51
|
Ng RN, Tai AS, Chang BJ, Stick SM, Kicic A. Overcoming Challenges to Make Bacteriophage Therapy Standard Clinical Treatment Practice for Cystic Fibrosis. Front Microbiol 2021; 11:593988. [PMID: 33505366 PMCID: PMC7829477 DOI: 10.3389/fmicb.2020.593988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Individuals with cystic fibrosis (CF) are given antimicrobials as prophylaxis against bacterial lung infection, which contributes to the growing emergence of multidrug resistant (MDR) pathogens isolated. Pathogens such as Pseudomonas aeruginosa that are commonly isolated from individuals with CF are armed with an arsenal of protective and virulence mechanisms, complicating eradication and treatment strategies. While translation of phage therapy into standard care for CF has been explored, challenges such as the lack of an appropriate animal model demonstrating safety in vivo exist. In this review, we have discussed and provided some insights in the use of primary airway epithelial cells to represent the mucoenvironment of the CF lungs to demonstrate safety and efficacy of phage therapy. The combination of phage therapy and antimicrobials is gaining attention and has the potential to delay the onset of MDR infections. It is evident that efforts to translate phage therapy into standard clinical practice have gained traction in the past 5 years. Ultimately, collaboration, transparency in data publications and standardized policies are needed for clinical translation.
Collapse
Affiliation(s)
- Renee N. Ng
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
| | - Anna S. Tai
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Institute for Respiratory Health, School of Medicine, The University of Western Australia, Perth, WA, Australia
| | - Barbara J. Chang
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Occupation and the Environment, School of Public Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
52
|
Ssekatawa K, Byarugaba DK, Kato CD, Wampande EM, Ejobi F, Tweyongyere R, Nakavuma JL. A review of phage mediated antibacterial applications. ALEXANDRIA JOURNAL OF MEDICINE 2020. [DOI: 10.1080/20905068.2020.1851441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Kenneth Ssekatawa
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University-Western Campus, Bushenyi
- African Center of Excellence in Materials Product Development and Nanotechnology (MAPRONANO ACE), College of Engineering Design Art and Technology, Makerere University, Kampala, Uganda
| | - Denis K. Byarugaba
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Charles D. Kato
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Eddie M. Wampande
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Francis Ejobi
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Robert Tweyongyere
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Jesca L. Nakavuma
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| |
Collapse
|
53
|
Puentes PR, Henao MC, Torres CE, Gómez SC, Gómez LA, Burgos JC, Arbeláez P, Osma JF, Muñoz-Camargo C, Reyes LH, Cruz JC. Design, Screening, and Testing of Non-Rational Peptide Libraries with Antimicrobial Activity: In Silico and Experimental Approaches. Antibiotics (Basel) 2020; 9:E854. [PMID: 33265897 PMCID: PMC7759991 DOI: 10.3390/antibiotics9120854] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
One of the challenges of modern biotechnology is to find new routes to mitigate the resistance to conventional antibiotics. Antimicrobial peptides (AMPs) are an alternative type of biomolecules, naturally present in a wide variety of organisms, with the capacity to overcome the current microorganism resistance threat. Here, we reviewed our recent efforts to develop a new library of non-rationally produced AMPs that relies on bacterial genome inherent diversity and compared it with rationally designed libraries. Our approach is based on a four-stage workflow process that incorporates the interplay of recent developments in four major emerging technologies: artificial intelligence, molecular dynamics, surface-display in microorganisms, and microfluidics. Implementing this framework is challenging because to obtain reliable results, the in silico algorithms to search for candidate AMPs need to overcome issues of the state-of-the-art approaches that limit the possibilities for multi-space data distribution analyses in extremely large databases. We expect to tackle this challenge by using a recently developed classification algorithm based on deep learning models that rely on convolutional layers and gated recurrent units. This will be complemented by carefully tailored molecular dynamics simulations to elucidate specific interactions with lipid bilayers. Candidate AMPs will be recombinantly-expressed on the surface of microorganisms for further screening via different droplet-based microfluidic-based strategies to identify AMPs with the desired lytic abilities. We believe that the proposed approach opens opportunities for searching and screening bioactive peptides for other applications.
Collapse
Affiliation(s)
- Paola Ruiz Puentes
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogota DC 111711, Colombia; (P.R.P.); (P.A.)
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - María C. Henao
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Carlos E. Torres
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Saúl C. Gómez
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Laura A. Gómez
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Juan C. Burgos
- Chemical Engineering Program, Universidad de Cartagena, Cartagena 130015, Colombia;
| | - Pablo Arbeláez
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogota DC 111711, Colombia; (P.R.P.); (P.A.)
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Johann F. Osma
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
54
|
Thi MTT, Wibowo D, Rehm BH. Pseudomonas aeruginosa Biofilms. Int J Mol Sci 2020; 21:ijms21228671. [PMID: 33212950 PMCID: PMC7698413 DOI: 10.3390/ijms21228671] [Citation(s) in RCA: 401] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen causing devastating acute and chronic infections in individuals with compromised immune systems. Its highly notorious persistence in clinical settings is attributed to its ability to form antibiotic-resistant biofilms. Biofilm is an architecture built mostly by autogenic extracellular polymeric substances which function as a scaffold to encase the bacteria together on surfaces, and to protect them from environmental stresses, impedes phagocytosis and thereby conferring the capacity for colonization and long-term persistence. Here we review the current knowledge on P. aeruginosa biofilms, its development stages, and molecular mechanisms of invasion and persistence conferred by biofilms. Explosive cell lysis within bacterial biofilm to produce essential communal materials, and interspecies biofilms of P. aeruginosa and commensal Streptococcus which impedes P. aeruginosa virulence and possibly improves disease conditions will also be discussed. Recent research on diagnostics of P. aeruginosa infections will be investigated. Finally, therapeutic strategies for the treatment of P. aeruginosa biofilms along with their advantages and limitations will be compiled.
Collapse
|
55
|
Park SY, Han JE, Kwon H, Park SC, Kim JH. Recent Insights into Aeromonas salmonicida and Its Bacteriophages in Aquaculture: A Comprehensive Review. J Microbiol Biotechnol 2020; 30:1443-1457. [PMID: 32807762 PMCID: PMC9728264 DOI: 10.4014/jmb.2005.05040] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
The emergence and spread of antimicrobial resistance in pathogenic bacteria of fish and shellfish have caused serious concerns in the aquaculture industry, owing to the potential health risks to humans and animals. Among these bacteria, Aeromonas salmonicida, which is one of the most important primary pathogens in salmonids, is responsible for significant economic losses in the global aquaculture industry, especially in salmonid farming because of its severe infectivity and acquisition of antimicrobial resistance. Therefore, interest in the use of alternative approaches to prevent and control A. salmonicida infections has increased in recent years, and several applications of bacteriophages (phages) have provided promising results. For several decades, A. salmonicida and phages infecting this fish pathogen have been thoroughly investigated in various research areas including aquaculture. The general overview of phage usage to control bacterial diseases in aquaculture, including the general advantages of this strategy, has been clearly described in previous reviews. Therefore, this review specifically focuses on providing insights into the phages infecting A. salmonicida, from basic research to biotechnological application in aquaculture, as well as recent advances in the study of A. salmonicida.
Collapse
Affiliation(s)
- Seon Young Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea,Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jee Eun Han
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyemin Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea,S.C.Park Phone: +82-2-880-1282 Fax: +82-2-880-1213 E-mail:
| | - Ji Hyung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea,Corresponding authors J.H.Kim Phone: +82-42-879-8272 Fax: +82-42-879-8498 E-mail:
| |
Collapse
|
56
|
Luscher A, Simonin J, Falconnet L, Valot B, Hocquet D, Chanson M, Resch G, Köhler T, van Delden C. Combined Bacteriophage and Antibiotic Treatment Prevents Pseudomonas aeruginosa Infection of Wild Type and cftr- Epithelial Cells. Front Microbiol 2020; 11:1947. [PMID: 32983005 PMCID: PMC7479825 DOI: 10.3389/fmicb.2020.01947] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
With the increase of infections due to multidrug resistant bacterial pathogens and the shortage of antimicrobial molecules with novel targets, interest in bacteriophages as a therapeutic option has regained much attraction. Before the launch of future clinical trials, in vitro studies are required to better evaluate the efficacies and potential pitfalls of such therapies. Here we studied in an ex vivo human airway epithelial cell line model the efficacy of phage and ciprofloxacin alone and in combination to treat infection by Pseudomonas aeruginosa. The Calu-3 cell line and the isogenic CFTR knock down cell line (cftr-) infected apically with P. aeruginosa strain PAO1 showed a progressive reduction in transepithelial resistance during 24 h. Administration at 6 h p.i. of single phage, phage cocktails or ciprofloxacin alone prevented epithelial layer destruction at 24 h p.i. Bacterial regrowth, due to phage resistant mutants harboring mutations in LPS synthesis genes, occurred thereafter both in vitro and ex vivo. However, co-administration of two phages combined with ciprofloxacin efficiently prevented PAO1 regrowth and maintained epithelial cell integrity at 72 p.i. The phage/ciprofloxacin treatment did not induce an inflammatory response in the tested cell lines as determined by nanoString® gene expression analysis. We conclude that combination of phage and ciprofloxacin efficiently protects wild type and cftr- epithelial cells from infection by P. aeruginosa and emergence of phage resistant mutants without inducing an inflammatory response. Hence, phage-antibiotic combination should be a safe and promising anti-Pseudomonas therapy for future clinical trials potentially including cystic fibrosis patients.
