51
|
Wang HL, Peng Z, Li YQ, Wang YX, Li JC, Tan RZ, Su HW, Shen HP, Zhao CY, Liu J, Wang L. Calycosin inhibited MIF-mediated inflammatory chemotaxis of macrophages to ameliorate ischemia reperfusion-induced acute kidney injury. Inflamm Res 2024; 73:1267-1282. [PMID: 38844677 DOI: 10.1007/s00011-024-01899-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Inflammatory macrophage infiltration plays a critical role in acute kidney disease induced by ischemia-reperfusion (IRI-AKI). Calycosin is a natural flavone with multiple bioactivities. This study aimed to investigate the therapeutic role of calycosin in IRI-AKI and its underlying mechanism. METHODS The renoprotective and anti-inflammatory effects of calycosin were analyzed in C57BL/6 mice with IRI-AKI and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA-seq was used for mechanism investigation. The molecular target of calycosin was screened by in silico methods and validated by surface plasmon resonance (SPR). Macrophage chemotaxis was analyzed using Transwell and agarose gel spot assays. RESULTS Calycosin treatment significantly reduced serum creatinine and urea nitrogen and attenuated tubular destruction in IRI-AKI mice. Additionally, calycosin markedly suppressed NF-κB signaling activation and the expression of inflammatory mediators IL-1β and TNF-α in IRI-AKI kidneys and LPS-stimulated RAW 264.7 cells. Interestingly, RNA-seq revealed calycosin remarkably downregulated chemotaxis-related pathways in RAW 264.7 cells. Among the differentially expressed genes, Ccl2/MCP-1, a critical chemokine mediating macrophage inflammatory chemotaxis, was downregulated in both LPS-stimulated RAW 264.7 cells and IRI-AKI kidneys. Consistently, calycosin treatment attenuated macrophage infiltration in the IRI-AKI kidneys. Importantly, in silico target prediction, molecular docking, and SPR assay demonstrated that calycosin directly binds to macrophage migration inhibitory factor (MIF). Functionally, calycosin abrogated MIF-stimulated NF-κB signaling activation and Ccl2 expression and MIF-mediated chemotaxis in RAW 264.7 cells. CONCLUSIONS In summary, calycosin attenuates IRI-AKI by inhibiting MIF-mediated macrophage inflammatory chemotaxis, suggesting it could be a promising therapeutic agent for the treatment of IRI-AKI.
Collapse
Affiliation(s)
- Hong-Lian Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182, Chunhui Road, District of Longmatan, Luzhou, Sichuan Province, 646000, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Ze Peng
- College of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yu-Qing Li
- College of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yi-Xuan Wang
- College of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jian-Chun Li
- Research Center for Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182, Chunhui Road, District of Longmatan, Luzhou, Sichuan Province, 646000, China
| | - Rui-Zhi Tan
- Research Center for Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182, Chunhui Road, District of Longmatan, Luzhou, Sichuan Province, 646000, China
| | - Hong-Wei Su
- The Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Hong-Ping Shen
- The Clinical Trial Research Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Chang-Ying Zhao
- The Department of Endocrinology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jian Liu
- The Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182, Chunhui Road, District of Longmatan, Luzhou, Sichuan Province, 646000, China.
| | - Li Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182, Chunhui Road, District of Longmatan, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
52
|
Ouyang Q, Wang C, Sang T, Tong Y, Zhang J, Chen Y, Wang X, Wu L, Wang X, Liu R, Chen P, Liu J, Shen W, Feng Z, Zhang L, Sun X, Cai G, Li LL, Chen X. Depleting profibrotic macrophages using bioactivated in vivo assembly peptides ameliorates kidney fibrosis. Cell Mol Immunol 2024; 21:826-841. [PMID: 38871810 PMCID: PMC11291639 DOI: 10.1038/s41423-024-01190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Managing renal fibrosis is challenging owing to the complex cell signaling redundancy in diseased kidneys. Renal fibrosis involves an immune response dominated by macrophages, which activates myofibroblasts in fibrotic niches. However, macrophages exhibit high heterogeneity, hindering their potential as therapeutic cell targets. Herein, we aimed to eliminate specific macrophage subsets that drive the profibrotic immune response in the kidney both temporally and spatially. We identified the major profibrotic macrophage subset (Fn1+Spp1+Arg1+) in the kidney and then constructed a 12-mer glycopeptide that was designated as bioactivated in vivo assembly PK (BIVA-PK) to deplete these cells. BIVA-PK specifically binds to and is internalized by profibrotic macrophages. By inducing macrophage cell death, BIVA-PK reshaped the renal microenvironment and suppressed profibrotic immune responses. The robust efficacy of BIVA-PK in ameliorating renal fibrosis and preserving kidney function highlights the value of targeting macrophage subsets as a potential therapy for patients with CKD.
Collapse
Affiliation(s)
- Qing Ouyang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| | - Chao Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tian Sang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Yan Tong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Jian Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Yulan Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xue Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Lingling Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xu Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Ran Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Pu Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Jiaona Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Zhe Feng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Li Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xuefeng Sun
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| | - Li-Li Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| |
Collapse
|
53
|
Deng G, Zheng B, Dou M, Gao Y, Zhang X, Niu Z, Wei T, Han F, Ding C, Tian P. Scutellarin alleviates renal ischemia-reperfusion injury by inhibiting the MAPK pathway and pro-inflammatory macrophage polarization. FASEB J 2024; 38:e23769. [PMID: 38958951 DOI: 10.1096/fj.202302243r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Renal ischemia-reperfusion injury (IRI) is an integral process in renal transplantation, which results in compromised graft survival. Macrophages play an important role in both the early inflammatory period and late fibrotic period in response to IRI. In this study, we investigated whether scutellarin (SCU) could protect against renal IRI by regulating macrophage polarization. Mice were given SCU (5-50 mg/kg) by gavage 1 h earlier, followed by a unilateral renal IRI. Renal function and pathological injury were assessed 24 h after reperfusion. The results showed that administration of 50 mg/kg SCU significantly improved renal function and renal pathology in IRI mice. In addition, SCU alleviated IRI-induced apoptosis. Meanwhile, it reduced macrophage infiltration and inhibited pro-inflammatory macrophage polarization. Moreover, in RAW 264.7 cells and primary bone marrow-derived macrophages (BMDMs) exposed to SCU, we found that 150 μM SCU inhibited these cells to polarize to an inflammatory phenotype induced by lipopolysaccharide (LPS) and interferon-γ (IFN-γ). However, SCU has no influence on anti-inflammatory macrophage polarization in vivo and in vitro induced by in interleukin-4 (IL-4). Finally, we explored the effect of SCU on the activation of the mitogen-activated protein kinase (MAPK) pathway both in vivo and in vitro. We found that SCU suppressed the activation of the MAPK pathway, including the extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and p38. Our results demonstrated that SCU protects the kidney against IRI by inhibiting macrophage infiltration and polarization toward pro-inflammatory phenotype via the MAPK pathway, suggesting that SCU may be therapeutically important in treatment of IRI.
Collapse
Affiliation(s)
- Ge Deng
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bingxuan Zheng
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Dou
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Gao
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xingzhe Zhang
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zejiaxin Niu
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tian Wei
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Han
- Department of Burn and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Chenguang Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Puxun Tian
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
54
|
Song Z, Yao W, Wang X, Mo Y, Liu Z, Li Q, Jiang L, Wang H, He H, Li N, Zhang Z, Lv P, Zhang Y, Yang L, Wang Y. The novel potential therapeutic target PSMP/MSMP promotes acute kidney injury via CCR2. Mol Ther 2024; 32:2248-2263. [PMID: 38796708 PMCID: PMC11286806 DOI: 10.1016/j.ymthe.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/14/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Acute kidney injury (AKI) is a major worldwide health concern that currently lacks effective medical treatments. PSMP is a damage-induced chemotactic cytokine that acts as a ligand of CCR2 and has an unknown role in AKI. We have observed a significant increase in PSMP levels in the renal tissue, urine, and plasma of patients with AKI. PSMP deficiency improved kidney function and decreased tubular damage and inflammation in AKI mouse models induced by kidney ischemia-reperfusion injury, glycerol, and cisplatin. Single-cell RNA sequencing analysis revealed that Ly6Chi or F4/80lo infiltrated macrophages (IMs) were a major group of proinflammatory macrophages with strong CCR2 expression in AKI. We observed that PSMP deficiency decreased CCR2+Ly6Chi or F4/80lo IMs and inhibited M1 polarization in the AKI mouse model. Moreover, overexpressed human PSMP in the mouse kidney could reverse the attenuation of kidney injury in a CCR2-dependent manner, and this effect could be achieved without CCL2 involvement. Extracellular PSMP played a crucial role, and treatment with a PSMP-neutralizing antibody significantly reduced kidney injury in vivo. Therefore, PSMP might be a therapeutic target for AKI, and its antibody is a promising therapeutic drug for the treatment of AKI.
Collapse
Affiliation(s)
- Zhanming Song
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Weijian Yao
- Renal Division, Peking University Institute of Nephrology, Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)-Ministry of Education of China, Research Units of Diagnosis and Treatment of Immune-mediated Kidney, Diseases-Chinese Academy of Medical Sciences, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Xuekang Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Yaqian Mo
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Zhongtian Liu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Qingqing Li
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Lei Jiang
- Renal Division, Peking University Institute of Nephrology, Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)-Ministry of Education of China, Research Units of Diagnosis and Treatment of Immune-mediated Kidney, Diseases-Chinese Academy of Medical Sciences, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Hui Wang
- Laboratory of Electron Microscopy Pathological Center, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Huiying He
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Ning Li
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Zhaohuai Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Ping Lv
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Li Yang
- Renal Division, Peking University Institute of Nephrology, Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)-Ministry of Education of China, Research Units of Diagnosis and Treatment of Immune-mediated Kidney, Diseases-Chinese Academy of Medical Sciences, Peking University First Hospital, Beijing 100034, People's Republic of China.
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China; Center for Human Disease Genomics, Peking University, Beijing 100191, People's Republic of China.
| |
Collapse
|
55
|
Pei J, Zhang J, Yu C, Luo J, Wen S, Hua Y, Wei G. Transcriptomics-based identification of TYROBP and TLR8 as novel macrophage-related biomarkers for the diagnosis of acute rejection after kidney transplantation. Biochem Biophys Res Commun 2024; 709:149790. [PMID: 38564938 DOI: 10.1016/j.bbrc.2024.149790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Macrophages play an important role in the development and progression of acute rejection after kidney transplantation. The study aims to investigate the biological role and significance of macrophage-associated genes (MAG) in acute rejection after kidney transplantation. We utilized transcriptome sequencing results from public databases related to acute rejection of kidney transplantation for comprehensive analysis and validation in animal experiments. We found that a large number of immune-related signaling pathways are activated in acute rejection. PPI protein interaction networks and machine learning were used to establish a Hub gene consisting of TYROBP and TLR8 for the diagnosis of acute rejection. The single-gene GSEA enrichment analysis and immune cell correlation analysis revealed a close correlation between the expression of Hub genes and immune-related biological pathways as well as the expression of multiple immune cells. In addition, the study of TF, miRNAs, and drugs provided a theoretical basis for regulating and treating the Hub genes in acute rejection. Finally, the animal experiments demonstrated once again that acute rejection can aggravate kidney tissue damage, apoptosis level, and increase the release of inflammatory factors. We established and validated a macrophage-associated diagnostic model for acute rejection after kidney transplantation, which can accurately diagnose the biological alterations in acute rejection after kidney transplantation.
