51
|
Li F, Lin YM, Sarna SK, Shi XZ. Cellular mechanism of mechanotranscription in colonic smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 2012; 303:G646-56. [PMID: 22700825 PMCID: PMC3468553 DOI: 10.1152/ajpgi.00440.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 06/12/2012] [Indexed: 01/31/2023]
Abstract
Mechanical stretch in obstruction induces expression of cyclooxygenase-2 (COX-2) in gut smooth muscle cells (SMCs). The stretch-induced COX-2 plays a critical role in motility dysfunction in obstructive bowel disorders (OBDs). The aims of the present study were to investigate the intracellular mechanism of mechanotranscription of COX-2 in colonic SMCs and to determine whether inhibition of mechanotranscription has therapeutic benefits in OBDs. Static stretch was mimicked in vitro in primary culture of rat colonic circular SMCs (RCCSMCs) and in colonic circular muscle strips. Partial obstruction was surgically induced with a silicon band in the distal colon of rats and COX-2-deficient mice. Static stretch of RCCSMCs significantly induced expression of COX-2 mRNA and protein and activated MAP kinases ERKs, p38, and JNKs. ERKs inhibitor PD98059, p38 inhibitor SB203580, and JNKs inhibitor SP600125 significantly blocked stretch-induced COX-2 expression. Pharmacological and molecular inhibition of stretch-activated ion channels (SACs) and integrins significantly suppressed stretch-induced expression of COX-2. SAC blockers inhibited stretch-activated ERKs, p38, and JNKs, but inhibition of integrins attenuated p38 activation only. In colonic circular muscle strips, stretch led to activation of MAPKs, induction of COX-2, and suppression of contractility. Inhibition of p38 with SB203580 blocked COX-2 expression and restored muscle contractility. Administration of SB203580 in vivo inhibited obstruction-induced COX-2 and improved motility function. Stretch-induced expression of COX-2 in RCCSMCs depends on mechanosensors, SACs, and integrins and an intracellular signaling mechanism involving MAPKs ERKs, p38, and JNKs. Inhibitors of the mechanotranscription pathway have therapeutic potentials for OBDs.
Collapse
Affiliation(s)
- Feng Li
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, 77555-0655, USA
| | | | | | | |
Collapse
|
52
|
Goswami C. TRPV1-tubulin complex: involvement of membrane tubulin in the regulation of chemotherapy-induced peripheral neuropathy. J Neurochem 2012; 123:1-13. [PMID: 22845740 DOI: 10.1111/j.1471-4159.2012.07892.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/16/2012] [Accepted: 07/19/2012] [Indexed: 12/18/2022]
Abstract
Existence of microtubule cytoskeleton at the membrane and submembranous regions, referred as 'membrane tubulin' has remained controversial for a long time. Since we reported physical and functional interaction of Transient Receptor Potential Vanilloid Sub Type 1 (TRPV1) with microtubules and linked the importance of TRPV1-tubulin complex in the context of chemotherapy-induced peripheral neuropathy, a few more reports have characterized this interaction in in vitro and in in vivo condition. However, the cross-talk between TRPs with microtubule cytoskeleton, and the complex feedback regulations are not well understood. Sequence analysis suggests that other than TRPV1, few TRPs can potentially interact with microtubules. The microtubule interaction with TRPs has evolutionary origin and has a functional significance. Biochemical evidence, Fluorescence Resonance Energy Transfer analysis along with correlation spectroscopy and fluorescence anisotropy measurements have confirmed that TRPV1 interacts with microtubules in live cell and this interaction has regulatory roles. Apart from the transport of TRPs and maintaining the cellular structure, microtubules regulate signaling and functionality of TRPs at the single channel level. Thus, TRPV1-tubulin interaction sets a stage where concept and parameters of 'membrane tubulin' can be tested in more details. In this review, I critically analyze the advancements made in biochemical, pharmacological, behavioral as well as cell-biological observations and summarize the limitations that need to be overcome in the future.
Collapse
Affiliation(s)
- Chandan Goswami
- National Institute of Science Education and Research, Bhubaneswar, Orissa, India.
| |
Collapse
|
53
|
Geffeney SL, Goodman MB. How we feel: ion channel partnerships that detect mechanical inputs and give rise to touch and pain perception. Neuron 2012; 74:609-19. [PMID: 22632719 DOI: 10.1016/j.neuron.2012.04.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
Every moment of every day, our skin and its embedded sensory neurons are bombarded with mechanical cues that we experience as pleasant or painful. Knowing the difference between innocuous and noxious mechanical stimuli is critical for survival and relies on the function of mechanoreceptor neurons that vary in their size, shape, and sensitivity. Their function is poorly understood at the molecular level. This review emphasizes the importance of integrating analysis at the molecular and cellular levels and focuses on the discovery of ion channel proteins coexpressed in the mechanoreceptors of worms, flies, and mice.
