51
|
Jayasuriya R, Ramkumar KM. Role of long non-coding RNAs on the regulation of Nrf2 in chronic diseases. Life Sci 2021; 270:119025. [PMID: 33450255 DOI: 10.1016/j.lfs.2021.119025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 12/21/2022]
Abstract
Studies have identified dysregulated long non-coding RNA (lncRNA) in several diseases at transcriptional, translational, and post-translational levels. Although our mechanistic knowledge on the regulation of lncRNAs is still limited, one of the mechanisms of action attributed is binding and regulating transcription factors, thus controlling gene expression and protein function. One such transcription factor is nuclear factor erythroid 2-related factor 2 (Nrf2), which plays a critical biological role in maintaining cellular homeostasis at multiple levels in physiological and pathophysiological conditions. The levels of Nrf2 were found to be down-regulated in many chronic diseases, signifying that Nrf2 can be a key therapeutic target. Few lncRNAs like lncRNA ROR, ENSMUST00000125413, lncRNA ODRUL, Nrf2-lncRNA have been associated with the Nrf2 signaling pathway in response to various stimuli, including stress. This review discusses the regulation of Nrf2 in different responses and the potential role of specific lncRNA in modulating its transcriptional activities. This review further helps to enhance our knowledge on the regulatory role of the critical antioxidant transcription factor, Nrf2.
Collapse
Affiliation(s)
- Ravichandran Jayasuriya
- SRM Research Institute and Department of Biotechnology, School of bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- SRM Research Institute and Department of Biotechnology, School of bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
52
|
Yu B, Qi Y, Li R, Shi Q, Satpathy A, Chang HY. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33442682 PMCID: PMC7805439 DOI: 10.1101/2021.01.03.425167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The long noncoding RNA (lncRNA) XIST establishes X chromosome inactivation (XCI) in female cells in early development and thereafter is thought to be largely dispensable. Here we show XIST is continually required in adult human B cells to silence a subset of X-linked immune genes such as TLR7 . XIST-dependent genes lack promoter DNA methylation and require continual XIST-dependent histone deacetylation. XIST RNA-directed proteomics and CRISPRi screen reveal distinctive somatic cell-specific XIST complexes, and identify TRIM28 that mediates Pol II pausing at promoters of X-linked genes in B cells. XIST dysregylation, reflected by escape of XIST-dependent genes, occurs in CD11c+ atypical memory B cells across single-cell transcriptome data in patients with female-biased autoimmunity and COVID-19 infection. XIST inactivation with TLR7 agonism suffices to promote isotype-switched atypical B cells. These results suggest cell-type-specific diversification of lncRNA-protein complexes increase lncRNA functionalities, and expand roles for XIST in sex-differences in biology and medicine. HIGHLIGHTS XIST prevents escape of genes with DNA hypomethylated promoters in B cells.XIST maintains X-inactivation through continuous deacetylation of H3K27ac.XIST ChIRP-MS and allelic CRISPRi screen reveal a B cell-specific XIST cofactor TRIM28.XIST loss and TLR7 stimulation promotes CD11c+ atypical B cell formation.
Collapse
|
53
|
Chitiashvili T, Dror I, Kim R, Hsu FM, Chaudhari R, Pandolfi E, Chen D, Liebscher S, Schenke-Layland K, Plath K, Clark A. Female human primordial germ cells display X-chromosome dosage compensation despite the absence of X-inactivation. Nat Cell Biol 2020; 22:1436-1446. [PMID: 33257808 PMCID: PMC7717582 DOI: 10.1038/s41556-020-00607-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022]
Abstract
X-chromosome dosage compensation in female placental mammals is achieved by X-chromosome inactivation (XCI). Human pre-implantation embryos are an exception, in which dosage compensation occurs by X-chromosome dampening (XCD). Here, we examined whether XCD extends to human prenatal germ cells given their similarities to naive pluripotent cells. We found that female human primordial germ cells (hPGCs) display reduced X-linked gene expression before entering meiosis. Moreover, in hPGCs, both X chromosomes are active and express the long non-coding RNAs X active coating transcript (XACT) and X inactive specific transcript (XIST)-the master regulator of XCI-which are silenced after entry into meiosis. We find that XACT is a hPGC marker, describe XCD associated with XIST expression in hPGCs and suggest that XCD evolved in humans to regulate X-linked genes in pre-implantation embryos and PGCs. Furthermore, we found a unique mechanism of X-chromosome regulation in human primordial oocytes. Therefore, future studies of human germline development must consider the sexually dimorphic X-chromosome dosage compensation mechanisms in the prenatal germline.
Collapse
Affiliation(s)
- Tsotne Chitiashvili
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Iris Dror
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Rachel Kim
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Fei-Man Hsu
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Rohan Chaudhari
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Erica Pandolfi
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Di Chen
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Simone Liebscher
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute, University Tübingen, Reutlingen, Germany
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
| | - Amander Clark
- Molecular Cell and Developmental Biology Department, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
54
|
Linher-Melville K, Shah A, Singh G. Sex differences in neuro(auto)immunity and chronic sciatic nerve pain. Biol Sex Differ 2020; 11:62. [PMID: 33183347 PMCID: PMC7661171 DOI: 10.1186/s13293-020-00339-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
Chronic pain occurs with greater frequency in women, with a parallel sexually dimorphic trend reported in sufferers of many autoimmune diseases. There is a need to continue examining neuro-immune-endocrine crosstalk in the context of sexual dimorphisms in chronic pain. Several phenomena in particular need to be further explored. In patients, autoantibodies to neural antigens have been associated with sensory pathway hyper-excitability, and the role of self-antigens released by damaged nerves remains to be defined. In addition, specific immune cells release pro-nociceptive cytokines that directly influence neural firing, while T lymphocytes activated by specific antigens secrete factors that either support nerve repair or exacerbate the damage. Modulating specific immune cell populations could therefore be a means to promote nerve recovery, with sex-specific outcomes. Understanding biological sex differences that maintain, or fail to maintain, neuroimmune homeostasis may inform the selection of sex-specific treatment regimens, improving chronic pain management by rebalancing neuroimmune feedback. Given the significance of interactions between nerves and immune cells in the generation and maintenance of neuropathic pain, this review focuses on sex differences and possible links with persistent autoimmune activity using sciatica as an example.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
| | - Anita Shah
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
55
|
Martínez-Pacheco M, Tenorio M, Almonte L, Fajardo V, Godínez A, Fernández D, Cornejo-Páramo P, Díaz-Barba K, Halbert J, Liechti A, Székely T, Urrutia AO, Cortez D. Expression Evolution of Ancestral XY Gametologs across All Major Groups of Placental Mammals. Genome Biol Evol 2020; 12:2015-2028. [PMID: 32790864 PMCID: PMC7674692 DOI: 10.1093/gbe/evaa173] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Placental mammals present 180 million-year-old Y chromosomes that have retained a handful of dosage-sensitive genes. However, the expression evolution of Y-linked genes across placental groups has remained largely unexplored. Here, we expanded the number of Y gametolog sequences by analyzing ten additional species from previously unexplored groups. We detected seven remarkably conserved genes across 25 placental species with known Y repertoires. We then used RNA-seq data from 17 placental mammals to unveil the expression evolution of XY gametologs. We found that Y gametologs followed, on average, a 3-fold expression loss and that X gametologs also experienced some expression reduction, particularly in primates. Y gametologs gained testis specificity through an accelerated expression decay in somatic tissues. Moreover, despite the substantial expression decay of Y genes, the combined expression of XY gametologs in males is higher than that of both X gametologs in females. Finally, our work describes several features of the Y chromosome in the last common mammalian ancestor.
Collapse
Affiliation(s)
| | | | - Laura Almonte
- Center for Genome Sciences, UNAM, Cuernavaca, Mexico
| | | | - Alan Godínez
- Center for Genome Sciences, UNAM, Cuernavaca, Mexico
| | | | | | | | - Jean Halbert
- Center for Integrative Genomics, University of Lausanne, Switzerland
| | - Angelica Liechti
- Center for Integrative Genomics, University of Lausanne, Switzerland
| | - Tamas Székely
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom.,Ecology Institute, UNAM, Mexico
| | - Diego Cortez
- Center for Genome Sciences, UNAM, Cuernavaca, Mexico
| |
Collapse
|
56
|
Vohra M, Sharma AR, Prabhu B N, Rai PS. SNPs in Sites for DNA Methylation, Transcription Factor Binding, and miRNA Targets Leading to Allele-Specific Gene Expression and Contributing to Complex Disease Risk: A Systematic Review. Public Health Genomics 2020; 23:155-170. [PMID: 32966991 DOI: 10.1159/000510253] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/16/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The complex genetic diversity among human populations results from an assortment of factors acting at various sequential levels, including mutations, population migrations, genetic drift, and selection. Although there are a plethora of DNA sequence variations identified through genome-wide association studies (GWAS), the challenge remains to explain the mechanisms underlying interindividual phenotypic disparity accounting for disease susceptibility. Single nucleotide polymorphisms (SNPs) present in the sites for DNA methylation, transcription factor (TF) binding, or miRNA targets can alter the gene expression. The systematic review aimed to evaluate the complex crosstalk among SNPs, miRNAs, DNA methylation, and TFs for complex multifactorial disease risk. METHODS PubMed and Scopus databases were used from inception until May 15, 2019. Initially, screening of articles involved studies assessing the interaction of SNPs with TFs, DNA methylation, or miRNAs resulting in allele-specific gene expression in complex multifactorial diseases. We also included the studies which provided experimental validation of the interaction of SNPs with each of these factors. The results from various studies on multifactorial diseases were assessed. RESULTS A total of 11 articles for SNPs interacting with DNA methylation, 30 articles for SNPs interacting with TFs, and 11 articles for SNPs in miRNA binding sites were selected. The interactions of SNPs with epigenetic factors were found to be implicated in different types of cancers, autoimmune diseases, cardiovascular diseases, diabetes, and asthma. CONCLUSION The systematic review provides evidence for the interplay between genetic and epigenetic risk factors through allele-specific gene expression in various complex multifactorial diseases.