Collapse
Affiliation(s)
- Jun Pei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Jie Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Chengjun Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Jin Luo
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Sheng Wen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Yi Hua
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China.
| |
Collapse
|
56
|
Wang C, Zhang Y, Shen A, Tang T, Li N, Xu C, Liu B, Lv L. Mincle receptor in macrophage and neutrophil contributes to the unresolved inflammation during the transition from acute kidney injury to chronic kidney disease. Front Immunol 2024; 15:1385696. [PMID: 38770013 PMCID: PMC11103384 DOI: 10.3389/fimmu.2024.1385696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Background Recent studies have demonstrated a strong association between acute kidney injury (AKI) and chronic kidney disease (CKD), while the unresolved inflammation is believed to be a driving force for this chronic transition process. As a transmembrane pattern recognition receptor, Mincle (macrophage-inducible C-type lectin, Clec4e) was identified to participate in the early immune response after AKI. However, the impact of Mincle on the chronic transition of AKI remains largely unclear. Methods We performed single-cell RNA sequencing (scRNA-seq) with the unilateral ischemia-reperfusion (UIR) murine model of AKI at days 1, 3, 14 and 28 after injury. Potential effects and mechanism of Mincle on renal inflammation and fibrosis were further validated in vivo utilizing Mincle knockout mice. Results The dynamic expression of Mincle in macrophages and neutrophils throughout the transition from AKI to CKD was observed. For both cell types, Mincle expression was significantly up-regulated on day 1 following AKI, with a second rise observed on day 14. Notably, we identified distinct subclusters of Minclehigh neutrophils and Minclehigh macrophages that exhibited time-dependent influx with dual peaks characterized with remarkable pro-inflammatory and pro-fibrotic functions. Moreover, we identified that Minclehigh neutrophils represented an "aged" mature neutrophil subset derived from the "fresh" mature neutrophil cluster in kidney. Additionally, we observed a synergistic mechanism whereby Mincle-expressing macrophages and neutrophils sustained renal inflammation by tumor necrosis factor (TNF) production. Mincle-deficient mice exhibited reduced renal injury and fibrosis following AKI. Conclusion The present findings have unveiled combined persistence of Minclehigh neutrophils and macrophages during AKI-to-CKD transition, contributing to unresolved inflammation followed by fibrosis via TNF-α as a central pro-inflammatory cytokine. Targeting Mincle may offer a novel therapeutic strategy for preventing the transition from AKI to CKD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linli Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
57
|
Islamuddin M, Qin X. Renal macrophages and NLRP3 inflammasomes in kidney diseases and therapeutics. Cell Death Discov 2024; 10:229. [PMID: 38740765 PMCID: PMC11091222 DOI: 10.1038/s41420-024-01996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis. Conversely, anti-inflammatory macrophages (M2) arise in the same circumstances, contributing to kidney repair and regeneration processes. Impaired tissue repair causes fibrosis, and hence macrophages play a protective and pathogenic role. In response to harmful stimuli within the body, inflammasomes, complex assemblies of multiple proteins, assume a pivotal function in innate immunity. The initiation of inflammasomes triggers the activation of caspase 1, which in turn facilitates the maturation of cytokines, inflammation, and cell death. Macrophages in the kidneys possess the complete elements of the NLRP3 inflammasome, including NLRP3, ASC, and pro-caspase-1. When the NLRP3 inflammasomes are activated, it triggers the activation of caspase-1, resulting in the release of mature proinflammatory cytokines (IL)-1β and IL-18 and cleavage of Gasdermin D (GSDMD). This activation process therefore then induces pyroptosis, leading to renal inflammation, cell death, and renal dysfunction. The NLRP3-ASC-caspase-1-IL-1β-IL-18 pathway has been identified as a factor in the development of the pathophysiology of numerous kidney diseases. In this review, we explore current progress in understanding macrophage behavior concerning inflammation, injury, and fibrosis in kidneys. Emphasizing the pivotal role of activated macrophages in both the advancement and recovery phases of renal diseases, the article delves into potential strategies to modify macrophage functionality and it also discusses emerging approaches to selectively target NLRP3 inflammasomes and their signaling components within the kidney, aiming to facilitate the healing process in kidney diseases.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
58
|
Wang X, Xie L, Liu C. CCR2 antagonist attenuates calcium oxalate-induced kidney oxidative stress and inflammation by regulating macrophage activation. Exp Anim 2024; 73:211-222. [PMID: 38199255 PMCID: PMC11091353 DOI: 10.1538/expanim.23-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
C-C chemokine receptor type 2 (CCR2) is a monocyte chemokine associated with oxidative stress and inflammation. Kidney stones (KS) are composed of calcium oxalate (CaOx), which trigger renal oxidative stress and inflammatory. This study aims to evaluate the effects of CCR2 on KS in vivo and in vitro. Eight-week-old male C57BL/6J mice were intraperitoneally injected with glyoxylate (GOX) daily to establish a KS model, and along with CCR2 antagonist (INCB3344) treatment on days 2, 4, and 6. The results showed that CCR2 antagonist reduced renal injury markers (blood urea nitrogen and serum creatinine), alleviated renal tubular injury and CaOx crystal deposition. CCR2 antagonist also decreased CCR2 expression induced by GOX treatment and increased Nrf2 expression. GOX treatment promoted malondialdehyde (MDA) production, decreased glutathione (GSH) content, and inhibited catalase (CAT) and superoxide dismutase (SOD) activity, however, CCR2 antagonist attenuated the above effects of GOX. CCR2 antagonist had inhibitory effects on GOX-induced inflammatory cytokine expression (IL1B, IL6 and MCP1), and inhibited apoptosis by increasing Bcl-2 expression and decreasing Bax and cleaved-caspase 3 expression. In vitro experiments were performed by co-culture model of CaOx-induced damaged HK-2 cells and macrophage-like THP-1 cells. CCR2 antagonist inhibited CaOx-induced THP-1 cell M1 polarization by decreasing the TNF-α, IL6 and iNOS levels, and further alleviated CaOx-induced oxidative stress damage, inflammatory response and apoptosis of HK-2 cells. The study suggests that CCR2 antagonist may be resistant to CaOx crystals-induced oxidative stress and inflammation by inhibiting macrophage M1 polarization.
Collapse
Affiliation(s)
- Xinpeng Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin 300211, P.R. China
| | - Linguo Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin 300211, P.R. China
| | - Chunyu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin 300211, P.R. China
| |
Collapse
|
59
|
Wei S, Shen H, Zhang Y, Liu C, Li S, Yao J, Jin Z, Yu H. Integrative analysis of single-cell and bulk transcriptome data reveal the significant role of macrophages in lupus nephritis. Arthritis Res Ther 2024; 26:84. [PMID: 38610007 PMCID: PMC11010324 DOI: 10.1186/s13075-024-03311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE We attempted to identify abnormal immune cell components and signaling pathways in lupus nephritis (LN) and to identify potential therapeutic targets. METHODS Differentially expressed genes (DEGs) between LN and normal kidney tissues were identified from bulk transcriptome data, and functional annotation was performed. The phenotypic changes in macrophages and aberrant intercellular signaling communications within immune cells were imputed from LN scRNA-seq data using trajectory analysis and verified using immunofluorescence staining. Finally, lentivirus-mediated overexpression of LGALS9, the gene encoding Galectin 9, in THP-1 cells was used to study the functional effect of this gene on monocytic cells. RESULTS From bulk transcriptome data, a significant activation of interferon (IFN) signaling was observed, and its intensity showed a significantly positive correlation with the abundance of infiltrating macrophages in LN. Analysis of scRNA-seq data revealed 17 immune cell clusters, with macrophages showing the highest enrichment of intercellular signal communication in LN. Trajectory analysis revealed macrophages in LN undergo a phenotypic change from inflammatory patrolling macrophages to phagocytic and then to antigen-presenting macrophages, and secrete various pro-inflammatory factors and complement components. LGALS9 was found significantly upregulated in macrophages in LN, which was confirmed by the immunofluorescence assay. Gene functional study showed that LGALS9 overexpression in THP-1 cells significantly elicited pro-inflammatory activation, releasing multiple immune cell chemoattractants. CONCLUSION Our results present an important pathophysiological role for macrophages in LN, and our preliminary results demonstrate significant pro-inflammatory effects of LGALS9 gene in LN macrophages.
Collapse
Affiliation(s)
- Shuping Wei
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Haiyun Shen
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Yidan Zhang
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Chunrui Liu
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Shoushan Li
- Department of oncology, The Siyang Hospital of Chinese Traditional Medicine, 15 Jiefangbei Road, Zhongxing district, Siyang country, Suqian, 223798, Jiangsu, PR China
| | - Jing Yao
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Zhibin Jin
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| | - Hongliang Yu
- Department of oncology, The Siyang Hospital of Chinese Traditional Medicine, 15 Jiefangbei Road, Zhongxing district, Siyang country, Suqian, 223798, Jiangsu, PR China.
- Department of radiation oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210007, Jiangsu, PR China.
| |
Collapse
|
60
|
Wang Y, Li C, Chen J, Cui X, Wang B, Wang Y, Wang D, Liu J, Li J. Pyxinol Fatty Acid Ester Derivatives J16 against AKI by Selectively Promoting M1 Transition to M2c Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7074-7088. [PMID: 38525502 DOI: 10.1021/acs.jafc.3c06979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Acute kidney injury (AKI) is a common, multicause clinical condition that, if ignored, often progresses to chronic kidney disease (CKD) and end-stage kidney disease, with a mortality rate of 40-50%. However, there is a lack of universal treatment for AKI. Inflammation is the basic pathological change of early kidney injury, and inflammation can exacerbate AKI. Macrophages are the primary immune cells involved in the inflammatory microenvironment of kidney disease. Therefore, regulating the function of macrophages is a crucial breakthrough for the AKI intervention. Our team chemically modified pyxinol, an ocotillol-type ginsenoside, to prepare PJ16 with higher solubility and bioavailability. In vitro, using a model of macrophages stimulated by LPS, it was found that PJ16 could regulate macrophage function, including inhibiting the secretion of inflammatory factors, promoting phagocytosis, inhibiting M1 macrophages, and promoting M1 transition to the M2c macrophage. Further investigation revealed that PJ16 may shield renal tubular epithelial cells (HK-2) damaged by LPS in vitro. Based on this, PJ16 was validated in the animal model of unilateral ureteral obstruction, which showed that it improves renal function and inhibits renal tissue fibrosis by decreasing inflammatory responses, reducing macrophage inflammatory infiltration, and preferentially upregulating M2c macrophages. In conclusion, our study is the first to show that PJ16 resists AKI and fibrosis by mechanistically regulating macrophage function by modulating the phenotypic transition from M1 to M2 macrophages, mainly M2c macrophages.
Collapse
Affiliation(s)
- Yaru Wang
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Changcheng Li
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Jingyi Chen
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Xiaoli Cui
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Binghuan Wang
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Yuezeng Wang
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Dayu Wang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Jinping Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences of Jilin University, Changchun, Jilin 130012, China
| | - Jing Li
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
61
|
Kuang Q, Gao L, Feng L, Xiong X, Yang J, Zhang W, Huang L, Li L, Luo P. Toxicological effects of microplastics in renal ischemia-reperfusion injury. ENVIRONMENTAL TOXICOLOGY 2024; 39:2350-2362. [PMID: 38156432 DOI: 10.1002/tox.24115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/30/2023]
Abstract
The widespread presence of microplastics (MPs) in the environment poses a significant threat to biological survival and human health. However, our understanding of the toxic effects of MPs on the kidneys remains limited. This study aimed to investigate the underlying mechanism of the toxic effects of MPs on the kidneys using an ischemia-reperfusion (IR) mouse model. Four-week-old ICR mice were exposed to 0.5 μm MPs for 12 weeks prior to IR injury. The results showed that MPs exposure could aggravate the IR-induced damage to renal tubules and glomeruli. Although there were no significant changes in blood urea nitrogen and serum creatinine levels 7 days after IR, MPs treatment resulted in a slight increase in both parameters. In addition, the expression levels of inflammatory factors (MCP-1 and IL-6) at the mRNA level, as well as macrophage markers (CD68 and F4/80), were significantly higher in the MPs + IR group than in the Sham group after IR. Furthermore, MPs exposure exacerbated IR-induced renal fibrosis. Importantly, the expression of pyroptosis-related genes, including NLRP3, ASC, GSDMD, cleaved caspase-1, and IL-18, was significantly upregulated by MPs, indicating that MPs exacerbate pyroptosis in the context of renal IR. In conclusion, our findings suggest that MPs exposure can aggravate renal IR-induced pyroptosis by activating NLRP3-GSDMD signaling.
Collapse
Affiliation(s)
- Qihui Kuang
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, China
| | - Likun Gao
- Department of Pathology, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Lixiang Feng
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of science and Technology, Wuhan, China
| | - Xi Xiong
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of science and Technology, Wuhan, China
| | - Jun Yang
- Department of Urology, Department of Urology, Wuhan Third Hospital, Wuhan, China
| | - Wei Zhang
- Department of Urology, Department of Urology, Wuhan Third Hospital, Wuhan, China
| | - Lizhi Huang
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
62
|
Wang Q, Liu Y, Zhang Y, Zhang S, Zhao M, Peng Z, Xu H, Huang H. Characterization of macrophages in ischemia-reperfusion injury-induced acute kidney injury based on single-cell RNA-Seq and bulk RNA-Seq analysis. Int Immunopharmacol 2024; 130:111754. [PMID: 38428147 DOI: 10.1016/j.intimp.2024.111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Acute kidney injury (AKI) is a complex disease, with macrophages playing a vital role in its progression. However, the mechanism of macrophage function remains unclear and strategies targeting macrophages in AKI are controversial. To address this issue, we used single-cell RNA-seq analysis to identify macrophage sub-types involved in ischemia-reperfusion-induced AKI, and then screened for associated hub genes using intersecting bulk RNA-seq data. The single-cell and bulk RNA-seq datasets were obtained from the Gene Expression Omnibus (GEO) database. Screening of differentially-expressed genes (DEGs) and pseudo-bulk DEG analyses were used to identify common hub genes. Pseudotime and trajectory analyses were performed to investigate the progression of cell differentiation. CellChat analysis was performed to reveal the crosstalk between cell clusters. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to identify enriched pathways in the cell clusters. Immunofluorescence and RT-PCR were preformed to validate the expression of the identified hub genes. Four hub genes, Vim, S100a6, Ier3, and Ccr1, were identified in the infiltrated macrophages between normal samples and those 3 days after ischemia-reperfusion renal injury (IRI); all were associated with the progression of IRI-induced AKI. Increased expression of Vim, S100a6, Ier3, and Ccr1 in infiltrated macrophages may be associated with inflammatory responses and may mediate crosstalk between macrophages and renal tubular epithelial cells under IRI conditions. Our results reveal that Ier3 may be critical in AKI, and that Vim, S100a6, Ier3, and Ccr1 may act as novel biomarkers and potential therapeutic targets for IRI-induced AKI.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuxing Liu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Siyuan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meifang Zhao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| | - Hui Xu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| | - Hao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| |
Collapse
|
63
|
Nachiappa Ganesh R, Garcia G, Truong L. Monocytes and Macrophages in Kidney Disease and Homeostasis. Int J Mol Sci 2024; 25:3763. [PMID: 38612574 PMCID: PMC11012230 DOI: 10.3390/ijms25073763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The monocyte-macrophage lineage of inflammatory cells is characterized by significant morphologic and functional plasticity. Macrophages have broad M1 and M2 phenotype subgroups with distinctive functions and dual reno-toxic and reno-protective effects. Macrophages are a major contributor to injury in immune-complex-mediated, as well as pauci-immune, glomerulonephritis. Macrophages are also implicated in tubulointerstitial and vascular disease, though there have not been many human studies. Patrolling monocytes in the intravascular compartment have been reported in auto-immune injury in the renal parenchyma, manifesting as acute kidney injury. Insights into the pathogenetic roles of macrophages in renal disease suggest potentially novel therapeutic and prognostic biomarkers and targeted therapy. This review provides a concise overview of the macrophage-induced pathogenetic mechanism as a background for the latest findings about macrophages' roles in different renal compartments and common renal diseases.