Collapse
Affiliation(s)
- Shana L Geffeney
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
54
|
Hoey DA, Downs ME, Jacobs CR. The mechanics of the primary cilium: an intricate structure with complex function. J Biomech 2011; 45:17-26. [PMID: 21899847 DOI: 10.1016/j.jbiomech.2011.08.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
Abstract
The primary cilium is a non-motile singular cellular structure that extends from the surface of nearly every cell in the body. The cilium has been shown to play numerous roles in maintaining tissue homeostasis, through regulating signaling pathways and sensing both biophysical and biochemical changes in the extracellular environment. The structural performance of the cilium is paramount to its function as defective cilia have been linked to numerous pathologies. In particular, the cilium has demonstrated a mechanosensory role in tissues such as the kidney, liver, endothelium and bone, where cilium deflection under mechanical loading triggers a cellular response. Understanding of how cilium structure and subsequent mechanical behavior contributes to the roles that cilium plays in regulating cellular behavior is a compelling question, yet is a relatively untouched research area. Recent advances in biophysical measurements have demonstrated the cilium to be a structurally intricate organelle containing an array of load bearing proteins. Furthermore advances in modeling of this organelle have revealed the importance of these proteins at regulating the cilium's mechanosensitivity. Remarkably, the cilium is capable of adapting its mechanical state, altering its length and possibly it's bending resistance, to regulate its mechanosensitivity demonstrating the importance of cilium mechanics in cellular responses. In this review, we introduce the cilium as a mechanosensor; discuss the advances in the mechanical modeling of cilia; explore the structural features of the cilium, which contribute to its mechanics and finish with possible mechanisms in which alteration in structure may affect ciliary mechanics, consequently affecting ciliary based mechanosensing.
Collapse
Affiliation(s)
- David A Hoey
- Department of Biomedical Engineering, Columbia University in the City of New York, NY, USA.
| | | | | |
Collapse
|
55
|
Relle M, Cash H, Brochhausen C, Strand D, Menke J, Galle PR, Schwarting A. New perspectives on the renal slit diaphragm protein podocin. Mod Pathol 2011; 24:1101-10. [PMID: 21499232 PMCID: PMC3182839 DOI: 10.1038/modpathol.2011.58] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Podocin is a critical component of the glomerular filtration barrier, its mutations causing recessive steroid-resistant nephrotic syndrome. A GenBank analysis of the human podocin (NPHS2) gene resulted in the possible existence of a new splice variant of podocin in the kidney, missing the in-frame of exon 5, encoding the prohibitin homology domain. Using RT-polymerase chain reaction and immunoblotting followed by sequence analysis, we are for the first time able to prove the expression of a novel podocin isoform (isoform 2), exclusively and constitutively expressed in human podocytes. Furthermore, we reveal singular extrarenal podocin expression in human and murine testis. Our data show the Sertoli cells of the seminiferous tubules to be the origin of testicular podocin. Confocal laser microscopy illustrates the co-localization of podocin with filamentous actin within Sertoli cells, suggesting a role of podocin in the blood/testis barrier. These results led to the rationale to examine podocin expression in testes of men with Sertoli cell-only syndrome, a disorder characterized by azoospermia. Interestingly, we observed a complete down-regulation of podocin mRNA in Sertoli cell-only syndrome, indicating a possible role of podocin in the pathogenesis of this germinal aplasia. Men with Sertoli cell-only syndrome show normal renal podocin expression, suggesting an alternate regulation of the testicular promoter. Our findings may change the perception of podocin and give new insights into the ultrastructure of glomerular slit diaphragm and the blood/testis barrier.
Collapse
Affiliation(s)
- Manfred Relle
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany.
| | - Hannes Cash
- Department of Urology, Charité-University Medicine, Berlin, Germany
| | | | - Dennis Strand
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Julia Menke
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Peter R Galle
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | | |
Collapse
|
56
|
Delmas P, Hao J, Rodat-Despoix L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 2011; 12:139-53. [PMID: 21304548 DOI: 10.1038/nrn2993] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The somatosensory system mediates fundamental physiological functions, including the senses of touch, pain and proprioception. This variety of functions is matched by a diverse array of mechanosensory neurons that respond to force in a specific fashion. Mechanotransduction begins at the sensory nerve endings, which rapidly transform mechanical forces into electrical signals. Progress has been made in establishing the functional properties of mechanoreceptors, but it has been remarkably difficult to characterize mechanotranducer channels at the molecular level. However, in the past few years, new functional assays have provided insights into the basic properties and molecular identity of mechanotransducer channels in mammalian sensory neurons. The recent identification of novel families of proteins as mechanosensing molecules will undoubtedly accelerate our understanding of mechanotransduction mechanisms in mammalian somatosensation.