Collapse
Affiliation(s)
- Alexandre Luscher
- Transplant Infectious Diseases Unit, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Juliette Simonin
- Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Léna Falconnet
- Transplant Infectious Diseases Unit, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Benoît Valot
- UMR CNRS 6249 Chrono-Environnement, University of Franche-Comté-Bourgogne, Besançon, France
- Bioinformatique et Big Data au Service de la Santé, UFR Santé, Université de Bourgogne Franche-Comté, Besançon, France
| | - Didier Hocquet
- UMR CNRS 6249 Chrono-Environnement, University of Franche-Comté-Bourgogne, Besançon, France
- Bioinformatique et Big Data au Service de la Santé, UFR Santé, Université de Bourgogne Franche-Comté, Besançon, France
- Department of Infection Control, University Hospital of Besançon, Besançon, France
| | - Marc Chanson
- Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Grégory Resch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Thilo Köhler
- Transplant Infectious Diseases Unit, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Christian van Delden
- Transplant Infectious Diseases Unit, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
57
|
Sheam MM, Syed SB, Nain Z, Tang SS, Paul DK, Ahmed KR, Biswas SK. Community-acquired pneumonia: aetiology, antibiotic resistance and prospects of phage therapy. J Chemother 2020; 32:395-410. [PMID: 32820711 DOI: 10.1080/1120009x.2020.1807231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacteria are the most common aetiological agents of community-acquired pneumonia (CAP) and use a variety of mechanisms to evade the host immune system. With the emerging antibiotic resistance, CAP-causing bacteria have now become resistant to most antibiotics. Consequently, significant morbimortality is attributed to CAP despite their varying rates depending on the clinical setting in which the patients being treated. Therefore, there is a pressing need for a safe and effective alternative or supplement to conventional antibiotics. Bacteriophages could be a ray of hope as they are specific in killing their host bacteria. Several bacteriophages had been identified that can efficiently parasitize bacteria related to CAP infection and have shown a promising protective effect. Thus, bacteriophages have shown immense possibilities against CAP inflicted by multidrug-resistant bacteria. This review provides an overview of common antibiotic-resistant CAP bacteria with a comprehensive summarization of the promising bacteriophage candidates for prospective phage therapy.
Collapse
Affiliation(s)
- Md Moinuddin Sheam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Shifath Bin Syed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Sciences and Engineering, East West University, Dhaka, Bangladesh
| | - Swee-Seong Tang
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Dipak Kumar Paul
- Department of Applied Nutrition and Food Technology, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh.,Central Laboratory, Islamic University, Kushtia, Bangladesh
| | - Kazi Rejvee Ahmed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Sudhangshu Kumar Biswas
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh.,Central Laboratory, Islamic University, Kushtia, Bangladesh
| |
Collapse
|
58
|
Li Y, Qu X, Cao B, Yang T, Bao Q, Yue H, Zhang L, Zhang G, Wang L, Qiu P, Zhou N, Yang M, Mao C. Selectively Suppressing Tumor Angiogenesis for Targeted Breast Cancer Therapy by Genetically Engineered Phage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001260. [PMID: 32495365 DOI: 10.1002/adma.202001260] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/04/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Antiangiogenesis is a promising approach to cancer therapy but is limited by the lack of tumor-homing capability of the current antiangiogenic agents. Angiogenin, a protein overexpressed and secreted by tumors to trigger angiogenesis for their growth, has never been explored as an antiangiogenic target in cancer therapy. Here it is shown that filamentous fd phage, as a biomolecular biocompatible nanofiber, can be engineered to become capable of first homing to orthotopic breast tumors and then capturing angiogenin to prevent tumor angiogenesis, resulting in targeted cancer therapy without side effects. The phage is genetically engineered to display many copies of an identified angiogenin-binding peptide on its side wall and multiple copies of a breast-tumor-homing peptide at its tip. Since the tumor-homing peptide can be discovered and customized virtually toward any specific cancer by phage display, the angiogenin-binding phages are thus universal "plug-and-play" tumor-homing cancer therapeutics.
Collapse
Affiliation(s)
- Yan Li
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019-5300, USA
| | - Xuewei Qu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019-5300, USA
| | - Binrui Cao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019-5300, USA
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Hui Yue
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Liwei Zhang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019-5300, USA
| | - Genwei Zhang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019-5300, USA
| | - Lin Wang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019-5300, USA
| | - Penghe Qiu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019-5300, USA
| | - Ningyun Zhou
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019-5300, USA
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019-5300, USA
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
59
|
Application of Adaptive Evolution to Improve the Stability of Bacteriophages during Storage. Viruses 2020; 12:v12040423. [PMID: 32283683 PMCID: PMC7232334 DOI: 10.3390/v12040423] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Phage stability is important for the successful application of bacteriophages as alternative antibacterial agents. Considering that temperature is a critical factor in phage stability, this study aimed to explore the possibility of improving long-term phage stability through adaptive evolution to elevated temperature. Evolution of three wild-type ancestral phages (Myoviridae phage Wc4 and Podoviridae phages CX5 and P-PSG-11) was induced by subjecting the phages to heat treatment at 60 °C for five cycles. The adapted phages showed better stability than the wild-type ancestral phages when subjected to heat treatment at 60 °C for 1 h and after 60 days of storage at 37 °C. However, the adapted phages could not withstand thermal treatment at 70 °C for 1 h. The infectivity and the lytic properties of the phages were not changed by the evolution process. Whole-genome sequencing revealed that single substitutions in the tail tubular proteins were the only changes observed in the genomes of the adapted phages. This study demonstrates that adaptive evolution could be used as a general method for enhancing the thermal stability of phages without affecting their lytic activity. Sequencing results showed that bacteriophages may exist as a population with minor heterogeneous mutants, which might be important to understand the ecology of phages in different environments.
Collapse
|
60
|
Reuter M, Kruger DH. Approaches to optimize therapeutic bacteriophage and bacteriophage-derived products to combat bacterial infections. Virus Genes 2020; 56:136-149. [PMID: 32036540 PMCID: PMC7223754 DOI: 10.1007/s11262-020-01735-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
Abstract
The emerging occurrence of antibiotic-resistant bacterial pathogens leads to a recollection of bacteriophage as antimicrobial therapeutics. This article presents a short overview of the clinical phage application including their use in military medicine and discusses the genotypic and phenotypic properties of a potential "ideal" therapeutic phage. We describe current efforts to engineer phage for their improved usability in pathogen treatment. In addition, phage can be applied for pathogen detection, selective drug delivery, vaccine development, or food and surface decontamination. Instead of viable phage, (engineered) phage-derived enzymes, such as polysaccharide depolymerases or peptidoglycan-degrading enzymes, are considered as promising therapeutic candidates. Finally, we briefly summarize the use of phage for the detection and treatment of "Category A priority pathogens".
Collapse
Affiliation(s)
- Monika Reuter
- Institute of Virology, Helmut-Ruska-Haus, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Detlev H. Kruger
- Institute of Virology, Helmut-Ruska-Haus, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
61
|
Melo LDR, Oliveira H, Pires DP, Dabrowska K, Azeredo J. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol 2020; 46:78-99. [DOI: 10.1080/1040841x.2020.1729695] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Luís D. R. Melo
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Hugo Oliveira
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Diana P. Pires
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Krystyna Dabrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Joana Azeredo
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
62
|
Cepko LCS, Garling EE, Dinsdale MJ, Scott WP, Bandy L, Nice T, Faber-Hammond J, Mellies JL. Myoviridae phage PDX kills enteroaggregative Escherichia coli without human microbiome dysbiosis. J Med Microbiol 2020; 69:309-323. [PMID: 32011231 PMCID: PMC7431101 DOI: 10.1099/jmm.0.001162] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction. Bacteriophage therapy can be developed to target emerging diarrhoeal pathogens, but doing so in the absence of microbiome disruption, which occurs with antibiotic treatment, has not been established.Aim. Identify a therapeutic bacteriophage that kills diarrhoeagenic enteroaggregative Escherichia coli (EAEC) while leaving the human microbiome intact.Methodology. Phages from wastewater in Portland, OR, USA were screened for bacteriolytic activity by overlay assay. One isolated phage, PDX, was classified by electron microscopy and genome sequencing. A mouse model of infection determined whether the phage was therapeutic against EAEC. 16S metagenomic analysis of anaerobic cultures determined whether a normal human microbiome was altered by treatment.Results. Escherichia virus PDX, a member of the strictly lytic family Myoviridae, killed a case-associated EAEC isolate from a child in rural Tennessee in a dose-dependent manner, and killed EAEC isolates from Columbian children. A single dose of PDX (multiplicity of infection: 100) 1 day post-infection reduced EAEC recovered from mouse faeces. PDX also killed EAEC when cultured anaerobically in the presence of human faecal bacteria. While the addition of EAEC reduced the β-diversity of the human microbiota, that of the cultures with either faeces alone, faeces with EAEC and PDX, or with just PDX phage was not different statistically.Conclusion. PDX killed EAEC isolate EN1E-0007 in vivo and in vitro, while not altering the diversity of normal human microbiota in anaerobic culture, and thus could be part of an effective therapy for children in developing countries and those suffering from EAEC-mediated traveller's diarrhoea without causing dysbiosis.
