, when used on the relevant subgroups of patients, has been shown in multiple trials to dramatically enhance maternal immunological balance and pregnancy outcome. The primary goal of LIT is to regulate the immune system in order to create a favorable tolerogenic immune milieu and tolerance for embryo implantation. However, there are a plethora of influential factors influencing its therapeutic benefits that merit to be addressed. The objective of our study is to discuss the mechanisms and challenges of allogeneic LIT.
Collapse
Affiliation(s)
- Aila Sarkesh
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Daei Sorkhabi
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Ahmadi
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, Pécs, Hungary
| | | | - Forough Parhizkar
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
79
|
Hwee SE, Htet NH, Naing C, Tung WS, Mak JW. Rapid diagnostic test (Leptocheck-WB) for detection of acute leptospirosis: a meta-analysis of diagnostic accuracy. Eur J Clin Microbiol Infect Dis 2022; 41:631-640. [PMID: 35147814 DOI: 10.1007/s10096-022-04420-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/04/2022] [Indexed: 12/26/2022]
Abstract
The majority of leptospirosis is subclinical or mild self-limiting systemic illness. A rapid and accurate diagnostic test for the detection of leptospirosis is essential to prevent disease progression from acute non-severe illness to potentially fatal infection. Rapid diagnostic tests (RDTs) recognized as point-of-care (PoC) tests may support clinical decision-making in resource-poor settings. We aimed to assess the accuracy of PoC (Leptocheck-WB) for the detection of acute leptospirosis by meta-analysis of data from eligible studies. This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Diagnostic Test Accuracy (PRISMA-DTA) guideline. The pooling of data was done only when there were two or more studies that used a particular type of reference test. A total of ten studies (n = 5369) were identified. The majority (70%) were from the Asian region. Using microscopic agglutination test (MAT) as reference test, the pooled sensitivity (0.75, 95% CI: 0.64 to 0.84, 10 studies, I2: 85.9%) and specificity (0.87, 95% CI: 0.77 to 0.94, 10 studies, I2: 97.37%) of Leptocheck-WB in the detection of leptospirosis were moderate. With the use of enzyme-linked immunosorbent assay (ELISA) reference test, the pooled sensitivity 0.85 (95% CI: 0.79 to 0.9, 4 studies, I2: 27.49%) and specificity 0.79 (95% CI: 0.71 to 0.85, 4 studies, I2: 58.9%) of Leptocheck-WB were also moderate. Diagnostic odds ratio of Leptocheck-WB with MAT (21, 95% CI: 10-44) or with ELISA as reference test (21, 95% CI: 9-46) showed an acceptable level of accuracy. Meta-regression analysis showed methodological quality of studies (p: 0.06) and study design (p: 0.09) were potential factors that affected the accuracy of Leptocheck-WB test. Findings suggest that Leptocheck-WB has a moderate level of acceptance for detection of acute leptospirosis. Further confirmation with large-sampled, prospectively designed studies using the same samples for evaluating test accuracy is recommended.
Collapse
Affiliation(s)
- Siau Ek Hwee
- International Medial University, Kuala Lumpur, Malaysia
| | | | - Cho Naing
- Division of Tropical Health and Medicine, James Cook University, Queensland, Australia.
| | | | - Joon Wah Mak
- International Medial University, Kuala Lumpur, Malaysia
| |
Collapse
|
80
|
Radhakrishna MH, Ravindran V. Influence of paternal inflammatory arthritis on pregnancy outcomes: more than meets the eye? Rheumatology (Oxford) 2022; 61:3104-3106. [PMID: 35333311 DOI: 10.1093/rheumatology/keac195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
|
81
|
Zhang YJ, Shen L, Zhang T, Muyayalo KP, Luo J, Mor G, Liao AH. Immunologic Memory in Pregnancy: Focusing on Memory Regulatory T Cells. Int J Biol Sci 2022; 18:2406-2418. [PMID: 35414772 PMCID: PMC8990478 DOI: 10.7150/ijbs.70629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
A successful pregnancy requires the maternal immune system to tolerate an allogeneic fetus. The incidence of preeclampsia and other complications related to impaired fetal tolerance is lower during the second pregnancy than during the first pregnancy. At the same time, compared with normal pregnant women in the previous pregnancy, patients with pregnancy complications in the previous pregnancy also have an increased risk of the disease when they become pregnant again. This difference may be related to the immunological memory of pregnancy. Regulatory T cells (Tregs) are immunosuppressive CD4+ T cells that play a predominant role in maintaining immune tolerance. In addition, Tregs possess immunological memory properties, including fetal or paternal-specific memory Tregs and Tregs expressing memory cell makers, forming an immunoregulatory memory against fetal antigens. In this review, we provide an overview of the characteristics of memory Tregs in pregnancy, evidence regarding the existence of memory Tregs in human pregnancy, as well as in mouse models. We also discuss the mechanism of memory Tregs induction, maintenance, and action. In addition, we described their changes during the first pregnancy, second pregnancy, postpartum, and pathological pregnancy in order to provide new targets for the diagnosis and treatment of pregnancy related diseases.
