51
|
Xu Q, Dong S, Gong Q, Dai Q, Cheng R, Ge Y. The Tanshinones (Tan) Extract From Salvia miltiorrhiza Bunge Induces ROS-Dependent Apoptosis in Pancreatic Cancer via AKT Hyperactivation-Mediated FOXO3/SOD2 Signaling. Integr Cancer Ther 2024; 23:15347354241258961. [PMID: 38899834 PMCID: PMC11191618 DOI: 10.1177/15347354241258961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024] Open
Abstract
CONTEXT Salvia miltiorrhiza (SM) is a commonly used herb in traditional Chinese medicine (TCM) and has been used in the treatment of pancreatic cancer to relieve the symptom of "blood stasis and toxin accumulation." Tanshinones (Tan), the main lipophilic constituents extracted from the roots and rhizomes of SM, have been reported to possess anticancer functions in several cancers. But the mechanism of how the active components work in pancreatic cancer still need to be clarified. OBJECTIVE In this study, we aimed to investigate the therapeutic potential of Tan in pancreatic cancer and elucidate the underlying mechanisms. MATERIALS AND METHODS The viabilities of PANC-1 and Bxpc-3 cells were determined by MTT assay, after treatment with various concentrations of Tan. The apoptotic cells were quantified by annexin V-FITC/PI staining and DAPI staining assays. The expression of relative proteins was used western blotting. Tumor growth was assessed by subcutaneously inoculating cells into C57BL/6 mice. RESULTS Our experiments discovered that Tan effectively suppressed pancreatic cancer cell proliferation and promoted apoptosis. Mechanistically, we propose that Tan enhances intracellular ROS levels by activating the AKT/FOXO3/SOD2 signaling pathway, ultimately leading to apoptosis in pancreatic cancer cells. In vivo assay showed the antitumor effect of Tan. CONCLUSION Tan, a natural compound from Salvia miltiorrhiza, was found to effectively suppress pancreatic cancer cell proliferation and promote apoptosis both in vitro and in vivo. Mechanistically, we propose a positive feedback loop mechanism. These findings provide valuable insights into the molecular pathways driving pancreatic cancer progression.
Collapse
Affiliation(s)
- Qin Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Shujie Dong
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiuyi Gong
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Qun Dai
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Rubin Cheng
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqing Ge
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
52
|
Zhao L, Tao X, Wang Q, Yu X, Dong D. Diosmetin alleviates neuropathic pain by regulating the Keap1/Nrf2/NF-κB signaling pathway. Biomed Pharmacother 2024; 170:116067. [PMID: 38150877 DOI: 10.1016/j.biopha.2023.116067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Neuropathic pain, a chronic condition with a high incidence, imposes psychological burdens on both patients and society. It is urgent to improve pain management and develop new analgesic drugs. Traditional Chinese medicine has gained popularity as a method for pain relief. Diosmetin (Dio) is mainly found in Chinese herbal medicines with effective antioxidant, anti-cancer, and anti-inflammatory properties. There are few known mechanisms underlying the effectiveness of Dio in treating neuropathic pain. However, the complete understanding of its therapeutic effect is missing. PURPOSE This study aimed to evaluate Dio's therapeutic effects on neuropathic pain models and determine its possible mechanism of action. We hypothesized that Dio may activate antioxidants and reduce inflammation, inhibit the activation of Kelch-like epichlorohydrin-associated protein 1 (Keap1) and nuclear factor-k-gene binding (NF-κB), promote the metastasis of nuclear factor erythroid 2-related factor 2 (Nrf2) and the expression of heme oxygenase 1 (HO-1), thus alleviating the neuropathic pain caused by spinal nerve ligation. METHODS Chronic nociceptive pain mouse models were established in vivo by L4 spinal nerve ligation (SNL). Different dosages of Dio (10, 50, 100 mg/kg) were intragastrically administered daily from the third day after the establishment of the SNL model. Allodynia, caused by mechanical stimuli, and hyperalgesia, caused by heat, were assessed using the paw withdrawal response frequency (PWF) and paw withdrawal latency (PWL), respectively. Cold allodynia were assessd by acetone test. RT-PCR was used to detect the content of interleukin-(IL)- 1β, IL-6 and tumor necrosis factor (TNF)-a. Immunofluorescence and western blotting were employed to assess the expression levels of Glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule (Iba1), Keap1, Nrf2, HO-1, and NF-κB p-p65 protein. RESULTS Dio administration relieved SNL-induced transient mechanical and thermal allodynia in mice. The protective effect of Dio in the SNL model was associated with its anti-inflammatory and anti-glial responses in the spinal cord. Dio inhibited both inflammatory factors and macrophage activation in the DRG. Furthermore, Dio regulated the Keap1/Nrf2/NF-κB signaling pathway. HO-1 and Nrf2 were upregulated following Dio administration, which also decreased the levels of Keap1 and NF-κB p65 protein. CONCLUSION Mice with SNL-induced neuropathic pain were therapeutically treated with Dio. Dio may protect against pain by inhibiting inflammatory responses and improved Keap1/Nrf2/NF-κB pathway. These results highlight the potential therapeutic effect of Dio for the development of new analgesic drugs.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Xueshu Tao
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Qian Wang
- Medical Oncology, Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Shenyang 110001, People's Republic of China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang 110001, People's Republic of China
| | - Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.
| |
Collapse
|
53
|
LaPak KM, Saeidi S, Bok I, Wamsley NT, Plutzer IB, Bhatt DP, Luo J, Ashrafi G, Major MB. Proximity proteomic analysis of the NRF family reveals the Parkinson's disease protein ZNF746/PARIS as a co-complexed repressor of NRF2. Sci Signal 2023; 16:eadi9018. [PMID: 38085818 PMCID: PMC10760916 DOI: 10.1126/scisignal.adi9018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor activates cytoprotective and metabolic gene expression in response to various electrophilic stressors. Constitutive NRF2 activity promotes cancer progression, whereas decreased NRF2 function contributes to neurodegenerative diseases. We used proximity proteomic analysis to define protein networks for NRF2 and its family members NRF1, NRF3, and the NRF2 heterodimer MAFG. A functional screen of co-complexed proteins revealed previously uncharacterized regulators of NRF2 transcriptional activity. We found that ZNF746 (also known as PARIS), a zinc finger transcription factor implicated in Parkinson's disease, physically associated with NRF2 and MAFG, resulting in suppression of NRF2-driven transcription. ZNF746 overexpression increased oxidative stress and apoptosis in a neuronal cell model of Parkinson's disease, phenotypes that were reversed by chemical and genetic hyperactivation of NRF2. This study presents a functionally annotated proximity network for NRF2 and suggests a link between ZNF746 overexpression in Parkinson's disease and inhibition of NRF2-driven neuroprotection.
Collapse
Affiliation(s)
- Kyle M. LaPak
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Soma Saeidi
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Ilah Bok
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Nathan T. Wamsley
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Isaac B. Plutzer
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Dhaval P. Bhatt
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, WUSM and Siteman Cancer Center Biostatistics and Qualitative Research Shared Resource, Washington University; St. Louis, MO, 63110, USA
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
- Department of Genetics, Washington University; St. Louis, MO, 63110, USA
| | - M. Ben Major
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| |
Collapse
|
54
|
Barone M, Polimeno L. Author's Reply: "NRF2 in cancer: An insufficiently explored and controversial research area". Dig Liver Dis 2023; 55:1775. [PMID: 37858513 DOI: 10.1016/j.dld.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/07/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Affiliation(s)
- Michele Barone
- Gastroenterology Unit, Department of Precise and Regenerative Medicine - Jonian Area, University of Bari Aldo Moro, Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Lorenzo Polimeno
- Polypheno Academic Spin Off, University of Bari Aldo Moro, Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy
| |
Collapse
|
55
|
Abstract
PURPOSE The transcription factor NF-E2-related factor 2 (NRF2) is a master regulator widely involved in essential cellular functions such as DNA repair. By clarifying the upstream and downstream links of NRF2 to DNA damage repair, we hope that attention will be drawn to the utilization of NRF2 as a target for cancer therapy. METHODS Query and summarize relevant literature on the role of NRF2 in direct repair, BER, NER, MMR, HR, and NHEJ in pubmed. Make pictures of Roles of NRF2 in DNA Damage Repair and tables of antioxidant response elements (AREs) of DNA repair genes. Analyze the mutation frequency of NFE2L2 in different types of cancer using cBioPortal online tools. By using TCGA, GTEx and GO databases, analyze the correlation between NFE2L2 mutations and DNA repair systems as well as the degree of changes in DNA repair systems as malignant tumors progress. RESULTS NRF2 plays roles in maintaining the integrity of the genome by repairing DNA damage, regulating the cell cycle, and acting as an antioxidant. And, it possibly plays roles in double stranded break (DSB) pathway selection following ionizing radiation (IR) damage. Whether pathways such as RNA modification, ncRNA, and protein post-translational modification affect the regulation of NRF2 on DNA repair is still to be determined. The overall mutation frequency of the NFE2L2 gene in esophageal carcinoma, lung cancer, and penile cancer is the highest. Genes (50 of 58) that are negatively correlated with clinical staging are positively correlated with NFE2L2 mutations or NFE2L2 expression levels. CONCLUSION NRF2 participates in a variety of DNA repair pathways and plays important roles in maintaining genome stability. NRF2 is a potential target for cancer treatment.
Collapse
Affiliation(s)
- Jiale Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
56
|
Fasipe B, Laher I. Nrf2 modulates the benefits of evening exercise in type 2 diabetes. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:251-258. [PMID: 38314046 PMCID: PMC10831386 DOI: 10.1016/j.smhs.2023.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 02/06/2024] Open
Abstract
Exercise has well-characterized therapeutic benefits in the management of type 2 diabetes mellitus (T2DM). Most of the beneficial effects of exercise arise from the impact of nuclear factor erythroid 2 related factor-2 (Nrf2) activation of glucose metabolism. Nrf2 is an essential controller of cellular anti-oxidative capacity and circadian rhythms. The circadian rhythm of Nrf2 is influenced by circadian genes on its expression, where the timing of exercise effects the activation of Nrf2 and the rhythmicity of Nrf2 and signaling, such that the timing of exercise has differential physiological effects. Exercise in the evening has beneficial effects on diabetes management, such as lowering of blood glucose and weight. The mechanisms responsible for these effects have not yet been associated with the influence of exercise on the circadian rhythm of Nrf2 activity. A better understanding of exercise-induced Nrf2 activation on Nrf2 rhythm and signaling can improve our appreciation of the distinct effects of morning and evening exercise. This review hypothesizes that activation of Nrf2 by exercise in the morning, when Nrf2 level is already at high levels, leads to hyperactivation and decrease in Nrf2 signaling, while activation of Nrf2 in the evening, when Nrf2 levels are at nadir levels, improves Nrf2 signaling and lowers blood glucose levels and increases fatty acid oxidation. Exploring the effects of Nrf2 activators on rhythmic signaling could also provide valuable insights into the optimal timing of their application, while also holding promise for timed treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Babatunde Fasipe
- Faculty of Basic Clinical Sciences, Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
57
|
Poonasri M, Mankhong S, Chiranthanut N, Srisook K. 4-methoxycinnamyl p-coumarate reduces neuroinflammation by blocking NF-κB, MAPK, and Akt/GSK-3β pathways and enhancing Nrf2/HO-1 signaling cascade in microglial cells. Biomed Pharmacother 2023; 168:115808. [PMID: 37922650 DOI: 10.1016/j.biopha.2023.115808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
The active compound, 4-methoxycinnamyl p-coumarate (MCC), derived from the rhizome of Etlingera pavieana (Pierre ex Gagnep) R.M.Sm., has been shown to exert anti-inflammatory effects in several inflammatory models. However, its effects on microglial cells remain elusive. In the current study, we aimed to investigate the anti-neuroinflammatory activities of MCC and determine the potential mechanisms underlying its action on lipopolysaccharide (LPS)-induced BV2 microglial cells. Our results revealed that MCC significantly reduced the secretion of nitric oxide (NO) and prostaglandin E2, concomitantly inhibiting the expression levels of inducible NO synthase and cyclooxygenase-2 mRNA and proteins. Additionally, MCC effectively decreased the production of reactive oxygen species in LPS-induced BV2 microglial cells. MCC also attenuates the activation of NF-κB by suppressing the phosphorylation of IκBα and NF-κB p65 subunits and by blocking the nuclear translocation of NF-κB p65 subunits. Furthermore, MCC significantly reduced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β). In addition, MCC markedly increased the expression of heme oxygenase-1 (HO-1) by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Collectively, our findings suggest that the anti-inflammatory activities of MCC could be attributed to its ability to suppress the activation of NF-κB, MAPK, and Akt/GSK-3β while enhancing that of Nrf2-mediated HO-1. Accordingly, MCC has promising therapeutic potential to treat neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Mayuree Poonasri
- Department of Biochemistry and Research Unit of Natural Bioactive Compounds for Healthcare Products Development, Faculty of Science, Burapha University, Chonburi 20131, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Sakulrat Mankhong
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology (IGBMC), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Natthakarn Chiranthanut
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Klaokwan Srisook
- Department of Biochemistry and Research Unit of Natural Bioactive Compounds for Healthcare Products Development, Faculty of Science, Burapha University, Chonburi 20131, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi, Thailand.