Collapse
Affiliation(s)
- Leah C S Cepko
- 320 Longwood Avenue, Enders Building, Department of Infectious Disease, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eliotte E Garling
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Madeline J Dinsdale
- Biology Department, Reed College, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| | - William P Scott
- Biology Department, Reed College, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| | - Loralee Bandy
- Biology Department, Reed College, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| | - Tim Nice
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Joshua Faber-Hammond
- Biology Department, Reed College, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| | - Jay L Mellies
- Biology Department, Reed College, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| |
Collapse
|
63
|
|
64
|
Ma Y, Wang C, Li Y, Li J, Wan Q, Chen J, Tay FR, Niu L. Considerations and Caveats in Combating ESKAPE Pathogens against Nosocomial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901872. [PMID: 31921562 PMCID: PMC6947519 DOI: 10.1002/advs.201901872] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/04/2019] [Indexed: 05/19/2023]
Abstract
ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are among the most common opportunistic pathogens in nosocomial infections. ESKAPE pathogens distinguish themselves from normal ones by developing a high level of antibiotic resistance that involves multiple mechanisms. Contemporary therapeutic strategies which are potential options in combating ESKAPE bacteria need further investigation. Herein, a broad overview of the antimicrobial research on ESKAPE pathogens over the past five years is provided with prospective clinical applications.
Collapse
Affiliation(s)
- Yu‐Xuan Ma
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Chen‐Yu Wang
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Yuan‐Yuan Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Jing Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Qian‐Qian Wan
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Ji‐Hua Chen
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Franklin R. Tay
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| | - Li‐Na Niu
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| |
Collapse
|
65
|
Abstract
Fracture-related infection (FRI) remains a challenging complication that imposes a heavy burden on orthopaedic trauma patients. The surgical management eradicates the local infectious focus and if necessary facilitates bone healing. Treatment success is associated with debridement of all dead and poorly vascularized tissue. However, debridement is often associated with the formation of a dead space, which provides an ideal environment for bacteria and is a potential site for recurrent infection. Dead space management is therefore of critical importance. For this reason, the use of locally delivered antimicrobials has gained attention not only for local antimicrobial activity but also for dead space management. Local antimicrobial therapy has been widely studied in periprosthetic joint infection, without addressing the specific problems of FRI. Furthermore, the literature presents a wide array of methods and guidelines with respect to the use of local antimicrobials. The present review describes the scientific evidence related to dead space management with a focus on the currently available local antimicrobial strategies in the management of FRI. LEVEL OF EVIDENCE:: Therapeutic Level V. See Instructions for Authors for a complete description of levels of evidence.
Collapse
|
66
|
Caflisch KM, Suh GA, Patel R. Biological challenges of phage therapy and proposed solutions: a literature review. Expert Rev Anti Infect Ther 2019; 17:1011-1041. [PMID: 31735090 DOI: 10.1080/14787210.2019.1694905] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: In light of the emergence of antibiotic-resistant bacteria, phage (bacteriophage) therapy has been recognized as a potential alternative or addition to antibiotics in Western medicine for use in humans.Areas covered: This review assessed the scientific literature on phage therapy published between 1 January 2007 and 21 October 2019, with a focus on the successes and challenges of this prospective therapeutic.Expert opinion: Efficacy has been shown in animal models and experimental findings suggest promise for the safety of human phagotherapy. Significant challenges remain to be addressed prior to the standardization of phage therapy in the West, including the development of phage-resistant bacteria; the pharmacokinetic complexities of phage; and any potential human immune response incited by phagotherapy.
Collapse
Affiliation(s)
- Katherine M Caflisch
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gina A Suh
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
67
|
Abstract
Clinical trial results of phage treatment of bacterial infections show a low to moderate efficacy, and the variation in infection clearance between subjects within studies is often large. Phage therapy is complicated and introduces many additional components of variance as compared to antibiotic treatment. A large part of the variation is due to in vivo pharmacokinetics and pharmacodynamics being virtually unknown, but also to a lack of standardisation. This is a consequence of the great variation of phages, bacteria, and infections, which results in different experiments or trials being impossible to compare, and difficulties in estimating important parameter values in a quantitative and reproducible way. The limitations of phage therapy will have to be recognised and future research focussed on optimising infection clearance rates by e.g. selecting phages, bacteria, and target bacterial infections where the prospects of high efficacy can be anticipated, and by combining information from new mathematical modelling of in vivo pharmacokinetic and pharmacodynamic processes and quantitatively assessed experiments.
Collapse
Affiliation(s)
- Anders S. Nilsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
68
|
Azimi T, Mosadegh M, Nasiri MJ, Sabour S, Karimaei S, Nasser A. Phage therapy as a renewed therapeutic approach to mycobacterial infections: a comprehensive review. Infect Drug Resist 2019; 12:2943-2959. [PMID: 31571947 PMCID: PMC6756577 DOI: 10.2147/idr.s218638] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/31/2019] [Indexed: 12/15/2022] Open
Abstract
Mycobacterial infections are considered to a serious challenge of medicine, and the emergence of MDR and XDR tuberculosis is a serious public health problem. Tuberculosis can cause high morbidity and mortality around the world, particularly in developing countries. The emergence of drug-resistant Mycobacterium infection following limited therapeutic technologies coupled with the serious worldwide tuberculosis epidemic has adversely affected control programs, thus necessitating the study of the role bacteriophages in the treatment of mycobacterial infection. Bacteriophages are viruses that are isolated from several ecological specimens and do not exert adverse effects on patients. Phage therapy can be considered as a significant alternative to antibiotics for treating MDR and XDR mycobacterial infections. The useful ability of bacteriophages to kill Mycobacterium spp has been explored by numerous research studies that have attempted to investigate the phage therapy as a novel therapeutic/diagnosis approach to mycobacterial infections. However, there are restricted data about phage therapy for treating mycobacterial infections. This review presents comprehensive data about phage therapy in the treatment of mycobacterial infection, specifically tuberculosis disease.
Collapse
Affiliation(s)
- Taher Azimi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sabour
- Department of Microbiology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| | - Samira Karimaei
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nasser
- Clinical Microbiology Research Center, Ilam University of Medical Science, Ilam, Iran
| |
Collapse
|
69
|
Tabib-Salazar A, Mulvenna N, Severinov K, Matthews SJ, Wigneshweraraj S. Xenogeneic Regulation of the Bacterial Transcription Machinery. J Mol Biol 2019; 431:4078-4092. [DOI: 10.1016/j.jmb.2019.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
|
70
|
Caflisch KM, Patel R. Implications of Bacteriophage- and Bacteriophage Component-Based Therapies for the Clinical Microbiology Laboratory. J Clin Microbiol 2019; 57:e00229-19. [PMID: 31092596 PMCID: PMC6663902 DOI: 10.1128/jcm.00229-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of bacterial infections is increasingly challenged by resistance to currently available antibacterial agents. Not only are such agents less likely to be active today than they were in the past, but their very use has selected for and continues to select for further resistance. Additional strategies for the management of bacterial illnesses must be identified. In this review, bacteriophage-based therapies are presented as one promising approach. In anticipation of their potential expansion into clinical medicine, clinical microbiologists may wish to acquaint themselves with bacteriophages and their antibacterial components and, specifically, with methods for testing them. Here, we reviewed the literature spanning January 2007 to March 2019 on bacteriophage and phage-encoded protein therapies of relevance to clinical microbiology.