Collapse
Affiliation(s)
- Manik Vohra
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anu Radha Sharma
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Navya Prabhu B
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India,
| |
Collapse
|
57
|
An C, Feng G, Zhang J, Cao S, Wang Y, Wang N, Lu F, Zhou Q, Wang H. Overcoming Autocrine FGF Signaling-Induced Heterogeneity in Naive Human ESCs Enables Modeling of Random X Chromosome Inactivation. Cell Stem Cell 2020; 27:482-497.e4. [DOI: 10.1016/j.stem.2020.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/27/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
|
58
|
Abstract
Our understanding of the human genome has continuously expanded since its draft publication in 2001. Over the years, novel assays have allowed us to progressively overlay layers of knowledge above the raw sequence of A's, T's, G's, and C's. The reference human genome sequence is now a complex knowledge base maintained under the shared stewardship of multiple specialist communities. Its complexity stems from the fact that it is simultaneously a template for transcription, a record of evolution, a vehicle for genetics, and a functional molecule. In short, the human genome serves as a frame of reference at the intersection of a diversity of scientific fields. In recent years, the progressive fall in sequencing costs has given increasing importance to the quality of the human reference genome, as hundreds of thousands of individuals are being sequenced yearly, often for clinical applications. Also, novel sequencing-based assays shed light on novel functions of the genome, especially with respect to gene expression regulation. Keeping the human genome annotation up to date and accurate is therefore an ongoing partnership between reference annotation projects and the greater community worldwide.
Collapse
Affiliation(s)
- Daniel R Zerbino
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom; , ,
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom; , ,
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom; , ,
| |
Collapse
|
59
|
Wang D, Tang L, Wu Y, Fan C, Zhang S, Xiang B, Zhou M, Li X, Li Y, Li G, Xiong W, Zeng Z, Guo C. Abnormal X chromosome inactivation and tumor development. Cell Mol Life Sci 2020; 77:2949-2958. [PMID: 32040694 PMCID: PMC11104905 DOI: 10.1007/s00018-020-03469-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
During embryonic development, one of the two X chromosomes of a mammalian female cell is randomly inactivated by the X chromosome inactivation mechanism, which is mainly dependent on the regulation of the non-coding RNA X-inactive specific transcript at the X chromosome inactivation center. There are three proteins that are essential for X-inactive specific transcript to function properly: scaffold attachment factor-A, lamin B receptor, and SMRT- and HDAC-associated repressor protein. In addition, the absence of X-inactive specific transcript expression promotes tumor development. During the process of chromosome inactivation, some tumor suppressor genes escape inactivation of the X chromosome and thereby continue to play a role in tumor suppression. A well-functioning tumor suppressor gene on the idle X chromosome in women is one of the reasons they have a lower propensity to develop cancer than men, women thereby benefit from this enhanced tumor suppression. This review will explore the mechanism of X chromosome inactivation, discuss the relationship between X chromosome inactivation and tumorigenesis, and consider the consequent sex differences in cancer.
Collapse
Affiliation(s)
- Dan Wang
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Le Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingfen Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Guiyuan Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- Department of Stomatology, NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
60
|
Liu B, Luo C, Lin H, Ji X, Zhang E, Li X. Long Noncoding RNA XIST Acts as a ceRNA of miR-362-5p to Suppress Breast Cancer Progression. Cancer Biother Radiopharm 2020; 36:456-466. [PMID: 32749857 DOI: 10.1089/cbr.2019.3481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Long noncoding RNAs (lncRNAs) X inactivate-specific transcripts (XIST) have been found to be dysregulated in breast cancer (BC). Nevertheless, the influence and mechanism of XIST on BC progression remain largely undefined. Methods: The expression levels of XIST, miR-362-5p, and ubiquitin-associated protein 1 (UBAP1) mRNA were detected by quantitative real-time polymerase chain reaction. Cell proliferation, apoptosis, migration, and invasion abilities were determined using MTT assay, flow cytometry, and transwell assay, respectively. Targeted relationship between miR-362-5p and XIST or UBAP1 was validated by the dual-luciferase reporter assay. Western blot was performed to evaluate UBAP1 protein level. Xenograft mice model was established for the investigation of XIST in tumor growth. Results: The authors' data indicated that XIST and UBAP1 were downregulated in BC tissues and cells. XIST overexpression weakened BC cell proliferation, migration, invasion, and facilitated the apoptosis, and XIST silencing exerted opposite effect. Mechanistically, XIST directly interacted with miR-362-5p and miR-362-5p mediated the regulatory effects of XIST overexpression on BC cell malignant behaviors. UBAP1 was a direct target of miR-362-5p. MiR-362-5p exerted its regulatory effects on BC cell behaviors by UBAP1. Moreover, XIST modulated UBAP1 expression through acting a competing endogenous RNA of miR-362-5p. XIST overexpression mediated antiproliferation, antimigration, anti-invasion, and proapoptosis effects were abated by the restored expression of UBAP1 in BC cells. Furthermore, the upregulation of XIST hindered tumor growth in vivo. Conclusion: The current study suggested that XIST overexpression hampered BC cell progression in vitro and in vivo at least partially by targeting the miR-362-5p/UBAP1 axis, illuminating XIST as a promising therapeutic agent for BC management.
Collapse
Affiliation(s)
- Baoyin Liu
- Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chengyu Luo
- Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hua Lin
- Department of General Surgery, Beijing Fuxing Hospital, Capital Medical University, Beijing, China
| | - Xiaoxin Ji
- Department of General Surgery, Beijing Fuxing Hospital, Capital Medical University, Beijing, China
| | - Enyu Zhang
- Department of General Surgery, Beijing Fuxing Hospital, Capital Medical University, Beijing, China
| | - Xin Li
- Department of General Surgery, Beijing Fuxing Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
61
|
Akshaya RL, Rohini M, Selvamurugan N. Regulation of Breast Cancer Progression by Noncoding RNAs. Curr Cancer Drug Targets 2020; 20:757-767. [PMID: 32652909 DOI: 10.2174/1568009620666200712144103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Breast cancer (BC) is the cardinal cause of cancer-related deaths among women across the globe. Our understanding of the molecular mechanisms underlying BC invasion and metastasis remains insufficient. Recent studies provide compelling evidence on the prospective contribution of noncoding RNAs (ncRNAs) and the association of different interactive mechanisms between these ncRNAs with breast carcinogenesis. MicroRNAs (small ncRNAs) and lncRNAs (long ncRNAs) have been explored extensively as classes of ncRNAs in the pathogenesis of several malignancies, including BC. OBJECTIVE In this review, we aim to provide a better understanding of the involvement of miRNAs and lncRNAs and their underlying mechanisms in BC development and progression that may assist the development of monitoring biomarkers and therapeutic strategies to effectively combat BC. CONCLUSION These ncRNAs play critical roles in cell growth, cell cycle regulation, epithelialmesenchymal transition (EMT), invasion, migration, and apoptosis among others, and were observed to be highly dysregulated in several cancers. The miRNAs and lncRNAs were observed to interact with each other through several mechanisms that governed the expression of their respective targets and could act either as tumor suppressors or as oncogenes, playing a crucial part in breast carcinogenesis.
Collapse
Affiliation(s)
- Ravishkumar L Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Muthukumar Rohini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
62
|
Chen L, Bao Y, Jiang S, Zhong XB. The Roles of Long Noncoding RNAs HNF1α-AS1 and HNF4α-AS1 in Drug Metabolism and Human Diseases. Noncoding RNA 2020; 6:E24. [PMID: 32599764 PMCID: PMC7345002 DOI: 10.3390/ncrna6020024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNAs with a length of over 200 nucleotides that do not have protein-coding abilities. Recent studies suggest that lncRNAs are highly involved in physiological functions and diseases. lncRNAs HNF1α-AS1 and HNF4α-AS1 are transcripts of lncRNA genes HNF1α-AS1 and HNF4α-AS1, which are antisense lncRNA genes located in the neighborhood regions of the transcription factor (TF) genes HNF1α and HNF4α, respectively. HNF1α-AS1 and HNF4α-AS1 have been reported to be involved in several important functions in human physiological activities and diseases. In the liver, HNF1α-AS1 and HNF4α-AS1 regulate the expression and function of several drug-metabolizing cytochrome P450 (P450) enzymes, which also further impact P450-mediated drug metabolism and drug toxicity. In addition, HNF1α-AS1 and HNF4α-AS1 also play important roles in the tumorigenesis, progression, invasion, and treatment outcome of several cancers. Through interacting with different molecules, including miRNAs and proteins, HNF1α-AS1 and HNF4α-AS1 can regulate their target genes in several different mechanisms including miRNA sponge, decoy, or scaffold. The purpose of the current review is to summarize the identified functions and mechanisms of HNF1α-AS1 and HNF4α-AS1 and to discuss the future directions of research of these two lncRNAs.
Collapse
Affiliation(s)
- Liming Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| | - Yifan Bao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| | - Suzhen Jiang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, China
| | - Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| |
Collapse
|
63
|
Molecular Regulation of Circadian Chromatin. J Mol Biol 2020; 432:3466-3482. [PMID: 31954735 DOI: 10.1016/j.jmb.2020.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes.
Collapse
|
64
|
Kanwal S, Guo X, Ward C, Volpe G, Qin B, Esteban MA, Bao X. Role of Long Non-coding RNAs in Reprogramming to Induced Pluripotency. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:16-25. [PMID: 32445708 PMCID: PMC7393543 DOI: 10.1016/j.gpb.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/25/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
The generation of induced pluripotent stem cells through somatic cell reprogramming requires a global reorganization of cellular functions. This reorganization occurs in a multi-phased manner and involves a gradual revision of both the epigenome and transcriptome. Recent studies have shown that the large-scale transcriptional changes observed during reprogramming also apply to long non-coding RNAs (lncRNAs), a type of traditionally neglected RNA species that are increasingly viewed as critical regulators of cellular function. Deeper understanding of lncRNAs in reprogramming may not only help to improve this process but also have implications for studying cell plasticity in other contexts, such as development, aging, and cancer. In this review, we summarize the current progress made in profiling and analyzing the role of lncRNAs in various phases of somatic cell reprogramming, with emphasis on the re-establishment of the pluripotency gene network and X chromosome reactivation.