Collapse
Affiliation(s)
- Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Li Shen
- Department of Obstetrics and Gynecology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China
| | - Kahindo P. Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
82
|
Spence T, Zavez A, Allsopp PJ, Conway MC, Yeates AJ, Mulhern MS, van Wijngaarden E, Strain JJ, Myers GJ, Watson GE, Davidson PW, Shamlaye CF, Thurston SW, McSorley EM. Serum cytokines are associated with n-3 polyunsaturated fatty acids and not with methylmercury measured in infant cord blood in the Seychelles child development study. ENVIRONMENTAL RESEARCH 2022; 204:112003. [PMID: 34492279 DOI: 10.1016/j.envres.2021.112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Maternal fish consumption increases infant methylmercury (MeHg) exposure and polyunsaturated fatty acid (PUFA) concentrations. The n-3 PUFA are regulators of inflammation while MeHg may impact the cord cytokine profile and, subsequently, contribute to immune mediated outcomes. This study aimed to investigate associations between infant MeHg exposure and cord cytokine concentrations while adjusting for cord PUFA. METHODS We studied participants in the Seychelles Child Development Study (SCDS) Nutrition Cohort 2 (NC2), a large birth cohort in a high fish-eating population. Whole blood MeHg, serum PUFA and serum cytokine concentrations (IFN-γ, IL-1β, IL-2, IL-12p70, TNF-α, IL-4, IL-10, IL-13, IL-6 and IL-8) were measured in cord blood collected at delivery (n = 878). Linear regression examined associations between infant MeHg exposure and cord cytokines concentrations, with and without adjustment for cord PUFA. An interaction model examined cord MeHg, cytokines and tertiles of the n-6:n-3 ratio (low/medium/high). RESULTS There was no overall association between cord MeHg (34.08 ± 19.98 μg/L) and cytokine concentrations, with or without adjustment for PUFA. Increased total n-3 PUFA (DHA, EPA and ALA) was significantly associated with lower IL-10 (β = -0.667; p = 0.007) and lower total Th2 (IL-4, IL-10 and IL-13) (β = -0.715; p = 0.036). In the interaction model, MeHg and IL-1β was positive and significantly different from zero in the lowest n-6:n-3 ratio tertile (β = 0.002, p = 0.03). CONCLUSION Methylmercury exposure from fish consumption does not appear to impact markers of inflammation in cord blood. The association of cord n-3 PUFA with lower IL-10 and total Th2 cytokines suggests that they may have a beneficial influence on the regulation of the inflammatory milieu. These findings are important for public health advice and deserve to be investigated in follow up studies.
Collapse
Affiliation(s)
- Toni Spence
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| | - Alexis Zavez
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Philip J Allsopp
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK
| | - Marie C Conway
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| | - Alison J Yeates
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| | - Maria S Mulhern
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| | - Edwin van Wijngaarden
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - J J Strain
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| | - Gary J Myers
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Gene E Watson
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Philip W Davidson
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | | | - Sally W Thurston
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| |
Collapse
|
83
|
Megli CJ, Coyne CB. Infections at the maternal-fetal interface: an overview of pathogenesis and defence. Nat Rev Microbiol 2022; 20:67-82. [PMID: 34433930 PMCID: PMC8386341 DOI: 10.1038/s41579-021-00610-y] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 02/08/2023]
Abstract
Infections are a major threat to human reproductive health, and infections in pregnancy can cause prematurity or stillbirth, or can be vertically transmitted to the fetus leading to congenital infection and severe disease. The acronym 'TORCH' (Toxoplasma gondii, other, rubella virus, cytomegalovirus, herpes simplex virus) refers to pathogens directly associated with the development of congenital disease and includes diverse bacteria, viruses and parasites. The placenta restricts vertical transmission during pregnancy and has evolved robust mechanisms of microbial defence. However, microorganisms that cause congenital disease have likely evolved diverse mechanisms to bypass these defences. In this Review, we discuss how TORCH pathogens access the intra-amniotic space and overcome the placental defences that protect against microbial vertical transmission.
Collapse
Affiliation(s)
- Christina J Megli
- Division of Maternal-Fetal Medicine, Division of Reproductive Infectious Disease, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and the Magee Womens Research Institute, Pittsburgh, PA, USA.
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology and the Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
84
|
|
85
|
Liu M, Wang D, Zhu L, Yin J, Ji X, Zhong Y, Gao Y, Zhang J, Liu Y, Zhang R, Chen H. Association of thyroid peroxidase antibodies with the rate of first-trimester miscarriage in euthyroid women with unexplained recurrent spontaneous abortion. Front Endocrinol (Lausanne) 2022; 13:966565. [PMID: 36120428 PMCID: PMC9471195 DOI: 10.3389/fendo.2022.966565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Unexplained recurrent spontaneous abortion is a serious reproductive problem of unknown etiology. Thyroid peroxidase antibodies (TPO-Ab) may be associated with pregnancy outcomes in unexplained recurrent spontaneous abortion with normal thyroid function. OBJECTIVE This study aimed to investigate the relationship between TPO-Ab and the first trimester miscarriage rate/live birth rate in women of unexplained recurrent spontaneous abortion with normal thyroid function. METHODS We retrospectively analyzed the clinical data of 297 women who met our strict inclusion criteria, comparing the first trimester miscarriage rate/live birth rate between the TPO-Ab positive and TPO-Ab negative groups. For the same purpose, we also performed subgroup analysis. RESULTS Of the included women, 76 (25.6%) were TPO-Ab positive, and 221 (74.4%) were negative. First trimester miscarriage rate differed between the two groups (36.8% vs 24.0%, RR = 1.54, 95% CI: 1.05-2.24, P = 0.030). In the younger subgroup (<35 years) and the primary RSA subgroup, First trimester miscarriage rate was also higher in the TPO-Ab positive group (33.3% vs 19.0%, RR = 1.75, 95% CI: 1.07-2.87, P = 0.030; 36.5% vs 21.7%, RR = 1.69, 95% CI: 1.10-2.58, P = 0.020). While the live birth rate was lower in women with TPO-Ab positive, the difference did not reach statistical significance, even in the subgroup analysis. CONCLUSION Our results suggest that TPO-Ab is associated with first trimester miscarriage rate in euthyroid women with unexplained recurrent spontaneous abortion.