Collapse
Affiliation(s)
- Katherine M Caflisch
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
71
|
Jończyk-Matysiak E, Łodej N, Kula D, Owczarek B, Orwat F, Międzybrodzki R, Neuberg J, Bagińska N, Weber-Dąbrowska B, Górski A. Factors determining phage stability/activity: challenges in practical phage application. Expert Rev Anti Infect Ther 2019; 17:583-606. [PMID: 31322022 DOI: 10.1080/14787210.2019.1646126] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Phages consist of nucleic acids and proteins that may lose their activity under different physico-chemical conditions. The production process of phage formulations may decrease phage infectivity. Ingredients present in the preparation may influence phage particles, although preparation and storage conditions may also cause variations in phage titer. Significant factors are the manner of phage application, the patient's immune system status, the type of medication being taken, and diet. Areas covered: We discuss factors determining phage activity and stability, which is relevant for the preparation and application of phage formulations with the highest therapeutic efficacy. Our article should be helpful for more insightful implementation of clinical trials, which could pave the way for successful phage therapy. Expert opinion: The number of naturally occurring phages is practically unlimited and phages vary in their susceptibility to external factors. Modern methods offer engineering techniques which should lead to enhanced precision in phage delivery and anti-bacterial activity. Recent data suggesting that phages may also be used in treating nonbacterial infections as well as anti-inflammatory and immunomodulatory agents add further weight to such studies. It may be anticipated that different phage activities could have varying susceptibility to factors determining their actions.
Collapse
Affiliation(s)
- Ewa Jończyk-Matysiak
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Norbert Łodej
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Dominika Kula
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Barbara Owczarek
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Filip Orwat
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Ryszard Międzybrodzki
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland.,b Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw , Warsaw , Poland.,c Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Joanna Neuberg
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Natalia Bagińska
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Beata Weber-Dąbrowska
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland.,c Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Andrzej Górski
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland.,b Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw , Warsaw , Poland.,c Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| |
Collapse
|
72
|
Principi N, Silvestri E, Esposito S. Advantages and Limitations of Bacteriophages for the Treatment of Bacterial Infections. Front Pharmacol 2019; 10:513. [PMID: 31139086 PMCID: PMC6517696 DOI: 10.3389/fphar.2019.00513] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022] Open
Abstract
Bacteriophages (BPs) are viruses that can infect and kill bacteria without any negative effect on human or animal cells. For this reason, it is supposed that they can be used, alone or in combination with antibiotics, to treat bacterial infections. In this narrative review, the advantages and limitations of BPs for use in humans will be discussed. PubMed was used to search for all of the studies published from January 2008 to December 2018 using the key words: “BPs” or “phages” and “bacterial infection” or “antibiotic” or “infectious diseases.” More than 100 articles were found, but only those published in English or providing evidence-based data were included in the evaluation. Literature review showed that the rapid rise of multi-drug-resistant bacteria worldwide coupled with a decline in the development and production of novel antibacterial agents have led scientists to consider BPs for treatment of bacterial infection. Use of BPs to overcome the problem of increasing bacterial resistance to antibiotics is attractive, and some research data seem to indicate that it might be a rational measure. However, present knowledge seems insufficient to allow the use of BPs for this purpose. To date, the problem of how to prepare the formulations for clinical use and how to avoid or limit the risk of emergence of bacterial resistance through the transmission of genetic material are not completely solved problems. Further studies specifically devoted to solve these problems are needed before BPs can be used in humans.
Collapse
Affiliation(s)
- Nicola Principi
- Professor Emeritus of Pediatrics, Università degli Studi di Milano, Milan, Italy
| | - Ettore Silvestri
- Department of Surgical and Biomedical Sciences, Pediatric Clinic, Università degli Studi di Perugia, Perugia, Italy
| | - Susanna Esposito
- Department of Surgical and Biomedical Sciences, Pediatric Clinic, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
73
|
New Bacteriophages against Emerging Lineages ST23 and ST258 of Klebsiella pneumoniae and Efficacy Assessment in Galleria mellonella Larvae. Viruses 2019; 11:v11050411. [PMID: 31058805 PMCID: PMC6563190 DOI: 10.3390/v11050411] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022] Open
Abstract
Klebsiella pneumoniae is a bacterial pathogen of high public health importance. Its polysaccharide capsule is highly variable but only a few capsular types are associated with emerging pathogenic sublineages. The aim of this work is to isolate and characterize new lytic bacteriophages and assess their potential to control infections by the ST23 and ST258 K. pneumoniae sublineages using a Galleria mellonella larvae model. Three selected bacteriophages, targeting lineages ST258 (bacteriophages vB_KpnP_KL106-ULIP47 and vB_KpnP_KL106-ULIP54) and ST23 (bacteriophage vB_KpnP_K1-ULIP33), display specificity for capsular types KL106 and K1, respectively. These podoviruses belong to the Autographivirinae subfamily and their genomes are devoid of lysogeny or toxin-associated genes. In a G. mellonella larvae model, a mortality rate of 70% was observed upon infection by K. pneumoniae ST258 and ST23. This number was reduced to 20% upon treatment with bacteriophages at a multiplicity of infection of 10. This work increases the number of characterized bacteriophages infecting K. pneumoniae and provides information regarding genome sequence and efficacy during preclinical phage therapy against two prominent sublineages of this bacterial species.
Collapse
|
74
|
Otero J, García-Rodríguez A, Cano-Sarabia M, Maspoch D, Marcos R, Cortés P, Llagostera M. Biodistribution of Liposome-Encapsulated Bacteriophages and Their Transcytosis During Oral Phage Therapy. Front Microbiol 2019; 10:689. [PMID: 31019499 PMCID: PMC6458305 DOI: 10.3389/fmicb.2019.00689] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
This study sheds light on the biodistribution of orally administered, liposome-encapsulated bacteriophages, and their transcytosis through intestinal cell layers. Fluorochrome-labeled bacteriophages were used together with a non-invasive imaging methodology in the in vivo visualization of bacteriophages in the stomach and intestinal tract of mice. In those studies, phage encapsulation resulted in a significant increase of the labeled phages in the mouse stomach, even 6 h after their oral administration, and without a decrease in their concentration. By contrast, the visualization of encapsulated and non-encapsulated phages in the intestine were similar. Our in vivo observations were corroborated by culture methods and ex vivo experiments, which also showed that the percentage of encapsulated phages in the stomach remained constant (50%) compared to the amount of initially administered product. However, the use of conventional microbiological methods, which employ bile salts to break down liposomes, prevented the detection of encapsulated phages in the intestine. The ex vivo data showed a higher concentration of non-encapsulated than encapsulated phages in liver, kidney, and even muscle up to 6 h post-administration. Encapsulated bacteriophages were able to reach the liver, spleen, and muscle, with values of 38% ± 6.3%, 68% ± 8.6%, and 47% ± 7.4%, respectively, which persisted over the course of the experiment. Confocal laser scanning microscopy of an in vitro co-culture of human Caco-2/HT29/Raji-B cells revealed that Vybrant-Dil-stained liposomes containing labeled bacteriophages were preferably embedded in cell membranes. No transcytosis of encapsulated phages was detected in this in vitro model, whereas SYBR-gold-labeled non-encapsulated bacteriophages were able to cross the membrane. Our work demonstrates the prolonged persistence of liposome-encapsulated phages in the stomach and their adherence to the intestinal membrane. These observations could explain the greater long-term efficacy of phage therapy using liposome-encapsulated phages.
Collapse
Affiliation(s)
- Jennifer Otero
- Departament de Genèticai de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba García-Rodríguez
- Departament de Genèticai de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ricard Marcos
- Departament de Genèticai de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, Madrid, Spain
| | - Pilar Cortés
- Departament de Genèticai de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Llagostera
- Departament de Genèticai de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
75
|
Morris J, Kelly N, Elliott L, Grant A, Wilkinson M, Hazratwala K, McEwen P. Evaluation of Bacteriophage Anti-Biofilm Activity for Potential Control of Orthopedic Implant-Related Infections Caused byStaphylococcus aureus. Surg Infect (Larchmt) 2019; 20:16-24. [DOI: 10.1089/sur.2018.135] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jodie Morris
- Orthopaedic Research Institute of Queensland, Townsville, Australia
- College of Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Natasha Kelly
- College of Public Health Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | | | - Andrea Grant
- Orthopaedic Research Institute of Queensland, Townsville, Australia
| | | | | | - Peter McEwen
- Orthopaedic Research Institute of Queensland, Townsville, Australia
| |
Collapse
|
76
|
Patey O, McCallin S, Mazure H, Liddle M, Smithyman A, Dublanchet A. Clinical Indications and Compassionate Use of Phage Therapy: Personal Experience and Literature Review with a Focus on Osteoarticular Infections. Viruses 2018; 11:E18. [PMID: 30597868 PMCID: PMC6356659 DOI: 10.3390/v11010018] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 01/30/2023] Open
Abstract
The history of phage therapy started with its first clinical application in 1919 and continues its development to this day. Phages continue to lack any market approval in Western medicine as a recognized drug, but are increasingly used as an experimental therapy for the compassionate treatment of patients experiencing antibiotic failure. The few formal experimental phage clinical trials that have been completed to date have produced inconclusive results on the efficacy of phage therapy, which contradicts the many successful treatment outcomes observed in historical accounts and recent individual case reports. It would therefore be wise to identify why such a discordance exists between trials and compassionate use in order to better develop future phage treatment and clinical applications. The multitude of observations reported over the years in the literature constitutes an invaluable experience, and we add to this by presenting a number of cases of patients treated compassionately with phages throughout the past decade with a focus on osteoarticular infections. Additionally, an abundance of scientific literature into phage-related areas is transforming our knowledge base, creating a greater understanding that should be applied for future clinical applications. Due to the increasing number of treatment failures anticipatedfrom the perspective of a possible post-antibiotic era, we believe that the introduction of bacteriophages into the therapeutic arsenal seems a scientifically sound and eminently practicable consideration today as a substitute or adjuvant to antibiotic therapy.