Collapse
Affiliation(s)
- Rajesh Nachiappa Ganesh
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Gabriela Garcia
- Department of Medicine, Renal Division, University of Colorado, Anschutz Medical Campus, Aurora, CO 605006, USA;
| | - Luan Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
| |
Collapse
|
64
|
Zhang J, Jiang J, Wang B, Wang Y, Qian Y, Suo J, Li Y, Peng Z. SAP130 released by ferroptosis tubular epithelial cells promotes macrophage polarization via Mincle signaling in sepsis acute kidney injury. Int Immunopharmacol 2024; 129:111564. [PMID: 38320352 DOI: 10.1016/j.intimp.2024.111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
The pathological mechanism of sepsis-associated acute kidney injury (SA-AKI) is complex and involves tubular epithelial cell (TEC) death and immune cell activation. However, the interaction between tubular cell death and macrophage-mediated inflammation remains unclear. In this study, we uncovered that TEC ferroptosis was activated in SA-AKI. Increased levels of ferroptotic markers, including ferroptosis-related proteins, lipid peroxidation, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), reactive oxygen species (ROS), and mitochondrial damage, were observed in the kidney tissue of cecum ligation and puncture (CLP) and Lipopolysaccharide (LPS)-induced SA-AKI mouse models, which were subsequently suppressed by Ferrostatin-1 (Fer-1). In vitro experiments showed that Fer-1 inhibits LPS-induced mitochondrial damage, Fe2+ accumulation, and cytosolic ROS production. Moreover, it was found that TEC ferroptosis induced by promoted macrophage-inducible C-type lectin (Mincle) and its downstream expression and M1 polarization, which was mediated by the release of spliceosome-associated protein 130 (SAP130), an endogenous ligand of Mincle, from TEC. It was confirmed in vitro that the supernatant from LPS-stimulated TECs promoted Mincle expression and M1 polarization in macrophages. Further experiments revealed that M1 macrophages aggravated TEC ferroptosis, which was offset by neutralizing SAP130 or inhibiting Mincle expression. In addition, neutralizing the circulatory SAP130 blunted kidney ferroptosis and Mincle expression, as well as macrophage infiltration in the kidney of SA-AKI mice. In conclusion, the release of SAP130 from ferroptotic TECs promoted M1 macrophage polarization by triggering Mincle/syk/NF-κB signaling, and M1 macrophages, in turn, aggravated TEC ferroptosis.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Jun Jiang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Bingqing Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Yue Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Yaoyao Qian
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Jinmeng Suo
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|
65
|
Révész C, Kaucsár T, Godó M, Bocskai K, Krenács T, Mócsai A, Szénási G, Hamar P. Neutrophils and NADPH Oxidases Are Major Contributors to Mild but Not Severe Ischemic Acute Kidney Injury in Mice. Int J Mol Sci 2024; 25:2948. [PMID: 38474193 DOI: 10.3390/ijms25052948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Upregulation of free radical-generating NADPH oxidases (NOX), xanthine oxidoreductase (XOR), and neutrophil infiltration-induced, NOX2-mediated respiratory burst contribute to renal ischemia-reperfusion injury (IRI), but their roles may depend on the severity of IRI. We investigated the role of NOX, XOR, and neutrophils in developing IRI of various severities. C57BL/6 and Mcl-1ΔMyelo neutrophil-deficient mice were used. Oxidases were silenced by RNA interference (RNAi) or pharmacologically inhibited. Kidney function, morphology, immunohistochemistry and mRNA expression were assessed. After reperfusion, the expression of NOX enzymes and XOR increased until 6 h and from 15 h, respectively, while neutrophil infiltration was prominent from 3 h. NOX4 and XOR silencing or pharmacological XOR inhibition did not protect the kidney from IRI. Attenuation of NOX enzyme-induced oxidative stress by apocynin and neutrophil deficiency improved kidney function and ameliorated morphological damage after mild but not moderate/severe IRI. The IR-induced postischemic renal functional impairment (BUN, Lcn-2), tubular necrosis score, inflammation (TNF-α, F4/80), and decreases in the antioxidant enzyme (GPx3) mRNA expression were attenuated by both apocynin and neutrophil deficiency. Inhibition of NOX enzyme-induced oxidative stress or the lack of infiltration by NOX2-expressing neutrophils can attenuate reperfusion injury after mild but not moderate/severe renal IR.
Collapse
Affiliation(s)
- Csaba Révész
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Tamás Kaucsár
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Mária Godó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Krisztián Bocskai
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Tibor Krenács
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
66
|
Maryam B, Smith ME, Miller SJ, Natarajan H, Zimmerman KA. Macrophage Ontogeny, Phenotype, and Function in Ischemia Reperfusion-Induced Injury and Repair. KIDNEY360 2024; 5:459-470. [PMID: 38297436 PMCID: PMC11000738 DOI: 10.34067/kid.0000000000000376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
AKI is characterized by a sudden, and usually reversible, decline in kidney function. In mice, ischemia-reperfusion injury (IRI) is commonly used to model the pathophysiologic features of clinical AKI. Macrophages are a unifying feature of IRI as they regulate both the initial injury response as well as the long-term outcome following resolution of injury. Initially, macrophages in the kidney take on a proinflammatory phenotype characterized by the production of inflammatory cytokines, such as CCL2 (monocyte chemoattractant protein 1), IL-6, IL-1 β , and TNF- α . Release of these proinflammatory cytokines leads to tissue damage. After resolution of the initial injury, macrophages take on a reparative role, aiding in tissue repair and restoration of kidney function. By contrast, failure to resolve the initial injury results in prolonged inflammatory macrophage accumulation and increased kidney damage, fibrosis, and the eventual development of CKD. Despite the extensive amount of literature that has ascribed these functions to M1/M2 macrophages, a recent paradigm shift in the macrophage field now defines macrophages on the basis of their ontological origin, namely monocyte-derived and tissue-resident macrophages. In this review, we focus on macrophage phenotype and function during IRI-induced injury, repair, and transition to CKD using both the classic (M1/M2) and novel (ontological origin) definition of kidney macrophages.
Collapse
Affiliation(s)
- Bibi Maryam
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Morgan E. Smith
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sarah J. Miller
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hariharasudan Natarajan
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
67
|
Tang J, Zhong Z, Nijiati M, Wu C. Systemic inflammation response index as a prognostic factor for patients with sepsis-associated acute kidney injury: a retrospective observational study. J Int Med Res 2024; 52:3000605241235758. [PMID: 38518195 PMCID: PMC10960344 DOI: 10.1177/03000605241235758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 03/24/2024] Open
Abstract
OBJECTIVE To assess the association between the systemic inflammation response index (SIRI) and the prognosis in patients with sepsis-associated acute kidney injury (SA-AKI). METHODS In this observational study, adult patients with SA-AKI were categorized into three groups based on SIRI tertiles. Survival outcomes were compared across the three groups using Kaplan-Meier survival curves. Various Cox proportional hazards regression models were developed to determine the association between the SIRI and mortality in patients with SA-AKI. Subgroup analyses were also performed to explore the association between different SIRI tertiles and all-cause mortality. RESULTS After adjusting for several confounders, the second SIRI tertile (2.5 < SIRI < 7.6) was found to be an independent risk factor for 30-day mortality [hazard ratio (95% confidence interval): 1.19 (1.01-1.40)], 90-day mortality [1.22 (1.06-1.41)], and 365-day mortality [1.24 (1.09-1.40)]. Furthermore, high SIRI values were associated with increased risks of 30-day, 90-day, and 365-day mortality in patients with SA-AKI across all three models. The third tertile showed a significant association with adverse outcomes in most subgroups. CONCLUSIONS The SIRI serves as a comprehensive biomarker for predicting all-cause mortality of critically ill patients with SA-AKI.
Collapse
Affiliation(s)
- Jia Tang
- Graduate School of Xinjiang Medical University, Urumqi, China
| | - Zhenguang Zhong
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Muyesai Nijiati
- Xinjiang Emergency Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Changdong Wu
- Xinjiang Emergency Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
68
|
Lv X, Fan Q, Li X, Li P, Wan Z, Han X, Wang H, Wang X, Wu L, Huo B, Yang L, Chen G, Zhang Y. Identification of renal ischemia reperfusion injury-characteristic genes, pathways and immunological micro-environment features through bioinformatics approaches. Aging (Albany NY) 2024; 16:2123-2140. [PMID: 38329418 PMCID: PMC10911371 DOI: 10.18632/aging.205471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/15/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND Biomarkers and pathways associated with renal ischemia reperfusion injury (IRI) had not been well unveiled. This study was intended to investigate and summarize the regulatory networks for related hub genes. Besides, the immunological micro-environment features were evaluated and the correlations between immune cells and hub genes were also explored. METHODS GSE98622 containing mouse samples with multiple IRI stages and controls was collected from the GEO database. Differentially expressed genes (DEGs) were recognized by the R package limma, and the GO and KEGG analyses were conducted by DAVID. Gene set variation analysis (GSVA) and weighted gene coexpression network analysis (WGCNA) had been implemented to uncover changed pathways and gene modules related to IRI. Besides the known pathways such as apoptosis pathway, metabolic pathway, and cell cycle pathways, some novel pathways were also discovered to be critical in IRI. A series of novel genes associated with IRI was also dug out. An IRI mouse model was constructed to validate the results. RESULTS The well-known IRI marker genes (Kim1 and Lcn2) and novel hub genes (Hbegf, Serpine2, Apbb1ip, Trip13, Atf3, and Ncaph) had been proved by the quantitative real-time polymerase chain reaction (qRT-PCR). Thereafter, miRNAs targeted to the dysregulated genes were predicted and the miRNA-target network was constructed. Furthermore, the immune infiltration for these samples was predicted and the results showed that macrophages infiltrated to the injured kidney to affect the tissue repair or fibrosis. Hub genes were significantly positively or negatively correlated with the macrophage abundance indicating they played a crucial role in macrophage infiltration. CONCLUSIONS Consequently, the pathways, hub genes, miRNAs, and the immune microenvironment may explain the mechanism of IRI and might be the potential targets for IRI treatments.