Collapse
Affiliation(s)
- Shahzina Kanwal
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Xiangpeng Guo
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Carl Ward
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Giacomo Volpe
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Baoming Qin
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (5)Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Miguel A Esteban
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China; (6)Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xichen Bao
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China; (7)Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
65
|
Chen M, Ren YX, Xie Y, Lu WL. Gene regulations and delivery vectors for
treatment of cancer. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00484-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
66
|
Liu J, Gunewardena S, Yue Cui J, Klaassen CD, Chorley BN, Corton JC. Transplacental arsenic exposure produced 5-methylcytosine methylation changes and aberrant microRNA expressions in livers of male fetal mice. Toxicology 2020; 435:152409. [PMID: 32068019 PMCID: PMC10546472 DOI: 10.1016/j.tox.2020.152409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 10/25/2022]
Abstract
Arsenic is a known human carcinogen. Early-life exposure to inorganic arsenic induces tumors in humans and in C3H mice. We hypothesized that arsenic exposure in utero may induce epigenetic changes at the level of DNA methylation and miRNA alterations that could lead to greater postnatal susceptibility to cancer. To test this hypothesis, pregnant C3H mice were given sodium arsenite at doses known to cause liver cancer (42.5 and 85 ppm in the drinking water) from gestation day 8-19, and the livers from male fetal mice were collected for analysis. The antibody against 5-methylcytosine was used to perform chromatin-immunoprecipitation coupled with sequencing (ChIP-Seq) to determine genome-wide methylation alterations. In utero arsenic exposure produced global DNA hypomethylation and an array of gene-specific DNA methylation changes, including hypomethylation of Cyclin D1 and hypermethylation of Tp53. Illumina Correlation Engine analysis revealed 260 methylation alterations that would affect 143 microRNAs. MicroRNA array further revealed 140 aberrantly expressed miRNAs out of the 718 miRNAs. The increased expression of miR-205, miR-203, miR-215, miR-34a, and decreased expression of miR-217 were confirmed by qPCR. Comparison of the methylation changes to those of microarray analyses indicates little if any correspondence between gene methylation and gene expression. The increased expression of Xist, Prrc2, Krit1, Nish, and decreased expression of Prss2, Spp1, Col1a2, and Lox were confirmed by qPCR. In summary, in utero arsenic exposure induced global alterations in DNA methylation and aberrant miRNA expression that might contribute to adult adverse outcomes including liver cancer.
Collapse
Affiliation(s)
- Jie Liu
- University of Kansas Medical Center, Kansas City, KS 66160, United States; USEPA, Office of Research and Development, National Health and Environmental Effect Research Laboratory, Research Triangle Park, NC 27711, United States; Key Lab of Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, China.
| | | | - Julia Yue Cui
- University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Curtis D Klaassen
- University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Brian N Chorley
- USEPA, Office of Research and Development, National Health and Environmental Effect Research Laboratory, Research Triangle Park, NC 27711, United States
| | - J Christopher Corton
- USEPA, Office of Research and Development, National Health and Environmental Effect Research Laboratory, Research Triangle Park, NC 27711, United States.
| |
Collapse
|
67
|
Abstract
Female mammals express the long noncoding X inactivation-specific transcript ( Xist) RNA to initiate X chromosome inactivation (XCI) that eventually results in the formation of the Barr body. Xist encompasses half a dozen repeated sequence stretches containing motifs for RNA-binding proteins that recruit effector complexes with functions for silencing genes and establishing a repressive chromatin configuration. Functional characterization of these effector proteins unveils the cooperation of a number of pathways to repress genes on the inactive X chromosome. Mechanistic insights can be extended to other noncoding RNAs with similar structure and open avenues for the design of new therapies to switch off gene expression. Here we review recent advances in the understanding of Xist and on this basis try to synthesize a model for the initiation of XCI.
Collapse
Affiliation(s)
- Asun Monfort
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| |
Collapse
|
68
|
Cox A, Tolkach Y, Kristiansen G, Ritter M, Ellinger J. The lncRNA Fer1L4 is an adverse prognostic parameter in clear-cell renal-cell carcinoma. Clin Transl Oncol 2020; 22:1524-1531. [PMID: 31965534 PMCID: PMC7381450 DOI: 10.1007/s12094-020-02291-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/06/2020] [Indexed: 01/10/2023]
Abstract
Purpose Long non-coding RNAs (lncRNA) are involved in oncogenesis and tumor progression in various tumor entities. At present, little is known about the role in tumor biology of the lncRNA Fer-1 like family member 4 (Fer1L4) in clear-cell renal-cell carcinoma (ccRCC). The aim of this study is to evaluate the expression of Fer1L4 in patients with ccRCC, its association with clinicopathological parameters, and value as prognostic biomarker. Material and methods The expression of Fer1L4 was analyzed in the TCGA ccRCC cohort (n = 603; ccRCC n = 522, normal n = 81) and subsequently validated by quantitative real-time PCR in an independent cohort (n = 103, ccRCC n = 69, normal n = 34). Expression profiles were statistically correlated with clinicopathological and survival data. Results Fer1L4 lncRNA is overexpressed in ccRCC compared to adjacent normal tissues. Increased expression significantly correlates with tumor aggressiveness: high expression levels of Fer1L4 RNA were found in higher grade, higher stage, and metastatic tumors. Furthermore, Fer1L4 overexpression is an independent prognostic factor for overall, cancer-specific, and progression-free survival of patients with ccRCC. Conclusion Fer1L4 expression significantly correlates with aspects of tumor aggressiveness. Based on this impact on tumor progression and its influence as an independent prognostic factor, Fer1L4 appears to exert properties as an oncogene in ccRCC. As a prognostic tissue biomarker, further functional investigations are warranted to investigate Fer1L4 as a potential therapeutic target.
Collapse
Affiliation(s)
- A Cox
- Department of Urology, University Hospital Bonn, Bonn, Germany.
| | - Y Tolkach
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - G Kristiansen
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - M Ritter
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - J Ellinger
- Department of Urology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
69
|
Nilsen FM, Tulve NS. A systematic review and meta-analysis examining the interrelationships between chemical and non-chemical stressors and inherent characteristics in children with ADHD. ENVIRONMENTAL RESEARCH 2020; 180:108884. [PMID: 31706600 PMCID: PMC6937727 DOI: 10.1016/j.envres.2019.108884] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 05/05/2023]
Abstract
Children may be more vulnerable to the combined interactions of chemical and non-chemical stressors from their built, natural, and social environments when compared to adults. Attention deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed childhood neurodevelopmental disorder and is considered a major public health issue, as 75% of childhood cases persist into adulthood. ADHD is characterized by developmentally inappropriate levels of hyperactivity, impulsivity, and inattention, with the neurotransmitter serotonin regulating these symptoms. Monoamine oxidase A (MAOA) aids in serotonin uptake and is often implicated in behavioral and emotional disorders, including ADHD. When children are exposed to cigarette smoke, bisphenol A (BPA), or organophosphate pesticides, MAOA activity is inhibited. Non-chemical stressors, such as traumatic childhood experiences, and lifestyle factors, complicate the relationship between genotype and exposures to chemical stressors. But the co-occurrence among outcomes between exposures to chemical stressors, non-chemical stressors, and the low activity MAOA genotype suggest that mental illness in children may be influenced by multiple interacting factors. In this systematic review, we examine the existing literature that combines exposures to chemical and non-chemical stressors (specifically childhood trauma), MAOA characteristics, and ADHD diagnosis to investigate the interrelationships present. We observe that chemical (lead [Pb], phthalates/plasticizers, persistent organic pollutants, and cigarette smoke) exposure is significantly related to ADHD in children. We also observed that existing literature examining the interaction between MAOA, exposures to chemical stressors, and traumatic experiences and their effect on ADHD outcomes is sparse. We recommend that future studies investigating childhood ADHD include chemical and non-chemical stressors and inherent characteristics to gain a holistic understanding of childhood mental health outcomes.
Collapse
Affiliation(s)
- Frances M Nilsen
- Oak Ridge Institute for Science and Education Post-Doctoral Participant, U.S. EPA, Office of Research and Development, National Exposure Research Laboratory, 109 TW Alexander Dr., Research Triangle Park, NC, USA.
| | - Nicolle S Tulve
- U.S. EPA, Office of Research and Development, National Exposure Research Laboratory, 109 TW Alexander Dr., Research Triangle Park, NC, USA.
| |
Collapse
|
70
|
Grigoryev SA, Popova EY. Attraction of Likenesses: Mechanisms of Self-Association and Compartmentalization of Eukaryotic Chromatin. Mol Biol 2019. [DOI: 10.1134/s0026893319060050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
71
|
Wang M, Sun X, Wang H, Xin Y, Jiao W. Long non-coding RNAs in non-small cell lung cancer: functions and distinctions from other malignancies. Transl Cancer Res 2019; 8:2636-2653. [PMID: 35117021 PMCID: PMC8797712 DOI: 10.21037/tcr.2019.10.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/08/2019] [Indexed: 01/17/2023]
Abstract
Lung cancer leads to the most cancer-related death in the world. It was shown from the increasing evidences that long non-coding RNAs (lncRNAs) are emerging as molecules for diagnosis, prognosis and even therapy of lung cancer and other malignancies. The biological functions or involved signaling pathways of lncRNAs are always found to be inconsistent among different types of malignancies. However, no available literature has systemically summarized differences in the functions and underlying molecular mechanisms of lncRNAs between lung cancer and other cancers. In this review, the biological functions and molecular mechanisms of lncRNAs in lung cancer were introduced. Furthermore, their functional differences between lung cancer and other malignancies were discussed. Finally, their potential clinical applications in future lung cancer therapy were focused on.