Collapse
Affiliation(s)
- Olivier Patey
- Service of Infectious and Tropical Diseases, CHI Lucie et Raymond Aubrac, 94190 Villeneuve Saint Georges, France.
| | - Shawna McCallin
- Department of Musculoskeletal Medicine DAL, Centre Hospitalier Universitaire Vaudois CHUV, Service of Plastic, Reconstructive & Hand Surgery, Regenerative Therapy Unit (UTR), CHUV-EPCR/Croisettes 22, 1066 Epalinges, Switzerland.
| | - Hubert Mazure
- HGM Consultants, 63 Rebecca Parade, Winston Hills, NSW 2153, Australia.
| | - Max Liddle
- School of Life Sciences, University of Technology, Ultimo, NSW 2007, Australia.
| | - Anthony Smithyman
- Cellabs Pty Ltd, and Founder Special Phage Services Pty Ltd, both of 7/27 Dale St, Brookvale, NSW 2100, Australia.
| | - Alain Dublanchet
- Service of Infectious and Tropical Diseases, CHI Lucie et Raymond Aubrac, 94190 Villeneuve Saint Georges, France.
| |
Collapse
|
77
|
Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2018; 37:177-192. [PMID: 30500353 DOI: 10.1016/j.biotechadv.2018.11.013] [Citation(s) in RCA: 1160] [Impact Index Per Article: 165.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is a leading cause of morbidity and mortality in cystic fibrosis patients and immunocompromised individuals. Eradication of P. aeruginosa has become increasingly difficult due to its remarkable capacity to resist antibiotics. Strains of Pseudomonas aeruginosa are known to utilize their high levels of intrinsic and acquired resistance mechanisms to counter most antibiotics. In addition, adaptive antibiotic resistance of P. aeruginosa is a recently characterized mechanism, which includes biofilm-mediated resistance and formation of multidrug-tolerant persister cells, and is responsible for recalcitrance and relapse of infections. The discovery and development of alternative therapeutic strategies that present novel avenues against P. aeruginosa infections are increasingly demanded and gaining more and more attention. Although mostly at the preclinical stages, many recent studies have reported several innovative therapeutic technologies that have demonstrated pronounced effectiveness in fighting against drug-resistant P. aeruginosa strains. This review highlights the mechanisms of antibiotic resistance in P. aeruginosa and discusses the current state of some novel therapeutic approaches for treatment of P. aeruginosa infections that can be further explored in clinical practice.
Collapse
Affiliation(s)
- Zheng Pang
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Tong-Jun Lin
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Pediatrics, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Zhenyu Cheng
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
78
|
Antibiotic Therapy Using Phage Depolymerases: Robustness Across a Range of Conditions. Viruses 2018; 10:v10110622. [PMID: 30424521 PMCID: PMC6266388 DOI: 10.3390/v10110622] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022] Open
Abstract
Phage-derived depolymerases directed against bacterial capsules are showing therapeutic promise in various animal models of infection. However, individual animal model studies are often constrained by use of highly specific protocols, such that results may not generalize to even slight modifications. Here we explore the robustness of depolymerase therapies shown to succeed in a previous study of mice. Treatment success rates were reduced by treatment delay, more so for some enzymes than others: K1- and K5 capsule-degrading enzymes retained partial efficacy on delay, while K30 depolymerase did not. Phage were superior to enzymes under delayed treatment only for K1. Route of administration (intramuscular versus intraperitoneal) mattered for success of K1E, possibly for K1F, not for K1H depolymerase. Significantly, K1 capsule-degrading enzymes proved highly successful when using immune-suppressed, leukopenic mice, even with delayed treatment. Evolution of bacteria resistant to K1-degrading enzymes did not thwart therapeutic success in leukopenic mice, likely because resistant bacteria were avirulent. In combination with previous studies these results continue to support the efficacy of depolymerases as antibacterial agents in vivo, but system-specific details are becoming evident.
Collapse
|
79
|
Kakasis A, Panitsa G. Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. Int J Antimicrob Agents 2018; 53:16-21. [PMID: 30236954 DOI: 10.1016/j.ijantimicag.2018.09.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/28/2018] [Accepted: 09/09/2018] [Indexed: 12/16/2022]
Abstract
Bacteriophages, or phages, are viruses that infect bacteria. They were discovered around a century ago and have been used ever since for therapeutic purposes, particularly in former Soviet Union countries. Their use in Western countries was abandoned after the discovery and broad use of penicillin. The rising problem of antimicrobial resistance has revived interest in bacteriophage therapy. The aim of this article is to provide a comprehensive review of all aspects of natural phage therapy.
Collapse
Affiliation(s)
- Athanasios Kakasis
- 3rd Internal Medicine Department, Athens General Hospital "G Gennimatas", Mesogeion Avenue 154, 11527, Athens, Greece.
| | - Gerasimia Panitsa
- Ophthalmology Department, Athens General Hospital "G Gennimatas", Mesogeion Avenue 154, 11527, Athens, Greece
| |
Collapse
|
80
|
Jakočiūnė D, Moodley A. A Rapid Bacteriophage DNA Extraction Method. Methods Protoc 2018; 1:E27. [PMID: 31164569 PMCID: PMC6481073 DOI: 10.3390/mps1030027] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 01/13/2023] Open
Abstract
Bacteriophages (phages) are intensely investigated as non-antibiotic alternatives to circumvent antibiotic resistance development as well as last resort therapeutic options against antibiotic resistant bacteria. As part of gaining a better understanding of phages and to determine if phages harbor putative virulence factors, whole genome sequencing is used, for which good quality phage DNA is needed. Traditional phage DNA extraction methods are tedious and time consuming, requiring specialized equipment e.g., an ultra-centrifuge. Here, we describe a quick and simple method (under four hours) to extract DNA from double stranded DNA (dsDNA) phages at titers above 1.0 × 1010 plaque-forming units (PFU)/mL. This DNA was suitable for library preparation using the Nextera XT kit and sequencing on the Illumina MiSeq platform.
Collapse
Affiliation(s)
- Džiuginta Jakočiūnė
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark.
| | - Arshnee Moodley
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
81
|
McCutcheon JG, Peters DL, Dennis JJ. Identification and Characterization of Type IV Pili as the Cellular Receptor of Broad Host Range Stenotrophomonas maltophilia Bacteriophages DLP1 and DLP2. Viruses 2018; 10:E338. [PMID: 29925793 PMCID: PMC6024842 DOI: 10.3390/v10060338] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/10/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteriophages DLP1 and DLP2 are capable of infecting both Stenotrophomonas maltophilia and Pseudomonas aeruginosa strains, two highly antibiotic resistant bacterial pathogens, which is unusual for phages that typically exhibit extremely limited host range. To explain their unusual cross-order infectivity and differences in host range, we have identified the type IV pilus as the primary receptor for attachment. Screening of a P. aeruginosa PA01 mutant library, a host that is susceptible to DLP1 but not DLP2, identified DLP1-resistant mutants with disruptions in pilus structural and regulatory components. Subsequent complementation of the disrupted pilin subunit genes in PA01 restored DLP1 infection. Clean deletion of the major pilin subunit, pilA, in S. maltophilia strains D1585 and 280 prevented phage binding and lysis by both DLP1 and DLP2, and complementation restored infection by both. Transmission electron microscopy shows a clear interaction between DLP1 and pili of both D1585 and PA01. These results support the identity of the type IV pilus as the receptor for DLP1 and DLP2 infection across their broad host ranges. This research further characterizes DLP1 and DLP2 as potential “anti-virulence” phage therapy candidates for the treatment of multidrug resistant bacteria from multiple genera.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacteriophages/metabolism
- Bacteriophages/ultrastructure
- Drug Resistance, Multiple, Bacterial
- Fimbriae Proteins/deficiency
- Fimbriae Proteins/genetics
- Fimbriae, Bacterial/chemistry
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/metabolism
- Fimbriae, Bacterial/ultrastructure
- Genetic Complementation Test
- Host Specificity
- Humans
- Microscopy, Electron, Transmission
- Mutation
- Phage Therapy
- Pseudomonas Phages/metabolism
- Pseudomonas aeruginosa/genetics
- Pseudomonas aeruginosa/virology
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Stenotrophomonas maltophilia/chemistry
- Stenotrophomonas maltophilia/genetics
- Stenotrophomonas maltophilia/virology
- Virulence
- Virus Attachment
Collapse
Affiliation(s)
- Jaclyn G McCutcheon
- CW405 Biological Sciences Building, 11455 Saskatchewan Dr. NW, Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Danielle L Peters
- CW405 Biological Sciences Building, 11455 Saskatchewan Dr. NW, Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Jonathan J Dennis
- CW405 Biological Sciences Building, 11455 Saskatchewan Dr. NW, Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
82
|
Bernasconi OJ, Donà V, Tinguely R, Endimiani A. In Vitro Activity of 3 Commercial Bacteriophage Cocktails Against Salmonella and Shigella spp. Isolates of Human Origin. Pathog Immun 2018; 3:72-81. [PMID: 30993249 PMCID: PMC6423893 DOI: 10.20411/pai.v3i1.234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 01/23/2023] Open
Abstract
Background: Salmonella and Shigella spp. are 2 of the most frequent and deadly enteric bacterial pathogens recorded worldwide. In developing countries Salmonella infections are responsible for many deaths annually and these mortality rates are prone to increase due to the emergence of resistance to antibiotics. In this overall scenario new alternative therapeutic approaches are needed. Methods: For the first time, we investigated the activity of 3 commercial bacteriophage cocktails (INTESTI, Septaphage, PYO) against a collection of contemporary Salmonella spp. (n = 30) and Shigella spp. (n = 20) strains isolated in Switzerland. Phage susceptibility was determined by implementing the spot test. Results: The overall susceptibility of Salmonella spp. to INTESTI and Septaphage was 87% and 77%, respectively. With regard to Shigella spp., the overall susceptibility to INTESTI and Septaphage was 95% and 55%, respectively. PYO was observed to be active against only 10% of Salmonella spp. but against 95% of Shigella spp. Conclusions: Our results seem promising, especially for the INTESTI biopreparation against Salmonella enterica infections. Nevertheless, such speculation should be supported by further in vivo studies to confirm efficacy and safety of the cocktails. We also emphasize the importance of large in vitro screening analyses aimed to assess the activity of such biopreparations against contemporary multidrug-resistant strains that are emerging worldwide.