Collapse
Affiliation(s)
- Xinghua Lv
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Qian Fan
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University Eye Institute, Nankai University, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xuanjie Li
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Peng Li
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhanhai Wan
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xuena Han
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Hao Wang
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xiaoxia Wang
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lin Wu
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Bin Huo
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Li Yang
- Lanzhou First People's Hospital, Lanzhou, Gansu, China
| | - Gen Chen
- Department of Microbiology, School of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Yan Zhang
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
69
|
Wang W, Ren X, Chen X, Hong Q, Cai G. Integrin β1-rich extracellular vesicles of kidney recruit Fn1+ macrophages to aggravate ischemia-reperfusion-induced inflammation. JCI Insight 2024; 9:e169885. [PMID: 38258908 PMCID: PMC10906229 DOI: 10.1172/jci.insight.169885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Ischemia-reperfusion injury-induced (IRI-induced) acute kidney injury is accompanied by mononuclear phagocyte (MP) invasion and inflammation. However, systematic analysis of extracellular vesicle-carried (EV-carried) proteins mediating intercellular crosstalk in the IRI microenvironment is still lacking. Multiomics analysis combining single-cell RNA-Seq data of kidney and protein profiling of kidney-EV was used to elucidate the intercellular communication between proximal tubular cells (PTs) and MP. Targeted adhesion and migration of various MPs were caused by the secretion of multiple chemokines as well as integrin β1-rich EV by ischemic-damaged PTs after IRI. These recruited MPs, especially Fn1+ macrophagocyte, amplified the surviving PT's inflammatory response by secreting the inflammatory factors TNF-α, MCP-1, and thrombospondin 1 (THBS-1), which could interact with integrin β1 to promote more MP adhesion and interact with surviving PT to further promote the secretion of IL-1β. However, GW4869 reduced MP infiltration and maintained a moderate inflammatory level likely by blocking EV secretion. Our findings establish the molecular bases by which chemokines and kidney-EV mediate PT-MP crosstalk in early IRI and provide insights into systematic intercellular communication.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Medicine, Nankai University, Tianjin, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Xuejing Ren
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Key Laboratory of Kidney Disease and Immunology, Zhengzhou, Henan, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Guangyan Cai
- School of Medicine, Nankai University, Tianjin, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| |
Collapse
|
70
|
Duan K, Liu J, Zhang J, Chu T, Liu H, Lou F, Liu Z, Gao B, Wei S, Wei F. Advancements in innate immune regulation strategies in islet transplantation. Front Immunol 2024; 14:1341314. [PMID: 38288129 PMCID: PMC10823010 DOI: 10.3389/fimmu.2023.1341314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
As a newly emerging organ transplantation technique, islet transplantation has shown the advantages of minimal trauma and high safety since it was first carried out. The proposal of the Edmonton protocol, which has been widely applied, was a breakthrough in this method. However, direct contact between islets and portal vein blood will cause a robust innate immune response leading to massive apoptosis of the graft, and macrophages play an essential role in the innate immune response. Therefore, therapeutic strategies targeting macrophages in the innate immune response have become a popular research topic in recent years. This paper will summarize and analyze recent research on strategies for regulating innate immunity, primarily focusing on macrophages, in the field of islet transplantation, including drug therapy, optimization of islet preparation process, islet engineering and Mesenchymal stem cells cotransplantation. We also expounded the heterogeneity, plasticity and activation mechanism of macrophages in islet transplantation, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Kehang Duan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiao Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tongjia Chu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huan Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengxiang Lou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ziyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bing Gao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shixiong Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
71
|
Rendra E, Uhlig S, Moskal I, Thielemann C, Klüter H, Bieback K. Adipose Stromal Cell-Derived Secretome Attenuates Cisplatin-Induced Injury In Vitro Surpassing the Intricate Interplay between Proximal Tubular Epithelial Cells and Macrophages. Cells 2024; 13:121. [PMID: 38247813 PMCID: PMC10814170 DOI: 10.3390/cells13020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
(1) Background: The chemotherapeutic drug cisplatin exerts toxic side effects causing acute kidney injury. Mesenchymal stromal cells can ameliorate cisplatin-induced kidney injury. We hypothesize that the MSC secretome orchestrates the vicious cycle of injury and inflammation by acting on proximal tubule epithelial cells (PTECs) and macrophages individually, but further by counteracting their cellular crosstalk. (2) Methods: Conditioned medium (CM) from adipose stromal cells was used, first assessing its effect on cisplatin injury in PTECs. Second, the effects of cisplatin and the CM on macrophages were measured. Lastly, in an indirect co-culture system, the interplay between the two cell types was assessed. (3) Results: First, the CM rescued PTECs from cisplatin-induced apoptosis by reducing oxidative stress and expression of nephrotoxicity genes. Second, while cisplatin exerted only minor effects on macrophages, the CM skewed macrophage phenotypes to the anti-inflammatory M2-like phenotype and increased phagocytosis. Finally, in the co-culture system, the CM suppressed PTEC death by inhibiting apoptosis and nuclei fragmentation. The CM lowered TNF-α release, while cisplatin inhibited macrophage phagocytosis, PTECs, and the CM to a greater extent, thus enhancing it. The CM strongly dampened the inflammatory macrophage cytokine secretion triggered by PTECs. (4) Conclusions: ASC-CM surpasses the PTEC-macrophage crosstalk in cisplatin injury. The positive effects on reducing cisplatin cytotoxicity, on polarizing macrophages, and on fine-tuning cytokine secretion underscore MSCs' CM benefit to prevent kidney injury progression.
Collapse
Affiliation(s)
- Erika Rendra
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Stefanie Uhlig
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Isabell Moskal
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Corinna Thielemann
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
72
|
Zhao Q, Ma J, Xiao J, Feng Z, Liu H. Data driven analysis reveals prognostic genes and immunological targets in human sepsis-associated acute kidney injury. World J Emerg Med 2024; 15:91-97. [PMID: 38476535 PMCID: PMC10925525 DOI: 10.5847/wjem.j.1920-8642.2024.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/20/2023] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The molecular mechanism of sepsis-associated acute kidney injury (SA-AKI) is unclear. We analyzed co-differentially expressed genes (co-DEGs) to elucidate the underlying mechanism and intervention targets of SA-AKI. METHODS The microarray datasets GSE65682, GSE30718, and GSE174220 were downloaded from the Gene Expression Omnibus (GEO) database. We identified the co-DEGs and constructed a gene co-expression network to screen the hub genes. We analyzed immune correlations and disease correlations and performed functional annotation of the hub genes. We also performed single-cell and microenvironment analyses and investigated the enrichment pathways and the main transcription factors. Finally, we conducted a correlation analysis to evaluate the role of the hub genes. RESULTS Interleukin 32 (IL32) was identified as the hub gene in SA-AKI, and the main enriched signaling pathways were associated with hemopoiesis, cellular response to cytokine stimulus, inflammatory response, and regulation of kidney development. Additionally, IL32 was significantly associated with mortality in SA-AKI patients. Monocytes, macrophages, T cells, and NK cells were closely related to IL32 and were involved in the immune microenvironment in SA-AKI patients. IL32 expression increased significantly in the kidney of septic mouse. Toll-like receptor 2 (TLR2) was significantly and negatively correlated with IL32. CONCLUSION IL32 is the key gene involved in SA-AKI and is significantly associated with prognosis. TLR2 and relevant immune cells are closely related to key genes.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Diagnosis and Treatment of Cadres, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jinfu Ma
- Intensive Care Unit, the 305th Hospital of Chinese PLA, Beijing 100032, China
| | - Jianguo Xiao
- Department of Critical Care Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhe Feng
- Nephrology Department, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hui Liu
- Department of Critical Care Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
73
|
Li XJ, Liu T, Wang Y. Allicin ameliorates sepsis-induced acute kidney injury through Nrf2/HO-1 signaling pathway. J Nat Med 2024; 78:53-67. [PMID: 37668824 PMCID: PMC10764392 DOI: 10.1007/s11418-023-01745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Acute kidney injury (AKI) is a complication that can be induced by different factors. Allicin is a class of organic sulfur compounds with anticancer and antibacterial effects, and has not been reported in sepsis-induced AKI (S-AKI). S-AKI was induced in c57BL/6 mice by cecal ligation puncture. In response to the treatment of allicin, the survival rate of mice with S-AKI was increased. Reduced levels of serum creatinine, blood urea nitrogen, UALB, KIM-1 and NGAL indicated an improvement in renal function of S-AKI mice. Allicin inhibited the inflammation and cell apoptosis, which evidenced by decreased levels of inflammatory cytokines and apoptosis-related proteins. Oxidative stress was evaluated by the levels of oxidative stress biomarkers, and suppressed by allicin. In addition, allicin-alleviated mitochondrial dysfunction was characterized by decreased JC-1 green monomer. These effects of allicin were also evidenced in HK2 cells primed with lipopolysaccharide (LPS). Both in vivo and in vitro experiments showed that the nuclear translocation of Nrf2 and the expression of HO-1 increased after allicin treatment, which was confirmed by ML385 and CDDO-Me. In summary, this study revealed the alleviating effect of allicin on S-AKI and demonstrated the promotive effect of allicin on nuclear translocation of Nrf2 for the first time. It was inferred that allicin inhibited the progression of S-AKI through Nrf2/HO-1 signaling pathway. This study makes contributions to the understanding of the roles of allicin in S-AKI.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Department of Nephrology, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
| | - Ting Liu
- Department of General Practice, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
| | - Yuan Wang
- Department of Nephrology, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.
| |
Collapse
|
74
|
Chu LK, Cao X, Wan L, Diao Q, Zhu Y, Kan Y, Ye LL, Mao YM, Dong XQ, Xiong QW, Fu MC, Zhang T, Zhou HT, Cai SZ, Ma ZR, Hsu SW, Wu R, Chen CH, Yan XM, Liu J. Autophagy of OTUD5 destabilizes GPX4 to confer ferroptosis-dependent kidney injury. Nat Commun 2023; 14:8393. [PMID: 38110369 PMCID: PMC10728081 DOI: 10.1038/s41467-023-44228-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death associated with severe kidney diseases, linked to decreased glutathione peroxidase 4 (GPX4). However, the spatial distribution of renal GPX4-mediated ferroptosis and the molecular events causing GPX4 reduction during ischemia-reperfusion (I/R) remain largely unknown. Using spatial transcriptomics, we identify that GPX4 is situated at the interface of the inner cortex and outer medulla, a hyperactive ferroptosis site post-I/R injury. We further discover OTU deubiquitinase 5 (OTUD5) as a GPX4-binding protein that confers ferroptosis resistance by stabilizing GPX4. During I/R, ferroptosis is induced by mTORC1-mediated autophagy, causing OTUD5 degradation and subsequent GPX4 decay. Functionally, OTUD5 deletion intensifies renal tubular cell ferroptosis and exacerbates acute kidney injury, while AAV-mediated OTUD5 delivery mitigates ferroptosis and promotes renal function recovery from I/R injury. Overall, this study highlights a new autophagy-dependent ferroptosis module: hypoxia/ischemia-induced OTUD5 autophagy triggers GPX4 degradation, offering a potential therapeutic avenue for I/R-related kidney diseases.
Collapse
Affiliation(s)
- Li-Kai Chu
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Soochow University, 215025, Suzhou, China
| | - Xu Cao
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Soochow University, 215025, Suzhou, China
| | - Lin Wan
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Soochow University, 215025, Suzhou, China
| | - Qiang Diao
- Department of Medical Imaging, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 210002, Nanjing, China
| | - Yu Zhu
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Soochow University, 215025, Suzhou, China
| | - Yu Kan
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Soochow University, 215025, Suzhou, China
| | - Li-Li Ye
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Soochow University, 215025, Suzhou, China
| | - Yi-Ming Mao
- Department of Thoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, 215028, Suzhou, China
| | - Xing-Qiang Dong
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Soochow University, 215025, Suzhou, China
| | - Qian-Wei Xiong
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Soochow University, 215025, Suzhou, China
| | - Ming-Cui Fu
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Soochow University, 215025, Suzhou, China
| | - Ting Zhang
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Soochow University, 215025, Suzhou, China
| | - Hui-Ting Zhou
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Soochow University, 215025, Suzhou, China
| | - Shi-Zhong Cai
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Soochow University, 215025, Suzhou, China
| | - Zhou-Rui Ma
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Soochow University, 215025, Suzhou, China
| | - Ssu-Wei Hsu
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Reen Wu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Ching-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, USA.
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA.
| | - Xiang-Ming Yan
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Soochow University, 215025, Suzhou, China.
| | - Jun Liu
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Soochow University, 215025, Suzhou, China.
| |
Collapse
|
75
|
Xie L, Cheng Y, Du W, Fu L, Wei Z, Guan Y, Wang Y, Mei C, Hao C, Chen M, Gu X. Activation of GPER1 in macrophages ameliorates UUO-induced renal fibrosis. Cell Death Dis 2023; 14:818. [PMID: 38086848 PMCID: PMC10716282 DOI: 10.1038/s41419-023-06338-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023]
Abstract
Numerous studies have proven the critical role of macrophages in the renal fibrosis process. Notably, G Protein-coupled Estrogen Receptor 1 (GPER1), a novel estrogen receptor, has been shown to play a ubiquitous role in regulating macrophage activities and proinflammatory pathways. However, the precise role of GPER1 in macrophage-mediated renal fibrosis is unknown. In this study, we aimed to investigate the function of macrophage GPER1 in the UUO-induced renal fibrosis model. Compared to vehicle-treated ovariectomized (OVX) female and male unilateral ureteral obstruction (UUO) models, we observed that G-1 (GPER1 agonist)-treated OVX female and male UUO mice had fewer renal fibrotic lesions and less M1 and M2 macrophage infiltration in the kidney tissues. Conversely, Gper1 deletion in male UUO mice accelerated renal fibrosis and increased inflammation. In vitro studies also revealed that GPER1 activation reduced M0 macrophage polarization towards M1 or M2 phenotypes. The RNA-sequencing analysis and immunoblotting indicated that GPER1 activation was primarily involved in downregulating immune pathways activation and inactivating MAPK pathways. Tubular epithelial cells co-cultured with G-1-pretreated M1 macrophages exhibited fewer injuries and immune activation. In addition, fibroblasts co-cultured with G-1-pretreated M2 macrophages showed downregulated extracellular matrix expression. Overall, this is the first study to demonstrate the effect of GPER1 on macrophage-mediated renal fibrosis via inhibition of M1 and M2 macrophage activation. These findings indicate that GPER1 may be a promising therapeutic target for treating renal fibrosis.