Collapse
Affiliation(s)
- Maolong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiao Sun
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Hao Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yanlu Xin
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
72
|
Park J, Zhu Q, Mirek E, Na L, Raduwan H, Anthony TG, Belden WJ. BMAL1 associates with chromosome ends to control rhythms in TERRA and telomeric heterochromatin. PLoS One 2019; 14:e0223803. [PMID: 31634367 PMCID: PMC6802832 DOI: 10.1371/journal.pone.0223803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/27/2019] [Indexed: 01/12/2023] Open
Abstract
The circadian clock and aging are intertwined. Disruption to the normal diurnal rhythm accelerates aging and corresponds with telomere shortening. Telomere attrition also correlates with increase cellular senescence and incidence of chronic disease. In this report, we examined diurnal association of White Collar 2 (WC-2) in Neurospora and BMAL1 in zebrafish and mice and found that these circadian transcription factors associate with telomere DNA in a rhythmic fashion. We also identified a circadian rhythm in Telomeric Repeat-containing RNA (TERRA), a lncRNA transcribed from the telomere. The diurnal rhythm in TERRA was lost in the liver of Bmal1-/- mice indicating it is a circadian regulated transcript. There was also a BMAL1-dependent rhythm in H3K9me3 at the telomere in zebrafish brain and mouse liver, and this rhythm was lost with increasing age. Taken together, these results provide evidence that BMAL1 plays a direct role in telomere homeostasis by regulating rhythms in TERRA and heterochromatin. Loss of these rhythms may contribute to telomere erosion during aging.
Collapse
Affiliation(s)
- Jinhee Park
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Qiaoqiao Zhu
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Emily Mirek
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Li Na
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Hamidah Raduwan
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Tracy G. Anthony
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - William J. Belden
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| |
Collapse
|
73
|
Grinman E, Espadas I, Puthanveettil SV. Emerging roles for long noncoding RNAs in learning, memory and associated disorders. Neurobiol Learn Mem 2019; 163:107034. [DOI: 10.1016/j.nlm.2019.107034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
|
74
|
Yu S, Chen C, Pan Y, Kurz MC, Datner E, Hendry PL, Velilla MA, Lewandowski C, Pearson C, Domeier R, McLean SA, Linnstaedt SD. Genes known to escape X chromosome inactivation predict co-morbid chronic musculoskeletal pain and posttraumatic stress symptom development in women following trauma exposure. Am J Med Genet B Neuropsychiatr Genet 2019; 180:415-427. [PMID: 30537437 PMCID: PMC7138464 DOI: 10.1002/ajmg.b.32706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/28/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022]
Abstract
Co-morbid chronic musculoskeletal pain (CMSP) and posttraumatic stress symptoms (PTSS) are frequent sequelae of motor vehicle collision, are associated with greater disability than either outcome alone, and are more prevalent in women than men. In the current study we assessed for evidence that gene transcripts originating from the X chromosome contribute to sex differences in vulnerability to CMSP and PTSS after motor vehicle collision. Nested samples were drawn from a longitudinal study of African American individuals, and CMSP (0-10 numeric rating scale) and PTSS (impact of events scale, revised) outcomes were assessed 6 months following motor vehicle collision. Blood RNA were sequenced (n = 101) and the relationship between X chromosome mRNA expression levels and co-morbid CMSP and PTSS outcomes was evaluated using logistic regression analyses. A disproportionate number of peritraumatic X chromosome mRNA predicting CMSP and PTSS in women were genes previously found to escape X chromosome inactivation (11/40, z = -2.9, p = .004). Secondary analyses assessing gene ontology relationships between these genes identified an enrichment in genes known to influence neuronal plasticity. Further, the relationship of expression of two critical regulators of X chromosome inactivation, X-inactive specific transcript (XIST) and Yin Yang 1 (YY1), was different in women developing CMSP and PTSS. Together, these data suggest that X chromosome genes that escape inactivation may contribute to sex differences in vulnerability to CMSP and PTSS after motor vehicle collision.
Collapse
Affiliation(s)
- Shan Yu
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC
| | - Constance Chen
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC
| | - Yue Pan
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC
| | - Michael C. Kurz
- Department of Emergency Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Elizabeth Datner
- Department of Emergency Medicine, Albert Einstein Medical Center, Philadelphia, PA
| | - Phyllis L. Hendry
- Department of Emergency Medicine, University of Florida College of Medicine – Jacksonville, Jacksonville, FL
| | | | | | - Claire Pearson
- Department of Emergency Medicine, Detroit Receiving, Detroit, MI
| | - Robert Domeier
- Department of Emergency Medicine, St Joseph Mercy Health System, Ann Arbor, MI
| | - Samuel A. McLean
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC
- Department of Emergency Medicine, University of North Carolina, Chapel Hill, NC
| | - Sarah D. Linnstaedt
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
75
|
Stork C, Li Z, Lin L, Zheng S. Developmental Xist induction is mediated by enhanced splicing. Nucleic Acids Res 2019; 47:1532-1543. [PMID: 30496473 PMCID: PMC6379716 DOI: 10.1093/nar/gky1198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 11/12/2022] Open
Abstract
X-inactive-specific transcript (Xist) is a long noncoding RNA (lncRNA) essential for inactivating one of the two X chromosomes in mammalian females. Random X chromosome inactivation is mediated by Xist RNA expressed from the inactive X chromosome. We found that Xist RNA is unspliced in naïve embryonic stem (ES) cells. Upon differentiation, Xist splicing becomes efficient across all exons independent of transcription, suggesting interdependent or coordinated removal of Xist introns. In female cells with mutated polypyrimidine tract binding protein 1 (Ptbp1), differentiation fails to substantially upregulate mature Xist RNA because of a defect in Xist splicing. We further found both Xist129 and XistCAS RNA are unspliced in Mus musculus 129SvJ/Mus castaneous (CAS) hybrid female ES cells. Upon differentiation, Xist129 exhibits a higher splicing efficiency than XistCAS, likely contributing to preferential inhibition of the X129 chromosome. Single cell analysis shows that the allelic choice of Xist splicing is linked to the inactive X chromosome. We conclude post-transcriptional control of Xist RNA splicing is an essential regulatory step of Xist induction. Our studies shed light on the developmental roles of splicing for nuclear-retained Xist lncRNA and suggest inefficient Xist splicing is an additional fail-safe mechanism to prevent Xist activity in ES cells.
Collapse
Affiliation(s)
- Cheryl Stork
- Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Zhelin Li
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California, Riverside, Riverside, CA 92521, USA
| | - Lin Lin
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Sika Zheng
- Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, Riverside, CA 92521, USA.,Graduate Program in Genetics, Genomics and Bioinformatics, University of California, Riverside, Riverside, CA 92521, USA.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
76
|
Engreitz J, Abudayyeh O, Gootenberg J, Zhang F. CRISPR Tools for Systematic Studies of RNA Regulation. Cold Spring Harb Perspect Biol 2019; 11:11/8/a035386. [PMID: 31371352 DOI: 10.1101/cshperspect.a035386] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA molecules perform diverse functions in mammalian cells, including transferring genetic information from DNA to protein and playing diverse regulatory roles through interactions with other cellular components. Here, we discuss how clustered regularly interspaced short palindromic repeat (CRISPR)-based technologies for directed perturbations of DNA and RNA are revealing new insights into RNA regulation. First, we review the fundamentals of CRISPR-Cas enzymes and functional genomics tools that leverage these systems. Second, we explore how these new perturbation technologies are transforming the study of regulation of and by RNA, focusing on the functions of DNA regulatory elements and long noncoding RNAs (lncRNAs). Third, we highlight an emerging class of RNA-targeting CRISPR-Cas enzymes that have the potential to catalyze studies of RNA biology by providing tools to directly perturb or measure RNA modifications and functions. Together, these tools enable systematic studies of RNA function and regulation in mammalian cells.
Collapse
Affiliation(s)
- Jesse Engreitz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Harvard Society of Fellows, Harvard University, Cambridge, Massachusetts 02139
| | - Omar Abudayyeh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jonathan Gootenberg
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.,Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
77
|
An T, Zhang J, Ma Y, Lian J, Wu YX, Lv BH, Ma MH, Meng JH, Zhou YT, Zhang ZY, Liu Q, Gao SH, Jiang GJ. Relationships of Non-coding RNA with diabetes and depression. Sci Rep 2019; 9:10707. [PMID: 31341180 PMCID: PMC6656886 DOI: 10.1038/s41598-019-47077-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/07/2019] [Indexed: 01/12/2023] Open
Abstract
In order to study the molecular differences between type 2 diabetes mellitus (T2DM) and T2DM with depression (DD), we aimed to screen the differential expression of lncRNA, mRNA, and circRNA in the blood of patients with T2DM and DD. Based on the self-rating depression scale (SDS), patient health questionnaire 9 (PHQ9), blood glucose and HbA1c, we divided the patients into T2DM and DD group. Peripheral blood was collected from the two groups of patients to perform lncRNA, mRNA, and circRNA expression profiling and screening DD-related specific molecules. Subsequently, bioinformatics analysis was performed to investigate the functions of differentially expressed genes (DEgenes). Finally, RT-PCR and lncRNA-mRNA regulatory network was performed to verify the expressions of lncRNAs and mRNAs related to the occurrence and development of DD. 28 lncRNAs, 107 circRNAs, and 89 mRNAs were identified in DD differential expression profiles. GO and pathway analysis found that 20 biological process (BP) related entities and 20 pathways associated with DD. The analysis shows that the genes that are differentially expressed in the DD group involved in the development of the neuropsychiatric system, immunity, and inflammation. Then, we screening for the important DElncRNA and mRNA associated with DD were verified by RT-PCR experiments and the results of RT-PCR were consistent with the sequencing results. LncRNA, circRNA, and mRNA differential expression profiles exist in DD patients compared with T2DM. The lncRNA-mRNA regulatory network analysis confirmed the crosslinking and complex regulation patterns of lncRNA and mRNA expression and verified the authenticity of the regulatory network.