Collapse
Affiliation(s)
- Odette J Bernasconi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Valentina Donà
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Regula Tinguely
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
83
|
|
84
|
Optimizing Propagation of Staphylococcus aureus Infecting Bacteriophage vB_SauM-phiIPLA-RODI on Staphylococcus xylosus Using Response Surface Methodology. Viruses 2018; 10:v10040153. [PMID: 29584701 PMCID: PMC5923447 DOI: 10.3390/v10040153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 01/13/2023] Open
Abstract
The use of bacteriophages for killing pathogenic bacteria is a feasible alternative to antibiotics and disinfectants. To obtain the large quantities of phages required for this application, large-scale production of bacteriophages must be optimized. This study aims to define conditions that maximize the phage yield of the virulent and polyvalent staphylococcal bacteriophage vB_SauM-phiIPLA-RODI in broth culture, using the food-grade species Staphylococcus xylosus as the host strain to reduce the risk of growing massive quantities of pathogenic bacteria and therefore, to ensure the safety of the final phage stock. The effect of four variables, namely initial bacterial concentration (5.66–8.40 log10 colony-forming unit (CFU)/mL), initial phage concentration (5–8 log10 plaque-forming unit (PFU)/mL), temperature (21–40 °C) and agitation (20–250 rpm), on phage yield (response) was studied by using response surface methodology (RSM). Successive experimental designs showed that agitation did not significantly impact phage yield, while temperature did have a significant effect, with 38 °C being the optimum for phage propagation. The results allowed the design of a model to describe phage yield as a function of the initial bacterial and phage concentrations at fixed agitation (135 rpm), and optimum temperature (38 °C). The maximum experimental phage yield obtained was 9.3 log10 PFU/mL, while that predicted by the model under the optimized conditions (7.07 log10 CFU/mL initial bacterial population and 6.00 log10 PFU/mL initial phage titer) was 9.25 ± 0.30 log10 PFU/mL, with the desirability of 0.96. This yield is comparable to that obtained when the phage was propagated on the original host, Staphylococcus aureus. Bacteriophage phiIPLA-RODI showed the same host range and very similar biofilm removal ability regardless of the staphylococcal species used for its propagation. The results presented in this study show the suitability of using a food-grade strain of S. xylosus for the propagation of S. aureus infecting phages and the application of RSM to define the optimal propagation conditions.
Collapse
|
85
|
Roach DR, Leung CY, Henry M, Morello E, Singh D, Di Santo JP, Weitz JS, Debarbieux L. Synergy between the Host Immune System and Bacteriophage Is Essential for Successful Phage Therapy against an Acute Respiratory Pathogen. Cell Host Microbe 2018; 22:38-47.e4. [PMID: 28704651 DOI: 10.1016/j.chom.2017.06.018] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/05/2017] [Accepted: 06/23/2017] [Indexed: 01/11/2023]
Abstract
The rise of multi-drug-resistant (MDR) bacteria has spurred renewed interest in the use of bacteriophages in therapy. However, mechanisms contributing to phage-mediated bacterial clearance in an animal host remain unclear. We investigated the effects of host immunity on the efficacy of phage therapy for acute pneumonia caused by MDR Pseudomonas aeruginosa in a mouse model. Comparing efficacies of phage-curative and prophylactic treatments in healthy immunocompetent, MyD88-deficient, lymphocyte-deficient, and neutrophil-depleted murine hosts revealed that neutrophil-phage synergy is essential for the resolution of pneumonia. Population modeling of in vivo results further showed that neutrophils are required to control both phage-sensitive and emergent phage-resistant variants to clear infection. This "immunophage synergy" contrasts with the paradigm that phage therapy success is largely due to bacterial permissiveness to phage killing. Lastly, therapeutic phages were not cleared by pulmonary immune effector cells and were immunologically well tolerated by lung tissues.
Collapse
Affiliation(s)
- Dwayne R Roach
- Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Chung Yin Leung
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Marine Henry
- Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Eric Morello
- Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Devika Singh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James P Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris 75015, France; Inserm U1223, Paris 75015, France
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | |
Collapse
|
86
|
Semi-Solid and Solid Dosage Forms for the Delivery of Phage Therapy to Epithelia. Pharmaceuticals (Basel) 2018; 11:ph11010026. [PMID: 29495355 PMCID: PMC5874722 DOI: 10.3390/ph11010026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
The delivery of phages to epithelial surfaces for therapeutic outcomes is a realistic proposal, and indeed one which is being currently tested in clinical trials. This paper reviews some of the known research on formulation of phages into semi-solid dosage forms such as creams, ointments and pastes, as well as solid dosage forms such as troches (or lozenges and pastilles) and suppositories/pessaries, for delivery to the epithelia. The efficacy and stability of these phage formulations is discussed, with a focus on selection of optimal semi-solid bases for phage delivery. Issues such as the need for standardisation of techniques for formulation as well as for assessment of efficacy are highlighted. These are important when trying to compare results from a range of experiments and across different delivery bases.
Collapse
|
87
|
Fernandes T, Bhavsar C, Sawarkar S, D’souza A. Current and novel approaches for control of dental biofilm. Int J Pharm 2018; 536:199-210. [DOI: 10.1016/j.ijpharm.2017.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
|
88
|
Rodríguez-Rubio L, Jofre J, Muniesa M. Is Genetic Mobilization Considered When Using Bacteriophages in Antimicrobial Therapy? Antibiotics (Basel) 2017; 6:antibiotics6040032. [PMID: 29206153 PMCID: PMC5745475 DOI: 10.3390/antibiotics6040032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/15/2017] [Accepted: 12/04/2017] [Indexed: 01/19/2023] Open
Abstract
The emergence of multi-drug resistant bacteria has undermined our capacity to control bacterial infectious diseases. Measures needed to tackle this problem include controlling the spread of antibiotic resistance, designing new antibiotics, and encouraging the use of alternative therapies. Phage therapy seems to be a feasible alternative to antibiotics, although there are still some concerns and legal issues to overcome before it can be implemented on a large scale. Here we highlight some of those concerns, especially those related to the ability of bacteriophages to transport bacterial DNA and, in particular, antibiotic resistance genes.