Collapse
Affiliation(s)
- Lin Xie
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Ye Cheng
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wen Du
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Lili Fu
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, 200001, China
| | - Zhaonan Wei
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Changlin Mei
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, 200001, China
| | - Chuanming Hao
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Xiangchen Gu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Department of Medicine, Shanghai Hospital of Civil Aviation Administration of China, Shanghai, 201201, China.
| |
Collapse
|
76
|
Duan C, Liu H, Yang X, Liu J, Deng Y, Wang T, Xing J, Hu Z, Xu H. Sirtuin1 inhibits calcium oxalate crystal-induced kidney injury by regulating TLR4 signaling and macrophage-mediated inflammatory activation. Cell Signal 2023; 112:110887. [PMID: 37717713 DOI: 10.1016/j.cellsig.2023.110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Sirtuin1 (Sirt1) activation significantly attenuated calcium oxalate (CaOx) crystal deposition and renal inflammatory injury by regulating renal immune microenvironment. Here, to elucidate the molecular mechanism underlying the therapeutic effects of Sirt1 on macrophage related inflammation and tubular epithelial cells (TECs) necrosis, we constructed a macrophage and CaOx monohydrate (COM)-stimulated tubular cell co-culture system to mimic immune microenvironment in kidney and established a mouse model of CaOx nephrocalcinosis in wild-type and myeloid-specific Sirt1 knockout mice. Target prediction analyses of Gene Expression Omnibus Datasets showed that only miR-34b-5p is regulated by lipopolysaccharides and upregulated by SRT1720 and targets the TLR4 3'-untranslated region. In vitro, SRT1720 suppressed TLR4 expression and M1 macrophage polarization and decreased reactive oxygen species (ROS) production and mitochondrial damage in COM-stimulated TECs by targeting miR-34b-5p. Mechanically, Sirt1 promoted miR-34b-5p expression by suppressing the tri-methylation of H3K27, which directly bound to the miR-34b-5p promoter and abolished the miR-34b-5p transcription. Furthermore, loss of Sirt1 aggravated CaOx nephrocalcinosis-induced inflammatory and oxidative kidney injury, while AgomiR-34b reversed these effects. Therefore, our data suggested that Sirt1 inhibited TLR4 signaling and M1 macrophage polarization and decreased inflammatory and oxidative injury of TECs in vitro and in vivo.
Collapse
Affiliation(s)
- Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China
| | - Haoran Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, 230000 Hefei, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China
| | - Jianhe Liu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, 650000 Kunming, China
| | - Yaoliang Deng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 530000 Nanning, China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Xiamen University, 361000 Xiamen, China
| | - Jinchun Xing
- Department of Urology, The First Affiliated Hospital of Xiamen University, 361000 Xiamen, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China.
| | - Hua Xu
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, 430000 Wuhan, China; Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 430000 Wuhan, China; Department of Urology, Zhongnan Hospital of Wuhan University, 430000 Wuhan, China.; Taikang Center for Life and Medical Sciences, Wuhan University, 430000 Wuhan, China.
| |
Collapse
|
77
|
da Silva TB, Rendra E, David CAW, Bieback K, Cross MJ, Wilm B, Liptrott NJ, Murray P. Umbilical cord mesenchymal stromal cell-derived extracellular vesicles lack the potency to immunomodulate human monocyte-derived macrophages in vitro. Biomed Pharmacother 2023; 167:115624. [PMID: 37783151 DOI: 10.1016/j.biopha.2023.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been reported to display efficacy in a variety of preclinical models, but without long-term engraftment, suggesting a role for secreted factors, such as MSC-derived extracellular vesicles (EVs). MSCs are known to elicit immunomodulatory effects, an important aspect of which is their ability to affect macrophage phenotype. However, it is not clear if these effects are mediated by MSC-derived EVs, or other factors secreted by the MSCs. Here, we use flow cytometry to assess the effects of human umbilical cord (hUC) MSC-derived EVs on the expression of pro-inflammatory (CD80) and anti-inflammatory (CD163) surface markers in human monocyte-derived macrophages (hMDMs). hUC-MSC-derived EVs did not change the surface marker expression of the hMDMs. In contrast, when hMDMs were co-incubated with hUC-MSCs in indirect co-cultures, changes were observed in the expression of CD14, CD80 and CD163, particularly in M1 macrophages, suggesting that soluble factors are necessary to elicit a shift in phenotype. However, even though EVs did not alter the surface marker expression of macrophages, they promoted angiogenesis and phagocytic capacity increased proportionally to increases in EV concentration. Taken together, these results suggest that hUC-MSC-derived EVs are not sufficient to alter macrophage phenotype and that additional MSC-derived factors are needed.
Collapse
Affiliation(s)
- Tamiris Borges da Silva
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK
| | - Erika Rendra
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Christopher A W David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Michael J Cross
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK
| | - Neill J Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK.
| |
Collapse
|
78
|
Yang M, Lopez LN, Brewer M, Delgado R, Menshikh A, Clouthier K, Zhu Y, Vanichapol T, Yang H, Harris RC, Gewin L, Brooks CR, Davidson AJ, de Caestecker M. Inhibition of retinoic acid signaling in proximal tubular epithelial cells protects against acute kidney injury. JCI Insight 2023; 8:e173144. [PMID: 37698919 PMCID: PMC10619506 DOI: 10.1172/jci.insight.173144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Retinoic acid receptor (RAR) signaling is essential for mammalian kidney development but, in the adult kidney, is restricted to occasional collecting duct epithelial cells. We now show that there is widespread reactivation of RAR signaling in proximal tubular epithelial cells (PTECs) in human sepsis-associated acute kidney injury (AKI) and in mouse models of AKI. Genetic inhibition of RAR signaling in PTECs protected against experimental AKI but was unexpectedly associated with increased expression of the PTEC injury marker Kim1. However, the protective effects of inhibiting PTEC RAR signaling were associated with increased Kim1-dependent apoptotic cell clearance, or efferocytosis, and this was associated with dedifferentiation, proliferation, and metabolic reprogramming of PTECs. These data demonstrate the functional role that reactivation of RAR signaling plays in regulating PTEC differentiation and function in human and experimental AKI.
Collapse
Affiliation(s)
- Min Yang
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lauren N. Lopez
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maya Brewer
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rachel Delgado
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna Menshikh
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelly Clouthier
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yuantee Zhu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thitinee Vanichapol
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland, New Zealand
| | - Haichun Yang
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raymond C. Harris
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Leslie Gewin
- Washington University in St. Louis School of Medicine and the St. Louis Veterans Affairs Hospital, St. Louis, Missouri, USA
| | - Craig R. Brooks
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan J. Davidson
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland, New Zealand
| | - Mark de Caestecker
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
79
|
Ogura Y, Mimura I. Epigenetic roles in clonal hematopoiesis and aging kidney-related chronic kidney disease. Front Cell Dev Biol 2023; 11:1281850. [PMID: 37928907 PMCID: PMC10623128 DOI: 10.3389/fcell.2023.1281850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Accumulation of somatic hematopoietic stem cell mutations with aging has been revealed by the recent genome-wide analysis. Clonal expansion, known as clonal hematopoiesis of indeterminate potential (CHIP), is a premalignant condition of hematological cancers. It is defined as the absence of definitive morphological evidence of a hematological neoplasm and occurrence of ≥2% of mutant allele fraction in the peripheral blood. In CHIP, the most frequently mutated genes are epigenetic regulators such as DNMT3A, TET2, and ASXL1. CHIP induces inflammation. CHIP is shown to be associated with not only hematological malignancy but also non-malignant disorders such as atherosclerosis, cardiovascular diseases and chronic liver disease. In addition, recent several large clinical trials have shown that CHIP is also the risk factor for developing chronic kidney disease (CKD). In this review article, we proposed novel findings about CHIP and CHIP related kidney disease based on the recent basic and clinical research. The possible mechanism of the kidney injury in CHIP is supposed to be due to the clonal expansion in both myeloid and lymphoid cell lines. In myeloid cell lines, the mutated macrophages increase the inflammatory cytokine level and induce chronic inflammation. It leads to epigenetic downregulation of kidney and macrophage klotho level. In lymphoid cell lines, CHIP might be related to monoclonal gammopathy of renal significance (MGRS). It describes any B cell or plasma cell clonal disorder that does not fulfill the criteria for cancer yet produces a nephrotoxic monoclonal immunoglobulin that leads to kidney injury or disease. MGRS causes M-protein related nephropathy frequently observed among aged CKD patients. It is important to consider the CHIP-related complications such as hematological malignancy, cardiovascular diseases and metabolic disorders in managing the elderly CKD patients. There are no established therapies for CHIP and CHIP-related CKD yet. However, recent studies have supported the development of effective CHIP therapies, such as blocking the expansion of aberrant HSCs and inhibiting chronic inflammation. In addition, drugs targeting the epigenetic regulation of Klotho in the kidney and macrophages might be therapeutic targets of CHIP in the kidney.
Collapse
Affiliation(s)
| | - Imari Mimura
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
80
|
Yang Z, He Y, Ma Q, Wang H, Zhang Q. Alleviative effect of melatonin against the nephrotoxicity induced by cadmium exposure through regulating renal oxidative stress, inflammatory reaction, and fibrosis in a mouse model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115536. [PMID: 37797427 DOI: 10.1016/j.ecoenv.2023.115536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Chronic cadmium (Cd) exposure causes severe adverse health effects on the human body, especially the kidney tissue. Studies have demonstrated oxidative stress to be involved in renal pathological variations after exposure to Cd, but few effective treatments are available for the disease yet. Therefore, the present study was carried out to investigate the potential therapeutic intervention and its underlying molecular mechanisms of melatonin (MT), a natural antioxidant with multiple biological activities, against renal injury caused by Cd exposure in mice. C57BL/6 male mice (eight-week-old) were intragastrically administered with CdCl2, MT, or both for 30 days. Biochemical analysis showed that MT intervention significantly improved the SOD, GSH, and CAT activities while markedly decreasing the kidney MDA content of the mice exposed to Cd. Histological examination indicated that Cd exposure resulted in the atrophy of the renal glomerular, the degeneration and dilation of tubules, and the accumulation of fibrocytes. By contrast, MT administration effectively ameliorated the histological outcome of the injured kidney tissue. Moreover, administrating MT significantly inhibited proinflammatory cytokines TNF-α and iNOS expression in Cd-treated mice. Further, MT treatment markedly suppressed the expressions of renal fibrosis-related factors TGF-β1, α-SMA, and collagen Ⅰ in the injured renal tissue and the accumulation and development of renal fibrosis. In addition, the administration of MT significantly reduced the expression of caspase-3 and cell apoptotic death in the kidney tissue of Cd-exposed mice. In all, the data showed that MT has a compelling therapeutic potential in alleviating the pathological variations of renal injury caused by Cd exposure.
Collapse
Affiliation(s)
- Zhijie Yang
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yuqin He
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qi Ma
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Haifang Wang
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Quanwei Zhang
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
81
|
Zhang S, Qian S, Liu H, Xu D, Xia W, Duan H, Wang C, Yu S, Chen Y, Ji P, Wang S, Cui X, Wang Y, Shen H. LRRK2 aggravates kidney injury through promoting MFN2 degradation and abnormal mitochondrial integrity. Redox Biol 2023; 66:102860. [PMID: 37633049 PMCID: PMC10470420 DOI: 10.1016/j.redox.2023.102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023] Open
Abstract
Mitochondrial dysfunction is one of the key features of acute kidney injury (AKI) and associated fibrosis. Leucine-rich repeat kinase 2 (LRRK2) is highly expressed in kidneys and regulates mitochondrial homeostasis. How it functions in AKI is unclear. Herein we reported that LRRK2 was dramatically downregulated in AKI kidneys. Lrrk2-/- mice exhibited less severity of AKI when compared to wild-type counterparts with less mitochondrial fragmentation and decreased reactive oxygen species (ROS) production in proximal renal tubular cells (PTCs) due to mitofusin 2 (MFN2) accumulation. Overexpression of LRRK2 in human PTC cell lines promoted LRRK2-MKK4/JNK-dependent phosphorylation of MFN2Ser27 and subsequently ubiquitination-mediated MFN2 degradation, which in turn exaggerated mitochondrial damage upon ischemia/reperfusion (I/R) mimicry treatment. Lrrk2 deficiency also alleviated AKI-to-chronic kidney disease (CKD) transition with less fibrosis. In vivo pretreatment of LRRK2 inhibitors attenuated the severity of AKI as well as CKD, potentiating LRRK2 as a novel target to alleviate AKI and fibrosis.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Subo Qian
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Hailong Liu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Ding Xu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Weimin Xia
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Huangqi Duan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Chen Wang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Shenggen Yu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yingying Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ping Ji
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shujun Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Haibo Shen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
82
|
Ma K, Liu JF, Zheng ZR, Li HY, Hu B, Meng Y. The polarization of M2 macrophages can be adjusted to alleviate renal injury by methylprednisolone in sepsis-AKI. Arch Biochem Biophys 2023; 747:109738. [PMID: 37696383 DOI: 10.1016/j.abb.2023.109738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/21/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Acute kidney injury in sepsis patients has an extreme mortality rate in clinical. It obviously seems that immune cells, for example, macrophages are involved with this process. Macrophages, as highly important immune cells, play a significant role in the development of human kidney diseases. But the specific role of macrophages in this process is still unclear. Under different timeline points, we surprisingly found that macrophages had the most dynamic changes in acute kidney injury immune cells. Based on macrophages' functions, they are primarily classified into M1 macrophages (pro-inflammatory) and M2 macrophages (anti-inflammatory). The polarization of M2 macrophages is closely associated with the seriousness of sepsis-induced kidney injury, but how to modulate their polarization to alleviate sepsis-associated renal damage remains unknown. We discovered that the polarization of M2 macrophages after methylprednisolone injection can significantly alleviate acute kidney injury by reducing secreted cytokine. This study suggests that the proportion of macrophage subtypes can be regulated by methylprednisolone to alleviate acute kidney injury in sepsis to provide a new sight for a clinical to provide a promising strategy for renal injury caused.