Collapse
Affiliation(s)
- Patrick Delmas
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR 6231, Centre National de la Recherche Scientifique, Université de la Méditerranée, CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France.
| | | | | |
Collapse
|
57
|
|
58
|
Cheng LE, Song W, Looger LL, Jan LY, Jan YN. The role of the TRP channel NompC in Drosophila larval and adult locomotion. Neuron 2010; 67:373-80. [PMID: 20696376 DOI: 10.1016/j.neuron.2010.07.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2010] [Indexed: 01/15/2023]
Abstract
The generation of coordinated body movements relies on sensory feedback from mechanosensitive proprioceptors. We have found that the proper function of NompC, a putative mechanosensitive TRP channel, is not only required for fly locomotion, but also crucial for larval crawling. Calcium imaging revealed that NompC is required for the activation of two subtypes of sensory neurons during peristaltic muscle contractions. Having isolated a full-length nompC cDNA with a protein coding sequence larger than previously predicted, we demonstrate its function by rescuing locomotion defects in nompC mutants, and further show that antibodies against the extended C terminus recognize NompC in chordotonal ciliary tips. Moreover, we show that the ankyrin repeats in NompC are required for proper localization and function of NompC in vivo and are required for association of NompC with microtubules. Taken together, our findings suggest that NompC mediates proprioception in locomotion and support its role as a mechanosensitive channel.
Collapse
Affiliation(s)
- Li E Cheng
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
59
|
Calavia MG, Montaño JA, García-Suárez O, Feito J, Guervós MA, Germanà A, del Valle M, Pérez-Piñera P, Cobo J, Vega JA. Differential localization of Acid-sensing ion channels 1 and 2 in human cutaneus pacinian corpuscles. Cell Mol Neurobiol 2010; 30:841-8. [PMID: 20306292 PMCID: PMC11498808 DOI: 10.1007/s10571-010-9511-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 03/01/2010] [Indexed: 12/13/2022]
Abstract
Acid-sensing ion channels (ASICs) are the members of the degenerin/epithelial sodium channel (Deg/ENaC) superfamily which mediate different sensory modalities including mechanosensation. ASICs have been detected in mechanosensory neurons as well as in peripheral mechanoreceptors. We now investigated the distribution of ASIC1, ASIC2, and ASIC3 proteins in human cutaneous Pacinian corpuscles using immunohistochemistry and laser confocal-scanner microscopy. We detected different patterns of expression of these proteins within Pacinian corpuscles. ASIC1 was detected in the central axon co-expressed with RT-97 protein, ASIC2 was expressed by the lamellar cells of the inner core co-localized with S100 protein, and ASIC3 was absent. These results demonstrate for the first time the differential distribution of ASIC1 and ASIC2 in human rapidly adapting low-threshold mechanoreceptors, and suggest specific roles of both proteins in mechanotransduction.
Collapse
Affiliation(s)
- M. G. Calavia
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, s/n, 33006 Oviedo, Spain
| | - J. A. Montaño
- Departamento de Ciencias de la Salud, Universidad Católica “San Antonio”, Murcia, Spain
| | - O. García-Suárez
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, s/n, 33006 Oviedo, Spain
| | - J. Feito
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, s/n, 33006 Oviedo, Spain
| | - M. A. Guervós
- Servicio de Proceso de Imágenes, Servicios Científico-Técnicos, Universidad de Oviedo, Oviedo, Spain
| | - A. Germanà
- Dipartimento di MOBIFIPA, Sezione di Morfologia, e CISS (Centro di Ittiologia Sperimentale per la Sicilia), Facoltà di Medicina Veterinaria, Università degli Studi di Messina, Messina, Italy
| | - M. del Valle
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, s/n, 33006 Oviedo, Spain
| | - P. Pérez-Piñera
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, s/n, 33006 Oviedo, Spain
| | - J. Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain
- Instituto Asturiano de Odontología, Oviedo, Spain
| | - J. A. Vega
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, C/Julián Clavería, s/n, 33006 Oviedo, Spain
- IUOPA, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
60
|
Abstract
Mechanosensitive ion channels are gated directly by physical stimuli and transduce these stimuli into electrical signals. Several criteria must apply for a channel to be considered mechanically gated. Mechanosensitive channels from bacterial systems have met these criteria, but few eukaryotic channels have been confirmed by the same standards. Recent work has suggested or confirmed that diverse types of channels, including TRP channels, K(2P) channels, MscS-like proteins, and DEG/ENaC channels, are mechanically gated. Several studies point to the importance of the plasma membrane for channel gating, but intracellular and/or extracellular structures may also be required.