Collapse
Affiliation(s)
- Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Joan Jofre
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
89
|
Kłopot A, Zakrzewska A, Lecion D, Majewska JM, Harhala MA, Lahutta K, Kaźmierczak Z, Łaczmański Ł, Kłak M, Dąbrowska K. Real-Time qPCR as a Method for Detection of Antibody-Neutralized Phage Particles. Front Microbiol 2017; 8:2170. [PMID: 29163448 PMCID: PMC5672142 DOI: 10.3389/fmicb.2017.02170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023] Open
Abstract
The most common method for phage quantitation is the plaque assay, which relies on phage ability to infect bacteria. However, non-infective phage particles may preserve other biological properties; specifically, they may enter interactions with the immune system of animals and humans. Here, we demonstrate real-time quantitative polymerase chain reaction (qPCR) detection of bacteriophages as an alternative to the plaque assay. The closely related staphylococcal bacteriophages A3R and 676Z and the coliphage T4 were used as model phages. They were tested in vivo in mice, ex vivo in human sera, and on plastic surfaces designed for ELISAs. T4 phage was injected intravenously into pre-immunized mice. The phage was completely neutralized by specific antibodies within 5 h (0 pfu/ml of serum, as determined by the plaque assay), but it was still detected by qPCR in the amount of approximately 107 pfu/ml of serum. This demonstrates a substantial timelapse between "microbiological disappearance" and true clearance of phage particles from the circulation. In human sera ex vivo, qPCR was also able to detect neutralized phage particles that were not detected by the standard plaque assay. The investigated bacteriophages differed considerably in their ability to immobilize on plastic surfaces: this difference was greater than one order of magnitude, as shown by qPCR of phage recovered from plastic plates. The ELISA did not detect differences in phage binding to plates. Major limitations of qPCR are possible inhibitors of the PCR reaction or free phage DNA, which need to be considered in procedures of phage sample preparation for qPCR testing. We propose that phage pharmacokinetic and pharmacodynamic studies should not rely merely on detection of antibacterial activity of a phage. Real-time qPCR can be an alternative for phage detection, especially in immunological studies of bacteriophages. It can also be useful for studies of phage-based drug nanocarriers or biosensors.
Collapse
Affiliation(s)
- Anna Kłopot
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Adriana Zakrzewska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Dorota Lecion
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Joanna M Majewska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marek A Harhala
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Karolina Lahutta
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Zuzanna Kaźmierczak
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Łukasz Łaczmański
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Research and Development Center, Regional Specialist Hospital, Wrocław, Poland
| | - Marlena Kłak
- Research and Development Center, Regional Specialist Hospital, Wrocław, Poland
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Research and Development Center, Regional Specialist Hospital, Wrocław, Poland
| |
Collapse
|
90
|
Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT, Clokie MR, Garton NJ, Stapley AG, Kirpichnikova A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci 2017; 249:100-133. [PMID: 28688779 DOI: 10.1016/j.cis.2017.05.014] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 02/08/2023]
Abstract
Against a backdrop of global antibiotic resistance and increasing awareness of the importance of the human microbiota, there has been resurgent interest in the potential use of bacteriophages for therapeutic purposes, known as phage therapy. A number of phage therapy phase I and II clinical trials have concluded, and shown phages don't present significant adverse safety concerns. These clinical trials used simple phage suspensions without any formulation and phage stability was of secondary concern. Phages have a limited stability in solution, and undergo a significant drop in phage titre during processing and storage which is unacceptable if phages are to become regulated pharmaceuticals, where stable dosage and well defined pharmacokinetics and pharmacodynamics are de rigueur. Animal studies have shown that the efficacy of phage therapy outcomes depend on the phage concentration (i.e. the dose) delivered at the site of infection, and their ability to target and kill bacteria, arresting bacterial growth and clearing the infection. In addition, in vitro and animal studies have shown the importance of using phage cocktails rather than single phage preparations to achieve better therapy outcomes. The in vivo reduction of phage concentration due to interactions with host antibodies or other clearance mechanisms may necessitate repeated dosing of phages, or sustained release approaches. Modelling of phage-bacterium population dynamics reinforces these points. Surprisingly little attention has been devoted to the effect of formulation on phage therapy outcomes, given the need for phage cocktails, where each phage within a cocktail may require significantly different formulation to retain a high enough infective dose. This review firstly looks at the clinical needs and challenges (informed through a review of key animal studies evaluating phage therapy) associated with treatment of acute and chronic infections and the drivers for phage encapsulation. An important driver for formulation and encapsulation is shelf life and storage of phage to ensure reproducible dosages. Other drivers include formulation of phage for encapsulation in micro- and nanoparticles for effective delivery, encapsulation in stimuli responsive systems for triggered controlled or sustained release at the targeted site of infection. Encapsulation of phage (e.g. in liposomes) may also be used to increase the circulation time of phage for treating systemic infections, for prophylactic treatment or to treat intracellular infections. We then proceed to document approaches used in the published literature on the formulation and stabilisation of phage for storage and encapsulation of bacteriophage in micro- and nanostructured materials using freeze drying (lyophilization), spray drying, in emulsions e.g. ointments, polymeric microparticles, nanoparticles and liposomes. As phage therapy moves forward towards Phase III clinical trials, the review concludes by looking at promising new approaches for micro- and nanoencapsulation of phages and how these may address gaps in the field.
Collapse
|
91
|
Thaiss CA, Elinav E. The remedy within: will the microbiome fulfill its therapeutic promise? J Mol Med (Berl) 2017; 95:1021-1027. [PMID: 28656322 DOI: 10.1007/s00109-017-1563-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/07/2017] [Accepted: 06/14/2017] [Indexed: 12/24/2022]
Abstract
The last decade of research has witnessed a tremendous upsurge in our understanding of the intestinal microbiome and its role in a large range of human diseases, which has incited hopes for a rapid clinical utilization of the new insights for the development of microbiome-based therapies. Nonetheless, only a single microbiome-targeted therapy has so far found its way into clinical routine: fecal microbiota transplantation for patients suffering from recurrent Clostridium difficile infections. Herein, we discuss the current hopes, advances, challenges, and obstacles for translating basic microbiome research into therapeutic applications for a larger number of diseases and provide an outline of how such clinical applications might emerge.
Collapse
Affiliation(s)
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
92
|
Brüssow H. Infection therapy: the problem of drug resistance - and possible solutions. Microb Biotechnol 2017; 10:1041-1046. [PMID: 28737021 PMCID: PMC5609240 DOI: 10.1111/1751-7915.12777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 11/30/2022] Open
Abstract
The rising antibiotic resistance in major bacterial pathogens together with the breakdown of the antibiotic discovery platform creates a critical situation for infection therapy. Recent developments reviving new antibiotic discovery from defining chemical rules for membrane-passing compounds to isolation chips for soil bacteria and exploring the human microbiome for antibiotic-producing bacteria are discussed. The potential of bacteriocins, tailocins, phage lysins, phages, probiotics and commensal blends as alternatives to antibiotics is evaluated.
Collapse
Affiliation(s)
- Harald Brüssow
- Department of Gut EcologyHost‐Microbe Interaction GroupNestlé Research CenterLausanneSwitzerland
| |
Collapse
|
93
|
Abedon ST. Bacteriophage Clinical Use as Antibacterial "Drugs": Utility and Precedent. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0003-2016. [PMID: 28840811 PMCID: PMC11687515 DOI: 10.1128/microbiolspec.bad-0003-2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 12/25/2022] Open
Abstract
For phage therapy-the treatment of bacterial infections using bacterial viruses-a key issue is the conflict between apparent ease of clinical application, on the one hand, and on the other hand, numerous difficulties that can be associated with undertaking preclinical development. These conflicts between achieving efficacy in the real world versus rigorously understanding that efficacy should not be surprising because equivalent conflicts have been observed in applied biology for millennia: exploiting the inherent, holistic tendencies of useful systems, e.g., of dairy cows, inevitably is easier than modeling those systems or maintaining effectiveness while reducing such systems to isolated parts. Trial and error alone, in other words, can be a powerful means toward technological development. Undertaking trial and error-based programs, especially in the clinic, nonetheless is highly dependent on those technologies possessing both inherent safety and intrinsic tendencies toward effectiveness, but in this modern era we tend to forget that ideally there would exist antibacterials which could be thus developed, that is, with tendencies toward both safety and effectiveness, and which are even relatively inexpensive. Consequently, we tend to demand rigor as well as expense of development even to the point of potentially squandering such utility, were it to exist. In this review I lay out evidence that in phage therapy such potential, in fact, does exist. Advancement of phage therapy unquestionably requires effective regulation as well as rigorous demonstration of efficacy, but after nearly 100 years of clinical practice, perhaps not as much emphasis on strictly laboratory-based proof of principle.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906
| |
Collapse
|
94
|
Phage therapy: an alternative or adjunct to antibiotics? Emerg Top Life Sci 2017; 1:105-116. [DOI: 10.1042/etls20170005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 01/21/2023]
Abstract
Phage therapy is currently discussed as an alternative or adjunct to antibiotics whose activity is increasingly compromised by the emergence of antibiotic-resistant bacterial pathogens. The idea to use lytic bacterial viruses as antimicrobial agents is nearly a century old and is common practice in Eastern Europe. However, safety concerns and lack of controlled clinical trials proving the efficacy of phage therapy have hampered its wider medical use in the West. The present review analyzes safety aspects and compares successful with unsuccessful phage therapy clinical trials to identify potential factors determining success and failure of this approach.