Collapse
Affiliation(s)
- Ke Ma
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China; Institute of Nephrology, Jinan University, Guangzhou, 510632, China
| | - Jin-Feng Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China; Institute of Nephrology, Jinan University, Guangzhou, 510632, China
| | - Zi-Run Zheng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China; Institute of Nephrology, Jinan University, Guangzhou, 510632, China
| | - Hong-Yue Li
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China; Institute of Nephrology, Jinan University, Guangzhou, 510632, China
| | - Bo Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China; Department of Nephrology, The Fifth Affiliated Hospital of Jinan University, Heyuan, 570000, China; Institute of Nephrology, Jinan University, Guangzhou, 510632, China.
| | - Yu Meng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China; Department of Nephrology, The Fifth Affiliated Hospital of Jinan University, Heyuan, 570000, China; Institute of Nephrology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
83
|
Shan K, Li J, Yang Q, Chen K, Zhou S, Jia L, Fu G, Qi Y, Wang Q, Chen YQ. Dietary docosahexaenoic acid plays an opposed role in ferroptotic and non-ferroptotic acute kidney injury. J Nutr Biochem 2023; 120:109418. [PMID: 37490984 DOI: 10.1016/j.jnutbio.2023.109418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Ferroptosis due to polyunsaturated fatty acid (PUFA) peroxidation has been implicated in the pathogenesis of acute kidney injury (AKI), suggesting the risk of dietary intake of PUFA for people susceptible to AKI. Clinically, however, in addition to ferroptosis, other mechanisms also contribute to different types of AKI such as inflammation associated necroptosis and pyroptosis. Therefore, the role of PUFA, especially ω3 PUFA which is a common food supplement, in various AKIs deserves further evaluation. In this study, rhabdomyolysis- and folic acid-induced AKI (Rha-AKI and FA-AKI) were established in mice fed with different fatty acids Histology of kidney, blood urea nitrogen and creatinine, lipid peroxidation, and inflammatory factors were examined. Results showed that these two types of AKIs had diametrically different pathogenesis indicated by that ferrostatin-1 (Fer-1), a lipid antioxidant, can attenuate FA-AKI rather than Rha-AKI. Further, dietary DHA (provided by fish oil) reduced tubular injury and renal lesion by inhibiting peroxidation and inflammation in mice with Rha-AKI while increasing cell death, tissue damage, peroxidation and inflammation in mice with FA-AKI. In human renal tubular epithelial cell line HK-2, MTT assay and DHE staining showed that both myoglobin and ferroptosis inducers can cause cell death and oxidative stress. Ferroptosis inducer-induced cell death was promoted by DHA, while such result was not observed in myoglobin-induced cell death when adding DHA. This study illustrates that the mechanisms of AKI might be either ferroptosis dependent or -independent and the deterioration effect of dietary DHA depends on whether ferroptosis is involved.
Collapse
Affiliation(s)
- Kai Shan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jiaqi Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Kang Chen
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland
| | - Shanshan Zhou
- The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lingling Jia
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang Province, China
| | - Guoling Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yumin Qi
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qizai Wang
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China.
| |
Collapse
|
84
|
He XY, Wang F, Suo XG, Gu MZ, Wang JN, Xu CH, Dong YH, He Y, Zhang Y, Ji ML, Chen Y, Zhang MM, Fan YG, Wen JG, Jin J, Wang J, Li J, Zhuang CL, Liu MM, Meng XM. Compound-42 alleviates acute kidney injury by targeting RIPK3-mediated necroptosis. Br J Pharmacol 2023; 180:2641-2660. [PMID: 37248964 DOI: 10.1111/bph.16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Necroptosis plays an essential role in acute kidney injury and is mediated by receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed lineage kinase domain-like pseudokinase (MLKL). A novel RIPK3 inhibitor, compound 42 (Cpd-42) alleviates the systemic inflammatory response. The current study was designed to investigate whether Cpd-42 exhibits protective effects on acute kidney injury and reveal the underlying mechanisms. EXPERIMENTAL APPROACH The effects of Cpd-42 were determined in vivo through cisplatin- and ischaemia/reperfusion (I/R)-induced acute kidney injury and in vitro through cisplatin- and hypoxia/re-oxygenation (H/R)-induced cell damage. Transmission electron microscopy and periodic acid-Schiff staining were used to identify renal pathology. Cellular thermal shift assay and RIPK3-knockout mouse renal tubule epithelial cells were used to explore the relationship between Cpd-42 and RIPK3. Molecular docking and site-directed mutagenesis were used to determine the binding site of RIPK3 with Cpd-42. KEY RESULTS Cpd-42 reduced human proximal tubule epithelial cell line (HK-2) cell damage, necroptosis and inflammatory responses in vitro. Furthermore, in vivo, cisplatin- and I/R-induced acute kidney injury was alleviated by Cpd-42 treatment. Cpd-42 inhibited necroptosis by interacting with two key hydrogen bonds of RIPK3 at Thr94 and Ser146, which further blocked the phosphorylation of RIPK3 and mitigated acute kidney injury. CONCLUSION AND IMPLICATIONS Acting as a novel RIPK3 inhibitor, Cpd-42 reduced kidney damage, inflammatory response and necroptosis in acute kidney injury by binding to sites Thr94 and Ser146 on RIPK3. Cpd-42 could be a promising treatment for acute kidney injury.
Collapse
Affiliation(s)
- Xiao-Yan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Fang Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
- Department of Pharmacy, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, China
| | - Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Ming-Zhen Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Chuan-Hui Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Meng-Meng Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Juan Jin
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Chun-Lin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
85
|
Shi M, Wang Y, Zhang H, Ling Z, Chen X, Wang C, Liu J, Ma Y. Single-cell RNA sequencing shows the immune cell landscape in the kidneys of patients with idiopathic membranous nephropathy. Front Immunol 2023; 14:1203062. [PMID: 37731504 PMCID: PMC10507359 DOI: 10.3389/fimmu.2023.1203062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Idiopathic membranous nephropathy (IMN) is a leading pathological type of the adult primary nephrotic syndrome. Some patients develop end-stage renal disease due to poor response to treatment with steroid and immunosuppressive agents. In order to explore the molecular mechanism of IMN, we collected renal tissue samples from IMN patients and healthy controls and performed analysis by single-cell RNA sequencing (scRNA-seq). A total of 11 kidney cell clusters were identified, including multiple myeloid cell clusters, NK/T cell clusters, and B cell clusters. Most kidney parenchymal and immune cells were enriched in the regulation of immune response, inflammation, fibrosis and endoplasmic reticulum stress. The macrophage population in the IMN group showed a highly activated profile with up-regulated genes related to chemotaxis, inflammation, phagocytosis and fibrosis. CD8+ T cells continued to be cytotoxic in IMN; however, a transition to "inflammageing" GZMK+ CD8+ T cells was observed. The proportion of activated B cells in renal tissues of IMN patients was much higher than that of normal controls, indicating that B cells in IMN might be activated by constant antigenic stimulation. Moreover, the cell-cell interaction analysis revealed the potential communication between renal glomerular cells and immune cells in IMN. Overall, scRNA-seq was applied to IMN to unravel the characteristics of immune cells and elucidate possible underlying mechanisms involved in the pathogenesis of IMN.
Collapse
Affiliation(s)
- Manman Shi
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Yuxin Wang
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Huan Zhang
- Department of Nephrology, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Zicheng Ling
- Department of Internal Medicine, Weiting Community Health Center of Suzhou Industrial Park, Suzhou, Jiangsu, China
| | - Xue Chen
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Chaojun Wang
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Jian Liu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yuhua Ma
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, Jiangsu, China
| |
Collapse
|
86
|
Chen X, Hocher CF, Shen L, Krämer BK, Hocher B. Reno- and cardioprotective molecular mechanisms of SGLT2 inhibitors beyond glycemic control: from bedside to bench. Am J Physiol Cell Physiol 2023; 325:C661-C681. [PMID: 37519230 DOI: 10.1152/ajpcell.00177.2023] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Large placebo-controlled clinical trials have shown that sodium-glucose cotransporter-2 inhibitors (SGLT2i) delay the deterioration of renal function and reduce cardiovascular events in a glucose-independent manner, thereby ultimately reducing mortality in patients with chronic kidney disease (CKD) and/or heart failure. These existing clinical data stimulated preclinical studies aiming to understand the observed clinical effects. In animal models, it was shown that the beneficial effect of SGLT2i on the tubuloglomerular feedback (TGF) improves glomerular pressure and reduces tubular workload by improving renal hemodynamics, which appears to be dependent on salt intake. High salt intake might blunt the SGLT2i effects on the TGF. Beyond the salt-dependent effects of SGLT2i on renal hemodynamics, SGLT2i inhibited several key aspects of macrophage-mediated renal inflammation and fibrosis, including inhibiting the differentiation of monocytes to macrophages, promoting the polarization of macrophages from a proinflammatory M1 phenotype to an anti-inflammatory M2 phenotype, and suppressing the activation of inflammasomes and major proinflammatory factors. As macrophages are also important cells mediating atherosclerosis and myocardial remodeling after injury, the inhibitory effects of SGLT2i on macrophage differentiation and inflammatory responses may also play a role in stabilizing atherosclerotic plaques and ameliorating myocardial inflammation and fibrosis. Recent studies suggest that SGLT2i may also act directly on the Na+/H+ exchanger and Late-INa in cardiomyocytes thus reducing Na+ and Ca2+ overload-mediated myocardial damage. In addition, the renal-cardioprotective mechanisms of SGLT2i include systemic effects on the sympathetic nervous system, blood volume, salt excretion, and energy metabolism.
Collapse
Affiliation(s)
- Xin Chen
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Carl-Friedrich Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Klinik für Innere Medizin, Bundeswehrkrankenhaus Berlin, Berlin, Germany
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- IMD Institut für Medizinische Diagnostik Berlin-Potsdam GbR, Berlin, Germany
| |
Collapse
|
87
|
Yang M, Lopez LN, Brewer M, Delgado R, Menshikh A, Clouthier K, Zhu Y, Vanichapol T, Yang H, Harris R, Gewin L, Brooks C, Davidson A, de Caestecker MP. Inhibition of Retinoic Acid Signaling in Proximal Tubular Epithelial cells Protects against Acute Kidney Injury by Enhancing Kim-1-dependent Efferocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545113. [PMID: 37398101 PMCID: PMC10312711 DOI: 10.1101/2023.06.15.545113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Retinoic acid receptor (RAR) signaling is essential for mammalian kidney development, but in the adult kidney is restricted to occasional collecting duct epithelial cells. We now show there is widespread reactivation of RAR signaling in proximal tubular epithelial cells (PTECs) in human sepsis-associated acute kidney injury (AKI), and in mouse models of AKI. Genetic inhibition of RAR signaling in PTECs protects against experimental AKI but is associated with increased expression of the PTEC injury marker, Kim-1. However, Kim-1 is also expressed by de-differentiated, proliferating PTECs, and protects against injury by increasing apoptotic cell clearance, or efferocytosis. We show that the protective effect of inhibiting PTEC RAR signaling is mediated by increased Kim-1 dependent efferocytosis, and that this is associated with de-differentiation, proliferation, and metabolic reprogramming of PTECs. These data demonstrate a novel functional role that reactivation of RAR signaling plays in regulating PTEC differentiation and function in human and experimental AKI. Graphical abstract
Collapse
|
88
|
Lu Y, Zhang H, Pan H, Zhang Z, Zeng H, Xie H, Yin J, Tang W, Lin R, Zeng C, Cai D. Expression pattern analysis of m6A regulators reveals IGF2BP3 as a key modulator in osteoarthritis synovial macrophages. J Transl Med 2023; 21:339. [PMID: 37217897 PMCID: PMC10204300 DOI: 10.1186/s12967-023-04173-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Disruption of N6 methyl adenosine (m6A) modulation hampers gene expression and cellular functions, leading to various illnesses. However, the role of m6A modification in osteoarthritis (OA) synovitis remains unclear. This study aimed to explore the expression patterns of m6A regulators in OA synovial cell clusters and identify key m6A regulators that mediate synovial macrophage phenotypes. METHODS The expression patterns of m6A regulators in the OA synovium were illustrated by analyzing bulk RNA-seq data. Next, we built an OA LASSO-Cox regression prediction model to identify the core m6A regulators. Potential target genes of these m6A regulators were identified by analyzing data from the RM2target database. A molecular functional network based on core m6A regulators and their target genes was constructed using the STRING database. Single-cell RNA-seq data were collected to verify the effects of m6A regulators on synovial cell clusters. Conjoint analyses of bulk and single-cell RNA-seq data were performed to validate the correlation between m6A regulators, synovial clusters, and disease conditions. After IGF2BP3 was screened as a potential modulator in OA macrophages, the IGF2BP3 expression level was tested in OA synovium and macrophages, and its functions were further tested by overexpression and knockdown in vitro. RESULTS OA synovium showed aberrant expression patterns of m6A regulators. Based on these regulators, we constructed a well-fitting OA prediction model comprising six factors (FTO, YTHDC1, METTL5, IGF2BP3, ZC3H13, and HNRNPC). The functional network indicated that these factors were closely associated with OA synovial phenotypic alterations. Among these regulators, the m6A reader IGF2BP3 was identified as a potential macrophage mediator. Finally, IGF2BP3 upregulation was verified in the OA synovium, which promoted macrophage M1 polarization and inflammation. CONCLUSIONS Our findings revealed the functions of m6A regulators in OA synovium and highlighted the association between IGF2BP3 and enhanced M1 polarization and inflammation in OA macrophages, providing novel molecular targets for OA diagnosis and treatment.