Collapse
Affiliation(s)
- Meilan Liu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongyan Wang
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liqiong Zhu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianlan Yin
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaohui Ji
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yilei Zhong
- Department of Obstetrics and Gynecology, YueBei People’s Hospital, Shaoguan, China
| | - Yuan Gao
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianping Zhang
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yukun Liu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Hui Chen, ; Rui Zhang, ; Yukun Liu,
| | - Rui Zhang
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Hui Chen, ; Rui Zhang, ; Yukun Liu,
| | - Hui Chen
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Hui Chen, ; Rui Zhang, ; Yukun Liu,
| |
Collapse
|
86
|
Yu X, Wu H, Yang Y, Wang F, Wang YL, Shao X. Placental Development and Pregnancy-Associated Diseases. MATERNAL-FETAL MEDICINE 2022; 4:36-51. [PMID: 40406576 PMCID: PMC12094368 DOI: 10.1097/fm9.0000000000000134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 11/27/2022] Open
Abstract
Serving as the interface between the fetal and maternal environments during gestation, the placenta plays critical roles in the protection of the developing fetus and the maintenance of maternal health. The placenta is primarily derived from the embryonic trophectoderm which differentiates into various subtypes of trophoblast cells through villous and extravillous pathways. The interactions among trophoblasts and multiple decidual cells and immune cells at the maternal-fetal interface fundamentally form the functional units of the placenta, which are responsible for blood perfusion and maternal-fetal material exchange, immune tolerance, and the regulation of pregnancy adaptation. Defects in placental development and functional maintenance are in tight association with adverse pregnancy outcomes such as preeclampsia. In this article, we review recent advances on human trophoblast cell differentiation and the construction of placental functional units and discuss the placental and maternal factors that may contribute to the occurrence of preeclampsia.
Collapse
Affiliation(s)
- Xin Yu
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Hongyu Wu
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Yun Yang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Feiyang Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xuan Shao
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
87
|
Li WX, Xu XH, Jin LP. Regulation of the innate immune cells during pregnancy: An immune checkpoint perspective. J Cell Mol Med 2021; 25:10362-10375. [PMID: 34708495 PMCID: PMC8581333 DOI: 10.1111/jcmm.17022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
The foetus can be regarded as a half‐allograft implanted into the maternal body. In a successful pregnancy, the mother does not reject the foetus because of the immune tolerance mechanism at the maternal‐foetal interface. The innate immune cells are a large part of the decidual leukocytes contributing significantly to a successful pregnancy. Although the contributions have been recognized, their role in human pregnancy has not been completely elucidated. Additionally, the accumulated evidence demonstrates that the immune checkpoint molecules expressed on the immune cells are co‐inhibitory receptors regulating their activation and biological function. Therefore, it is critical to understand the immune microenvironment and explore the function of the innate immune cells during pregnancy. This review summarizes the classic immune checkpoints such as PD‐1, CTLA‐4 and some novel molecules recently identified, including TIM‐3, CD200, TIGIT and the Siglecs family on the decidual and peripheral innate immune cells during pregnancy. Furthermore, it emphasizes the role of the immune checkpoint molecules in pregnancy‐associated complications and reproductive immunotherapy.
Collapse
Affiliation(s)
- Wen-Xuan Li
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang-Hong Xu
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Ping Jin
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
88
|
Gao J, Wang L, Bu L, Song Y, Huang X, Zhao J. Immunopharmacological properties of VitD3: 1,25VitD3 modulates regulatory T cells and Th17 cells and the cytokine balance in PBMCs from women with unexplained recurrent spontaneous abortion [URSA]. Curr Mol Pharmacol 2021; 15:779-793. [PMID: 34649494 DOI: 10.2174/1874467214666211015084803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND VitD3 may contribute to a successful pregnancy through modulation of immune responses, so VitD3 deficiency may have a role in the immunopathogenesis of unexplained recurrent spontaneous abortion [URSA]. However, the mechanisms of immunomodulatory actions of VitD3 in decreasing the risk of recurrent spontaneous abortion have not been understood well. OBJECTIVE The purpose of this research was to investigate the influence of 1,25VitD3 on regulatory T cells /Th17 axis, the gene expressions and concentrations of related cytokines including, TGF-β, IL-10, IL-6, IL-23, and IL-17A in peripheral blood mononuclear cells [PBMCs] of healthy women as a control group and women with URSA. METHOD Isolation of PBMCs was performed from peripheral blood of the subjects of the studied groups [20 women with URSA as a case group, and 20 control women]. The effects of 1,25VitD3 [50 nM, for 24 hours] on the studied parameters were evaluated and were compared to the positive and negative controls in vitro. Flow cytometry analysis was used to determine the percentages of regulatory T cells and Th17 cells. For gene expression measurement and cytokines assay, Real-time PCR and ELISA were carried out. RESULTS The proportion of regulatory T cells was markedly lower, while the proportion of Th17 cells in women with URSA was considerably higher than in the control group [P=0.01, P=0.01]. The ratio of the frequency of Tregs to the baseline [1,25VitD3/Untreated] increased, while the ratio of the frequency of Th17 cells to the baseline decreased in women with URSA relative to the controls [P= 0.01, P=0.04]. 1,25VitD3 increased IL-10 expressions at both the protein and mRNA levels in PBMCs in women with URSA relative to the control group [P=0.0001, P=0.04]. TGF-β levels in the cultured supernatants decreased significantly in the case group in the presence of 1,25VitD3 relative to the controls [P=0.03]. 1,25VitD3 treatment also significantly decreased gene expressions of IL-6, IL-17A, and IL-23 in PBMCs of women with URSA [P=0.01, P=0.001, P=0.0005], as well as the levels of those cytokines in cell culture supernatants [P=0.03, P=0.02, P=0.01, respectively] in women with URSA relative to the controls. CONCLUSION According to the findings of this research, modulation of immune responses by 1,25VitD3 is accomplished by strengthening Tregs function and inhibiting inflammatory responses of Th17 cells which may have a positive impact on pregnancy outcome. Thus, as an immunomodulating agent, VitD3 may be effective in reducing the risk of URSA.