Collapse
Affiliation(s)
- Jóhanna Arnadóttir
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| | | |
Collapse
|
61
|
Zhong L, Hwang RY, Tracey WD. Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae. Curr Biol 2010; 20:429-34. [PMID: 20171104 DOI: 10.1016/j.cub.2009.12.057] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/29/2009] [Accepted: 12/30/2009] [Indexed: 11/17/2022]
Abstract
Highly branched class IV multidendritic sensory neurons of the Drosophila larva function as polymodal nociceptors that are necessary for behavioral responses to noxious heat (>39 degrees C) or noxious mechanical (>30 mN) stimuli. However, the molecular mechanisms that allow these cells to detect both heat and force are unknown. Here, we report that the pickpocket (ppk) gene, which encodes a Degenerin/Epithelial Sodium Channel (DEG/ENaC) subunit, is required for mechanical nociception but not thermal nociception in these sensory cells. Larvae mutant for pickpocket show greatly reduced nociception behaviors in response to harsh mechanical stimuli. However, pickpocket mutants display normal behavioral responses to gentle touch. Tissue-specific knockdown of pickpocket in nociceptors phenocopies the mechanical nociception impairment without causing defects in thermal nociception behavior. Finally, optogenetically triggered nociception behavior is unaffected by pickpocket RNAi, which indicates that ppk is not generally required for the excitability of the nociceptors. Interestingly, DEG/ENaCs are known to play a critical role in detecting gentle touch stimuli in Caenorhabditis elegans and have also been implicated in some aspects of harsh touch sensation in mammals. Our results suggest that neurons that detect harsh touch in Drosophila utilize similar mechanosensory molecules.
Collapse
Affiliation(s)
- Lixian Zhong
- Pharmacology Science Training Program, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
62
|
Simon A, Shenton F, Hunter I, Banks RW, Bewick GS. Amiloride-sensitive channels are a major contributor to mechanotransduction in mammalian muscle spindles. J Physiol 2009; 588:171-85. [PMID: 19917568 DOI: 10.1113/jphysiol.2009.182683] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We investigated whether channels of the epithelial sodium/amiloride-sensitive degenerin (ENaC/DEG) family are a major contributor to mechanosensory transduction in primary mechanosensory afferents, using adult rat muscle spindles as a model system. Stretch-evoked afferent discharge was reduced in a dose-dependent manner by amiloride and three analogues - benzamil, 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and hexamethyleneamiloride (HMA), reaching > or = 85% inhibition at 1 mm. Moreover, firing was slightly but significantly increased by ENaC delta subunit agonists (icilin and capsazepine). HMA's profile of effects was distinct from that of the other drugs. Amiloride, benzamil and EIPA significantly decreased firing (P < 0.01 each) at 1 microm, while 10 microm HMA was required for highly significant inhibition (P < 0.0001). Conversely, amiloride, benzamil and EIPA rarely blocked firing entirely at 1 mm, whereas 1 mm HMA blocked 12 of 16 preparations. This pharmacology suggests low-affinity ENaCs are the important spindle mechanotransducer. In agreement with this, immunoreactivity to ENaC alpha, beta and gamma subunits was detected both by Western blot and immunocytochemistry. Immunofluorescence intensity ratios for ENaC alpha, beta or gamma relative to the vesicle marker synaptophysin in the same spindle all significantly exceeded controls (P < 0.001). Ratios for the related brain sodium channel ASIC2 (BNaC1alpha) were also highly significantly greater (P < 0.005). Analysis of confocal images showed strong colocalisation within the terminal of ENaC/ASIC2 subunits and synaptophysin. This study implicates ENaC and ASIC2 in mammalian mechanotransduction. Moreover, within the terminals they colocalise with synaptophysin, a marker for the synaptic-like vesicles which regulate afferent excitability in these mechanosensitive endings.
Collapse
Affiliation(s)
- Anna Simon
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | | | | | |
Collapse
|
63
|
Berbari NF, O'Connor AK, Haycraft CJ, Yoder BK. The primary cilium as a complex signaling center. Curr Biol 2009; 19:R526-35. [PMID: 19602418 DOI: 10.1016/j.cub.2009.05.025] [Citation(s) in RCA: 477] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Respect for the primary cilium has undergone a remarkable renaissance over the past decade, and it is now thought to be an essential regulator of numerous signaling pathways. The primary cilium's functions range from the movement of cells and fluid, to sensory inputs involved with olfaction and photoreception. Disruption of cilia function is involved in multiple human syndromes collectively called 'ciliopathies'. The cilium's activities are mediated by targeting of receptors, channels, and their downstream effector proteins to the ciliary or basal body compartment. These combined properties of the cilium make it a critical organelle facilitating the interactions between the cell and its environment. Here, we review many of the recent advances contributing to the ascendancy of the primary cilium and how the extraordinary complexity of this organelle inevitably assures many more exciting future discoveries.