Collapse
Affiliation(s)
- Tian An
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jing Zhang
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan, 063000, China
| | - Yue Ma
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Juan Lian
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan-Xiang Wu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Bo-Han Lv
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meng-Hua Ma
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan, 063000, China
| | - Jun-Hua Meng
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan, 063000, China
| | - Yun-Tao Zhou
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan, 063000, China
| | - Zhi-Yong Zhang
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan, 063000, China
| | - Qing Liu
- Beijing Medicine and Food Co., Ltd., Beijing, 100029, China
| | - Si-Hua Gao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Guang-Jian Jiang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
78
|
You Z, Ge A, Pang D, Zhao Y, Xu S. Long noncoding RNA FER1L4 acts as an oncogenic driver in human pan-cancer. J Cell Physiol 2019; 235:1795-1807. [PMID: 31332783 DOI: 10.1002/jcp.29098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/27/2019] [Indexed: 12/25/2022]
Abstract
The function of Fer-1 like family member 4 (FER1L4) in human pan-cancer is unknown. Expression of FER1L4 in tumor tissues and nontumor tissues, upstream regulation of FER1L4, and the relationship between its expression with prognosis and chemoresistance were examined by The Cancer Genome Atlas and Gene Expression Omnibus databases. Next, these results were validated in breast tumor and paired nontumor tissues in our cohort. FER1L4 expression is higher in tumor tissues compared with the adjacent nontumor tissues. High FER1L4 expression is associated with worse disease outcomes. Hypomethylation and H3K4me3 accumulation in FER1L4 promoter locus activate its transcriptional expression. Moreover, FER1L4 may trigger chemoresistance in human cancer. Gene Ontology enrichment analysis revealed that FER1L4 may be involved in processes associated with tumorigenesis. These results indicated that FER1L4 may act as an oncogenic driver and it may be a potential therapy target in human cancer.
Collapse
Affiliation(s)
- Zilong You
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Anqi Ge
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
79
|
Karami K, Zerehdaran S, Javadmanesh A, Shariati MM, Fallahi H. Characterization of bovine (Bos taurus) imprinted genes from genomic to amino acid attributes by data mining approaches. PLoS One 2019; 14:e0217813. [PMID: 31170205 PMCID: PMC6553745 DOI: 10.1371/journal.pone.0217813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/21/2019] [Indexed: 01/05/2023] Open
Abstract
Genomic imprinting results in monoallelic expression of genes in mammals and flowering plants. Understanding the function of imprinted genes improves our knowledge of the regulatory processes in the genome. In this study, we have employed classification and clustering algorithms with attribute weighting to specify the unique attributes of both imprinted (monoallelic) and biallelic expressed genes. We have obtained characteristics of 22 known monoallelically expressed (imprinted) and 8 biallelic expressed genes that have been experimentally validated alongside 208 randomly selected genes in bovine (Bos taurus). Attribute weighting methods and various supervised and unsupervised algorithms in machine learning were applied. Unique characteristics were discovered and used to distinguish mono and biallelic expressed genes from each other in bovine. To obtain the accuracy of classification, 10-fold cross-validation with concerning each combination of attribute weighting (feature selection) and machine learning algorithms, was used. Our approach was able to accurately predict mono and biallelic genes using the genomics and proteomics attributes.
Collapse
Affiliation(s)
- Keyvan Karami
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeed Zerehdaran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Mahdi Shariati
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
80
|
Ogushi K, Hattori A, Suzuki E, Shima H, Izawa M, Yagasaki H, Horikawa R, Uetake K, Umezawa A, Ishii T, Muroya K, Namba N, Tanaka T, Hirano Y, Yamamoto H, Soneda S, Matsubara K, Kagami M, Miyado M, Fukami M. DNA Methylation Status of SHOX-Flanking CpG Islands in Healthy Individuals and Short Stature Patients with Pseudoautosomal Copy Number Variations. Cytogenet Genome Res 2019; 158:56-62. [PMID: 31158835 DOI: 10.1159/000500468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2018] [Indexed: 11/19/2022] Open
Abstract
SHOX resides in the short arm pseudoautosomal region (PAR1) of the sex chromosomes and escapes X inactivation. SHOX haploinsufficiency underlies idiopathic short stature (ISS) and Leri-Weill dyschondrosteosis (LWD). A substantial percentage of cases with SHOX haploinsufficiency arise from pseudoautosomal copy number variations (CNVs) involving putative enhancer regions of SHOX. Our previous study using peripheral blood samples showed that some CpG dinucleotides adjacent to SHOX exon 1 were hypomethylated in a healthy woman and methylated in a woman with gross X chromosomal rearrangements. However, it remains unknown whether submicroscopic pseudoautosomal CNVs cause aberrant DNA methylation of SHOX-flanking CpG islands. In this study, we examined the DNA methylation status of SHOX-flanking CpG islands in 50 healthy individuals and 10 ISS/LWD patients with pseudoautosomal CNVs. In silico analysis detected 3 CpG islands within the 20-kb region from the translation start site of SHOX. Pyrosequencing and bisulfite sequencing of genomic DNA samples revealed that these CpG islands were barely methylated in peripheral blood cells and cultured chondrocytes of healthy individuals, as well as in peripheral blood cells of ISS/LWD patients with pseudoautosomal CNVs. These results, in conjunction with our previous findings, indicate that the DNA methylation status of SHOX-flanking CpG islands can be affected by gross X-chromosomal abnormalities, but not by submicroscopic CNVs in PAR1. Such CNVs likely disturb SHOX expression through DNA methylation-independent mechanisms, which need to be determined in future studies.
Collapse
|
81
|
Harris C, Cloutier M, Trotter M, Hinten M, Gayen S, Du Z, Xie W, Kalantry S. Conversion of random X-inactivation to imprinted X-inactivation by maternal PRC2. eLife 2019; 8:e44258. [PMID: 30938678 PMCID: PMC6541438 DOI: 10.7554/elife.44258] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/01/2019] [Indexed: 01/15/2023] Open
Abstract
Imprinted X-inactivation silences genes exclusively on the paternally-inherited X-chromosome and is a paradigm of transgenerational epigenetic inheritance in mammals. Here, we test the role of maternal vs. zygotic Polycomb repressive complex 2 (PRC2) protein EED in orchestrating imprinted X-inactivation in mouse embryos. In maternal-null (Eedm-/-) but not zygotic-null (Eed-/-) early embryos, the maternal X-chromosome ectopically induced Xist and underwent inactivation. Eedm-/- females subsequently stochastically silenced Xist from one of the two X-chromosomes and displayed random X-inactivation. This effect was exacerbated in embryos lacking both maternal and zygotic EED (Eedmz-/-), suggesting that zygotic EED can also contribute to the onset of imprinted X-inactivation. Xist expression dynamics in Eedm-/- embryos resemble that of early human embryos, which lack oocyte-derived maternal PRC2 and only undergo random X-inactivation. Thus, expression of PRC2 in the oocyte and transmission of the gene products to the embryo may dictate the occurrence of imprinted X-inactivation in mammals.
Collapse
Affiliation(s)
- Clair Harris
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Marissa Cloutier
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Megan Trotter
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Michael Hinten
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Srimonta Gayen
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life ScienceTsinghua UniversityBeijingChina
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life ScienceTsinghua UniversityBeijingChina
| | - Sundeep Kalantry
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| |
Collapse
|
82
|
Zhang J, Gao X, Yang J, Fan X, Wang W, Liang Y, Fan L, Han H, Xu X, Tang F, Bao S, Liu P, Li X. Xist Intron 1 Repression by Transcriptional-Activator-Like Effectors Designer Transcriptional Factor Improves Somatic Cell Reprogramming in Mice. Stem Cells 2019; 37:599-608. [PMID: 30353613 DOI: 10.1002/stem.2928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/06/2018] [Accepted: 08/18/2018] [Indexed: 11/11/2022]
Abstract
Xist is the master regulator of X chromosome inactivation. In order to further understand the Xist locus in the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) and in somatic cell nuclear transfer (SCNT), we tested transcription-activator-like effectors-based designer transcriptional factors (dTFs), which were specific to numerous regions at the Xist locus. We report that the selected dTF repressor 6 (R6) binding the intron 1 of Xist, which caused higher H3K9me3 followed by X chromosome opening and repression of X-linked genes in mouse embryonic fibroblasts, rather than affecting Xist expression, substantially improved the iPSC generation and the SCNT preimplantation embryo development. Conversely, the dTF activator targeting the same genomic region of R6 decreased iPSC formation and blocked SCNT-embryo development. These results thus uncover the critical requirement for the Xist locus in epigenetic resetting, which is not directly related to Xist transcription. This may provide a unique route to improving the reprogramming. Stem Cells 2019;37:599-608.
Collapse
Affiliation(s)
- Jindun Zhang
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China.,Wellcome Trust Sanger Institute, Cambridge, United Kingdom.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, People's Republic of China
| | - Xuefei Gao
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Jian Yang
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Xiaoying Fan
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, People's Republic of China.,College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Wei Wang
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Yanfeng Liang
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China
| | - Lihong Fan
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China
| | - Hongmei Han
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China
| | - Xiaorong Xu
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, People's Republic of China.,College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Siqin Bao
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Xihe Li
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, People's Republic of China
| |
Collapse
|
83
|
More S, Zhu Z, Lin K, Huang C, Pushparaj S, Liang Y, Sathiaseelan R, Yang X, Liu L. Long non-coding RNA PSMB8-AS1 regulates influenza virus replication. RNA Biol 2019; 16:340-353. [PMID: 30669933 DOI: 10.1080/15476286.2019.1572448] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a new arm of gene regulatory mechanism as discovered by sequencing techniques and follow-up functional studies. There are only few studies on lncRNAs as related to gene expression regulation and anti-viral activity during influenza virus infection. We sought to identify and characterize lncRNAs involved in influenza virus replication. Using RNA sequencing analysis, we found that 1,912 lncRNAs were significantly changed in human lung epithelial A549 cells infected with influenza A/Puerto Rico/8/34. Gene ontology analysis on neighboring genes of these lncRNAs revealed that the genes involved in type I interferon signaling and cellular response were highly enriched. Seven selected up-regulated lncRNAs (AC015849.2, RP-1-7H24.1, PSMB8-AS1, CTD-2639E6.9, PSOR1C3, AC007283.5 and RP11-670E13.5) were verified by real-time PCR. These lncRNAs were also induced by other two influenza H1N1 virus strains (A/WSN/1933 and A/Oklahoma/3052/09) and interferon β1. Repression of PSMB8 antisense RNA 1 (PSMB8-AS1) using CRISPR interference reduced viral mRNA and protein levels as well as the release of progeny influenza virus particles. Our study suggests that lncRNA PSMB8-AS1 could be a new host factor target for developing antiviral therapy against influenza virus infection.