Collapse
Affiliation(s)
- Jiefan Gao
- Department of reproductive medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou City, Hebei Province, 061014. China
| | - Li Wang
- Department of Gynecology, Shandong Second Provincial General Hospital, No. 4, Duanxing West Road, Huaiyin District, Jinan City, Shandong Province, 250022. China
| | - Lei Bu
- Department of nephrology, Linyi people's hospital, Linyi City, Shandong Province, 276003. China
| | - Yangyang Song
- Department of reproductive medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou City, Hebei Province, 061014. China
| | - Xiao Huang
- Department of reproductive medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou City, Hebei Province, 061014. China
| | - Jing Zhao
- Department of nursing, Dongying District People's Hospital, No. 333, Jinan Road, Dongying City, Shandong Province, 257099. China
| |
Collapse
|
89
|
Aleahmad M, Bozorgmehr M, Nikoo S, Ghanavatinejad A, Shokri MR, Montazeri S, Shokri F, Zarnani AH. Endometrial mesenchymal stem/stromal cells: The Enigma to code messages for generation of functionally active regulatory T cells. Stem Cell Res Ther 2021; 12:536. [PMID: 34627370 PMCID: PMC8502414 DOI: 10.1186/s13287-021-02603-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/23/2021] [Indexed: 12/04/2022] Open
Abstract
Background Regulatory T cells (Tregs) play an important role in fine-tuning of immune responses and are pivotal for a successful pregnancy. Recently, the importance of mesenchymal stem cells in regulation of immune responses in general and Tregs in particular has been highlighted. Here, we hypothesized that menstrual stromal/stem cells (MenSCs) contribute to uterine immune system regulation through induction of functionally active Tregs. Methods MenSCs were collected from 18 apparently healthy women and characterized. Bone marrow mesenchymal stem cells (BMSCs) served as a control. The effect of MenSCs on proliferation of anti-CD3/CD28-stimulated T CD4 + cells and generation of Tregs with or without pre-treatment with mitomycin C, IFN-γ and IL-1β was evaluated by flow cytometry. The potential role of IDO, PGE2, IL-6, IL-10, and TGF-β on proliferation of T CD4 + cells and generation of Tregs was assessed using blocking antibodies or agents. IDO activity was evaluated in MenSCs and BMSCs culture supernatants by a colorimetric assay. IL-10 and IFN-γ production in MenSCs-primed T CD4 + was measured using intracellular staining. To investigate the functional properties of Tregs induced by MenSCs, Treg cells were isolated and their functional property to inhibit proliferation of anti-CD3/CD28-stimulated PBMCs was assessed by flow cytometry. Results According to the results, proliferation of T CD4 + lymphocytes was enhanced in the presence of MenSCs, while pre-treatment of MenSCs with pro-inflammatory cytokines reversed this effect. PGE2 and IDO were the major players in MenSCs-induced T cell proliferation. Non-treated MenSCs decreased the frequency of Tregs, whereas after pre-treatment with IFN-γ and IL-1β, they induced functional Tregs with ability to inhibit the proliferation of anti-CD3/CD28-stimulated PBMCs. This effect was mediated through IL-6, IL-10, TGF-β and IDO. IFN-γ/IL-1β-treated MenSCs induced IL-10 and IFN-γ production in CD4 + T cells. Conclusion Collectively, these findings indicate that immunomodulatory impact of menstrual blood stem cells (MenSCs) on generation of Tregs and inhibition of T cells proliferation is largely dependent on pre-treatment with IFN-γ and IL-1β. This is the first report on immunomodulatory impact of MenSCs on Tregs and highlights the pivotal role of endometrial stem cells in regulation of local endometrial immune responses. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02603-3.
Collapse
Affiliation(s)
- Mehdi Aleahmad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, P.O. Box: 1417613151, Tehran, Iran
| | - Mahmood Bozorgmehr
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Shohreh Nikoo
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghanavatinejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, P.O. Box: 1417613151, Tehran, Iran
| | - Mohammad-Reza Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, P.O. Box: 1417613151, Tehran, Iran
| | - Samaneh Montazeri
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, P.O. Box: 1417613151, Tehran, Iran.
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, P.O. Box: 1417613151, Tehran, Iran. .,Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. .,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
90
|
Badam TV, Hellberg S, Mehta RB, Lechner-Scott J, Lea RA, Tost J, Mariette X, Svensson-Arvelund J, Nestor CE, Benson M, Berg G, Jenmalm MC, Gustafsson M, Ernerudh J. CD4 + T-cell DNA methylation changes during pregnancy significantly correlate with disease-associated methylation changes in autoimmune diseases. Epigenetics 2021; 17:1040-1055. [PMID: 34605719 PMCID: PMC9487751 DOI: 10.1080/15592294.2021.1982510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Epigenetics may play a central, yet unexplored, role in the profound changes that the maternal immune system undergoes during pregnancy and could be involved in the pregnancy-induced modulation of several autoimmune diseases. We investigated changes in the methylome in isolated circulating CD4+ T-cells in non-pregnant and pregnant women, during the 1st and 2nd trimester, using the Illumina Infinium Human Methylation 450K array, and explored how these changes were related to autoimmune diseases that are known to be affected during pregnancy. Pregnancy was associated with several hundreds of methylation differences, particularly during the 2nd trimester. A network-based modular approach identified several genes, e.g., CD28, FYN, VAV1 and pathways related to T-cell signalling and activation, highlighting T-cell regulation as a central component of the observed methylation alterations. The identified pregnancy module was significantly enriched for disease-associated methylation changes related to multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus. A negative correlation between pregnancy-associated methylation changes and disease-associated changes was found for multiple sclerosis and rheumatoid arthritis, diseases that are known to improve during pregnancy whereas a positive correlation was found for systemic lupus erythematosus, a disease that instead worsens during pregnancy. Thus, the directionality of the observed changes is in line with the previously observed effect of pregnancy on disease activity. Our systems medicine approach supports the importance of the methylome in immune regulation of T-cells during pregnancy. Our findings highlight the relevance of using pregnancy as a model for understanding and identifying disease-related mechanisms involved in the modulation of autoimmune diseases.Abbreviations: BMIQ: beta-mixture quantile dilation; DMGs: differentially methylated genes; DMPs: differentially methylated probes; FE: fold enrichment; FDR: false discovery rate; GO: gene ontology; GWAS: genome-wide association studies; MDS: multidimensional scaling; MS: multiple sclerosis; PBMC: peripheral blood mononuclear cells; PBS: phosphate buffered saline; PPI; protein-protein interaction; RA: rheumatoid arthritis; SD: standard deviation; SLE: systemic lupus erythematosus; SNP: single nucleotide polymorphism; TH: CD4+ T helper cell; VIStA: diVIsive Shuffling Approach.