Collapse
Affiliation(s)
- Yuheng Lu
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hongbo Zhang
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haoyan Pan
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhicheng Zhang
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hua Zeng
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haoyu Xie
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jianbin Yin
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wen Tang
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Rengui Lin
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chun Zeng
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Daozhang Cai
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
89
|
Chen L, Yuan J, Li H, Ding Y, Yang X, Yuan Z, Hu Z, Gao Y, Wang X, Lu H, Cai Y, Bai Y, Pan X. Trans-cinnamaldehyde attenuates renal ischemia/reperfusion injury through suppressing inflammation via JNK/p38 MAPK signaling pathway. Int Immunopharmacol 2023; 118:110088. [PMID: 37011503 DOI: 10.1016/j.intimp.2023.110088] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
Inflammation is the major contributor to the mechanisms of acute kidney injury due to renal ischemia-reperfusion injury (IRI). Trans-cinnamaldehyde (TCA) is a main bioactive component extracted from the bark of cinnamon and has been proved to have good anti-inflammatory properties. The current study was to demonstrate the effect of TCA on renal IRI and explore its specific mechanism. C57BL/6J mice were injected prophylactically intraperitoneally for TCA 3 days, and IRI for 24 h. In parallel, Human Kidney-2 (HK-2) cells were prophylactically treated with TCA, and then exposed to oxygen glucose deprivation/reperfusion (OGD/R) and cobalt chloride (CoCl2). TCA was found to significantly attenuate renal pathological changes and renal dysfunction, and inhibit gene and protein expression of kidney injury molecule-1 (Kim-1) and neutrophil gelatinase-associated lipocalin (NGAL). Furthermore, TCA significantly suppressed the expression of TNF-α, IL-6, IL-1β, COX-2, iNOS, and MCP-1. Mechanistically, the activation of the JNK/p38 MAPK signaling pathway was inhibited by TCA in renal IRI as well as in OGD/R and CoCl2-stimulated cells. However, following pretreatment with anisomycin before OGD/R treatment, we found that the activation of the JNK/p38 MAPK signaling pathway was significantly enhanced, and concomitant abrogation of the TCA inhibitory effect on the JNK/p38 MAPK signaling pathway, which was followed by a worsening of cell injury that was characterized by an increased number of cell necrosis and an increase in the expression of Kim-1, NGAL as well as proinflammatory factors (IL-6, IL-1β, iNOS). In summary, TCA inhibited renal inflammation via the JNK/p38 MAPK signaling pathway and attenuated renal IRI.
Collapse
|
90
|
Zhang X, Chao P, Zhang L, Xu L, Cui X, Wang S, Wusiman M, Jiang H, Lu C. Single-cell RNA and transcriptome sequencing profiles identify immune-associated key genes in the development of diabetic kidney disease. Front Immunol 2023; 14:1030198. [PMID: 37063851 PMCID: PMC10091903 DOI: 10.3389/fimmu.2023.1030198] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/16/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundThere is a growing public concern about diabetic kidney disease (DKD), which poses a severe threat to human health and life. It is important to discover noninvasive and sensitive immune-associated biomarkers that can be used to predict DKD development. ScRNA-seq and transcriptome sequencing were performed here to identify cell types and key genes associated with DKD.MethodsHere, this study conducted the analysis through five microarray datasets of DKD (GSE131882, GSE1009, GSE30528, GSE96804, and GSE104948) from gene expression omnibus (GEO). We performed single-cell RNA sequencing analysis (GSE131882) by using CellMarker and CellPhoneDB on public datasets to identify the specific cell types and cell-cell interaction networks related to DKD. DEGs were identified from four datasets (GSE1009, GSE30528, GSE96804, and GSE104948). The regulatory relationship between DKD-related characters and genes was evaluated by using WGCNA analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) datasets were applied to define the enrichment of each term. Subsequently, immune cell infiltration between DKD and the control group was identified by using the “pheatmap” package, and the connection Matrix between the core genes and immune cell or function was illuminated through the “corrplot” package. Furthermore, RcisTarget and GSEA were conducted on public datasets for the analysis of the regulation relationship of key genes and it revealed the correlation between 3 key genes and top the 20 genetic factors involved in DKD. Finally, the expression of key genes between patients with 35 DKD and 35 healthy controls were examined by ELISA, and the relationship between the development of DKD rate and hub gene plasma levels was assessed in a cohort of 35 DKD patients. In addition, we carried out immunohistochemistry and western blot to verify the expression of three key genes in the kidney tissue samples we obtained.ResultsThere were 8 cell types between DKD and the control group, and the number of connections between macrophages and other cells was higher than that of the other seven cell groups. We identified 356 different expression genes (DEGs) from the RNA-seq, which are enriched in urogenital system development, kidney development, platelet alpha granule, and glycosaminoglycan binding pathways. And WGCNA was conducted to construct 13 gene modules. The highest correlations module is related to the regulation of cell adhesion, positive regulation of locomotion, PI3K-Akt, gamma response, epithelial-mesenchymal transition, and E2F target signaling pathway. Then we overlapped the DEGs, WGCNA, and scRNA-seq, SLIT3, PDE1A and CFH were screened as the closely related genes to DKD. In addition, the findings of immunological infiltration revealed a remarkable positive link between T cells gamma delta, Macrophages M2, resting mast cells, and the three critical genes SLIT3, PDE1A, and CFH. Neutrophils were considerably negatively connected with the three key genes. Comparatively to healthy controls, DKD patients showed high levels of SLIT3, PDE1A, and CFH. Despite this, higher SLIT3, PDE1A, and CFH were associated with an end point rate based on a median follow-up of 2.6 years. And with the gradual deterioration of DKD, the expression of SLIT3, PDE1A, and CFH gradually increased.ConclusionsThe 3 immune-associated genes could be used as diagnostic markers and therapeutic targets of DKD. Additionally, we found new pathogenic mechanisms associated with immune cells in DKD, which might lead to therapeutic targets against these cells.
Collapse
Affiliation(s)
- Xueqin Zhang
- Department of Nephropathy, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
| | - Peng Chao
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
| | - Lei Zhang
- Department of Endocrine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
| | - Lin Xu
- Department of Rheumatology Immunology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
| | - Xinyue Cui
- Department of Nephropathy, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
| | - Shanshan Wang
- Department of Nephropathy, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
| | - Miiriban Wusiman
- Department of Nephropathy, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
| | - Hong Jiang
- Department of Nephropathy, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
- Nephrology Clinical Research Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
- *Correspondence: Chen Lu, ; Hong Jiang,
| | - Chen Lu
- Nephrology Clinical Research Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang Uygur Autonomous Region, China
- Department of Nephropathy, The First Affiliated Hospital of Xinjiang Medical University, Urumuqi, Xinjiang Uygur Autonomous Region, China
- *Correspondence: Chen Lu, ; Hong Jiang,
| |
Collapse
|
91
|
Yang Y, Zhan X, Zhang C, Shi J, Wu J, Deng X, Hong Y, Li Q, Ge S, Xu G, He F. USP25-PKM2-glycolysis axis contributes to ischemia reperfusion-induced acute kidney injury by promoting M1-like macrophage polarization and proinflammatory response. Clin Immunol 2023; 251:109279. [PMID: 36894047 DOI: 10.1016/j.clim.2023.109279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
M1-like macrophages have been reported to play critical roles in acute kidney injury (AKI). Here, we elucidated the role of ubiquitin-specific protease 25 (USP25) in M1-like macrophages polarization and AKI. High USP25 expression was correlated with a decline in renal function in patients with acute kidney tubular injury and in mice with AKI. In contrast, USP25 knockout reduced M1-like macrophage infiltration, suppressed M1-like polarization, and improved AKI in mice, indicating that USP25 was necessary for M1-like polarization and proinflammatory response. Immunoprecipitation assay and liquid chromatography-tandem mass spectrometry showed that the M2 isoform of pyruvate kinase, muscle (PKM2) was a target substrate of USP25. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated the USP25 regulated aerobic glycolysis and lactate production during M1-like polarization via PKM2. Further analysis showed that the USP25-PKM2-aerobic glycolysis axis positively regulated M1-like polarization and exacerbated AKI in mice, providing potential therapeutic targets for AKI treatment.
Collapse
Affiliation(s)
- Yi Yang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaona Zhan
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cailin Zhang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia Shi
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianliang Wu
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang 330008, China
| | - Xuan Deng
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Hong
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuwang Ge
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Fan He
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
92
|
Xiang H, Xu Z, Zhang C, Xiong J. Macrophage-derived exosomes mediate glomerular endothelial cell dysfunction in sepsis-associated acute kidney injury. Cell Biosci 2023; 13:46. [PMID: 36879272 PMCID: PMC9990300 DOI: 10.1186/s13578-023-00990-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Sepsis-associated AKI has been shown to be related to sepsis mortality. Macrophage activation and endothelial cell damage are involved in the progression of sepsis-associated AKI, but the specific mechanisms are still unclear. METHODS In vitro experiments, exosomes extracted from lipopolysaccharide (LPS) -stimulated macrophages were co-incubated with rat glomerular endothelial cells (RGECs) and then detected the injury markers of RGECs. Acid sphingomyelinase (ASM) inhibitor amitriptyline were used to investigate the role of ASM. In vivo experiment, exosomes produced by LPS-stimulated macrophages were injected into mice through tail vein to further explore the role of macrophage-derived exosomes. Moreover, ASM knockout mice were used to verify the mechanism. RESULT In vitro, the secretion of macrophage exosomes increased upon the stimulation with LPS. Notably, macrophage-derived exosomes can cause glomerular endothelial cell dysfunction. In vivo, macrophage infiltration and exosome secretion in glomeruli of the LPS-induced AKI group increased. The exosomes produced by LPS-stimulated macrophages were injected into mice, which also led to the injury of renal endothelial cells. In addition, in the LPS-induced AKI mouse model, compared with wild-type mice, the secretion of exosomes in glomeruli of ASM gene knockout mice and the injury of endothelial cells were reduced. CONCLUSION Our study shows that ASM regulates the secretion of macrophage exosomes, leading to endothelial cell injury, which may be a therapeutic target in sepsis-associated AKI.
Collapse
Affiliation(s)
- Huiling Xiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhifeng Xu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
93
|
Wei Y, Li X, Lin J, Zhou Y, Yang J, Hou M, Wu F, Yan J, Ge C, Hu D, Yin L. Oral Delivery of siRNA Using Fluorinated, Small-Sized Nanocapsules toward Anti-Inflammation Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206821. [PMID: 36574636 DOI: 10.1002/adma.202206821] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/12/2022] [Indexed: 06/17/2023]
Abstract
Oral delivery of small interfering RNA (siRNA) provides a promising paradigm for treating diseases that require regular injections. However, the multiple gastrointestinal (GI) and systemic barriers often lead to inefficient oral absorption and low bioavailability of siRNA. Technologies that can overcome these barriers are still lacking, which hinders the clinical potential of orally delivered siRNA. Herein, small-sized, fluorinated nanocapsules (F-NCs) are developed to mediate efficient oral delivery of tumor necrosis factor α (TNF-α) siRNA for anti-inflammation treatment. The NCs possess a disulfide-cross-linked shell structure, thus featuring robust stability in the GI tract. Because of their small size (≈30 nm) and fluorocarbon-assisted repelling of mucin adsorption, the best-performing F3 -NCs show excellent mucus penetration and intestinal transport capabilities without impairing the intestinal tight junction, conferring the oral bioavailability of 20.4% in relative to intravenous injection. The disulfide cross-linker can be cleaved inside target cells, causing NCs dissociation and siRNA release to potentiate the TNF-α silencing efficiency. In murine models of acute and chronic inflammation, orally delivered F3 -NCs provoke efficient TNF-α silencing and pronounced anti-inflammatory efficacies. This study therefore provides a transformative strategy for oral siRNA delivery, and will render promising utilities for anti-inflammation treatment.