Collapse
Affiliation(s)
- Sunil More
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Zhengyu Zhu
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Kong Lin
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Chaoqun Huang
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Samuel Pushparaj
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Yurong Liang
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Roshini Sathiaseelan
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Xiaoyun Yang
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Lin Liu
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| |
Collapse
|
84
|
Sauvageau M. Diverging RNPs: Toward Understanding lncRNA-Protein Interactions and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:285-312. [PMID: 31811638 DOI: 10.1007/978-3-030-31434-7_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA-protein interactions are essential to a variety of biological processes. The realization that mammalian genomes are pervasively transcribed brought a tidal wave of tens of thousands of newly identified long noncoding RNAs (lncRNAs) and raised questions about their purpose in cells. The vast majority of lncRNAs have yet to be studied, and it remains to be determined to how many of these transcripts a function can be ascribed. However, results gleaned from studying a handful of these macromolecules have started to reveal common themes of biological function and mechanism of action involving intricate RNA-protein interactions. Some lncRNAs were shown to regulate the chromatin and transcription of distant and neighboring genes in the nucleus, while others regulate the translation or localization of proteins in the cytoplasm. Some lncRNAs were found to be crucial during development, while mutations and aberrant expression of others have been associated with several types of cancer and a plethora of diseases. Over the last few years, the establishment of new technologies has been key in providing the tools to decode the rules governing lncRNA-protein interactions and functions. This chapter will highlight the general characteristics of lncRNAs, their function, and their mode of action, with a special focus on protein interactions. It will also describe the methods at the disposition of scientists to help them cross this next frontier in our understanding of lncRNA biology.
Collapse
Affiliation(s)
- Martin Sauvageau
- Montreal Clinical Research Institute (IRCM), Montréal, QC, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
85
|
Liu Y, Qi B, Xie J, Wu X, Ling Y, Cao X, Kong F, Xin J, Jiang X, Wu Q, Wang W, Li Q, Zhang S, Wu F, Zhang D, Wang R, Zhang X, Li W. Filtered reproductive long non-coding RNAs by genome-wide analyses of goat ovary at different estrus periods. BMC Genomics 2018; 19:866. [PMID: 30509164 PMCID: PMC6278114 DOI: 10.1186/s12864-018-5268-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/19/2018] [Indexed: 11/15/2022] Open
Abstract
Background The goat is an important farm animal. Reproduction is an important process of goat farming. The ovary is the most important reproductive organ for goats. In recent years, an increasing number of long non-coding RNAs (lncRNAs) have been implicated in the regulation of mammal reproduction. However, there are few studies on the function of lncRNAs in reproduction, particularly lncRNAs in the ovary. Results The sequencing of goat ovaries generated 1,122,014,112 clean reads, and 4926 lncRNAs and 1454 TUCPs (transcripts of uncertain coding potential) were identified for further analysis by using the coding potential analysis software, CNCI, CPC and Pfam-sca. There were 115 /22 differential lncRNAs /TUCPs transcripts between the ovaries of the luteal phase and the follicular phase. We predicted the related genes of lncRNA /TUCP based on co-expression and co-localization methods. In total, 2584 /904 genes were predicted by co-expression, and 326/73 genes were predicted by co-localization. The functions of these genes were further analyzed with GO and KEGG analysis. The results showed that lncRNAs /TUCPs, which are highly expressed in goat ovaries in the luteal phase, are mainly associated with the synthesis of progesterone, and we filtered the lncRNAs /TUCPs, such as XR_001918177.1 and TUCP_001362, which may regulate the synthesis of progesterone; lncRNAs /TUCPs, which are highly expressed in goat ovaries in the follicular phase, are mainly associated with oogenesis and the maturation of oocytes, and we filtered the lncRNAs /TUCPs that may regulate the oogenesis and maturation of oocyte, such as XR_001917388.1 and TUCP_000849. Conclusion The present study provided the genome expression profile of lncRNAs /TUCPs in goat ovaries at different estrus periods and filtered the potential lncRNAs /TUCPs associated with goat reproduction. These results are helpful to further study the molecular mechanisms of goat reproduction. Electronic supplementary material The online version of this article (10.1186/s12864-018-5268-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Bing Qi
- School of Life Sciences, Taishan Medical University, Taian, 271016, Shandong, China
| | - Juan Xie
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Xiaoqing Wu
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Yinghui Ling
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xinyan Cao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No.4899 Juye Street, Jingyue District, Changchun, 130112, China
| | - Feng Kong
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Jing Xin
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Xin Jiang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Qiaoqin Wu
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Wenying Wang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Qingmei Li
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Shengnan Zhang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Fengrui Wu
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Di Zhang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Rong Wang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Xiaorong Zhang
- School of Life Sciences, Taishan Medical University, Taian, 271016, Shandong, China
| | - Wenyong Li
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China.
| |
Collapse
|
86
|
Dempsey J, Zhang A, Cui JY. Coordinate regulation of long non-coding RNAs and protein-coding genes in germ-free mice. BMC Genomics 2018; 19:834. [PMID: 30463508 PMCID: PMC6249886 DOI: 10.1186/s12864-018-5235-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are increasingly recognized as regulators of tissue-specific cellular functions and have been shown to regulate transcriptional and translational processes, acting as signals, decoys, guides, and scaffolds. It has been suggested that some lncRNAs act in cis to regulate the expression of neighboring protein-coding genes (PCGs) in a mechanism that fine-tunes gene expression. Gut microbiome is increasingly recognized as a regulator of development, inflammation, host metabolic processes, and xenobiotic metabolism. However, there is little known regarding whether the gut microbiome modulates lncRNA gene expression in various host metabolic organs. The goals of this study were to 1) characterize the tissue-specific expression of lncRNAs and 2) identify and annotate lncRNAs differentially regulated in the absence of gut microbiome. RESULTS Total RNA was isolated from various tissues (liver, duodenum, jejunum, ileum, colon, brown adipose tissue, white adipose tissue, and skeletal muscle) from adult male conventional and germ-free mice (n = 3 per group). RNA-Seq was conducted and reads were mapped to the mouse reference genome (mm10) using HISAT. Transcript abundance and differential expression was determined with Cufflinks using the reference databases NONCODE 2016 for lncRNAs and UCSC mm10 for PCGs. Although the constitutive expression of lncRNAs was ubiquitous within the enterohepatic (liver and intestine) and the peripheral metabolic tissues (fat and muscle) in conventional mice, differential expression of lncRNAs by lack of gut microbiota was highly tissue specific. Interestingly, the majority of gut microbiota-regulated lncRNAs were in jejunum. Most lncRNAs were co-regulated with neighboring PCGs. STRING analysis showed that differentially expressed PCGs in proximity to lncRNAs form tissue-specific networks, suggesting that lncRNAs may interact with gut microbiota/microbial metabolites to regulate tissue-specific functions. CONCLUSIONS This study is among the first to demonstrate that gut microbiota critically regulates the expression of lncRNAs not only locally in intestine but also remotely in other metabolic organs, suggesting that common transcriptional machinery may be shared to transcribe lncRNA-PCG pairs, and lncRNAs may interact with PCGs to regulate tissue-specific pathways.
Collapse
Affiliation(s)
- Joseph Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA
| | - Angela Zhang
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA.
| |
Collapse
|
87
|
Qian X, Zhao J, Yeung PY, Zhang QC, Kwok CK. Revealing lncRNA Structures and Interactions by Sequencing-Based Approaches. Trends Biochem Sci 2018; 44:33-52. [PMID: 30459069 DOI: 10.1016/j.tibs.2018.09.012] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 11/28/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as significant players in almost every level of gene function and regulation. Thus, characterizing the structures and interactions of lncRNAs is essential for understanding their mechanistic roles in cells. Through a combination of (bio)chemical approaches and automated capillary and high-throughput sequencing (HTS), the complexity and diversity of RNA structures and interactions has been revealed in the transcriptomes of multiple species. These methods have uncovered important biological insights into the mechanistic and functional roles of lncRNA in gene expression and RNA metabolism, as well as in development and disease. In this review, we summarize the latest sequencing strategies to reveal RNA structure, RNA-RNA, RNA-DNA, and RNA-protein interactions, and highlight the recent applications of these approaches to map functional lncRNAs. We discuss the advantages and limitations of these strategies, and provide recommendations to further advance methodologies capable of mapping RNA structure and interactions in order to discover new biology of lncRNAs and decipher their molecular mechanisms and implication in diseases.
Collapse
Affiliation(s)
- Xingyang Qian
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; These authors contributed equally to this work
| | - Jieyu Zhao
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; These authors contributed equally to this work
| | - Pui Yan Yeung
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; These authors contributed equally to this work
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
88
|
Deng L, Wang J, Xiao Y, Wang Z, Liu H. Accurate prediction of protein-lncRNA interactions by diffusion and HeteSim features across heterogeneous network. BMC Bioinformatics 2018; 19:370. [PMID: 30309340 PMCID: PMC6182872 DOI: 10.1186/s12859-018-2390-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022] Open
Abstract
Background Identifying the interactions between proteins and long non-coding RNAs (lncRNAs) is of great importance to decipher the functional mechanisms of lncRNAs. However, current experimental techniques for detection of lncRNA-protein interactions are limited and inefficient. Many methods have been proposed to predict protein-lncRNA interactions, but few studies make use of the topological information of heterogenous biological networks associated with the lncRNAs. Results In this work, we propose a novel approach, PLIPCOM, using two groups of network features to detect protein-lncRNA interactions. In particular, diffusion features and HeteSim features are extracted from protein-lncRNA heterogenous network, and then combined to build the prediction model using the Gradient Tree Boosting (GTB) algorithm. Our study highlights that the topological features of the heterogeneous network are crucial for predicting protein-lncRNA interactions. The cross-validation experiments on the benchmark dataset show that PLIPCOM method substantially outperformed previous state-of-the-art approaches in predicting protein-lncRNA interactions. We also prove the robustness of the proposed method on three unbalanced data sets. Moreover, our case studies demonstrate that our method is effective and reliable in predicting the interactions between lncRNAs and proteins. Availability The source code and supporting files are publicly available at: http://denglab.org/PLIPCOM/.