Collapse
Affiliation(s)
- Tejaswi V Badam
- Bioinformatics Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,School of Bioscience, Skövde University, Skövde, Sweden
| | - Sandra Hellberg
- Bioinformatics Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ratnesh B Mehta
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia.,Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, Australia.,Department of Neurology, John Hunter Hospital, New Lambton Heights, Australia
| | - Rodney A Lea
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia.,Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, Australia.,Institute of Health and Biomedical Innovations, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, Australia
| | - Jorg Tost
- Laboratory of Epigenetics and Environment, Centre National De Recherche En Génomique Humaine, CEA-Institut De Biologie Francois Jacob, Evry, France
| | - Xavier Mariette
- Université Paris-Saclay, AP-HP-Université Paris-Saclay, Hôpital Bicêtre, Institut National de la Santé et de la Recherche Médicale (Inserm) U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, France
| | - Judit Svensson-Arvelund
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Colm E Nestor
- The Centre for Individualized Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mikael Benson
- The Centre for Individualized Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Göran Berg
- Department of Obstetrics and Gynaecology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria C Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Bioinformatics Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
91
|
Tao Y, Li Y, Zhang D, Xu L, Chen J, Sang Y, Piao H, Jing X, Yu M, Fu Q, Zhou S, Li D, Du M. Decidual CXCR4 + CD56 bright NK cells as a novel NK subset in maternal-foetal immune tolerance to alleviate early pregnancy failure. Clin Transl Med 2021; 11:e540. [PMID: 34709764 PMCID: PMC8516340 DOI: 10.1002/ctm2.540] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/12/2021] [Accepted: 08/06/2021] [Indexed: 01/15/2023] Open
Abstract
Natural killer (NK) cells preferentially accumulate at maternal-foetal interface and are believed to play vital immune-modulatory roles during early pregnancy and related immunological dysfunction may result in pregnant failure such as recurrent miscarriage (RM). However, the mechanisms underlying the establishment of maternal-foetal immunotolerance are complex but clarifying the roles of decidual NK (dNK) cells offers the potential to design immunotherapeutic strategies to assist RM patients. In this report, we analysed RNA sequencing on peripheral NK (pNK) and decidual NK cells during early pregnancy; we identified an immunomodulatory dNK subset CXCR4+ CD56bright dNK and investigated its origin and phenotypic and functional characteristics. CXCR4+ CD56bright dNK displayed a less activated and cytotoxic phenotype but an enhanced immunomodulatory potential relative to the CXCR4 negative subset. CXCR4+ CD56bright dNK promote Th2 shift in an IL-4-dependent manner and can be recruited from peripheral blood and reprogramed by trophoblasts, as an active participant in the establishment of immune-tolerance during early pregnancy. Diminished CXCR4+ dNK cells and their impaired ability to induce Th2 differentiation were found in RM patients and mouse models of spontaneous abortion. Moreover, adoptive transfer of CXCR4+ dNK cells to NK-deficient (Nfil3-/-) mice showed great therapeutic potential of CXCR4+ dNK via recovering the Th2/Th1 bias and reducing embryo resorption rates. The identification of this new dNK cell subset may lay the foundation for understanding NK cell mechanisms in early pregnancy and provide potential prognostic factors for the diagnosis and therapy of RM.
Collapse
MESH Headings
- Abortion, Habitual/blood
- Abortion, Habitual/immunology
- Abortion, Habitual/prevention & control
- Animals
- Decidua/immunology
- Disease Models, Animal
- Female
- Humans
- Immune Tolerance/immunology
- Killer Cells, Natural/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Neural Cell Adhesion Molecules/blood
- Neural Cell Adhesion Molecules/genetics
- Neural Cell Adhesion Molecules/immunology
- Pregnancy
- Pregnancy Trimester, First
- Receptors, CXCR4/blood
- Receptors, CXCR4/genetics
- Receptors, CXCR4/immunology
Collapse
Affiliation(s)
- Yu Tao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and GynecologyFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
- Department of Assisted ReproductionShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Yan‐Hong Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and GynecologyFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
| | - Di Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and GynecologyFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
| | - Ling Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and GynecologyFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
| | - Jia‐Jia Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and GynecologyFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
| | - Yi‐Fei Sang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and GynecologyFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
| | - Hai‐Lan Piao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and GynecologyFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
| | - Xue‐Ling Jing
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and GynecologyFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
| | - Min Yu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and GynecologyFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
| | - Qiang Fu
- Department of ImmunologyBinzhou Medical CollegeYantaiPeople's Republic of China
| | - Sheng‐Tao Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second University HospitalSichuan University and Collaborative Innovation CenterChengduPeople's Republic of China
| | - Da‐Jin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and GynecologyFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
| | - Mei‐Rong Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and GynecologyFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, School of MedicineSouth China University of TechnologyGuangzhouChina