Collapse
Affiliation(s)
- Nicolas F Berbari
- Department of Cell Biology, University of Alabama at Birmingham, School of Medicine, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
64
|
Montaño JA, Calavia MG, García-Suárez O, Suarez-Quintanilla JA, Gálvez A, Pérez-Piñera P, Cobo J, Vega JA. The expression of ENa(+)C and ASIC2 proteins in Pacinian corpuscles is differently regulated by TrkB and its ligands BDNF and NT-4. Neurosci Lett 2009; 463:114-8. [PMID: 19646506 DOI: 10.1016/j.neulet.2009.07.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/13/2009] [Accepted: 07/24/2009] [Indexed: 12/11/2022]
Abstract
Pacinian corpuscles are innervated by large myelinated Aalpha-beta axons from the large- and intermediate-sized sensory neurons of dorsal root ganglia. These neurons express different members of the degenerin/epithelial Na(+) channel (DEG/ENa(+)C) superfamily of proteins with putative mechanosensory properties, whose expression is regulated by the TrkB-BDNF system. Thus, we hypothesized that BDNF and/or NT-4 signalling through activation of TrkB may regulate the expression of molecules supposed to be necessary for the mechanosensory function of Pacinian corpuscles. To test this hypothesis we analyzed the expression and distribution of ENa(+)C subunits and acid-sensing ion channel 2 (ASIC2) in Pacinian corpuscles from 25 days old mice deficient in TrkB, BDNF and NT-4. Pacinian corpuscles in these animals are normal in number, structure, and expression of several immunohistochemical markers. Using immunohistochemistry we observed that the beta-ENa(+)C and gamma-ENa(+)C subunits, but not the alpha-ENa(+)C subunit, were expressed in wild-type animals, and they were always found in the central axon. ASIC2 immunoreactivity was found in both the central axon and the inner core cells. The absence of TrkB or BDNF abolished expression of beta-ENa(+)C and ASIC2, whereas expression of gamma-ENa(+)C did not change. Expression of beta-ENa(+)C and gamma-ENa(+)C subunits in NT-4 deficient mice was found in the axons but also in the inner core cells whereas levels of expression of ASIC2 were increased in these animals. This study suggests that expression in Pacianian corpuscles of some potential mechanosensory proteins is regulated by BDNF, NT-4 and TrkB.
Collapse
Affiliation(s)
- J A Montaño
- Departamento de Ciencias de la Salud, Universidad Católica San Antonio, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Despite much work, subcellular neurons of Caenorhabditis elegans have not been studied at nanometer resolution with millisecond time resolution. Nor has there been an effective way to immobilize C. elegans. Here we show that, without using anesthetic or paralyzing agents, fluorescence imaging with one-nanometer accuracy (FIONA) can be successfully applied to fluorescently labeled molecules within C. elegans nerves. GFP- and DENDRA2-labeled ELKS punctae can be localized with sub-10 nm accuracy in approximately 5 ms. Our results show that the protein ELKS is occasionally transferred by microtubule-based motors. This is the first example of FIONA applied to a living organism.
Collapse
Affiliation(s)
- Comert Kural
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
66
|
Zagorodnyuk VP, Brookes SJH, Spencer NJ, Gregory S. Mechanotransduction and chemosensitivity of two major classes of bladder afferents with endings in the vicinity to the urothelium. J Physiol 2009; 587:3523-38. [PMID: 19470774 DOI: 10.1113/jphysiol.2009.172577] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The guinea pig bladder is innervated by at least five distinct major classes of extrinsic sensory neurons. In this study, we have examined the mechanisms of mechanotransduction and chemosensitivity of two classes of bladder afferents that have their endings in the vicinity of the urothelium: stretch-sensitive muscle-mucosal mechanoreceptors and stretch-insensitive, mucosal high-responding afferents. The non-selective P2 purinoreceptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid did not affect stretch- or stroking-induced firing of these afferents but significantly reduced the excitatory action of alpha,beta-methylene ATP. Blocking synaptic transmission in Ca(2+)-free solution did not affect stretch-evoked firing but slightly reduced stretch-induced tension responses. Stroking-induced firing of both classes of afferents was also not affected in Ca(2+)-free solution. Of blockers of mechano-gated channels, benzamil (100 microM), but not amiloride (100 microM), Gd(3+) (100 microM) or SKF 96365 (50 microM), inhibited stretch- and stroking-induced firing. Serotonin (100 microM) applied directly onto receptive fields predominantly activated muscle-mucosal afferents. Muscarine (100 microM) and substance P (100 microM) in 24% and 36% cases activated only mucosal high-responding units. Bradykinin (10 microM), but not prostaglandin E2 (10 microM), excites predominantly mucosal units. High (80 mM) K(+) solution activated both afferent classes, but responses of mucosal units were 4 times greater. In contrast to muscle-mucosal units, most mucosal high-responding units were activated by hot Krebs solution (45-46 degrees C), low pH (pH 4) and capsaicin (3 microm). TRPV1 antagonist, capsazepine (10 microM) was without effect on mechanotransduction by mucosal high-responding afferents. The results show that mechanotransduction of these two types of afferents are not dependant upon Ca(2+)-dependent exocytotic release of mediators, or ATP, and it is likely that benzamil-sensitive stretch-activated ion channels on their endings are involved in direct mechanotransduction. The chemosensitivity to agonists and noxious stimuli differs significantly between these two major classes of bladder afferents that reflects their different physiological and pathophysiological roles in the bladder.