Collapse
Affiliation(s)
- Lei Deng
- School of Software, Central South University, Changsha, 410075, China
| | - Junqiang Wang
- School of Software, Central South University, Changsha, 410075, China
| | - Yun Xiao
- School of Software, Central South University, Changsha, 410075, China
| | - Zixiang Wang
- School of Software, Central South University, Changsha, 410075, China
| | - Hui Liu
- Lab of Information Management, Changzhou University, Jiangsu, 213164, China.
| |
Collapse
|
89
|
Jowhar Z, Shachar S, Gudla PR, Wangsa D, Torres E, Russ JL, Pegoraro G, Ried T, Raznahan A, Misteli T. Effects of human sex chromosome dosage on spatial chromosome organization. Mol Biol Cell 2018; 29:2458-2469. [PMID: 30091656 PMCID: PMC6233059 DOI: 10.1091/mbc.e18-06-0359] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 01/08/2023] Open
Abstract
Sex chromosome aneuploidies (SCAs) are common genetic syndromes characterized by the presence of an aberrant number of X and Y chromosomes due to meiotic defects. These conditions impact the structure and function of diverse tissues, but the proximal effects of SCAs on genome organization are unknown. Here, to determine the consequences of SCAs on global genome organization, we have analyzed multiple architectural features of chromosome organization in a comprehensive set of primary cells from SCA patients with various ratios of X and Y chromosomes by use of imaging-based high-throughput chromosome territory mapping (HiCTMap). We find that X chromosome supernumeracy does not affect the size, volume, or nuclear position of the Y chromosome or an autosomal chromosome. In contrast, the active X chromosome undergoes architectural changes as a function of increasing X copy number as measured by a decrease in size and an increase in circularity, which is indicative of chromatin compaction. In Y chromosome supernumeracy, Y chromosome size is reduced suggesting higher chromatin condensation. The radial positioning of chromosomes is unaffected in SCA karyotypes. Taken together, these observations document changes in genome architecture in response to alterations in sex chromosome numbers and point to trans-effects of dosage compensation on chromosome organization.
Collapse
Affiliation(s)
- Ziad Jowhar
- Cell Biology of Genomes Group, National Institutes of Health, Bethesda, MD 20892
| | - Sigal Shachar
- Cell Biology of Genomes Group, National Institutes of Health, Bethesda, MD 20892
| | - Prabhakar R. Gudla
- High-Throughput Imaging Facility, National Institutes of Health, Bethesda, MD 20892
| | - Darawalee Wangsa
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Erin Torres
- Human Genetics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Jill L. Russ
- Human Genetics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Institutes of Health, Bethesda, MD 20892
| | - Thomas Ried
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Armin Raznahan
- Human Genetics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Tom Misteli
- Cell Biology of Genomes Group, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
90
|
Zhou X, Sen I, Lin XX, Riedel CG. Regulation of Age-related Decline by Transcription Factors and Their Crosstalk with the Epigenome. Curr Genomics 2018; 19:464-482. [PMID: 30258277 PMCID: PMC6128382 DOI: 10.2174/1389202919666180503125850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/20/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022] Open
Abstract
Aging is a complex phenomenon, where damage accumulation, increasing deregulation of biological pathways, and loss of cellular homeostasis lead to the decline of organismal functions over time. Interestingly, aging is not entirely a stochastic process and progressing at a constant rate, but it is subject to extensive regulation, in the hands of an elaborate and highly interconnected signaling network. This network can integrate a variety of aging-regulatory stimuli, i.e. fertility, nutrient availability, or diverse stresses, and relay them via signaling cascades into gene regulatory events - mostly of genes that confer stress resistance and thus help protect from damage accumulation and homeostasis loss. Transcription factors have long been perceived as the pivotal nodes in this network. Yet, it is well known that the epigenome substantially influences eukaryotic gene regulation, too. A growing body of work has recently underscored the importance of the epigenome also during aging, where it not only undergoes drastic age-dependent changes but also actively influences the aging process. In this review, we introduce the major signaling pathways that regulate age-related decline and discuss the synergy between transcriptional regulation and the epigenetic landscape.
Collapse
Affiliation(s)
| | | | | | - Christian G. Riedel
- Address correspondence to this author at the Integrated Cardio Metabolic Centre (ICMC), Department of Biosciences and Nutrition, Karolinska Institutet, Blickagången 6, Novum, 7 floor Huddinge, Stockholm 14157, Sweden; Tel: +46-736707008; E-mail:
| |
Collapse
|
91
|
Xing F, Liu Y, Wu SY, Wu K, Sharma S, Mo YY, Feng J, Sanders S, Jin G, Singh R, Vidi PA, Tyagi A, Chan MD, Ruiz J, Debinski W, Pasche BC, Lo HW, Metheny-Barlow LJ, D'Agostino RB, Watabe K. Loss of XIST in Breast Cancer Activates MSN-c-Met and Reprograms Microglia via Exosomal miRNA to Promote Brain Metastasis. Cancer Res 2018; 78:4316-4330. [PMID: 30026327 PMCID: PMC6072593 DOI: 10.1158/0008-5472.can-18-1102] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
Up to 30% of patients with metastatic breast cancer eventually develop brain metastasis, yet the pathologic mechanism behind this development remains poorly understood. Here, we profiled long noncoding RNAs in brain metastatic tumors from patients with breast cancer and found that the X-inactive-specific transcript (XIST) was significantly downregulated in these tissues. XIST expression levels inversely correlated with brain metastasis, but not with bone metastasis in patients. Silencing of XIST preferentially promoted brain metastatic growth of XISThigh cells in our xenograft models. Moreover, knockout of XIST in mice mammary glands accelerated primary tumor growth as well as metastases in the brain. Decreased expression of XIST stimulated epithelial-mesenchymal transition and activated c-Met via MSN-mediated protein stabilization, which resulted in the promotion of stemness in the tumor cells. Loss of XIST also augmented secretion of exosomal miRNA-503, which triggered M1-M2 polarization of microglia. This M1-M2 conversion upregulated immune suppressive cytokines in microglia that suppressed T-cell proliferation. Furthermore, we screened an FDA-approved drug library and identified fludarabine as a synthetic lethal drug for XISTlow breast tumor cells and found that fludarabine blocked brain metastasis in our animal model. Our results indicate that XIST plays a critical role in brain metastasis in breast cancer by affecting both tumor cells and the tumor microenvironment and that the XIST-mediated pathway may serve as an effective target for treating brain metastasis.Significance: These findings describe mechanisms of how loss of the lncRNA XIST promotes brain metastasis in breast cancer and identify fludarabine as a potential therapeutic agent that specifically eliminates XISTlow tumor cells in the brain. Cancer Res; 78(15); 4316-30. ©2018 AACR.
Collapse
Affiliation(s)
- Fei Xing
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina.
| | - Yin Liu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Sambad Sharma
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Yin-Yuan Mo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jiamei Feng
- Mammary Department, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Stephanie Sanders
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Guangxu Jin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Pierre-Alexandre Vidi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Jimmy Ruiz
- Department of Hematology & Oncology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Boris C Pasche
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Linda J Metheny-Barlow
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Ralph B D'Agostino
- Biostatistical Sciences Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina.
| |
Collapse
|
92
|
Pharmacological reactivation of inactive X-linked Mecp2 in cerebral cortical neurons of living mice. Proc Natl Acad Sci U S A 2018; 115:7991-7996. [PMID: 30012595 DOI: 10.1073/pnas.1803792115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rett syndrome (RTT) is a genetic disorder resulting from a loss-of-function mutation in one copy of the X-linked gene methyl-CpG-binding protein 2 (MECP2). Typical RTT patients are females and, due to random X chromosome inactivation (XCI), ∼50% of cells express mutant MECP2 and the other ∼50% express wild-type MECP2. Cells expressing mutant MECP2 retain a wild-type copy of MECP2 on the inactive X chromosome (Xi), the reactivation of which represents a potential therapeutic approach for RTT. Previous studies have demonstrated reactivation of Xi-linked MECP2 in cultured cells by biological or pharmacological inhibition of factors that promote XCI (called "XCI factors" or "XCIFs"). Whether XCIF inhibitors in living animals can reactivate Xi-linked MECP2 in cerebral cortical neurons, the cell type most therapeutically relevant to RTT, remains to be determined. Here, we show that pharmacological inhibitors targeting XCIFs in the PI3K/AKT and bone morphogenetic protein signaling pathways reactivate Xi-linked MECP2 in cultured mouse fibroblasts and human induced pluripotent stem cell-derived postmitotic RTT neurons. Notably, reactivation of Xi-linked MECP2 corrects characteristic defects of human RTT neurons including reduced soma size and branch points. Most importantly, we show that intracerebroventricular injection of the XCIF inhibitors reactivates Xi-linked Mecp2 in cerebral cortical neurons of adult living mice. In support of these pharmacological results, we also demonstrate genetic reactivation of Xi-linked Mecp2 in cerebral cortical neurons of living mice bearing a homozygous XCIF deletion. Collectively, our results further establish the feasibility of pharmacological reactivation of Xi-linked MECP2 as a therapeutic approach for RTT.