- State Key Laboratory of Quality Research in Chinese Medicine and School of PharmacyMacau University of Science and TechnologyMacauChina
| |
Collapse
|
92
|
Liu M, Sun X, Zhu L, Zhu M, Deng K, Nie X, Mo H, Du T, Huang B, Hu L, Liang L, Wang D, Luo Y, Yi J, Zhang J, Zhong X, Cao C, Chen H. Long Noncoding RNA RP11-115N4.1 Promotes Inflammatory Responses by Interacting With HNRNPH3 and Enhancing the Transcription of HSP70 in Unexplained Recurrent Spontaneous Abortion. Front Immunol 2021; 12:717785. [PMID: 34484222 PMCID: PMC8414257 DOI: 10.3389/fimmu.2021.717785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Background Unexplained recurrent spontaneous abortion (URSA) is a common pregnancy complication and the etiology is unknown. URSA-associated lncRNAs are expected to be potential biomarkers for diagnosis, and might be related to the disease pathogenesis. Objective To investigate differential lncRNAs in peripheral blood of non-pregnant URSA patients and matched healthy control women and to explore the possible mechanism of differential lncRNAs leading to URSA. Methods We profiled lncRNAs expression in peripheral blood from 5 non-pregnant URSA patients and 5 matched healthy control women by lncRNA microarray analysis. Functions of URSA-associated lncRNAs were further investigated in vitro. Results RP11-115N4.1 was identified as the most differentially expressed lncRNA which was highly upregulated in peripheral blood of non-pregnant URSA patients (P = 3.63E-07, Fold change = 2.96), and this dysregulation was further validated in approximately 26.67% additional patients (4/15). RP11-115N4.1 expression was detected in both lymphocytes and monocytes of human peripheral blood, and in vitro overexpression of RP11-115N4.1 decreased cell proliferation in K562 cells significantly. Furthermore, heat-shock HSP70 genes (HSPA1A and HSPA1B) were found to be significantly upregulated upon RP11-115N4.1 overexpression by transcriptome analysis (HSPA1A (P = 4.39E-08, Fold change = 4.17), HSPA1B (P = 2.26E-06, Fold change = 2.99)). RNA pull down and RNA immunoprecipitation assay (RIP) analysis demonstrated that RP11-115N4.1 bound to HNRNPH3 protein directly, which in turn activate heat-shock proteins (HSP70) analyzed by protein-protein interaction and HNRNPH3 knockdown assays. Most importantly, the high expression of HSP70 was also verified in the serum of URSA patients and the supernatant of K562 cells with RP11-115N4.1 activation, and HSP70 in supernatant can exacerbate inflammatory responses in monocytes by inducing IL-6, IL-1β, and TNF-α and inhibit the migration of trophoblast cells, which might associate with URSA. Conclusion Our results demonstrated that the activation of RP11-115N4.1 can significantly increase the protein level of HSP70 via binding to HNRNPH3, which may modulate the immune responses and related to URSA. Moreover, RP11-115N4.1 may be a novel etiological biomarker and a new therapeutic target for URSA.
Collapse
Affiliation(s)
- Meilan Liu
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyue Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liqiong Zhu
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Menglan Zhu
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kewen Deng
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolu Nie
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hanjie Mo
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tao Du
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bingqian Huang
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lihao Hu
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liuhong Liang
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dongyan Wang
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yinger Luo
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinling Yi
- Department of Gynecology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianping Zhang
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xingming Zhong
- Key Laboratory of Male Reproduction and Genetics of National Health Council, Family Planning Research Institute of Guangdong Province, Guangzhou, China.,Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Chunwei Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui Chen
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
93
|
Wu H, Ning Y, Yu Q, Luo S, Gao J. Identification of key molecules in recurrent miscarriage based on bioinformatics analysis. Comb Chem High Throughput Screen 2021; 25:1745-1755. [PMID: 34433394 DOI: 10.2174/1386207324666210825142340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recurrent miscarriage (RM) affects 1% to 5% of couples, and the mechanisms still stay unclear. In this study, we explored the underlying molecular mechanism and potential molecular biomarkers of RM as well as constructed a miRNA-mRNA regulation network. METHODS The microarray datasets GSE73025 and GSE22490, which represent mRNA and miRNA profiles, respectively, were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) with p-value < 0.05 and fold-change > 2 were identified while the miRNAs with p-value < 0.05 and fold-change > 1.3 were considered as significant differentially expressed miRNAs (DEMs). RESULTS A total of 373 DEGs, including 218 up-regulated genes and 155 down-regulated genes, were identified, while 138 up-regulated and 68 down-regulated DEMs were screened out. After functional enrichment analysis, we found GO biological process (BP) terms significantly enriched in the Fc-gamma receptor signaling pathway involved in phagocytosis. Moreover, signaling pathway analyses indicated that the neurotrophin signaling pathway (hsa04722) was the top KEGG enrichment. 6 hub genes (FPR1, C5AR1, CCR1, ADCY7, CXCR2, NPY) were screened out to construct a complex regulation network in RM because they had the highest degree of affecting the network. Besides, we constructed miRNA-mRNA network between DEMs target genes and DEGs in RM, including hsa-miR-1297- KLHL24 and hsa-miR-548a-5p-KLHL24 pairs. CONCLUSIONS In conclusion, the novel differentially expressed molecules in the present study could provide a new sight to explore the pathogenesis of RM as well as potential biomarkers and therapeutic targets for RM diagnosis and treatment.