Collapse
|
95
|
Green SI, Kaelber JT, Ma L, Trautner BW, Ramig RF, Maresso AW. Bacteriophages from ExPEC Reservoirs Kill Pandemic Multidrug-Resistant Strains of Clonal Group ST131 in Animal Models of Bacteremia. Sci Rep 2017; 7:46151. [PMID: 28401893 PMCID: PMC5388864 DOI: 10.1038/srep46151] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/10/2017] [Indexed: 12/24/2022] Open
Abstract
Multi-drug resistant (MDR) enteric bacteria are of increasing global concern. A clonal group, Escherichia coli sequence type (ST) 131, harbors both MDR and a deadly complement of virulence factors. Patients with an immunocompromised system are at high risk of infections with these E. coli and there is strong epidemiologic evidence that the human intestinal tract, as well as household pets, may be a reservoir. Here, we examine if phages are an effective treatment strategy against this clonal group in murine models of bacteremia that recapitulate clinical infections. Bacteriophages isolated from known E. coli reservoirs lyse a diverse array of MDR ST131 clinical isolates. Phage HP3 reduced E. coli levels and improved health scores for mice infected with two distinct ST131 strains. Efficacy was correlated to in vitro lysis ability by the infecting phage and the level of virulence of the E. coli strain. Importantly, it is also demonstrated that E. coli bacteremia initiated from translocation across the intestinal tract in an immunocompromised host is substantially reduced after phage treatment. This study demonstrates that phage, isolated from the environment and with little experimental manipulation, can be effective in combating even the most serious of infections by E. coli “superbugs”.
Collapse
Affiliation(s)
- Sabrina I Green
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T Kaelber
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Ma
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Barbara W Trautner
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA.,Michael E. Debakey Veterans Affairs Medical Center, Houston, TX, 77030, USA
| | - Robert F Ramig
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anthony W Maresso
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
96
|
Bernasconi OJ, Donà V, Tinguely R, Endimiani A. In vitro activity of three commercial bacteriophage cocktails against multidrug-resistant Escherichia coli and Proteus spp. strains of human and non-human origin. J Glob Antimicrob Resist 2017; 8:179-185. [PMID: 28232228 DOI: 10.1016/j.jgar.2016.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/18/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Bacteriophages may represent a therapeutic alternative to treat infections caused by multidrug-resistant (MDR) pathogens. However, studies analysing their activity against MDR Enterobacteriaceae are limited. METHODS The in vitro lytic activity of three commercial bacteriophage cocktails (PYO, INTESTI and Septaphage) was evaluated against 70 Escherichia coli and 31 Proteus spp. of human and non-human origin. Isolates were characterised by phenotypic and genotypic methods and included 82 MDR strains [44 extended-spectrum-β-lactamase (ESBL)-producers (18 CTX-M-15-like, including ST131/ST648 E. coli); 27 plasmid-mediated AmpC β-lactamase (pAmpC)-producers (23 CMY-2-like, including ST131 E. coli); 3 ESBL+pAmpC-producers; and 8 carbapenemase-producers]. Phage susceptibility was determined by the spot test. RESULTS E. coli susceptibility to PYO, INTESTI and Septaphage was 61%, 67% and 9%, whereas that of Proteus spp. was 29%, 39% and 19%, respectively. For the subgroup of ESBL-producing E. coli/Proteus spp., the following susceptibility rates were recorded: PYO, 57%; INTESTI, 59%; and Septaphage, 11%. With regard to pAmpC-producers, 59%, 70% and 11% were susceptible to PYO, INTESTI and Septaphage, respectively. Five of eight carbapenemase-producers and three of four colistin-resistant E. coli were susceptible to PYO and INTESTI. CONCLUSIONS This is the first study analysing the activity of the above three cocktails against well-characterised MDR E. coli and Proteus spp. The overall narrow spectrum of activity observed could be related to the absence of specific bacteriophages targeting these contemporary MDR strains that are spreading in different settings. Therefore, bacteriophages targeting emerging MDR pathogens need to be isolated and integrated in such biopreparations.
Collapse
Affiliation(s)
- Odette J Bernasconi
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, CH-3001 Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Valentina Donà
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, CH-3001 Bern, Switzerland
| | - Regula Tinguely
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, CH-3001 Bern, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, CH-3001 Bern, Switzerland.
| |
Collapse
|
97
|
Jończyk-Matysiak E, Weber-Dąbrowska B, Żaczek M, Międzybrodzki R, Letkiewicz S, Łusiak-Szelchowska M, Górski A. Prospects of Phage Application in the Treatment of Acne Caused by Propionibacterium acnes. Front Microbiol 2017; 8:164. [PMID: 28228751 PMCID: PMC5296327 DOI: 10.3389/fmicb.2017.00164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
Propionibacterium acnes is associated with purulent skin infections, and it poses a global problem for both patients and doctors. Acne vulgaris (acne) remains a problem due to its chronic character and difficulty of treatment, as well as its large impact on patients' quality of life. Due to the chronic course of the disease, treatment is long lasting, and often ineffective. Currently there are data regarding isolation of P. acnes phages, and there have been numerous studies on phage killing of P. acnes, but no data are available on phage application specifically in acne treatment. In this review, we have summarized the current knowledge on the phages active against P. acnes described so far and their potential application in the treatment of acne associated with P. acnes. The treatment of acne with phages may be important in order to reduce the overuse of antibiotics, which are currently the main acne treatment. However, more detailed studies are first needed to understand phage functioning in the skin microbiome and the possibility to use phages to combat P. acnes.
Collapse
Affiliation(s)
- Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland; Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland
| | - Maciej Żaczek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland; Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland; Department of Clinical Immunology, Transplantation Institute, Medical University of WarsawWarsaw, Poland
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland; Medical Sciences Institute, Katowice School of EconomicsKatowice, Poland
| | - Marzanna Łusiak-Szelchowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wroclaw, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland; Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland; Department of Clinical Immunology, Transplantation Institute, Medical University of WarsawWarsaw, Poland
| |
Collapse
|
98
|
Microencapsulation with alginate/CaCO 3: A strategy for improved phage therapy. Sci Rep 2017; 7:41441. [PMID: 28120922 PMCID: PMC5264180 DOI: 10.1038/srep41441] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022] Open
Abstract
Bacteriophages are promising therapeutic agents that can be applied to different stages of the commercial food chain. In this sense, bacteriophages can be orally administered to farm animals to protect them against intestinal pathogens. However, the low pH of the stomach, the activities of bile and intestinal tract enzymes limit the efficacy of the phages. This study demonstrates the utility of an alginate/CaCO3 encapsulation method suitable for bacteriophages with different morphologies and to yield encapsulation efficacies of ~100%. For the first time, a cocktail of three alginate/CaCO3-encapsulated bacteriophages was administered as oral therapy to commercial broilers infected with Salmonella under farm-like conditions. Encapsulation protects the bacteriophages against their destruction by the gastric juice. Phage release from capsules incubated in simulated intestinal fluid was also demonstrated, whereas encapsulation ensured sufficient intestinal retention of the phages. Moreover, the small size of the capsules (125–150 μm) enables their use in oral therapy and other applications in phage therapy. This study evidenced that a cocktail of the three alginate/CaCO3-encapsulated bacteriophages had a greater and more durable efficacy than a cocktail of the corresponding non-encapsulated phages in as therapy in broilers against Salmonella, one of the most common foodborne pathogen.
Collapse
|
99
|
Szafrański SP, Winkel A, Stiesch M. The use of bacteriophages to biocontrol oral biofilms. J Biotechnol 2017; 250:29-44. [PMID: 28108235 DOI: 10.1016/j.jbiotec.2017.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
Abstract
Infections induced by oral biofilms include caries, as well as periodontal, and peri-implant disease, and may influence quality of life, systemic health, and expenditure. As bacterial biofilms are highly resistant and resilient to conventional antibacterial therapy, it has been difficult to combat these infections. An innovative alternative to the biocontrol of oral biofilms could be to use bacteriophages or phages, the viruses of bacteria, which are specific, non-toxic, self-proliferating, and can penetrate into biofilms. Phages for Actinomyces naeslundii, Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, Fusobacterium nucleatum, Lactobacillus spp., Neisseria spp., Streptococcus spp., and Veillonella spp. have been isolated and characterised. Recombinant phage enzymes (lysins) have been shown to lyse A. naeslundii and Streptococcus spp. However, only a tiny fraction of available phages and their lysins have been explored so far. The unique properties of phages and their lysins make them promising but challenging antimicrobials. The genetics and biology of phages have to be further explored in order to determine the most effective way of applying them. Studying the effect of phages and lysins on multispecies biofilms should pave the way for microbiota engineering and microbiota-based therapy.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | - Andreas Winkel
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Meike Stiesch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| |
Collapse
|
100
|
Van Belleghem JD, Merabishvili M, Vergauwen B, Lavigne R, Vaneechoutte M. A comparative study of different strategies for removal of endotoxins from bacteriophage preparations. J Microbiol Methods 2017; 132:153-159. [DOI: 10.1016/j.mimet.2016.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 01/26/2023]
|