| |
Collapse
|
58
|
Liu Y, Liu S, Tomar A, Yen FS, Unlu G, Ropek N, Weber RA, Wang Y, Khan A, Gad M, Peng J, Terzi E, Alwaseem H, Pagano AE, Heissel S, Molina H, Allwein B, Kenny TC, Possemato RL, Zhao L, Hite RK, Vinogradova EV, Mansy SS, Birsoy K. Autoregulatory control of mitochondrial glutathione homeostasis. Science 2023; 382:820-828. [PMID: 37917749 PMCID: PMC11170550 DOI: 10.1126/science.adf4154] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Mitochondria must maintain adequate amounts of metabolites for protective and biosynthetic functions. However, how mitochondria sense the abundance of metabolites and regulate metabolic homeostasis is not well understood. In this work, we focused on glutathione (GSH), a critical redox metabolite in mitochondria, and identified a feedback mechanism that controls its abundance through the mitochondrial GSH transporter, SLC25A39. Under physiological conditions, SLC25A39 is rapidly degraded by mitochondrial protease AFG3L2. Depletion of GSH dissociates AFG3L2 from SLC25A39, causing a compensatory increase in mitochondrial GSH uptake. Genetic and proteomic analyses identified a putative iron-sulfur cluster in the matrix-facing loop of SLC25A39 as essential for this regulation, coupling mitochondrial iron homeostasis to GSH import. Altogether, our work revealed a paradigm for the autoregulatory control of metabolic homeostasis in organelles.
Collapse
Affiliation(s)
- Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Shanshan Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Anju Tomar
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Cellular, Computational and Integrative Biology, Università di Trento, Trento, TN, Italy
| | - Frederick S. Yen
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Gokhan Unlu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Nathalie Ropek
- Laboratory of Chemical Immunology and Proteomics, The Rockefeller University, New York, NY, USA
| | - Ross A. Weber
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Ying Wang
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Mark Gad
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Erdem Terzi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hanan Alwaseem
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Alexandra E. Pagano
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Benjamin Allwein
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy C. Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Richard L. Possemato
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Richard K. Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Sheref S. Mansy
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
59
|
Baird L, Yamamoto M. Immunoediting of KEAP1-NRF2 mutant tumours is required to circumvent NRF2-mediated immune surveillance. Redox Biol 2023; 67:102904. [PMID: 37839356 PMCID: PMC10590843 DOI: 10.1016/j.redox.2023.102904] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
In human cancer, activating mutations in the KEAP1-NRF2 pathway are frequently observed, and positively selected for, as they confer the cytoprotective functions of the transcription factor NRF2 on the cancer cells. This results in the development of aggressive tumours which are resistant to treatment with chemotherapeutic compounds. Recent clinical developments have also revealed that NRF2-activated cancers are similarly resistant to immune checkpoint inhibitor drugs. As the mechanism of action of these immune modulating therapies is tangential to the classical cytoprotective function of NRF2, it is unclear how aberrant NRF2 activity could impact the anti-cancer functionality of the immune system. In this context, we found that in human cancer, NRF2-activated cells are highly immunoedited, which allows the cancer cells to escape immune surveillance and develop into malignant tumours. This immunoediting takes the form of reduced antigen presentation by the MHC-I complex, coupled with reduced expression of activating ligands for NK cells. Together, these modifications to the immunogenicity of NRF2-activated cancers inhibit immune effector cell infiltration and engagement, and contribute to the formation of the immunologically cold tumour microenvironment which is a characteristic feature of NRF2-activated cancers.
Collapse
Affiliation(s)
- Liam Baird
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai 980-8575, Japan.
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
60
|
Li J, Cao H, Zhou X, Guo J, Zheng C. Advances in the study of traditional Chinese medicine affecting bone metabolism through modulation of oxidative stress. Front Pharmacol 2023; 14:1235854. [PMID: 38027015 PMCID: PMC10646494 DOI: 10.3389/fphar.2023.1235854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Bone metabolic homeostasis is dependent on coupled bone formation dominated by osteoblasts and bone resorption dominated by osteoclasts, which is a process of dynamic balance between bone formation and bone resorption. Notably, the formation of bone relies on the development of bone vasculature. Previous studies have shown that oxidative stress caused by disturbances in the antioxidant system of the whole organism is an important factor affecting bone metabolism. The increase in intracellular reactive oxygen species can lead to disturbances in bone metabolism, which can initiate multiple bone diseases, such as osteoporosis and osteoarthritis. Traditional Chinese medicine is considered to be an effective antioxidant. Cumulative evidence shows that the traditional Chinese medicine can alleviate oxidative stress-mediated bone metabolic disorders by modulating multiple signaling pathways, such as Nrf2/HO-1 signaling, PI3K/Akt signaling, Wnt/β-catenin signaling, NF-κB signaling, and MAPK signaling. In this paper, the potential mechanisms of traditional Chinese medicine to regulate bone me-tabolism through oxidative stress is summarized to provide direction and theoretical basis for future research related to the treatment of bone diseases with traditional Chinese medicine.
Collapse
Affiliation(s)
- Jiaying Li
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Cao
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xuchang Zhou
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Chengqiang Zheng
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
61
|
Xie W, Deng L, Lin M, Huang X, Qian R, Xiong D, Liu W, Tang S. Sirtuin1 Mediates the Protective Effects of Echinacoside against Sepsis-Induced Acute Lung Injury via Regulating the NOX4-Nrf2 Axis. Antioxidants (Basel) 2023; 12:1925. [PMID: 38001778 PMCID: PMC10669561 DOI: 10.3390/antiox12111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Currently, the treatment for sepsis-induced acute lung injury mainly involves mechanical ventilation with limited use of drugs, highlighting the urgent need for new therapeutic options. As a pivotal aspect of acute lung injury, the pathologic activation and apoptosis of endothelial cells related to oxidative stress play a crucial role in disease progression, with NOX4 and Nrf2 being important targets in regulating ROS production and clearance. Echinacoside, extracted from the traditional Chinese herbal plant Cistanche deserticola, possesses diverse biological activities. However, its role in sepsis-induced acute lung injury remains unexplored. Moreover, although some studies have demonstrated the regulation of NOX4 expression by SIRT1, the specific mechanisms are yet to be elucidated. Therefore, this study aimed to investigate the effects of echinacoside on sepsis-induced acute lung injury and oxidative stress in mice and to explore the intricate regulatory mechanism of SIRT1 on NOX4. We found that echinacoside inhibited sepsis-induced acute lung injury and oxidative stress while preserving endothelial function. In vitro experiments demonstrated that echinacoside activated SIRT1 and promoted its expression. The activated SIRT1 was competitively bound to p22 phox, inhibiting the activation of NOX4 and facilitating the ubiquitination and degradation of NOX4. Additionally, SIRT1 deacetylated Nrf2, promoting the downstream expression of antioxidant enzymes, thus enhancing the NOX4-Nrf2 axis and mitigating oxidative stress-induced endothelial cell pathologic activation and mitochondrial pathway apoptosis. The SIRT1-mediated anti-inflammatory and antioxidant effects of echinacoside were validated in vivo. Consequently, the SIRT1-regulated NOX4-Nrf2 axis may represent a crucial target for echinacoside in the treatment of sepsis-induced acute lung injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (M.L.); (X.H.); (R.Q.); (D.X.)
| | - Siyuan Tang
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (M.L.); (X.H.); (R.Q.); (D.X.)
| |
Collapse
|
62
|
Talebi M, Sadoughi MM, Ayatollahi SA, Ainy E, Kiani R, Zali A, Miri M. Therapeutic potentials of cannabidiol: Focus on the Nrf2 signaling pathway. Biomed Pharmacother 2023; 168:115805. [PMID: 39491419 DOI: 10.1016/j.biopha.2023.115805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024] Open
Abstract
Cannabidiol (CBD), a cannabinoid that does not create psychoactive activities, has been identified as having a multitude of therapeutic benefits. This study delves into the chemical properties, pharmacokinetics, safety and toxicity, pharmacological effects, and most importantly, the association between the therapeutic potential of CBD and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. The relationship between Nrf2 and CBD is closely linked to certain proteins that are associated with cardiovascular dysfunctions, cancers, and neurodegenerative conditions. Specifically, Nrf2 is connected to the initiation and progression of diverse health issues, including nephrotoxicity, bladder-related diseases, oral mucositis, cancers, obesity, myocardial injury and angiogenesis, skin-related inflammations, psychotic disorders, neuropathic pain, Huntington's disease, Alzheimer's disease, Parkinson's disease, neuroinflammation, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. The association between CBD and Nrf2 is a zone of great interest in the medical field, as it has the potential to significantly impact the treatment and prevention of wide-ranging health conditions. Additional investigation is necessary to entirely apprehend the mechanisms underlying this crucial interplay and to develop effective therapeutic interventions.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Sadoughi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elaheh Ainy
- Safety Promotion and Injury Prevention Research Center, Department of Vice Chancellor Research Affairs, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayeh Kiani
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Zali
- Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - MirMohammad Miri
- Department of Anesthesiology and Critical Care, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
63
|
Zhang J, Cai YS, Ji HL, Ma M, Zhang JH, Cheng ZQ, Wang KM, Jiang CS, Zhuang C, Hu Y, Meng N. Discovery of marine phidianidine-based Nrf2 activators and their potential against oxLDL- and HG-induced injury in HUVECs. Bioorg Med Chem Lett 2023; 95:129468. [PMID: 37689216 DOI: 10.1016/j.bmcl.2023.129468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
One effective strategy for treating atherosclerosis is to inhibit the injury of vascular endothelial cells (VECs) induced by oxidized low-density lipoprotein (oxLDL) and high glucose (HG). This study synthesized and evaluated a series of novel Nrf2 activators derived from the marine natural product phidianidine for their ability to protect human umbilical VECs against oxLDL- and HG-induced injury. The results of in vitro bioassays demonstrated that compound D-36 was the most promising Nrf2 activator, effectively inhibiting the apoptosis of HUVECs induced by oxLDL and HG. Furthermore, Nrf2 knockdown experiments confirmed that compound D-36 protected against oxLDL- and HG-induced apoptosis in HUVECs by activating the Nrf2 pathway. These findings provide important insights into a new chemotype of marine-derived Nrf2 activators that could potentially be optimized to develop effective anti-atherosclerosis agents.