Collapse
Affiliation(s)
- Haiwang Wu
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou. China
| | - Yan Ning
- Department of Chinese Medicine, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen. China
| | - Qingying Yu
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou. China
| | - Songping Luo
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou. China
| | - Jie Gao
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou. China
| |
Collapse
|
94
|
Abdollahi E, Rezaee SA, Saghafi N, Rastin M, Clifton V, Sahebkar A, Rafatpanah H. Evaluation of the Effects of 1,25 Vitamin D3 on Regulatory T Cells and T Helper 17 Cells in Vitamin D-deficient Women with Unexplained Recurrent Pregnancy Loss. Curr Mol Pharmacol 2021; 13:306-317. [PMID: 32124705 DOI: 10.2174/1874467213666200303130153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/27/2019] [Accepted: 12/31/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Vitamin D insufficiency and deficiency can be associated with adverse effects on pregnancy outcomes, which may include recurrent pregnancy loss through the mechanisms that are yet unknown. The aim of this study was to evaluate the effect of 1,25VitD3 on regulatory T cells (Tregs) and T helper17 (Th17) cell populations In vitro in unexplained recurrent pregnancy loss (URPL) patients and healthy women. METHODS Samples from 20 non-pregnant women with a history of URPL were compared to 20 normal non-pregnant women. Peripheral blood mononuclear cells (PBMC) were divided into 3 wells for each subject: in the presence of 1, 25 VitD3 (50 nM, for 16 hours), PHA (positive control) (10μM), and without any treatment (as a baseline or negative control). The percentage of regulatory T cells and Th17 cells was measured by flow cytometry at baseline and then after cell culture experiments. RESULTS Our study indicated that the percentage of Tregs in patients with URPL was significantly lower than the control group (2.42 ± 0.27 vs. 3.41 ± 0.29, P= 0.01). The percentage of Th17 cells was significantly greater in URPL patients compared to the control group (2.91 ± 0.33 vs. 1.18± 0.15, P=0.001). 1, 25VitD3 treatment significantly increased the percentage of Tregs from the baseline in the URPL group compared to that in the control group (1.23 ± 0.03 vs. 1.00 ± 0.03, P= 0.01). CONCLUSION Vitamin D deficiency may be a contributor to recurrent pregnancy loss and suggests supplementation of women with Vit D pre-pregnancy may be protective against URPL.
Collapse
Affiliation(s)
- Elham Abdollahi
- Department of Medical Immunology and Allergy, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Graduate Research Trainee in Mater Research Institute-University of Queensland, Translational Research Institute, South Brisbane, Australia
| | - Seyed Abdolrahim Rezaee
- Research Center for HIV/AIDS, HTLV and Viral Hepatitis, Iranian Academic Center for Education, Culture & Research (ACECR), Mashhad Branch, Mashhad, Iran,Inflammation and Inflammatory Diseases Research Centre, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Saghafi
- Department of Gynecology Oncology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rastin
- Immunology Research Center, BuAli Research Institute, Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vicki Clifton
- Pregnancy and Development, Mater Research Institute-University of Queensland, Translational Research Institute, South Brisbane, Australia
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Houshang Rafatpanah
- Research Center for HIV/AIDS, HTLV and Viral Hepatitis, Iranian Academic Center for Education, Culture & Research (ACECR), Mashhad Branch, Mashhad, Iran,Inflammation and Inflammatory Diseases Research Centre, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
95
|
Xu QH, Liu H, Wang LL, Zhu Q, Zhang YJ, Muyayalo KP, Liao AH. Roles of γδT cells in pregnancy and pregnancy-related complications. Am J Reprod Immunol 2021; 86:e13487. [PMID: 34331364 DOI: 10.1111/aji.13487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
A successful pregnancy is a complex and unique process comprised of discrete events, including embryo implantation, placentation, and parturition. To maintain the balance between maternal-fetal immune tolerance and resistance to infections, the maternal immune system must have a high degree of stage-dependent plasticity throughout the period of pregnancy. Innate immunity is the frontline force for the establishment of early anti-infection and tolerance mechanisms in mammals. Belonging to the innate immune system, a subset of T cells called γδT cells (based on γδT cell receptors) are the main participants in immune surveillance and immune defense. Unlike traditional αβT cells, γδT cells are regarded as a bridge between innate immunity and acquired immunity. In this review, we summarize current knowledge on the functional plasticity of γδT cells during pregnancy. Furthermore, we discuss the roles of γδT cells in pathological pregnancies.
Collapse
Affiliation(s)
- Qian-Han Xu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
96
|
Lv D, Peng J, Long R, Lin X, Wang R, Wu D, He M, Liao S, Zhao Y, Deng D. Exploring the Immunopathogenesis of Pregnancy With COVID-19 at the Vaccination Era. Front Immunol 2021; 12:683440. [PMID: 34305916 PMCID: PMC8298030 DOI: 10.3389/fimmu.2021.683440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
Since December 2019, Wuhan, China, has experienced an outbreak of coronavirus disease (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pregnant women are deductively considered to be in immunosuppressive condition for the safety of semi-allograft fetuses, which increases the risk of being infected by the virus. In this review, we analyzed the unique immunological characteristics of pregnant women and reviewed their known outcomes at different trimesters from the perspective of underlying mechanisms that have been studied and speculated so far.
Collapse
Affiliation(s)
- Dan Lv
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Peng
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Long
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingguang Lin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhou He
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujie Liao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhao
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongrui Deng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
97
|
Gregory EJ, Liu J, Miller-Handley H, Kinder JM, Way SS. Epidemiology of Pregnancy Complications Through the Lens of Immunological Memory. Front Immunol 2021; 12:693189. [PMID: 34248991 PMCID: PMC8267465 DOI: 10.3389/fimmu.2021.693189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Abstract
In the fifteen minutes it takes to read this short commentary, more than 400 babies will have been born too early, another 300 expecting mothers will develop preeclampsia, and 75 unborn third trimester fetuses will have died in utero (stillbirth). Given the lack of meaningful progress in understanding the physiological changes that occur to allow a healthy, full term pregnancy, it is perhaps not surprising that effective therapies against these great obstetrical syndromes that include prematurity, preeclampsia, and stillbirth remain elusive. Meanwhile, pregnancy complications remain the leading cause of infant and childhood mortality under age five. Does it have to be this way? What more can we collectively, as a biomedical community, or individually, as clinicians who care for women and newborn babies at high risk for pregnancy complications, do to protect individuals in these extremely vulnerable developmental windows? The problem of pregnancy complications and neonatal mortality is extraordinarily complex, with multiple unique, but complementary perspectives from scientific, epidemiological and public health viewpoints. Herein, we discuss the epidemiology of pregnancy complications, focusing on how the outcome of prior pregnancy impacts the risk of complication in the next pregnancy — and how the fundamental immunological principle of memory may promote this adaptive response.