Collapse
Affiliation(s)
- Yuansong Wei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xudong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Juanhui Lin
- Department of Gastro Enterology, The Second Affiliated Hospital of Soochow University, Suzhou, 215002, China
| | - Yang Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Jiandong Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Mengying Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Fan Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Jing Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Chenglong Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Duanmin Hu
- Department of Gastro Enterology, The Second Affiliated Hospital of Soochow University, Suzhou, 215002, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
94
|
Privratsky JR, Ide S, Chen Y, Kitai H, Ren J, Fradin H, Lu X, Souma T, Crowley SD. A macrophage-endothelial immunoregulatory axis ameliorates septic acute kidney injury. Kidney Int 2023; 103:514-528. [PMID: 36334787 PMCID: PMC9974788 DOI: 10.1016/j.kint.2022.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
The most common cause of acute kidney injury (AKI) in critically ill patients is sepsis. Kidney macrophages consist of both F4/80hi and CD11bhi cells. The role of macrophage subpopulations in septic AKI pathogenesis remains unclear. As F4/80hi macrophages are reported to contribute to immunomodulation following injury, we hypothesized that selective depletion of F4/80hi macrophages would worsen septic AKI. F4/80hi macrophages were depleted via diphtheria toxin injection in CD11cCre(+)/CX3CR1dtr/wt (F4/80 MKO mice) compared to CD11cCre(-)/CX3CR1dtr/wt (F4/80 MWT) mice. F4/80 MWT and F4/80 MKO mice were subjected to sham or cecal ligation and puncture to induce sepsis. Compared to F4/80 MWT mice, F4/80 MKO mice displayed worsened septic AKI at 24 hours as measured by serum creatinine and histologic injury scoring. Kidneys from F4/80 MKO mice elaborated higher kidney interleukin-6 levels. Mechanistically, single cell RNA sequencing identified a macrophage-endothelial cell immunoregulatory axis that underlies interleukin-6 expression. F4/80hi macrophages expressed interleukin-1 receptor antagonist and limited interleukin-6 expression in endothelial cells. In turn, anti-interleukin-6 therapy ameliorated septic AKI in F4/80 MKO mice. Thus, F4/80hi macrophages express interleukin-1 receptor antagonist and constrain interleukin-6 generation from endothelial cells to limit septic AKI, representing a targetable cellular crosstalk in septic AKI. These findings are particularly relevant owing to the efficacy of anti-interleukin-6 therapies during COVID-19 infection, a disease associated with high rates of AKI and endothelial dysfunction.
Collapse
Affiliation(s)
- Jamie R Privratsky
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA; Division of Critical Care Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Shintaro Ide
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Yanting Chen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hiroki Kitai
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jiafa Ren
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Helene Fradin
- Duke Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Durham VA Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
95
|
Inhibition of ALKBH5 attenuates I/R-induced renal injury in male mice by promoting Ccl28 m6A modification and increasing Treg recruitment. Nat Commun 2023; 14:1161. [PMID: 36859428 PMCID: PMC9977869 DOI: 10.1038/s41467-023-36747-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is a common cause of acute kidney injury (AKI). The role of N6-methyladenosine (m6A) modification in AKI remains unclear. Here, we characterize the role of AlkB homolog 5 (ALKBH5) and m6A modification in an I/R-induced renal injury model in male mice. Alkbh5-knockout mice exhibit milder pathological damage and better renal function than wild-type mice post-IRI, whereas Alkbh5-knockin mice show contrary results. Also conditional knockout of Alkbh5 in the tubular epithelial cells alleviates I/R-induced AKI and fibrosis. CCL28 is identified as a target of ALKBH5. Furthermore, Ccl28 mRNA stability increases with Alkbh5 deficiency, mediating by the binding of insulin-like growth factor 2 binding protein 2. Treg recruitment is upregulated and inflammatory cells are inhibited by the increased CCL28 level in IRI-Alkbh5fl/flKspCre mice. The ALKBH5 inhibitor IOX1 exhibits protective effects against I/R-induced AKI. In summary, inhibition of ALKBH5 promotes the m6A modifications of Ccl28 mRNA, enhancing its stability, and regulating the Treg/inflammatory cell axis. ALKBH5 and this axis is a potential AKI treatment target.
Collapse
|
96
|
Lin Y, Cai F, Wang X, Yang Y, Ren Y, Yao C, Yin X, Zhuang H, Hua Z. FADD phosphorylation contributes to development of renal fibrosis by accelerating epithelial-mesenchymal transition. Cell Cycle 2023; 22:580-595. [PMID: 36281535 PMCID: PMC9928456 DOI: 10.1080/15384101.2022.2136463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/26/2022] [Accepted: 10/10/2022] [Indexed: 11/03/2022] Open
Abstract
FADD, a classical apoptotic signaling adaptor, has recently been reported to exhibit a series of non-apoptotic functions. Here, we report that FADD may play a critical role in the development of renal fibrosis. Neutrophil infiltration in the renal interstitial part, glomerular mesangial cell proliferation, and base-membrane thickening were observed in FADD-D mice by H&E, PAS, and PASM staining. Immunofluorescence analysis revealed that macrophage infiltration was significantly enhanced in FADD-D mice. Renal fibrosis might be induced by IgA nephritis in FADD-D mice as evidenced by increased Ki67 and type IV collagen. Additionally, the levels of α-SMA, Fibronectin, and Vimentin were also found to be elevated. Mechanism study indicated that the TLR4/myD88/NF-κB signaling pathway was activated in FADD-D mice. Moreover, FADD phosphorylation activated the mTOR and TGF-β/Smad pathway and accelerated the process of epithelial mesenchymal transition. Further studies indicated that the TGF-β1 pathway was also activated and the process of EMT was accelerated in both FADD-disrupted HEK293 cells and FADD-deficient MES cells. Thus, we concluded that FADD phosphorylation could lead to IgA nephritis and eventually result in renal fibrosis. Taken together, our study provides evidence, for the first time, that FADD, especially in its phosphorylated form, has an effect on the development of renal fibrosis.Abbreviations: FADD: FAS-associated protein with death domain; DED: death effector domain; DD: death domain; CKD: chronic kidney disease; ECM: extracellular matrix; ESRD: end-stage renal disease; RRT: renal replacement therapy; H&E: hematoxylin and eosin; PASM: periodic acid silver methenamine.
Collapse
Affiliation(s)
- Yan Lin
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoyang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Yunwen Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Yongzhe Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Chun Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou medical university, Xuzhou, China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, P. R. China
| |
Collapse
|
97
|
Massoth C, Küllmar M, Enders D, Kellum JA, Forni LG, Meersch M, Zarbock A. Comparison of C-C motif chemokine ligand 14 with other biomarkers for adverse kidney events after cardiac surgery. J Thorac Cardiovasc Surg 2023; 165:199-207.e2. [PMID: 33832791 DOI: 10.1016/j.jtcvs.2021.03.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Outcomes after acute kidney injury are affected by both the severity and the duration of the insult. Patients with persistent acute kidney injury have higher major adverse kidney events, including 90-day mortality, renal replacement therapy, and persistent kidney dysfunction. Methods to identify these patients are urgently needed to improve outcomes. The purpose of this study was to evaluate whether biomarkers, including C-C motif chemokine ligand 14, were able to predict persistent acute kidney injury and major adverse kidney events after cardiac surgery. METHODS This study was a single-center, prospective, observational study. Patients who developed moderate or severe acute kidney injury (Kidney Disease Improving Global Outcomes 2 or 3) within 72 hours after cardiac surgery were enrolled with a primary end point of persistent severe acute kidney injury (Kidney Disease Improving Global Outcomes 3) lasting 72 hours or more. RESULTS A total of 100 patients were available for the primary analysis, and 37 met the primary end point. C-C motif chemokine ligand 14 was the most predictive biomarker for the primary end point with an area under the curve of 0.930 (95% confidence interval, 0.881-0.979). The area under the curve of C-C motif chemokine ligand 14 was significantly higher than the area under the curve for the other biomarkers analyzed. C-C motif chemokine ligand 14 was significantly higher in end point positive patients at enrollment (4.47 ng/mL [2.35-11.5] vs 0.67 ng/mL [0.38-1.07]; P = .001). Sensitivity and specificity were 78% and 95% at a cutoff value of 2.21 ng/mL, respectively. C-C motif chemokine ligand 14 was also highly accurate for predicting renal replacement therapy within 7 days (area under the curve, 0.915; 95% confidence interval, 0.858-0.972; P < .001). CONCLUSIONS Elevated C-C motif chemokine ligand 14 levels predict persistent acute kidney injury in cardiac surgery patients with moderate or severe acute kidney injury. This new biomarker may help stratify patients destined to receive renal replacement therapy and identify patients who may benefit from novel therapeutic approaches to acute kidney injury.
Collapse
Affiliation(s)
- Christina Massoth
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Muenster, Muenster, Germany
| | - Mira Küllmar
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Muenster, Muenster, Germany
| | - Dominic Enders
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - John A Kellum
- Center for Critical Care Nephrology, CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Lui G Forni
- Department of Clinical & Experimental Medicine, Faculty of Health Sciences, University of Surrey, Guildford, United Kingdom
| | - Melanie Meersch
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Muenster, Muenster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Muenster, Muenster, Germany.
| | | |
Collapse
|
98
|
Harsini S, Rezaei N. Autoimmune diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
99
|
Li J, Zheng S, Ma C, Chen X, Li X, Li S, Wang P, Chen P, Wang Z, Li W, Liu Y. Research progress on exosomes in podocyte injury associated with diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1129884. [PMID: 37020588 PMCID: PMC10067864 DOI: 10.3389/fendo.2023.1129884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 03/22/2023] Open
Abstract
Diabetic kidney disease (DKD), a common cause of end-stage renal disease, is a serious complication that develops with the progression of chronic diabetes. Its main clinical manifestations are persistent proteinuria and/or a progressive decline in the estimated glomerular filtration rate. Podocytes, terminally differentiated glomerular visceral epithelial cells, constitute the glomerular filtration barrier together with the basement membrane and endothelial cells, and the structural and functional barrier integrity is closely related to proteinuria. In recent years, an increasing number of studies have confirmed that podocyte injury is the central target of the occurrence and development of DKD, and research on exosomes in podocyte injury associated with DKD has also made great progress. The aim of this review is to comprehensively describe the potential diagnostic value of exosomes in podocyte injury associated with DKD, analyze the mechanism by which exosomes realize the communication between podocytes and other types of cells and discuss the possibility of exosomes as targeted therapy drug carriers to provide new targets for and insights into delaying the progression of and treating DKD.
Collapse
Affiliation(s)
- Jiao Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shanshan Zheng
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chaoqun Ma
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xuexun Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xuan Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Shengjie Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ping Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Ping Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Zunsong Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Wenbin Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
- *Correspondence: Yipeng Liu, ; Wenbin Li,
| | - Yipeng Liu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
- *Correspondence: Yipeng Liu, ; Wenbin Li,
| |
Collapse
|
100
|
Tang L, Zhu M, Che X, Yang X, Xu Y, Ma Q, Zhang M, Ni Z, Shao X, Mou S. Astragaloside IV Targets Macrophages to Alleviate Renal Ischemia-Reperfusion Injury via the Crosstalk between Hif-1α and NF-κB (p65)/Smad7 Pathways. J Pers Med 2022; 13:jpm13010059. [PMID: 36675720 PMCID: PMC9863138 DOI: 10.3390/jpm13010059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
(1) Background: Astragaloside IV (AS-IV) is derived from Astragalus membranous (AM), which is used to treat kidney disease. Macrophages significantly affect the whole process of renal ischemia-reperfusion (I/R). The regulation of macrophage polarization in kidneys by AS-IV was the focus. (2) Methods: Renal tubular injury and fibrosis in mice were detected by Hematoxylin and Eosin staining and Masson Trichrome Staining, separately. An ELISA and quantitative real-time polymerase chain reaction were used to explore the cytokine and mRNA expression. Western blot was used to determine protein expression and siRNA technology was used to reveal the crosstalk of signal pathways in RAW 264.7 under hypoxia. (3) Results: In the early stages of I/R injury, AS-IV reduced renal damage and macrophage infiltration. M1-associated markers were decreased, while M2 biomarkers were increased. The NF-κB (p65)/Hif-1α pathway was suppressed by AS-IV in M1. Moreover, p65 dominated the expression of Hif-1α. In the late stages of I/R injury, renal fibrosis was alleviated, and M2 infiltration also decreased after AS-IV treatment. Hif-1α expression was reduced by AS-IV, while Smad7 expression was enhanced. Hif-1α interferes with the expression of Smad7 in M2. (4) Conclusions: AS-IV promoted the differentiation of M1 to M2, relieving the proinflammatory response to alleviate the kidney injury during the early stages. AS-IV attenuated M2 macrophage infiltration to prevent kidney fibrosis during the later stages.
Collapse
Affiliation(s)
- Lumin Tang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Minyan Zhu
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiajing Che
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoqian Yang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yao Xu
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qing Ma
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ming Zhang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhaohui Ni
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinghua Shao
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shan Mou
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Correspondence:
| |
Collapse
|