Collapse
Affiliation(s)
- Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yong-Si Cai
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hua-Long Ji
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Mengqi Ma
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jin-He Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Zhi-Qiang Cheng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yang Hu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
64
|
Iegre J, Krajcovicova S, Gunnarsson A, Wissler L, Käck H, Luchniak A, Tångefjord S, Narjes F, Spring DR. A cell-active cyclic peptide targeting the Nrf2/Keap1 protein-protein interaction. Chem Sci 2023; 14:10800-10805. [PMID: 37829032 PMCID: PMC10566475 DOI: 10.1039/d3sc04083f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
The disruption of the protein-protein interaction (PPI) between Nrf2 and Keap1 is an attractive strategy to counteract the oxidative stress that characterises a variety of severe diseases. Peptides represent a complementary approach to small molecules for the inhibition of this therapeutically important PPI. However, due to their polar nature and the negative net charge required for binding to Keap1, the peptides reported to date exhibit either mid-micromolar activity or are inactive in cells. Herein, we present a two-component peptide stapling strategy to rapidly access a variety of constrained and functionalised peptides that target the Nrf2/Keap1 PPI. The most promising peptide, P8-H containing a fatty acid tag, binds to Keap1 with nanomolar affinity and is effective at inducing transcription of ARE genes in a human lung epithelial cell line at sub-micromolar concentration. Furthermore, crystallography of the peptide in complex with Keap1 yielded a high resolution X-ray structure, adding to the toolbox of structures available to develop cell-permeable peptidomimetic inhibitors.
Collapse
Affiliation(s)
- Jessica Iegre
- Yusuf Hamied Department of Chemistry Lensfield Road CB2 1EW Cambridge UK
| | - Sona Krajcovicova
- Yusuf Hamied Department of Chemistry Lensfield Road CB2 1EW Cambridge UK
- Department of Organic Chemistry, Palacky University Olomouc Tr. 17. Listopadu 12 77900 Olomouc Czech Republic
| | - Anders Gunnarsson
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Pepparedsleden 1 43183 Gothenburg Sweden
| | - Lisa Wissler
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Pepparedsleden 1 43183 Gothenburg Sweden
| | - Helena Käck
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Pepparedsleden 1 43183 Gothenburg Sweden
| | - Anna Luchniak
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Pepparedsleden 1 43183 Gothenburg Sweden
| | - Stefan Tångefjord
- BioScience, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca Pepparedsleden 1 43183 Gothenburg Sweden
| | - Frank Narjes
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca Pepparedsleden 1 43183 Gothenburg Sweden
| | - David R Spring
- Yusuf Hamied Department of Chemistry Lensfield Road CB2 1EW Cambridge UK
| |
Collapse
|
65
|
Lekki-Porębski SA, Rakowski M, Grzelak A. Free zinc ions, as a major factor of ZnONP toxicity, disrupts free radical homeostasis in CCRF-CEM cells. Biochim Biophys Acta Gen Subj 2023; 1867:130447. [PMID: 37619691 DOI: 10.1016/j.bbagen.2023.130447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Nanotechnology has become a ubiquitous part of our everyday life. Besides the already-known nanoparticles (NPs), plenty of new nanomaterials are being synthesized every day. Here, we explain the mechanism of the zinc oxide nanoparticles (ZnONPs) cytotoxicity in a cellular model of acute lymphoblastic leukaemia (CCRF-CEM). To do so, we investigated both possible hypotheses about the ZnONPs mechanism of toxicity: a free zinc ions release and/or reactive oxygen species (ROS) generation. Presented here results show that: Our results support the hypothesis that the mechanism of ZnONPs cytotoxicity is based on the release of free zinc ions. Nevertheless, both previously quoted hypotheses incompletely described the mechanism of action of ZnONPs. In this paper, we show that the mechanism of cytotoxicity of ZnONPs is based on the induction of reductive stress in CCRF-CEM cells, which is caused by free zinc ions released from ZnONPs. Therefore, the increase of oxidative stress markers is most likely a secondary response of the cells towards the Zn2+. These results provide a crucial expansion of the zinc ion hypothesis and thus explain the biphasic cellular response of CCRF-CEM cells treated with ZnONPs.
Collapse
Affiliation(s)
- S A Lekki-Porębski
- Cytometry Laboratory, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland.
| | - M Rakowski
- Cytometry Laboratory, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
| | - A Grzelak
- Cytometry Laboratory, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| |
Collapse
|
66
|
Lin J, Ren Q, Zhang F, Gui J, Xiang X, Wan Q. D-β-Hydroxybutyrate Dehydrogenase Mitigates Diabetes-Induced Atherosclerosis through the Activation of Nrf2. Thromb Haemost 2023; 123:1003-1015. [PMID: 37399841 DOI: 10.1055/s-0043-1770985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
BACKGROUND We aimed to investigate the role and mechanism of β-hydroxybutyrate dehydrogenase 1 (Bdh1) in regulating macrophage oxidative stress in diabetes-induced atherosclerosis (AS). METHODS We performed immunohistochemical analysis of femoral artery sections to determine differences in Bdh1 expression between normal participants, AS patients, and patients with diabetes-induced AS. Diabetic Apoe-/- mice and high-glucose (HG)-treated Raw264.7 macrophages were used to replicate the diabetes-induced AS model. The role of Bdh1 in this disease model was determined by adeno-associated virus (AAV)-mediated overexpression of Bdh1 or overexpression or silencing of Bdh1. RESULTS We observed reduced expression of Bdh1 in patients with diabetes-induced AS, HG-treated macrophages, and diabetic Apoe-/- mice. AAV-mediated Bdh1 overexpression attenuated aortic plaque formation in diabetic Apoe-/- mice. Silencing of Bdh1 resulted in increased reactive oxygen species (ROS) production and an inflammatory response in macrophages, which were reversed by the ROS scavenger N-acetylcysteine. Overexpression of Bdh1 protected Raw264.7 cells from HG-induced cytotoxicity by inhibiting ROS overproduction. In addition, Bdh1 induced oxidative stress through nuclear factor erythroid-related factor 2 (Nrf2) activation by fumarate acid. CONCLUSION Bdh1 attenuates AS in Apoe-/- mice with type 2 diabetes, accelerates lipid degradation, and reduces lipid levels by promoting ketone body metabolism. Moreover, it activates the Nrf2 pathway of Raw264.7 by regulating the metabolic flux of fumarate, which inhibits oxidative stress and leads to a decrease in ROS and inflammatory factor production.
Collapse
Affiliation(s)
- Jie Lin
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Fanjie Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Jing Gui
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Xin Xiang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Qin Wan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| |
Collapse
|
67
|
Liu M, Sun S, Meng Y, Wang L, Liu H, Shi W, Zhang Q, Xu W, Sun B, Xu J. Benzophenanthridine Alkaloid Chelerythrine Elicits Necroptosis of Gastric Cancer Cells via Selective Conjugation at the Redox Hyperreactive C-Terminal Sec 498 Residue of Cytosolic Selenoprotein Thioredoxin Reductase. Molecules 2023; 28:6842. [PMID: 37836684 PMCID: PMC10574601 DOI: 10.3390/molecules28196842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Targeting thioredoxin reductase (TXNRD) with low-weight molecules is emerging as a high-efficacy anti-cancer strategy in chemotherapy. Sanguinarine has been reported to inhibit the activity of TXNRD1, indicating that benzophenanthridine alkaloid is a fascinating chemical entity in the field of TXNRD1 inhibitors. In this study, the inhibition of three benzophenanthridine alkaloids, including chelerythrine, sanguinarine, and nitidine, on recombinant TXNRD1 was investigated, and their anti-cancer mechanisms were revealed using three gastric cancer cell lines. Chelerythrine and sanguinarine are more potent inhibitors of TXNRD1 than nitidine, and the inhibitory effects take place in a dose- and time-dependent manner. Site-directed mutagenesis of TXNRD1 and in vitro inhibition analysis proved that chelerythrine or sanguinarine is primarily bound to the Sec498 residue of the enzyme, but the neighboring Cys497 and remaining N-terminal redox-active cysteines could also be modified after the conjugation of Sec498. With high similarity to sanguinarine, chelerythrine exhibited cytotoxic effects on multiple gastric cancer cell lines and suppressed the proliferation of tumor spheroids derived from NCI-N87 cells. Chelerythrine elevated cellular levels of reactive oxygen species (ROS) and induced endoplasmic reticulum (ER) stress. Moreover, the ROS induced by chelerythrine could be completely suppressed by the addition of N-acetyl-L-cysteine (NAC), and the same is true for sanguinarine. Notably, Nec-1, an RIPK1 inhibitor, rescued the chelerythrine-induced rapid cell death, indicating that chelerythrine triggers necroptosis in gastric cancer cells. Taken together, this study demonstrates that chelerythrine is a novel inhibitor of TXNRD1 by targeting Sec498 and possessing high anti-tumor properties on multiple gastric cancer cell lines by eliciting necroptosis.
Collapse
Affiliation(s)
- Minghui Liu
- School of Life and Pharmaceutical Sciences (LPS), Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Shibo Sun
- School of Life and Pharmaceutical Sciences (LPS), Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Yao Meng
- School of Life and Pharmaceutical Sciences (LPS), Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Ling Wang
- School of Life and Pharmaceutical Sciences (LPS), Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Haowen Liu
- School of Life and Pharmaceutical Sciences (LPS), Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Wuyang Shi
- School of Life and Pharmaceutical Sciences (LPS), Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Qiuyu Zhang
- School of Life and Pharmaceutical Sciences (LPS), Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Weiping Xu
- School of Ocean Science and Technology (OST), Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Panjin 124221, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian 116023, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS), Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
68
|
Fields NJ, Palmer KR, Nisi A, Marshall SA. Preeclampsia to COVID-19: A journey towards improved placental and vascular function using sulforaphane. Placenta 2023; 141:84-93. [PMID: 37591715 DOI: 10.1016/j.placenta.2023.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Excess inflammation and oxidative stress are common themes in many pathologies of pregnancy including preeclampsia and more recently severe COVID-19. The risk of preeclampsia increases following maternal infection with COVID-19, potentially relating to significant overlap in pathophysiology with endothelial, vascular and immunological dysfunction common to both. Identifying a therapy which addresses these injurious processes and stabilises the endothelial and vascular maternal system would help address the significant global burden of maternal and neonatal morbidity and mortality they cause. Sulforaphane is a naturally occurring phytonutrient found most densely within cruciferous vegetables. It has anti-inflammatory, antioxidant and immune modulating properties via upregulation of phase-II detoxification enzymes. This review will cover the common pathways shared by COVID-19 and preeclampsia and offer a potential therapeutic target via nuclear factor erythroid 2-related factor upregulation in the form of sulforaphane.