Collapse
Affiliation(s)
- Emily J Gregory
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - James Liu
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hilary Miller-Handley
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jeremy M Kinder
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
98
|
Wang X, Zhong L, Liu Q, Cai P, Zhang P, Lu Z, Li X, Liu J. Activation of Gonadotropin-releasing Hormone Receptor Impedes the Immunosuppressive Activity of Decidual Regulatory T Cells via Deactivating the Mechanistic Target of Rapamycin Signaling. Immunol Invest 2021; 51:1330-1346. [PMID: 34132158 DOI: 10.1080/08820139.2021.1937208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Understanding maternal immune tolerance is crucial for the development of therapeutics for immunological pregnancy complications. Decidual regulatory T cells (Tregs) play a pivotal role in the maintenance of maternal immune tolerance. Using a murine allogeneic pregnancy model in the current study, we identified the up-regulation of gonadotropin-releasing hormone receptor (GnRHR) in decidual T cell subsets including CD4+ conventional T cells, CD8+ T cells, and CD4+Foxp3+ Tregs. Using a lentivirus-mediated GnRHR overexpression system and a GnRHR agonist, we found that GnRHR activation decreased the expression of Treg functional molecules such as IL10 (IL-10), IL-35 subunit EBI3 (Ebi3), IL2RA (CD25), TNFRSF18 (GITR), ICOS, and Treg master regulator FOXP3. The functional analysis indicated that GnRHR activation impairs the ability of Tregs to inhibit conventional T cell proliferation. We also revealed that GnRHR activation suppressed the mechanistic target of rapamycin (mTOR) signaling in GnRHR-overexpressing splenic Tregs (Wild type C57BL/6 J background) and decidual Tregs. MHY1485, a potent mTOR activator, effectively abolished the effect of the GnRHR agonist and promoted the immunosuppressive capability of Tregs. Furthermore, in an adoptive transfer model, Treg-specific GnRHR knockdown increased Foxp3 expression in decidual Tregs while decreasing the production of IFN-γ and IL-17 in decidual effector CD4+ T cells and reducing the production of IFN-γ in decidual effector CD8+ T cells. Taken together, the present study unveils a novel mechanism by which the immunosuppressive function of decidual Tregs is modulated, and deepens our understanding of maternal immune tolerance.
Collapse
Affiliation(s)
- Xuejin Wang
- Department of Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Liangying Zhong
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qiaodan Liu
- Department of Head and Neck Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Peiya Cai
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, People's Republic of China
| | - Peiru Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, People's Republic of China
| | - Zhilan Lu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Xiaoqin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Jin Liu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| |
Collapse
|
99
|
Li D, Zheng L, Zhao D, Xu Y, Wang Y. The Role of Immune Cells in Recurrent Spontaneous Abortion. Reprod Sci 2021; 28:3303-3315. [PMID: 34101149 PMCID: PMC8186021 DOI: 10.1007/s43032-021-00599-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Recurrent spontaneous abortion affects approximately 1–2% of women of childbearing, and describes a condition in which women suffer from three or more continuous spontaneous miscarriages. However, the origin of recurrent spontaneous abortion (RSA) remains unknown, preventing effective treatment and placing stress upon patients. It has been acknowledged that successful pregnancy necessitates balanced immune responses. Therefore, immunological aberrancy may be considered a root cause of poor pregnancy outcomes. Considerable published studies have investigated the relationship between various immune cells and RSA. Here, we review current knowledge on this area, and discuss the five main categories of immune cells involved in RSA; these include innate lymphocytes (ILC), macrophages, decidual dendritic cells (DCs), and T cells. Furthermore, we sought to summarize the impact of the multiple interactions of various immune cells on the emergence of RSA. A good understanding of pregnancy-induced immunological alterations could reveal new therapeutic strategies for favorable pregnancy outcomes.
Collapse
Affiliation(s)
- Dan Li
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | | | - Ying Xu
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yeling Wang
- Departments of Cardiovascular Medicine, First Hospital, Jilin University, Changchun, 130000, China.
| |
Collapse
|
100
|
Huang X, Wang L, Zhao S, Liu H, Chen S, Wu L, Liu L, Ding J, Yang H, Maxwell A, Yin Z, Mor G, Liao A. Pregnancy Induces an Immunological Memory Characterized by Maternal Immune Alterations Through Specific Genes Methylation. Front Immunol 2021; 12:686676. [PMID: 34163485 PMCID: PMC8215664 DOI: 10.3389/fimmu.2021.686676] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/19/2021] [Indexed: 01/20/2023] Open
Abstract
During pregnancy, the maternal immune system undergoes major adaptive modifications that are necessary for the acceptance and protection of the fetus. It has been postulated that these modifications are temporary and limited to the time of pregnancy. Growing evidence suggests that pregnancy has a long-term impact on maternal health, especially among women with pregnancy complications, such as preeclampsia (PE). In addition, the presence of multiple immunological-associated changes in women that remain long after delivery has been reported. To explain these long-term modifications, we hypothesized that pregnancy induces long-term immunological memory with effects on maternal well-being. To test this hypothesis, we evaluated the immunological phenotype of circulating immune cells in women at least 1 year after a normal pregnancy and after pregnancy complicated by PE. Using multiparameter flow cytometry (FCM) and whole-genome bisulfite sequencing (WGBS), we demonstrate that pregnancy has a long-term effect on the maternal immune cell populations and that this effect differs between normal pregnancy and pregnancy complicated by PE; furthermore, these modifications are due to changes in the maternal methylation status of genes that are associated with T cell and NK cell differentiation and function. We propose the existence of an "immunological memory of pregnancy (IMOP)" as an evolutionary advantage for the success of future pregnancies and the proper adaptation to the microchimeric status established during pregnancy. Our findings demonstrate that the type of immune cell populations modified during pregnancy may have an impact on subsequent pregnancy and future maternal health.
Collapse
Affiliation(s)
- Xiaobo Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Chen
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Li Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Anhui Province Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Liping Liu
- Wuhan Women and Children Medical Care Center, Wuhan, China
| | - Jiahui Ding
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Hengwen Yang
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Anthony Maxwell
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Zhinan Yin
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|