Collapse
Affiliation(s)
- Vladimir P Zagorodnyuk
- Department of Human Physiology, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia.
| | | | | | | |
Collapse
|
67
|
Su Z, Zhou X, Loukin SH, Haynes WJ, Saimi Y, Kung C. The use of yeast to understand TRP-channel mechanosensitivity. Pflugers Arch 2009; 458:861-7. [PMID: 19462180 DOI: 10.1007/s00424-009-0680-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 04/30/2009] [Indexed: 01/04/2023]
Abstract
Mechanosensitive (MS) ion channels likely underlie myriad force-sensing processes, from basic osmotic regulation to specified sensations of animal hearing and touch. Albeit important, the molecular identities of many eukaryotic MS channels remain elusive, let alone their working mechanisms. This is in stark contrast to our advanced knowledge on voltage- or ligand-sensitive channels. Several members of transient receptor potential (TRP) ion channel family have been implicated to function in mechanosensation and are recognized as promising candidate MS channels. The yeast TRP homolog, TRPY1, is clearly a first-line force transducer. It can be activated by hypertonic shock in vivo and by membrane stretch force in excised patches under patch clamp, making it a useful model for understanding TRP channel mechanosensitivity in general. TRPY1 offers two additional research advantages: (1) It has a large ( approximately 300 pS) unitary conductance and therefore a favorable S/N ratio. (2) Budding yeast allows convenient and efficient genetic and molecular manipulations. In this review, we focus on the current research of TRPY1 and discuss its prospect. We also describe the use of yeast as a system to express and characterize animal TRP channels.
Collapse
Affiliation(s)
- Zhenwei Su
- Laboratory of Molecular Biology, 305 R.M. Bock Laboratories, 1525 Linden Drive, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
68
|
Vega JA, García-Suárez O, Montaño JA, Pardo B, Cobo JM. The Meissner and Pacinian sensory corpuscles revisited new data from the last decade. Microsc Res Tech 2009; 72:299-309. [PMID: 19012318 DOI: 10.1002/jemt.20651] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This article reviews the biochemical, physiological, and experimental data cumulated during the last decade on the Meissner and Pacinian corpuscles. It includes information about (i) the localization of molecules recently detected in sensory corpuscles; (ii) the unsolved problem of the accessory fibers in sensory corpuscles and the occurrence of myelin within them; (iii) the development of sensory corpuscles, especially their neuronal and growth factor dependency; (iv) the composition and functional significance of the extracellular matrix as an essential part of the mechanisms involved in the genesis of the stimuli generated in sensory corpuscles; (v) the molecular basis of mechanotransduction; (vi) a miscellaneous section containing sparse new data on the protein composition of sensory corpuscles, as well as in the proteins involved in live-death cell decisions; (vii) the changes in sensory corpuscles as a consequence of aging, the central, or peripheral nervous system injury; and finally, (viii) the special interest of Meissner corpuscles and Pacinian corpuscles for pathologists for the diagnosis of some peripheral neuropathies and neurodegenerative diseases.