Collapse
Affiliation(s)
- Neville J Fields
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia; Monash Health, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, Australia.
| | - Kirsten R Palmer
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia; Monash Health, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, Australia
| | - Anthony Nisi
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Sarah A Marshall
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia
| |
Collapse
|
69
|
Aboulkassim T, Tian X, Liu Q, Qiu D, Hancock M, Wu JH, Batist G. A NRF2 inhibitor selectively sensitizes KEAP1 mutant tumor cells to cisplatin and gefitinib by restoring NRF2-inhibitory function of KEAP1 mutants. Cell Rep 2023; 42:113104. [PMID: 37703174 DOI: 10.1016/j.celrep.2023.113104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/09/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
NRF2 (nuclear factor erythroid 2-related factor 2) is a master regulator of protective responses in healthy tissues. However, when it is active in tumor cells, it can result in drug resistance. KEAP1, the endogenous NRF2 inhibitor, binds NRF2 and redirects it to proteasomal degradation, so the KEAP1/NRF2 interaction is critical for maintaining NRF2 at a basal level. A number of clinically relevant KEAP1 mutations were shown to disrupt this critical KEAP1/NRF2 interaction, leading to elevated NRF2 levels and drug resistance. Here, we describe a small-molecule NRF2 inhibitor, R16, that selectively binds KEAP1 mutants and restores their NRF2-inhibitory function by repairing the disrupted KEAP1/NRF2 interactions. R16 substantially sensitizes KEAP1-mutated tumor cells to cisplatin and gefitinib, but does not do so for wild-type KEAP1 cells, and sensitizes KEAP1 G333C-mutated xenograft to cisplatin. We developed a BRET2-based biosensor system to detect the KEAP1/NRF2 interaction and classify KEAP1 mutations. This strategy would identify drug-resistant KEAP1 somatic mutations in clinical molecular profiling of tumors.
Collapse
Affiliation(s)
- Tahar Aboulkassim
- Segal Cancer Center and McGill University Centre for Translational Research in Cancer, Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Xiaohong Tian
- Segal Cancer Center and McGill University Centre for Translational Research in Cancer, Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Qiang Liu
- Segal Cancer Center and McGill University Centre for Translational Research in Cancer, Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Dinghong Qiu
- Segal Cancer Center and McGill University Centre for Translational Research in Cancer, Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Mark Hancock
- Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jian Hui Wu
- Segal Cancer Center and McGill University Centre for Translational Research in Cancer, Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H4A 3T2, Canada.
| | - Gerald Batist
- Segal Cancer Center and McGill University Centre for Translational Research in Cancer, Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H4A 3T2, Canada.
| |
Collapse
|
70
|
Khan SU, Rayees S, Sharma P, Malik F. Targeting redox regulation and autophagy systems in cancer stem cells. Clin Exp Med 2023; 23:1405-1423. [PMID: 36473988 DOI: 10.1007/s10238-022-00955-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Cancer is a dysregulated cellular level pathological condition that results in tumor formation followed by metastasis. In the heterogeneous tumor architecture, cancer stem cells (CSCs) are essential to push forward the progression of tumors due to their strong pro-tumor properties such as stemness, self-renewal, plasticity, metastasis, and being poorly responsive to radiotherapy and chemotherapeutic agents. Cancer stem cells have the ability to withstand various stress pressures by modulating transcriptional and translational mechanisms, and adaptable metabolic changes. Owing to CSCs heterogeneity and plasticity, these cells display varied metabolic and redox profiles across different types of cancers. It has been established that there is a disparity in the levels of Reactive Oxygen Species (ROS) generated in CSCs vs Non-CSC and these differential levels are detected across different tumors. CSCs have unique metabolic demands and are known to change plasticity during metastasis by passing through the interchangeable epithelial and mesenchymal-like phenotypes. During the metastatic process, tumor cells undergo epithelial to mesenchymal transition (EMT) thus attaining invasive properties while leaving the primary tumor site, similarly during the course of circulation and extravasation at a distant organ, these cells regain their epithelial characteristics through Mesenchymal to Epithelial Transition (MET) to initiate micrometastasis. It has been evidenced that levels of Reactive Oxygen Species (ROS) and associated metabolic activities vary between the epithelial and mesenchymal states of CSCs. Similarly, the levels of oxidative and metabolic states were observed to get altered in CSCs post-drug treatments. As oxidative and metabolic changes guide the onset of autophagy in cells, its role in self-renewal, quiescence, proliferation and response to drug treatment is well established. This review will highlight the molecular mechanisms useful for expanding therapeutic strategies based on modulating redox regulation and autophagy activation to targets. Specifically, we will account for the mounting data that focus on the role of ROS generated by different metabolic pathways and autophagy regulation in eradicating stem-like cells hereafter referred to as cancer stem cells (CSCs).
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheikh Rayees
- PK PD Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Pankaj Sharma
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
71
|
Chen B, Ouyang X, Cheng C, Chen D, Su J, Hu Y, Li X. Bioactive peptides derived from Radix Angelicae sinensis inhibit ferroptosis in HT22 cells through direct Keap1-Nrf2 PPI inhibition. RSC Adv 2023; 13:22148-22157. [PMID: 37492506 PMCID: PMC10363710 DOI: 10.1039/d3ra04057g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
The development of natural peptides as direct Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid2-related factor 2 (Nrf2) protein-protein interaction (PPI) inhibitors for antioxidant and anti-ferroptotic purposes has attracted increasing interest from chemists. Radix Angelicae sinensis (RAS) is a widely used traditional Chinese medicine with antioxidant capability. However, few studies have screened Keap1-Nrf2 PPI inhibitory RAS peptides (RASPs). This study optimized the extraction and hydrolysis protocols of RAS protein using response surface methodology coupled with Box-Behnken design. The molecular weight distribution of the prepared hydrolysates was analysed to obtain active fractions. Subsequently, ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry was employed to identify RASPs. Various in vitro and in silico assays were conducted to evaluate the antioxidant and anti-ferroptotic effects of RASPs. The results revealed that at least 50 RASPs could be obtained through the optimized protocols. RASPs containing active residues effectively scavenged 2,2-diphenyl-1-picrylhydrazyl radical and 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid radical cation. They also showed cytoprotective effect against erastin-induced ferroptosis in HT22 cells, which was characterized by the activation of Nrf2 and weakened under the incubation of an Nrf2 inhibitor. Moreover, RASPs could bind to Keap1 and then dissociate Nrf2 in molecular dynamics simulations. In conclusion, RASPs exhibit antioxidant activity through hydrogen atom transfer and electron transfer mechanisms. Importantly, they also inhibit ferroptosis by directly inhibiting Keap1-Nrf2 PPI.
Collapse
Affiliation(s)
- Ban Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology Wuhan 430068 China
| | | | - Chunfeng Cheng
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine Shenzhen 518000 China
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine Guangzhou 510000 China
| | - Jiangtao Su
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology Wuhan 430068 China
| | - Yuchen Hu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology Wuhan 430068 China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510000 China
| |
Collapse
|
72
|
Wu S, Tian C, Tu Z, Guo J, Xu F, Qin W, Chang H, Wang Z, Hu T, Sun X, Ning H, Li Y, Gou W, Hou W. Protective effect of total flavonoids of Engelhardia roxburghiana Wall. leaves against radiation-induced intestinal injury in mice and its mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116428. [PMID: 36997130 DOI: 10.1016/j.jep.2023.116428] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/05/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Irradiation-induced intestinal injury (RIII) often occurs during radiotherapy in patients, which would result in abdominal pain, diarrhea, nausea, vomiting, and even death. Engelhardia roxburghiana Wall. leaves, a traditional Chinese herb, has unique anti-inflammatory, anti-tumor, antioxidant, and analgesic effects, is used to treat damp-heat diarrhea, hernia, and abdominal pain, and has the potential to protect against RIII. AIM OF THE STUDY To explore the protective effects of the total flavonoids of Engelhardia roxburghiana Wall. leaves (TFERL) on RIII and provide some reference for the application of Engelhardia roxburghiana Wall. leaves in the field of radiation protection. MATERIALS AND METHODS The effect of TFERL on the survival rate of mice was observed after a lethal radiation dose (7.2 Gy) by ionizing radiation (IR). To better observe the protective effects of the TFERL on RIII, a mice model of RIII induced by IR (13 Gy) was established. Small intestinal crypts, villi, intestinal stem cells (ISC) and the proliferation of ISC were observed by haematoxylin and eosin (H&E) and immunohistochemistry (IHC). Quantitative real-time PCR (qRT-PCR) was used to detect the expression of genes related to intestinal integrity. Superoxide dismutase (SOD), reduced glutathione (GSH), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the serum of mice were assessed. In vitro, cell models of RIII induced by IR (2, 4, 6, 8 Gy) were established. Normal human intestinal epithelial cells HIEC-6 cells were treated with TFERL/Vehicle, and the radiation protective effect of TFERL on HIEC-6 cells was detected by clone formation assay. DNA damage was detected by comet assay and immunofluorescence assay. Reactive oxygen species (ROS), cell cycle and apoptosis rate were detected by flow cytometry. Oxidative stress, apoptosis and ferroptosis-related proteins were detected by western blot. Finally, the colony formation assay was used to detect the effect of TFERL on the radiosensitivity of colorectal cancer cells. RESULTS TFERL treatment can increase the survival rate and time of the mice after a lethal radiation dose. In the mice model of RIII induced by IR, TFERL alleviated RIII by reducing intestinal crypt/villi structural damage, increasing the number and proliferation of ISC, and maintaining the integrity of the intestinal epithelium after total abdominal irradiation. Moreover, TFERL promoted the proliferation of irradiated HIEC-6 cells, and reduced radiation-induced apoptosis and DNA damage. Mechanism studies have found that TFERL promotes the expression of NRF2 and its downstream antioxidant proteins, and silencing NRF2 resulted in the loss of radioprotection by TFERL, suggesting that TFERL exerts radiation protection by activating the NRF2 pathway. Surprisingly, TFERL reduced the number of clones of colon cancer cells after irradiation, suggesting that TFERL can increase the radiosensitivity of colon cancer cells. CONCLUSION Our data showed that TFERL inhibited oxidative stress, reduced DNA damage, reduced apoptosis and ferroptosis, and improved IR-induced RIII. This study may offer a fresh approach to using Chinese herbs for radioprotection.
Collapse
Affiliation(s)
- Shaohua Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Chen Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Zhengwei Tu
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital, Tianjin, 300100, China
| | - Jianghong Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Feifei Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Weida Qin
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Huajie Chang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Zhiyun Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Tong Hu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao Sun
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hongxin Ning
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Wenfeng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.
| | - Wenbin Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.
| |
Collapse
|
73
|
Hammad M, Raftari M, Cesário R, Salma R, Godoy P, Emami SN, Haghdoost S. Roles of Oxidative Stress and Nrf2 Signaling in Pathogenic and Non-Pathogenic Cells: A Possible General Mechanism of Resistance to Therapy. Antioxidants (Basel) 2023; 12:1371. [PMID: 37507911 PMCID: PMC10376708 DOI: 10.3390/antiox12071371] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The coordinating role of nuclear factor erythroid-2-related factor 2 (Nrf2) in cellular function is undeniable. Evidence indicates that this transcription factor exerts massive regulatory functions in multiple signaling pathways concerning redox homeostasis and xenobiotics, macromolecules, and iron metabolism. Being the master regulator of antioxidant system, Nrf2 controls cellular fate, influencing cell proliferation, differentiation, apoptosis, resistance to therapy, and senescence processes, as well as infection disease success. Because Nrf2 is the key coordinator of cell defence mechanisms, dysregulation of its signaling has been associated with carcinogenic phenomena and infectious and age-related diseases. Deregulation of this cytoprotective system may also interfere with immune response. Oxidative burst, one of the main microbicidal mechanisms, could be impaired during the initial phagocytosis of pathogens, which could lead to the successful establishment of infection and promote susceptibility to infectious diseases. There is still a knowledge gap to fill regarding the molecular mechanisms by which Nrf2 orchestrates such complex networks involving multiple pathways. This review describes the role of Nrf2 in non-pathogenic and pathogenic cells.