Collapse
|
93
|
Donlic A, Hargrove AE. Targeting RNA in mammalian systems with small molecules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1477. [PMID: 29726113 PMCID: PMC6002909 DOI: 10.1002/wrna.1477] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/18/2022]
Abstract
The recognition of RNA functions beyond canonical protein synthesis has challenged the central dogma of molecular biology. Indeed, RNA is now known to directly regulate many important cellular processes, including transcription, splicing, translation, and epigenetic modifications. The misregulation of these processes in disease has led to an appreciation of RNA as a therapeutic target. This potential was first recognized in bacteria and viruses, but discoveries of new RNA classes following the sequencing of the human genome have invigorated exploration of its disease-related functions in mammals. As stable structure formation is evolving as a hallmark of mammalian RNAs, the prospect of utilizing small molecules to specifically probe the function of RNA structural domains and their interactions is gaining increased recognition. To date, researchers have discovered bioactive small molecules that modulate phenotypes by binding to expanded repeats, microRNAs, G-quadruplex structures, and RNA splice sites in neurological disorders, cancers, and other diseases. The lessons learned from achieving these successes both call for additional studies and encourage exploration of the plethora of mammalian RNAs whose precise mechanisms of action remain to be elucidated. Efforts toward understanding fundamental principles of small molecule-RNA recognition combined with advances in methodology development should pave the way toward targeting emerging RNA classes such as long noncoding RNAs. Together, these endeavors can unlock the full potential of small molecule-based probing of RNA-regulated processes and enable us to discover new biology and underexplored avenues for therapeutic intervention in human disease. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anita Donlic
- Department of Chemistry, Duke University, Durham, North Carolina
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
94
|
Jowhar Z, Gudla PR, Shachar S, Wangsa D, Russ JL, Pegoraro G, Ried T, Raznahan A, Misteli T. HiCTMap: Detection and analysis of chromosome territory structure and position by high-throughput imaging. Methods 2018; 142:30-38. [PMID: 29408376 PMCID: PMC5993577 DOI: 10.1016/j.ymeth.2018.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/15/2017] [Accepted: 01/25/2018] [Indexed: 12/23/2022] Open
Abstract
The spatial organization of chromosomes in the nuclear space is an extensively studied field that relies on measurements of structural features and 3D positions of chromosomes with high precision and robustness. However, no tools are currently available to image and analyze chromosome territories in a high-throughput format. Here, we have developed High-throughput Chromosome Territory Mapping (HiCTMap), a method for the robust and rapid analysis of 2D and 3D chromosome territory positioning in mammalian cells. HiCTMap is a high-throughput imaging-based chromosome detection method which enables routine analysis of chromosome structure and nuclear position. Using an optimized FISH staining protocol in a 384-well plate format in conjunction with a bespoke automated image analysis workflow, HiCTMap faithfully detects chromosome territories and their position in 2D and 3D in a large population of cells per experimental condition. We apply this novel technique to visualize chromosomes 18, X, and Y in male and female primary human skin fibroblasts, and show accurate detection of the correct number of chromosomes in the respective genotypes. Given the ability to visualize and quantitatively analyze large numbers of nuclei, we use HiCTMap to measure chromosome territory area and volume with high precision and determine the radial position of chromosome territories using either centroid or equidistant-shell analysis. The HiCTMap protocol is also compatible with RNA FISH as demonstrated by simultaneous labeling of X chromosomes and Xist RNA in female cells. We suggest HiCTMap will be a useful tool for routine precision mapping of chromosome territories in a wide range of cell types and tissues.
Collapse
MESH Headings
- Animals
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Chromosome Mapping/instrumentation
- Chromosome Mapping/methods
- Chromosomes, Human, Pair 18/genetics
- Chromosomes, Human, Pair 18/metabolism
- Chromosomes, Human, X/genetics
- Chromosomes, Human, X/metabolism
- Chromosomes, Human, Y/genetics
- Chromosomes, Human, Y/metabolism
- Female
- Fibroblasts
- Humans
- Image Processing, Computer-Assisted/instrumentation
- Image Processing, Computer-Assisted/methods
- In Situ Hybridization, Fluorescence/instrumentation
- In Situ Hybridization, Fluorescence/methods
- Male
- Primary Cell Culture/methods
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Skin/cytology
- Staining and Labeling/instrumentation
- Staining and Labeling/methods
Collapse
Affiliation(s)
- Ziad Jowhar
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Prabhakar R Gudla
- NCI High-throughput Imaging Facility, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Sigal Shachar
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Darawalee Wangsa
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Jill L Russ
- Human Genetics Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892, United States
| | - Gianluca Pegoraro
- NCI High-throughput Imaging Facility, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Thomas Ried
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Armin Raznahan
- Human Genetics Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892, United States
| | - Tom Misteli
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
95
|
Deobagkar D. Epigenetics with special reference to the human X chromosome inactivation and the enigma of Drosophila DNA methylation. J Genet 2018. [DOI: 10.1007/s12041-018-0937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
96
|
Chen W, Zhang X, Li J, Huang S, Xiang S, Hu X, Liu C. Comprehensive analysis of coding-lncRNA gene co-expression network uncovers conserved functional lncRNAs in zebrafish. BMC Genomics 2018; 19:112. [PMID: 29764394 PMCID: PMC5954278 DOI: 10.1186/s12864-018-4458-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Zebrafish is a full-developed model system for studying development processes and human disease. Recent studies of deep sequencing had discovered a large number of long non-coding RNAs (lncRNAs) in zebrafish. However, only few of them had been functionally characterized. Therefore, how to take advantage of the mature zebrafish system to deeply investigate the lncRNAs’ function and conservation is really intriguing. Results We systematically collected and analyzed a series of zebrafish RNA-seq data, then combined them with resources from known database and literatures. As a result, we obtained by far the most complete dataset of zebrafish lncRNAs, containing 13,604 lncRNA genes (21,128 transcripts) in total. Based on that, a co-expression network upon zebrafish coding and lncRNA genes was constructed and analyzed, and used to predict the Gene Ontology (GO) and the KEGG annotation of lncRNA. Meanwhile, we made a conservation analysis on zebrafish lncRNA, identifying 1828 conserved zebrafish lncRNA genes (1890 transcripts) that have their putative mammalian orthologs. We also found that zebrafish lncRNAs play important roles in regulation of the development and function of nervous system; these conserved lncRNAs present a significant sequential and functional conservation, with their mammalian counterparts. Conclusions By integrative data analysis and construction of coding-lncRNA gene co-expression network, we gained the most comprehensive dataset of zebrafish lncRNAs up to present, as well as their systematic annotations and comprehensive analyses on function and conservation. Our study provides a reliable zebrafish-based platform to deeply explore lncRNA function and mechanism, as well as the lncRNA commonality between zebrafish and human. Electronic supplementary material The online version of this article (10.1186/s12864-018-4458-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, China
| | - Xuan Zhang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jing Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Shulan Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, China
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, China.
| | - Changning Liu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
97
|
Richard JLC, Eichhorn PJA. Deciphering the roles of lncRNAs in breast development and disease. Oncotarget 2018; 9:20179-20212. [PMID: 29732012 PMCID: PMC5929455 DOI: 10.18632/oncotarget.24591] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the second leading cause of cancer related deaths in women. It is therefore important to understand the mechanisms underlying breast cancer development as well as raises the need for enhanced, non-invasive strategies for novel prognostic and diagnostic methods. The emergence of long non-coding RNAs (lncRNAs) as potential key players in neoplastic disease has received considerable attention over the past few years. This relatively new class of molecular regulators has been shown from ongoing research to act as critical players for key biological processes. Deregulated expression levels of lncRNAs have been observed in a number of cancers including breast cancer. Furthermore, lncRNAs have been linked to breast cancer initiation, progression, metastases and to limit sensitivity to certain targeted therapeutics. In this review we provide an update on the lncRNAs associated with breast cancer and mammary gland development and illustrate the versatility of such lncRNAs in gene control, differentiation and development both in normal physiological conditions and in diseased states. We also highlight the therapeutic and diagnostic potential of lncRNAs in cancer.
Collapse
Affiliation(s)
- John Lalith Charles Richard
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- Current Address: Genome Institute of Singapore, Agency for Science Technology and Research, 138672, Singapore
| | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- School of Pharmacy, Curtin University, Perth, 6845, Australia
| |
Collapse
|
98
|
Zhang H, Yang X, Feng X, Xu H, Yang Q, Zou L, Yan M, Liu D, Su X, Jiao B. Chromosome-wide gene dosage rebalance may benefit tumor progression. Mol Genet Genomics 2018; 293:895-906. [DOI: 10.1007/s00438-018-1429-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/09/2018] [Indexed: 01/22/2023]
|
99
|
Wang C, Zhu B, Xiong J. Recruitment and reinforcement: maintaining epigenetic silencing. SCIENCE CHINA-LIFE SCIENCES 2018; 61:515-522. [PMID: 29564598 DOI: 10.1007/s11427-018-9276-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 01/07/2023]
Abstract
Cells need to appropriately balance transcriptional stability and adaptability in order to maintain their identities while responding robustly to various stimuli. Eukaryotic cells use an elegant "epigenetic" system to achieve this functionality. "Epigenetics" is referred to as heritable information beyond the DNA sequence, including histone and DNA modifications, ncRNAs and other chromatin-related components. Here, we review the mechanisms of the epigenetic inheritance of a repressive chromatin state, with an emphasis on recent progress in the field. We emphasize that (i) epigenetic information is inherited in a relatively stable but imprecise fashion; (ii) multiple cis and trans factors are involved in the maintenance of epigenetic information during mitosis; and (iii) the maintenance of a repressive epigenetic state requires both recruitment and self-reinforcement mechanisms. These mechanisms crosstalk with each other and form interconnected feedback loops to shape a stable epigenetic system while maintaining certain degrees of flexibility.
Collapse
Affiliation(s)
- Chengzhi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
100
|
Wang J, Ye C, Xiong H, Shen Y, Lu Y, Zhou J, Wang L. Dysregulation of long non-coding RNA in breast cancer: an overview of mechanism and clinical implication. Oncotarget 2018; 8:5508-5522. [PMID: 27732939 PMCID: PMC5354927 DOI: 10.18632/oncotarget.12537] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/03/2016] [Indexed: 01/16/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), which occupy nearly 98% of genome, have crucial roles in cancer development, including breast cancer. Breast cancer is a disease with high incidence. Despite of recent progress in understanding the molecular mechanisms and combined therapy strategies, the functions and mechanisms of lncRNAs in breast cancer remains unclear. This review presents the currently basic knowledge and research approaches of lncRNAs. We also highlight the latest advances of seven classic lncRNAs and three novel lncRNAs in breast cancer, elucidating their mechanisms and possible therapeutic targets. Additionally, association between lncRNA and specific molecular subtype of breast cancer is reported. Lastly, we briefly delineate the potential roles of lncRNAs in clinical applications as biomarkers and treatment targets.
Collapse
Affiliation(s)
- Ji Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chenyang Ye
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanchu Xiong
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yong Shen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Lu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|