Collapse
Affiliation(s)
- José A Vega
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain.
| | | | | | | | | |
Collapse
|
69
|
Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development. EMBO J 2009; 28:1479-91. [PMID: 19322198 PMCID: PMC2664657 DOI: 10.1038/emboj.2009.73] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 02/24/2009] [Indexed: 01/30/2023] Open
Abstract
Somatic sensation relies on the transduction of physical stimuli into electrical signals by sensory neurons of the dorsal root ganglia. Little is known about how and when during development different types of sensory neurons acquire transduction competence. We directly investigated the emergence of electrical excitability and mechanosensitivity of embryonic and postnatal mouse sensory neurons. We show that sensory neurons acquire mechanotransduction competence coincident with peripheral target innervation. Mechanotransduction competence arises in different sensory lineages in waves, coordinated by distinct developmental mechanisms. Sensory neurons that are mechanoreceptors or proprioceptors acquire mature mechanotransduction indistinguishable from the adult already at E13. This process is independent of neurotrophin-3 and may be driven by a genetic program. In contrast, most nociceptive (pain sensing) sensory neurons acquire mechanosensitive competence as a result of exposure to target-derived nerve growth factor. The highly regulated process of mechanosensory acquisition unveiled here, reveals new strategies to identify molecules required for sensory neuron mechanotransduction.
Collapse
|
70
|
Abstract
Neurons that sense touch, sound and acceleration respond rapidly to specific mechanical signals. The proteins that transduce these signals and underlie these senses, however, are mostly unknown. Research over the past decade has suggested that members of three families of channel proteins are candidate transduction molecules. Current studies are directed towards characterizing these candidates, determining how they are mechanically gated and discovering new molecules that are involved in mechanical sensing.
Collapse
Affiliation(s)
- Martin Chalfie
- Columbia University, Department of Biological Sciences, 1012 Fairchild Center, M.C. 2446, New York, New York 10027, USA.
| |
Collapse
|
71
|
Hueston JL, Herren GP, Cueva JG, Buechner M, Lundquist EA, Goodman MB, Suprenant KA. The C. elegans EMAP-like protein, ELP-1 is required for touch sensation and associates with microtubules and adhesion complexes. BMC DEVELOPMENTAL BIOLOGY 2008; 8:110. [PMID: 19014691 PMCID: PMC2642796 DOI: 10.1186/1471-213x-8-110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 11/17/2008] [Indexed: 01/01/2023]
Abstract
Background The founding member of the EMAP-like protein family is the Echinoderm Microtubule-Associated Protein (EMAP), so-named for its abundance in sea urchin, starfish, and sand dollar eggs. The EMAP-like protein family has five members in mammals (EML1 through EML5) and only one in both Drosophila (ELP-1) and C. elegans (ELP-1). Biochemical studies of sea urchin EMAP and vertebrate EMLs implicate these proteins in the regulation of microtubule stability. So far, however, the physiological function of this protein family remains unknown. Results We examined the expression pattern of C. elegans ELP-1 by means of transgenic gene expression in living embryos and adults, and by immunolocalization with an ELP-1-specific antibody in fixed tissues. In embryos, ELP-1 is expressed in the hypodermis. In larvae and adults, ELP-1 is expressed in the body wall, spermatheca and vulval muscles, intestine, and hypodermal seam cells. In muscle, ELP-1 is associated with adhesion complexes near the cell surface and is bound to a criss-crossing network of microtubules in the cytoplasm. ELP-1 is also expressed in a subset of mechanoreceptor neurons, including the ray neurons in the male tail, microtubule-rich touch receptor neurons, and the six ciliated IL1 neurons. This restricted localization in the nervous system implies that ELP-1 plays a role in mechanotransmission. Consistent with this idea, decreasing ELP-1 expression decreases sensitivity to gentle touch applied to the body wall. Conclusion These data imply that ELP-1 may play an important role during the transmission of forces and signals between the body surface and both muscle cells and touch receptor neurons.
Collapse
Affiliation(s)
- Jennifer L Hueston
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA.
| | | | | | | | | | | | | |
Collapse
|
72
|
Gordon P, Hingula L, Krasny ML, Swienckowski JL, Pokrywka NJ, Raley-Susman KM. The invertebrate microtubule-associated protein PTL-1 functions in mechanosensation and development in Caenorhabditis elegans. Dev Genes Evol 2008; 218:541-51. [PMID: 18807071 PMCID: PMC2701354 DOI: 10.1007/s00427-008-0250-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
PTL-1, a microtubule-associated protein of the structural MAP2/tau family, is the sole member of this gene family in Caenorhabditis elegans. Sequence analysis of available invertebrate genomes revealed a number of single, putative tau-like genes with high similarity to ptl-1. The ptl-1 gene is expressed in a number of cells, most notably mechanosensory neurons. We examined the role of ptl-1 in C. elegans in adult neurons as well as during development. A ptl-1 knockout strain of worms exhibited an egg-hatching defect, as well as a reduced sensitivity to touch stimuli. In addition, the knockout allele ptl-1(ok621) acts as a dominant enhancer of several temperature-sensitive alleles of mec-7 and mec-12, which code the isoforms of beta-tubulin and alpha-tubulin that together form the unusual 15 protofilament microtubules involved in touch sensation. These results demonstrate for the first time a functional role for this microtubule-associated protein in nematodes and suggest that PTL-1 is involved in mechanosensation as well as some aspect of embryogenesis.