Collapse
Affiliation(s)
- Mira Hammad
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Mohammad Raftari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rute Cesário
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rima Salma
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Paulo Godoy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - S Noushin Emami
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Natural Resources Institute, University of Greenwich, London ME4 4TB, UK
| | - Siamak Haghdoost
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Advanced Resource Center for HADrontherapy in Europe (ARCHADE), 14000 Caen, France
| |
Collapse
|
74
|
Lee J, Roh JL. Targeting Nrf2 for ferroptosis-based therapy: Implications for overcoming ferroptosis evasion and therapy resistance in cancer. Biochim Biophys Acta Mol Basis Dis 2023:166788. [PMID: 37302427 DOI: 10.1016/j.bbadis.2023.166788] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Ferroptosis is a newly discovered form of programmed cell death caused by redox-active iron-mediated lipid peroxidation. Ferroptosis exhibits a unique morphological phenotype resulting from oxidative damage to membrane lipids. Ferroptosis induction has been shown to be effective in treating human cancers that rely on lipid peroxidation repair pathways. Nuclear factor erythroid 2-related factor 2 (Nrf2) can control the regulatory pathways of ferroptosis, which involve genes associated with glutathione biosynthesis, antioxidant responses, and lipid and iron metabolism. Resistant cancer cells often utilize Nrf2 stabilization by Keap1 inactivation or other somatic alterations in the genes from the Nrf2 pathway, which can confer resistance to ferroptosis induction and other therapies. However, pharmacological inactivation of the Nrf2 pathway can sensitize cancer cells to ferroptosis induction. Inducing lipid peroxidation and ferroptosis through regulating the Nrf2 pathway is a promising strategy for enhancing the anticancer effects of chemotherapy and radiation therapy in therapy-resistant human cancers. Despite promising preliminary studies, clinical trials in human cancer therapy have not yet been realized. A deeper understanding of their exact processes and efficacies in various cancers remains unsolved. Therefore, this article aims to summarize the regulatory mechanisms of ferroptosis, their modulation by Nrf2, and the potential of targeting Nrf2 for ferroptosis-based cancer therapy.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
75
|
Li X, Yu X, He S, Li J. Dipeptidyl peptidase 3 is essential for maintaining osteoblastic differentiation under a high-glucose environment by inhibiting apoptosis, oxidative stress and inflammation through the modulation of the Keap1-Nrf2 pathway. Int Immunopharmacol 2023; 120:110404. [PMID: 37276831 DOI: 10.1016/j.intimp.2023.110404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/04/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
Dipeptidyl peptidase 3 (Dpp3) has emerged as a pivotal mediator of bone homeostasis and bone loss pathology. However, whether Dpp3 plays a role in diabetic osteoporosis has not been addressed. Therefore, this work explored the possible role of Dpp3 in osteoblast dysfunction evoked by high glucose (HG), a cellular model for studying diabetic osteoporosis in vitro. Dpp3 expression was decreased in the pre-osteoblast MC3T3-E1 during osteoblastic differentiation under the HG environment. The osteoblastic differentiation impaired by HG was reversed in Dpp3-overexpressing MC3T3-E1 cells. The migration and invasion of MC3T3-E1 cells impeded by HG were reversed by Dpp3 overexpression. Moreover, HG-evoked apoptosis, oxidative stress and inflammation were ameliorated in Dpp3-overexpressing MC3T3-E1 cells. A mechanistic study showed that Dpp3 up-regulated the activation of nuclear factor E2-related factor 2 (Nrf2) depending on Kelch-like ECH-associated protein 1 (Keap1). The blockade of Nrf2 reversed Dpp3-mediated effects on osteoblastic differentiation, apoptosis, oxidative stress and inflammation of HG-stimulated MC3T3-E1 cells. Therefore, Dpp3 plays an essential role in maintaining osteoblastic differentiation under a HG environment associated with the regulation of the Keap1-Nrf2 pathway. This work indicates a possible relationship between Dpp3 and diabetic osteoporosis.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Endocrinology Diabetes, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xiangyou Yu
- Department of Endocrinology Diabetes, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Shenglin He
- Department of Endocrinology Diabetes, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Jing Li
- Department of Endocrinology Diabetes, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
| |
Collapse
|
76
|
Chen LS, Zheng DS. Safflor Yellow A Protects Beas-2B Cells Against LPS-Induced Injury via Activating Nrf2. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2023; 33:1-10. [PMID: 37363713 PMCID: PMC10234683 DOI: 10.1007/s43450-023-00409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023]
Abstract
Acute lung injury and its severe form acute respiratory distress syndrome are lethal lung diseases. So far, effective therapy for the diseases is deficient and the prognosis is poor. Recently, it was found activating nuclear factor erythroid 2-related factor 2 could attenuate the injury including inflammation, oxidative stress, and apoptosis in those diseases. To discover novel therapy, we have evaluated safflor yellow A and explored the underlying mechanisms using Beas-2B cells injured by lipopolysaccharide. As a result, safflor yellow A could improve the viability of Beas-2B cells treated with lipopolysaccharide. Further investigations have revealed safflor yellow A suppressed oxidative stress induced by lipopolysaccharide via reducing reactive oxygen species and malondialdehyde, and elevating superoxide dismutase, catalase, and glutathione peroxidase. Meanwhile, the inflammation resulting from lipopolysaccharide was ameliorated through decreasing the pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, and interleukin-6. It was also found nuclear factor κB was inactivated by safflor yellow A. In addition, safflor yellow A downregulated cysteinyl aspartate specific proteinase-3 and Bcl-2-associated X protein and upregulated B-cell lymphoma-2 to inhibited apoptosis of Beas-2B cells induced by lipopolysaccharide. The activation of nuclear factor erythroid 2-related factor 2 was observed in Beas-2B cells, which was associated with the protective effects of safflor yellow A. And molecular docking elucidated safflor yellow A interacted with Kelch-like ECH-associated protein 1 to activate nuclear factor erythroid 2-related factor 2. These results can provide evidences for the discovery of novel therapy for further evaluation of safflor yellow A in the treatment of acute lung injury and acute respiratory distress syndrome. Graphical Abstract
Collapse
Affiliation(s)
- Liang-Shu Chen
- Ward of Healthcare Branch II, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 Fujian China
| | - Dong-Shu Zheng
- The Third Clinical Medical College, Fujian Medical University, Xiamen, 361003 Fujian China
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003 Fujian China
- Xiamen Key Laboratory of Otolaryngology, Head and Neck Surgery, Xiamen, 361003 Fujian China
| |
Collapse
|
77
|
Modi R, McKee N, Zhang N, Alwali A, Nelson S, Lohar A, Ostafe R, Zhang DD, Parkinson EI. Stapled Peptides as Direct Inhibitors of Nrf2-sMAF Transcription Factors. J Med Chem 2023; 66:6184-6192. [PMID: 37097833 PMCID: PMC10184664 DOI: 10.1021/acs.jmedchem.2c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 04/26/2023]
Abstract
Nuclear factor erythroid-related 2-factor 2 (Nrf2) is a transcription factor traditionally thought of as a cellular protector. However, in many cancers, Nrf2 is constitutively activated and correlated with therapeutic resistance. Nrf2 heterodimerizes with small musculoaponeurotic fibrosarcoma Maf (sMAF) transcription factors, allowing binding to the antioxidant responsive element (ARE) and induction of transcription of Nrf2 target genes. While transcription factors are historically challenging to target, stapled peptides have shown great promise for inhibiting these protein-protein interactions. Herein, we describe the first direct cell-permeable inhibitor of Nrf2/sMAF heterodimerization. N1S is a stapled peptide designed based on AlphaFold predictions of the interactions between Nrf2 and sMAF MafG. A cell-based reporter assay combined with in vitro biophysical assays demonstrates that N1S directly inhibits Nrf2/MafG heterodimerization. N1S treatment decreases the transcription of Nrf2-dependent genes and sensitizes Nrf2-dependent cancer cells to cisplatin. Overall, N1S is a promising lead for the sensitization of Nrf2-addicted cancers.
Collapse
Affiliation(s)
- Ramya Modi
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nick McKee
- Department
of Pharmacology and Toxicology, University
of Arizona, Tucson, Arizona 85721, United States
| | - Ning Zhang
- Department
of Pharmacology and Toxicology, University
of Arizona, Tucson, Arizona 85721, United States
| | - Amir Alwali
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Samantha Nelson
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aditi Lohar
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Raluca Ostafe
- Molecular
Evolution Protein Engineering and Production, Purdue University, West Lafayette, Indiana 47907, United States
| | - Donna D. Zhang
- Department
of Pharmacology and Toxicology, University
of Arizona, Tucson, Arizona 85721, United States
| | - Elizabeth I. Parkinson
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
78
|
Chen L, Huang J, Yao ZM, Sun XR, Tong XH, Hu M, Zhang Y, Dong SY. Procyanidins Alleviated Cerebral Ischemia/Reperfusion Injury by Inhibiting Ferroptosis via the Nrf2/HO-1 Signaling Pathway. Molecules 2023; 28:molecules28083582. [PMID: 37110816 PMCID: PMC10143264 DOI: 10.3390/molecules28083582] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Procyanidins (PCs), which are organic antioxidants, suppress oxidative stress, exhibit anti-apoptotic properties, and chelate metal ions. The potential defense mechanism of PCs against cerebral ischemia/reperfusion injury (CIRI) was investigated in this study. Pre-administration for 7 days of a PC enhanced nerve function and decreased cerebellar infarct volume in a mouse middle cerebral artery embolization paradigm. In addition, mitochondrial ferroptosis was enhanced, exhibited by mitochondrial shrinkage and roundness, increased membrane density, and reduced or absent ridges. The level of Fe2+ and lipid peroxidation that cause ferroptosis was significantly reduced by PC administration. According to the Western blot findings, PCs altered the expression of proteins associated with ferroptosis, promoting the expression of GPX4 and SLC7A11 while reducing the expression of TFR1, hence inhibiting ferroptosis. Moreover, the treatment of PCs markedly elevated the expression of HO-1 and Nuclear-Nrf2. The PCs' ability to prevent ferroptosis due to CIRI was decreased by the Nrf2 inhibitor ML385. Our findings showed that the protective effect of PCs may be achieved via activation of the Nrf2/HO-1 pathway and inhibiting ferroptosis. This study provides a new perspective on the treatment of CIRI with PCs.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Xu-Hui Tong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Miao Hu
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Ying Zhang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
- Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
79
|
Roberts JA, Rainbow RD, Sharma P. Mitigation of Cardiovascular Disease and Toxicity through NRF2 Signalling. Int J Mol Sci 2023; 24:ijms24076723. [PMID: 37047696 PMCID: PMC10094784 DOI: 10.3390/ijms24076723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Cardiovascular toxicity and diseases are phenomena that have a vastly detrimental impact on morbidity and mortality. The pathophysiology driving the development of these conditions is multifactorial but commonly includes the perturbance of reactive oxygen species (ROS) signalling, iron homeostasis and mitochondrial bioenergetics. The transcription factor nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2), a master regulator of cytoprotective responses, drives the expression of genes that provide resistance to oxidative, electrophilic and xenobiotic stresses. Recent research has suggested that stimulation of the NRF2 signalling pathway can alleviate cardiotoxicity and hallmarks of cardiovascular disease progression. However, dysregulation of NRF2 dynamic responses can be severely impacted by ageing processes and off-target toxicity from clinical medicines including anthracycline chemotherapeutics, rendering cells of the cardiovascular system susceptible to toxicity and subsequent tissue dysfunction. This review addresses the current understanding of NRF2 mechanisms under homeostatic and cardiovascular pathophysiological conditions within the context of wider implications for this diverse transcription factor.
Collapse
Affiliation(s)
- James A. Roberts
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Richard D. Rainbow
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Liverpool Centre for Cardiovascular Science, Liverpool L7 8TX, UK
| | - Parveen Sharma
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Liverpool Centre for Cardiovascular Science, Liverpool L7 8TX, UK
| |
Collapse
|
80
|
Feng J, Read OJ, Dinkova-Kostova AT. Nrf2 in TIME: The Emerging Role of Nuclear Factor Erythroid 2-Related Factor 2 in the Tumor Immune Microenvironment. Mol Cells 2023; 46:142-152. [PMID: 36927604 PMCID: PMC10070167 DOI: 10.14348/molcells.2023.2183] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 03/18/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the cellular antioxidant response, allowing adaptation and survival under conditions of oxidative, electrophilic and inflammatory stress, and has a role in metabolism, inflammation and immunity. Activation of Nrf2 provides broad and long-lasting cytoprotection, and is often hijacked by cancer cells, allowing their survival under unfavorable conditions. Moreover, Nrf2 activation in established human tumors is associated with resistance to chemo-, radio-, and immunotherapies. In addition to cancer cells, Nrf2 activation can also occur in tumor-associated macrophages (TAMs) and facilitate an anti-inflammatory, immunosuppressive tumor immune microenvironment (TIME). Several cancer cell-derived metabolites, such as itaconate, L-kynurenine, lactic acid and hyaluronic acid, play an important role in modulating the TIME and tumor-TAMs crosstalk, and have been shown to activate Nrf2. The effects of Nrf2 in TIME are context-depended, and involve multiple mechanisms, including suppression of pro-inflammatory cytokines, increased expression of programmed cell death ligand 1 (PD-L1), macrophage colony-stimulating factor (M-CSF) and kynureninase, accelerated catabolism of cytotoxic labile heme, and facilitating the metabolic adaptation of TAMs. This understanding presents both challenges and opportunities for strategic targeting of Nrf2 in cancer.
Collapse
Affiliation(s)
- Jialin Feng
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Oliver J. Read
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Albena T. Dinkova-Kostova
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
81
|
Liu J, Yang G, Zhang H. Glyphosate-triggered hepatocyte ferroptosis via suppressing Nrf2/GSH/GPX4 axis exacerbates hepatotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160839. [PMID: 36521597 DOI: 10.1016/j.scitotenv.2022.160839] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate (GLY) exposure has been reported to damage organs in animals, in particular the liver, due to increased reactive oxygen species (ROS). Ferroptosis is defined as a new type of cell death that is characterized by the increase of ROS. The purpose of this study was to elucidate whether the relationship between ferroptosis and GLY-induced hepatotoxicity is of significance to enlarge the knowledge about GLY toxicity and consequences for human and animal health. To this end, in this study, we investigated the role of ferroptosis in GLY-induced hepatotoxicity both in vivo and in vitro. The results showed that GLY exposure triggered ferroptosis in L02 cells, but pretreatment with ferroptosis inhibitor ferrostatin (Fer-1) rescued ferroptosis-induced injury, thereby indicating that ferroptosis plays a key role in GLY-induced hepatotoxicity. Moreover, N-acetylcysteine, a glutathione (GSH) synthesis precursor, reversed GLY-triggered ferroptosis damage, thus indicating that GSH exhaustion may be a prerequisite for GLY-triggered hepatotoxicity. Mechanistically, GLY inhibited GSH biosynthesis via blocking the phosphorylation and nuclear translocation of Nrf2, which resulted in GSH depletion-induced hepatocyte ferroptosis. In a mouse model, GLY exposure triggered ferroptosis-induced liver damage, which can be rescued by pretreatment with Fer-1 or tBHQ (a specific agonist of Nrf2). To our knowledge, this is the first study to reveal that GLY-triggered hepatocyte ferroptosis via suppressing Nrf2/GSH/GPX4 axis exacerbates hepatotoxicity, which expands our knowledge about GLY toxicity in animal and human health.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Biological and Brewing Engineering, Taishan University, No. 525 Dongyue Street, 271000 Tai'an City, Shandong Province, China.
| | - Guangcheng Yang
- College of Biological and Brewing Engineering, Taishan University, No. 525 Dongyue Street, 271000 Tai'an City, Shandong Province, China
| | - Hongna Zhang
- College of Bioscience and Engineering, Hebei University of Economics and Business, No. 47 Xuefu Road, 050061 Shijiazhuang City, Hebei Province, China.
| |
Collapse
|
82
|
Ge H, Li J, Xu Y, Xie J, Karim N, Yan F, Mo J, Chen W. Ameliorative effect of Fructus Gardeniae against lipotoxicity associated hepatocytes injury through activating Nrf2 signaling pathway. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
83
|
Abstract
Significance: Thioredoxin (Trx) is a powerful antioxidant that reduces protein disulfides to maintain redox stability in cells and is involved in regulating multiple redox-dependent signaling pathways. Recent Advance: The current accumulation of findings suggests that Trx participates in signaling pathways that interact with various proteins to manipulate their dynamic regulation of structure and function. These network pathways are critical for cancer pathogenesis and therapy. Promising clinical advances have been presented by most anticancer agents targeting such signaling pathways. Critical Issues: We herein link the signaling pathways regulated by the Trx system to potential cancer therapeutic opportunities, focusing on the coordination and strengths of the Trx signaling pathways in apoptosis, ferroptosis, immunomodulation, and drug resistance. We also provide a mechanistic network for the exploitation of therapeutic small molecules targeting the Trx signaling pathways. Future Directions: As research data accumulate, future complex networks of Trx-related signaling pathways will gain in detail. In-depth exploration and establishment of these signaling pathways, including Trx upstream and downstream regulatory proteins, will be critical to advancing novel cancer therapeutics. Antioxid. Redox Signal. 38, 403-424.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | | | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
84
|
Tan JL, Yi J, Cao XY, Wang FY, Xie SL, Zhou LL, Qin L, Dai AG. Celastrol: The new dawn in the treatment of vascular remodeling diseases. Biomed Pharmacother 2023; 158:114177. [PMID: 36809293 DOI: 10.1016/j.biopha.2022.114177] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Evidence is mounting that abnormal vascular remodeling leads to many cardiovascular diseases (CVDs). This suggests that vascular remodeling can be a crucial target for the prevention and treatment of CVDs. Recently, celastrol, an active ingredient of the broadly used Chinese herb Tripterygium wilfordii Hook F, has attracted extensive interest for its proven potential to improve vascular remodeling. Substantial evidence has shown that celastrol improves vascular remodeling by ameliorating inflammation, hyperproliferation, and migration of vascular smooth muscle cells, vascular calcification, endothelial dysfunction, extracellular matrix remodeling, and angiogenesis. Moreover, numerous reports have proven the positive effects of celastrol and its therapeutic promise in treating vascular remodeling diseases such as hypertension, atherosclerosis, and pulmonary artery hypertension. The present review summarizes and discusses the molecular mechanism of celastrol regulating vascular remodeling and provides preclinical proof for future clinical applications of celastrol.
Collapse
Affiliation(s)
- Jun-Lan Tan
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
| | - Jian Yi
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan, China
| | - Xian-Ya Cao
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
| | - Fei-Ying Wang
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
| | - Si-Lin Xie
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
| | - Ling-Ling Zhou
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
| | - Li Qin
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China; Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China.
| | - Ai-Guo Dai
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China; Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan, China.
| |
Collapse
|
85
|
Dai HY, Chang MX, Sun L. HOTAIRM1 knockdown reduces MPP +-induced oxidative stress injury of SH-SY5Y cells by activating the Nrf2/HO-1 pathway. Transl Neurosci 2023; 14:20220296. [PMID: 37529170 PMCID: PMC10388137 DOI: 10.1515/tnsci-2022-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 08/03/2023] Open
Abstract
Objective Parkinson's disease (PD) is the second most common neurodegenerative disease with complex pathogenesis. Although HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1) is upregulated in PD, its exact role in HOTAIRM1 is seldom reported. The purpose of this study is to research the effect of HOTAIRM1 on 1-methyl-4-phenylpyridonium (MPP+)-induced cytotoxicity and oxidative stress in SH-SY5Y cells. Methods SH-SY5Y cells were treated with MPP+ at various concentrations or time points to induce SH-SY5Y cytotoxicity, so as to determine the optimal MPP+ concentration and time point. HOTAIRM1 expression upon MPP+ treatment was analyzed through qRT-PCR. Next, HOTAIRM1 was downregulated to observe the variance of SH-SY5Y cell viability, apoptosis, oxidative stress-related indexes, and protein levels of the Nrf2/HO-1 pathway. In addition, rescue experiments were carried out to assess the role of Nrf2 silencing in HOTAIRM1 knockdown on MPP+-induced oxidative stress in SH-SY5Y cells. Results MPP+ treatment-induced cytotoxicity and upregulated HOTAIRM1 expression in SH-SY5Y cells in a dose- and time-dependent manner. Mechanically, HOTAIRM1 knockdown enhanced cell viability, limited apoptosis, and oxidative stress, therefore protecting SH-SY5Y cells from MPP+-induced SH-SY5Y cytotoxicity. On the other hand, HOTAIRM1 knockdown activated the protein levels of Nrf2 and HO-1. Nrf2 silencing could counteract the neuroprotective effect of HOTAIRM1 knockdown on in vitro PD model. Conclusion Our data demonstrated that HOTAIRM1 knockdown could inhibit apoptosis and oxidative stress and activated the Nrf2/HO-1 pathway, therefore exerting neuroprotective effect on the PD cell model.
Collapse
Affiliation(s)
- Hui-Yu Dai
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ming-Xiu Chang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ling Sun
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
86
|
Anti-Inflammatory Effect of Dimethyl Fumarate Associates with the Inhibition of Thioredoxin Reductase 1 in RAW 264.7 Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010107. [PMID: 36615301 PMCID: PMC9822326 DOI: 10.3390/molecules28010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Macrophages secrete a variety of pro-inflammatory cytokines in response to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) but abnormal release of cytokines unfortunately promotes cytokine storms. Dimethyl fumarate (DMF), an FDA-approved drug for multiple sclerosis (MS) treatment, has been found as an effective therapeutic agent for resolution. In this study, the anti-inflammatory effect of DMF was found to correlate to selenoprotein thioredoxin reductase 1 (TXNRD1). DMF irreversibly modified the Sec498 residue and C-terminal catalytic cysteine residues of TXNRD1 in a time- and dose-dependent manner. In LPS-stimulated RAW 264.7 cells, cellular TXNRD activity was increased through up-regulation of the protein level and DMF inhibited TXNRD activity and the nitric oxide (NO) production of RAW 264.7 cells. Meanwhile, the inhibition of TXNRD1 by DMF would contribute to the redox regulation of inflammation and promote the nuclear factor erythroid 2-related factor 2 (NRF2) activation. Notably, inhibition of cellular TXNRD1 by auranofin or TRi-1 showed anti-inflammatory effect in RAW 264.7 cells. This finding demonstrated that targeting TXNRD1 is a potential mechanism of using immunometabolites for dousing inflammation in response to pathogens and highlights the potential of TXNRD1 inhibitors in immune regulation.
Collapse
|
87
|
Wu X, Wei J, Yi Y, Gong Q, Gao J. Activation of Nrf2 signaling: A key molecular mechanism of protection against cardiovascular diseases by natural products. Front Pharmacol 2022; 13:1057918. [PMID: 36569290 PMCID: PMC9772885 DOI: 10.3389/fphar.2022.1057918] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) are a group of cardiac and vascular disorders including myocardial ischemia, congenital heart disease, heart failure, hypertension, atherosclerosis, peripheral artery disease, rheumatic heart disease, and cardiomyopathies. Despite considerable progress in prophylaxis and treatment options, CVDs remain a leading cause of morbidity and mortality and impose an extremely high socioeconomic burden. Oxidative stress (OS) caused by disequilibrium in the generation of reactive oxygen species plays a crucial role in the pathophysiology of CVDs. Nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor of endogenous antioxidant defense systems against OS, is considered an ideal therapeutic target for management of CVDs. Increasingly, natural products have emerged as a potential source of Nrf2 activators with cardioprotective properties and may therefore provide a novel therapeutic tool for CVD. Here, we present an updated comprehensive summary of naturally occurring products with cardioprotective properties that exert their effects by suppression of OS through activation of Nrf2 signaling, with the aim of providing useful insights for the development of therapeutic strategies exploiting natural products.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jiajia Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Yang Yi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
88
|
Heland S, Fields N, Ellery SJ, Fahey M, Palmer KR. The role of nutrients in human neurodevelopment and their potential to prevent neurodevelopmental adversity. Front Nutr 2022; 9:992120. [PMID: 36483929 PMCID: PMC9722743 DOI: 10.3389/fnut.2022.992120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/02/2022] [Indexed: 06/21/2024] Open
Abstract
Nutritional deficits or excesses affect a huge proportion of pregnant women worldwide. Maternal nutrition has a significant influence on the fetal environment and can dramatically impact fetal brain development. This paper reviews current nutritional supplements that can be used to optimise fetal neurodevelopment and prevent neurodevelopmental morbidities, including folate, iodine, vitamin B12, iron, and vitamin D. Interestingly, while correcting nutritional deficits can prevent neurodevelopmental adversity, overcorrecting them can in some cases be detrimental, so care needs to be taken when recommending supplementation in pregnancy. The potential benefits of using nutrition to prevent neurodiversity is shown by promising nutraceuticals, sulforaphane and creatine, both currently under investigation. They have the potential to promote improved neurodevelopmental outcomes through mitigation of pathological processes, including hypoxia, inflammation, and oxidative stress. Neurodevelopment is a complex process and whilst the role of micronutrients and macronutrients on the developing fetal brain is not completely understood, this review highlights the key findings thus far.
Collapse
Affiliation(s)
- Sarah Heland
- Monash Women’s and Newborn, Monash Health, Clayton, VIC, Australia
| | - Neville Fields
- Monash Women’s and Newborn, Monash Health, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Stacey Joan Ellery
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Michael Fahey
- Paediatric Neurology Unit, Monash Children’s Hospital, Clayton, VIC, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | - Kirsten Rebecca Palmer
- Monash Women’s and Newborn, Monash Health, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
89
|
Zhu S, Qin W, Liu T, Liu T, Ma H, Hu C, Yue X, Yan Y, Lv Y, Wang Z, Zhao Z, Wang X, Liu Y, Xia Q, Zhang H, Li N. Modified Qing’e Formula protects against UV-induced skin oxidative damage via the activation of Nrf2/ARE defensive pathway. Front Pharmacol 2022; 13:976473. [PMID: 36386207 PMCID: PMC9650274 DOI: 10.3389/fphar.2022.976473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
Exposure to ultraviolet (UV) light triggers the rapid generation and accumulation of reactive oxygen species (ROS) in skin cells, which increases oxidative stress damage and leads to photoaging. Nuclear factor E2-related factor 2 (Nrf2) modulates the antioxidant defense of skin cells against environmental factors, especially ultraviolet radiation. Natural products that target Nrf2-regulated antioxidant reactions are promising candidates for anti-photoaging. The aim of this study was to investigate the protective effect of Modified Qing’e Formula (MQEF) on UV-induced skin oxidative damage and its molecular mechanisms. In this study, the photoaging models of human keratinocytes (HaCaT) and ICR mice were established by UV irradiation. In vitro models showed that MQEF displayed potent antioxidant activity, significantly increased cell viability and reduced apoptosis and excess ROS levels. Meanwhile, the knockdown of Nrf2 reversed the antioxidant and anti-apoptotic effects of MQEF. In vivo experiments indicated that MQEF could protect the skin against UV-exposed injury which manifested by water loss, sensitivity, tanning, wrinkling, and breakage of collagen and elastic fibers. The application of MQEF effectively increased the activity of antioxidant enzymes and reduced the content of malondialdehyde (MDA) in mice. In addition, MQEF was able to activate Nrf2 nuclear translocation in mouse skin tissue. In summary, MQEF may attenuate UV-induced photoaging by upregulating Nrf2 expression and enhancing antioxidant damage capacity. MQEF may be a potential candidate to prevent UV-induced photoaging by restoring redox homeostasis.
Collapse
Affiliation(s)
- Shan Zhu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenxiao Qin
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Liu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Liu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongfei Ma
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cunyu Hu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaofeng Yue
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingshuang Lv
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zijing Wang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiyue Zhao
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiang Wang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Liu
- Tianjin University of Technology, Tianjin, China
| | - Qingmei Xia
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Han Zhang, ; Nan Li,
| | - Nan Li
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Han Zhang, ; Nan Li,
| |
Collapse
|
90
|
Chen CC, Wang YH, Sun RY, Lu XY, Xu YP, Wang YQ, Li JY, Wang HW, Chen KW. Salidroside protects against caerulein with the LPS-induced severe acute pancreatitis through suppression of oxidative stress and inflammation in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
91
|
The Role of Nrf2 in Pulmonary Fibrosis: Molecular Mechanisms and Treatment Approaches. Antioxidants (Basel) 2022; 11:antiox11091685. [PMID: 36139759 PMCID: PMC9495339 DOI: 10.3390/antiox11091685] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Pulmonary fibrosis is a chronic, progressive, incurable interstitial lung disease with high mortality after diagnosis and remains a global public health problem. Despite advances and breakthroughs in understanding the pathogenesis of pulmonary fibrosis, there are still no effective methods for the prevention and treatment of pulmonary fibrosis. The existing treatment options are imperfect, expensive, and have considerable limitations in effectiveness and safety. Hence, there is an urgent need to find novel therapeutic targets. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a central regulator of cellular antioxidative responses, inflammation, and restoration of redox balance. Accumulating reports reveal that Nrf2 activators exhibit potent antifibrosis effects and significantly attenuate pulmonary fibrosis in vivo and in vitro. This review summarizes the current Nrf2-related knowledge about the regulatory mechanism and potential therapies in the process of pulmonary fibrosis. Nrf2 orchestrates the activation of multiple protective genes that target inflammation, oxidative stress, fibroblast–myofibroblast differentiation (FMD), and epithelial–mesenchymal transition (EMT), and the mechanisms involve Nrf2 and its downstream antioxidant, Nrf2/HO−1/NQO1, Nrf2/NOX4, and Nrf2/GSH signaling pathway. We hope to indicate potential for Nrf2 system as a therapeutic target for pulmonary fibrosis.
Collapse
|
92
|
Red Palm Oil Ameliorates Oxidative Challenge and Inflammatory Responses Associated with Lipopolysaccharide-Induced Hepatic Injury by Modulating NF-κβ and Nrf2/GCL/HO-1 Signaling Pathways in Rats. Antioxidants (Basel) 2022; 11:antiox11081629. [PMID: 36009348 PMCID: PMC9404920 DOI: 10.3390/antiox11081629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Lipopolysaccharide (LPS), a well-conserved cell wall component of Gram positive bacteria, exerts its toxic effects via inducing oxidative and pro-inflammatory responses. Red palm oil (RPO) is a unique natural product with a balanced ratio of saturated and unsaturated fatty acids, with reported antioxidant and anti-inflammatory effects. In this study, we assess the protective effect and mechanistic action of RPO using a lipopolysaccharide (LPS)-induced hepatic injury model. Male Wistar rats were assigned into four groups (10 animals/group): normal control (NC), RPO, LPS and RPO + LPS. Animals in the RPO and RPO + LPS groups were administered RPO (200 μL/day) for 28 days. On the 27th day of experiment, animals in LPS and RPO + LPS groups were injected with LPS (0.5 mg/kg body weight). Animals were sacrificed 24 h later, and blood and liver tissues harvested for biochemical and molecular analysis. RPO resolved hepatic histological dysfunction induced by LPS, and lowered alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and γ-glutamyl transferase activities in the serum. Hepatic malondialdehyde and conjugated dienes, as well as pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6 and TNFα were significantly diminished (p < 0.05) by RPO pre-treatment. Activity of hepatic antioxidant enzymes including superoxide dismutase, glutathione reductase, glutathione peroxidase, as well as glutathione redox status (GSH:GSSG), and markers of antioxidant capacity that decreased as a result of LPS injection were improved by RPO pre-treatment. Mechanistically, RPO up-regulated mRNA expression of redox sensitive transcription factor Nrf2 and its downstream targets GCL and HO-1, while also suppressing the expression of NFκβ and associated inflammatory protein, Iκβ kinase (IκKβ). In conclusion, this study highlights the ameliorating effects of RPO against LPS-induced hepatic injury and revealed the Nrf2/GCL/HO-1 and NFκβ signaling axis as potential contributing mechanisms.
Collapse
|
93
|
Hormesis and Oxidative Distress: Pathophysiology of Reactive Oxygen Species and the Open Question of Antioxidant Modulation and Supplementation. Antioxidants (Basel) 2022; 11:antiox11081613. [PMID: 36009331 PMCID: PMC9405171 DOI: 10.3390/antiox11081613] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Alterations of redox homeostasis leads to a condition of resilience known as hormesis that is due to the activation of redox-sensitive pathways stimulating cell proliferation, growth, differentiation, and angiogenesis. Instead, supraphysiological production of reactive oxygen species (ROS) exceeds antioxidant defence and leads to oxidative distress. This condition induces damage to biomolecules and is responsible or co-responsible for the onset of several chronic pathologies. Thus, a dietary antioxidant supplementation has been proposed in order to prevent aging, cardiovascular and degenerative diseases as well as carcinogenesis. However, this approach has failed to demonstrate efficacy, often leading to harmful side effects, in particular in patients affected by cancer. In this latter case, an approach based on endogenous antioxidant depletion, leading to ROS overproduction, has shown an interesting potential for enhancing susceptibility of patients to anticancer therapies. Therefore, a deep investigation of molecular pathways involved in redox balance is crucial in order to identify new molecular targets useful for the development of more effective therapeutic approaches. The review herein provides an overview of the pathophysiological role of ROS and focuses the attention on positive and negative aspects of antioxidant modulation with the intent to find new insights for a successful clinical application.
Collapse
|
94
|
Jiang C, Ward NP, Prieto-Farigua N, Kang YP, Thalakola A, Teng M, DeNicola GM. A CRISPR screen identifies redox vulnerabilities for KEAP1/NRF2 mutant non-small cell lung cancer. Redox Biol 2022; 54:102358. [PMID: 35667246 PMCID: PMC9168196 DOI: 10.1016/j.redox.2022.102358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
The redox regulator NRF2 is hyperactivated in a large percentage of non-small cell lung cancer (NSCLC) cases, which is associated with chemotherapy and radiation resistance. To identify redox vulnerabilities for KEAP1/NRF2 mutant NSCLC, we conducted a CRISPR-Cas9-based negative selection screen for antioxidant enzyme genes whose loss sensitized cells to sub-lethal concentrations of the superoxide (O2•-) -generating drug β-Lapachone. While our screen identified expected hits in the pentose phosphate pathway, the thioredoxin-dependent antioxidant system, and glutathione reductase, we also identified the mitochondrial superoxide dismutase 2 (SOD2) as one of the top hits. Surprisingly, β-Lapachone did not generate mitochondrial O2•- but rather SOD2 loss enhanced the efficacy of β-Lapachone due to loss of iron-sulfur protein function, loss of mitochondrial ATP maintenance and deficient NADPH production. Importantly, inhibition of mitochondrial electron transport activity sensitized cells to β-Lapachone, demonstrating that these effects may be translated to increase ROS sensitivity therapeutically.
Collapse
Affiliation(s)
- Chang Jiang
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| | - Nathan P Ward
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Nicolas Prieto-Farigua
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Yun Pyo Kang
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Anish Thalakola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
95
|
Khodakarami A, Adibfar S, Karpisheh V, Abolhasani S, Jalali P, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The molecular biology and therapeutic potential of Nrf2 in leukemia. Cancer Cell Int 2022; 22:241. [PMID: 35906617 PMCID: PMC9336077 DOI: 10.1186/s12935-022-02660-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) transcription factor has contradictory roles in cancer, which can act as a tumor suppressor or a proto-oncogene in different cell conditions (depending on the cell type and the conditions of the cell environment). Nrf2 pathway regulates several cellular processes, including signaling, energy metabolism, autophagy, inflammation, redox homeostasis, and antioxidant regulation. As a result, it plays a crucial role in cell survival. Conversely, Nrf2 protects cancerous cells from apoptosis and increases proliferation, angiogenesis, and metastasis. It promotes resistance to chemotherapy and radiotherapy in various solid tumors and hematological malignancies, so we want to elucidate the role of Nrf2 in cancer and the positive point of its targeting. Also, in the past few years, many studies have shown that Nrf2 protects cancer cells, especially leukemic cells, from the effects of chemotherapeutic drugs. The present paper summarizes these studies to scrutinize whether targeting Nrf2 combined with chemotherapy would be a therapeutic approach for leukemia treatment. Also, we discussed how Nrf2 and NF-κB work together to control the cellular redox pathway. The role of these two factors in inflammation (antagonistic) and leukemia (synergistic) is also summarized.
Collapse
Affiliation(s)
- Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Adibfar
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
96
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kamperi N, Kanara I, Kodukula K, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Tamvakopoulos C, Vavvas DG, Zamboni RJ, Chen X. Treatment and prevention of pathological mitochondrial dysfunction in retinal degeneration and in photoreceptor injury. Biochem Pharmacol 2022; 203:115168. [PMID: 35835206 DOI: 10.1016/j.bcp.2022.115168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Pathological deterioration of mitochondrial function is increasingly linked with multiple degenerative illnesses as a mediator of a wide range of neurologic and age-related chronic diseases, including those of genetic origin. Several of these diseases are rare, typically defined in the United States as an illness affecting fewer than 200,000 people in the U.S. population, or about one in 1600 individuals. Vision impairment due to mitochondrial dysfunction in the eye is a prominent feature evident in numerous primary mitochondrial diseases and is common to the pathophysiology of many of the familiar ophthalmic disorders, including age-related macular degeneration, diabetic retinopathy, glaucoma and retinopathy of prematurity - a collection of syndromes, diseases and disorders with significant unmet medical needs. Focusing on metabolic mitochondrial pathway mechanisms, including the possible roles of cuproptosis and ferroptosis in retinal mitochondrial dysfunction, we shed light on the potential of α-lipoyl-L-carnitine in treating eye diseases. α-Lipoyl-L-carnitine is a bioavailable mitochondria-targeting lipoic acid prodrug that has shown potential in protecting against retinal degeneration and photoreceptor cell loss in ophthalmic indications.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - David N Harpp
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Natalia Kamperi
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | - Anastasios N Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, MA, USA
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Constantin Tamvakopoulos
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Robert J Zamboni
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Xiaohong Chen
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
97
|
Liu S, Pi J, Zhang Q. Signal amplification in the KEAP1-NRF2-ARE antioxidant response pathway. Redox Biol 2022; 54:102389. [PMID: 35792437 PMCID: PMC9287733 DOI: 10.1016/j.redox.2022.102389] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
The KEAP1-NRF2-ARE signaling pathway plays a central role in mediating the adaptive cellular stress response to oxidative and electrophilic chemicals. This canonical pathway has been extensively studied and reviewed in the past two decades, but rarely was it looked at from a quantitative signaling perspective. Signal amplification, i.e., ultrasensitivity, is crucially important for robust induction of antioxidant genes to appropriate levels that can adequately counteract the stresses. In this review article, we examined a number of well-known molecular events in the KEAP1-NRF2-ARE pathway from a quantitative perspective with a focus on how signal amplification can be achieved. We illustrated, by using a series of mathematical models, that redox-regulated protein sequestration, stabilization, translation, nuclear trafficking, DNA promoter binding, and transcriptional induction - which are embedded in the molecular network comprising KEAP1, NRF2, sMaf, p62, and BACH1 - may generate highly ultrasensitive NRF2 activation and antioxidant gene induction. The emergence and degree of ultrasensitivity depend on the strengths of protein-protein and protein-DNA interaction and protein abundances. A unique, quantitative understanding of signal amplification in the KEAP1-NRF2-ARE pathway will help to identify sensitive targets for the prevention and therapeutics of oxidative stress-related diseases and develop quantitative adverse outcome pathway models to facilitate the health risk assessment of oxidative chemicals.
Collapse
Affiliation(s)
- Shengnan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
98
|
Liu Y, Hou M, Pan Z, Tian X, Zhao Z, Liu T, Yang H, Shi Q, Chen X, Zhang Y, He F, Zhu X. Arctiin-reinforced antioxidant microcarrier antagonizes osteoarthritis progression. J Nanobiotechnology 2022; 20:303. [PMID: 35761235 PMCID: PMC9235181 DOI: 10.1186/s12951-022-01505-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/07/2022] [Indexed: 11/14/2022] Open
Abstract
Loss of extracellular matrix (ECM) of cartilage due to oxidative stress injury is one of the main characteristics of osteoarthritis (OA). As a bioactive molecule derived from the traditional Chinese Burdock, arctiin exerts robust antioxidant properties to modulate redox balance. However, the potential therapeutic effects of arctiin on OA and the underlying mechanisms involved are still unknown. Based on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) tool, Burdock-extracted small molecule arctiin was identified as a potential anti-arthritic component. In vitro, treatment using arctiin rescued the interleukin (IL)-1β-induced activation of proteinases and promoted the cartilage ECM synthesis in human chondrocytes. In vivo, intraperitoneal injection of arctiin ameliorated cartilage erosion and encountered subchondral bone sclerosis in the post-traumatic OA mice. Transcriptome sequencing uncovered that arctiin-enhanced cartilage matrix deposition was associated with restricted oxidative stress. Mechanistically, inhibition of nuclear factor erythroid 2-related factor 2 (NRF2) abolished arctiin-mediated anti-oxidative and anti-arthritic functions. To further broaden the application prospects, a gellan gum (GG)-based bioactive gel (GG-CD@ARC) encapsulated with arctiin was made to achieve long-term and sustained drug release. Intra-articular injection of GG-CD@ARC counteracted cartilage degeneration in the severe (12 weeks) OA mice model. These findings indicate that arctiin may be a promising anti-arthritic agent. Furthermore, GG-modified bioactive glue loaded with arctiin provides a unique strategy for treating moderate to severe OA.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Zejun Pan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Xin Tian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Zhijian Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China. .,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China.
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China. .,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China.
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China. .,Orthopaedic Institute, Medical College, Soochow University, No. 178 East Ganjiang Road, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
99
|
Segeren HA, Westendorp B. Mechanisms used by cancer cells to tolerate drug-induced replication stress. Cancer Lett 2022; 544:215804. [PMID: 35750276 DOI: 10.1016/j.canlet.2022.215804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 11/02/2022]
Abstract
Activation of oncogenes in cancer cells forces cell proliferation, leading to DNA replication stress (RS). As a consequence, cancer cells heavily rely on the intra S-phase checkpoint for survival. This fundamental principle formed the basis for the development of inhibitors against key players of the intra S-phase checkpoint, ATR and CHK1. These drugs are often combined with chemotherapeutic drugs that interfere with DNA replication to exacerbate RS and exhaust the intra S-phase checkpoint in cancer cells. However, drug resistance impedes efficient clinical use, suggesting that some cancer cells tolerate severe RS. In this review, we describe how an increased nucleotide pool, boosted stabilization and repair of stalled forks and firing of dormant origins fortify the RS response in cancer cells. Notably, the vast majority of the genes that confer RS tolerance are regulated by the E2F and NRF2 transcription factors. These transcriptional programs are frequently activated in cancer cells, allowing simultaneous activation of multiple tolerance avenues. We propose that the E2F and NRF2 transcriptional programs can be used as biomarker to select patients for treatment with RS-inducing drugs and as novel targets to kill RS-tolerant cancer cells. Together, this review aims to provide a framework to maximally exploit RS as an Achilles' heel of cancer cells.
Collapse
Affiliation(s)
- Hendrika A Segeren
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Bart Westendorp
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
100
|
Park J, Kim SK, Hallis SP, Choi BH, Kwak MK. Role of CD133/NRF2 Axis in the Development of Colon Cancer Stem Cell-Like Properties. Front Oncol 2022; 11:808300. [PMID: 35155201 PMCID: PMC8825377 DOI: 10.3389/fonc.2021.808300] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer stem cells (CSCs) exhibit intrinsic therapy/stress resistance, which often cause cancer recurrence after therapy. In this study, we investigated the potential relationship between the cluster of differentiation (CD)-133, a CSC marker of colon cancer, and nuclear factor erythroid 2-like 2 (NFE2L2; NRF2), a master transcription factor for the regulation of multiple antioxidant genes. In the first model of CSC, a sphere culture of the colorectal cell line HCT116, showed increased levels of CD133 and NRF2. Silencing of CD133 reduced the levels of CSC markers, such as Kruppel-like factor 4 (KLF4) and ATP-binding cassette subfamily G member 2 (ABCG2), and further suppressed the expression levels of NRF2 and its target genes. As a potential molecular link, CD133-mediated activation of phosphoinositide 3-kinase/serine-threonine kinase (PI3K/AKT) signaling appears to increase the NRF2 protein levels via phosphorylation and the consequent inhibition of glycogen synthase kinase (GSK)-3β. Additionally, NRF2-silenced HCT116 cells showed attenuated sphere formation capacity and reduced CSC markers expression, indicating the critical role of the NRF2 pathway in the development of CSC-like properties. As a second model of CSC, the CD133high cell population was isolated from HCT116 cells. CSC-like properties, including sphere formation, motility, migration, colony formation, and anticancer resistance, were enhanced in the CD133high population compared to CD133low HCT116 cells. Levels of NRF2, which were elevated in CD133high HCT116, were suppressed by CD133-silencing. In line with these, the analysis of The Cancer Genome Atlas (TCGA) database showed that high levels of CD133 expression are correlated with increased NRF2 signaling, and alterations in CD133 gene or expression are associated with unfavorable clinical outcome in colorectal carcinoma patients. These results indicate that the CD133/NRF2 axis contributes to the development of CSC-like properties in colon cancer cells, and that PI3K/AKT signaling activation is involved in CD133-mediated NRF2 activation.
Collapse
Affiliation(s)
- Jimin Park
- Department of Pharmacy and BK21FOUR Advanced Program for SmartPharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, South Korea
| | - Seung Ki Kim
- Department of Pharmacy and BK21FOUR Advanced Program for SmartPharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, South Korea
| | - Steffanus Pranoto Hallis
- Department of Pharmacy and BK21FOUR Advanced Program for SmartPharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, South Korea
| | - Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, South Korea
| | - Mi-Kyoung Kwak
- Department of Pharmacy and BK21FOUR Advanced Program for SmartPharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, South Korea.,Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Gyeonggi-do, South Korea.,College of Pharmacy, The Catholic University of Korea, Gyeonggi-do, South Korea
| |
Collapse
|