Collapse
Affiliation(s)
- Patricia Gordon
- Department of Biology, Vassar College, Poughkeepsie NY 12604
| | - Lee Hingula
- Department of Biology, Vassar College, Poughkeepsie NY 12604
| | | | | | | | | |
Collapse
|
73
|
Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat Cell Biol 2008; 10:1172-80. [PMID: 18758451 DOI: 10.1038/ncb1777] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 08/05/2008] [Indexed: 11/08/2022]
Abstract
Axons and dendrites differ in both microtubule organization and in the organelles and proteins they contain. Here we show that the microtubule motor dynein has a crucial role in polarized transport and in controlling the orientation of axonal microtubules in Drosophila melanogaster dendritic arborization (da) neurons. Changes in organelle distribution within the dendritic arbors of dynein mutant neurons correlate with a proximal shift in dendritic branch position. Dynein is also necessary for the dendrite-specific localization of Golgi outposts and the ion channel Pickpocket. Axonal microtubules are normally oriented uniformly plus-end-distal; however, without dynein, axons contain both plus- and minus-end distal microtubules. These data suggest that dynein is required for the distinguishing properties of the axon and dendrites: without dynein, dendritic organelles and proteins enter the axon and the axonal microtubules are no longer uniform in polarity.
Collapse
|
74
|
Drummond HA, Grifoni SC, Jernigan NL. A new trick for an old dogma: ENaC proteins as mechanotransducers in vascular smooth muscle. Physiology (Bethesda) 2008; 23:23-31. [PMID: 18268362 DOI: 10.1152/physiol.00034.2007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Myogenic constriction is a vasoconstriction of blood vessels to increases in perfusion pressure. In renal preglomerular vasculature, it is an established mechanism of renal blood flow autoregulation. Recently, myogenic constriction has been identified as an important protective mechanism, preventing the transmission of systemic pressure to the fragile glomerular vasculature. Although the signal transduction pathways mediating vasoconstriction are well known, how the increases in pressure trigger vasoconstriction is unclear. The response is initiated by pressure-induced stretch of the vessel wall and thus is dependent on mechanical signaling. The identity of the sensor detecting VSMC stretch is unknown. Previous studies have considered the role of extracellular matrix-integrin interactions, ion conduction units (channels and/or transporters), and the cytoskeleton as pressure detectors. Whether, and how, these structures fit together in VSMCs is poorly understood. However, a model of mechanotransduction in the nematode Caenorhadbditis elegans (C. elegans) has been established that ties together extracellular matrix, ion channels, and cytoskeletal proteins into a large mechanosensing complex. In the C. elegans mechanotransducer model, a family of evolutionarily conserved proteins, referred to as the DEG/ENaC/ASIC family, form the ion-conducting pore of the mechanotransducer. Members of this protein family are expressed in VSMC where they may participate in pressure detection. This review will address how the C. elegans mechanotransducer model can be used to model pressure detection in mammalian VSMCs and provide a new perspective to pressure detection in VSMCs.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, and Center for Excellence in Cardio-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | | | |
Collapse
|
75
|
Wu X, Morgan KG, Jones CJ, Tribe RM, Taggart MJ. Myometrial mechanoadaptation during pregnancy: implications for smooth muscle plasticity and remodelling. J Cell Mol Med 2008; 12:1360-73. [PMID: 18363833 PMCID: PMC2729593 DOI: 10.1111/j.1582-4934.2008.00306.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The smooth muscle of the uterus during pregnancy presents a unique circumstance of physiological mechanotransduction as the tissue remodels in response to stretches imposed by the growing foetus(es), yet the nature of the molecular and functional adaptations remain unresolved. We studied, in myometrium isolated from non-pregnant (NP) and pregnant mice, the active and passive length–tension curves by myography and the expression and activation by immunoblotting of focal adhesion-related proteins known in other systems to participate in mechanosensing and mechanotransduction. In situ uterine mass correlated with pup number and weight throughout pregnancy. In vitro myometrial active, and passive, length-tension curves shifted significantly to the right during pregnancy indicative of altered mechanosensitivity; at term, maximum active tension was generated following 3.94 ± 0.33-fold stretch beyond slack length compared to 1.91 ± 0.12-fold for NP mice. Moreover, mechanotransduction was altered during pregnancy as evidenced by the progressive increase in absolute force production at each optimal stretch. Pregnancy was concomitantly associated with an increased expression of the dense plaque-associated proteins FAK and paxillin, and elevated activation of FAK, paxillin, c-Src and extracellular signal-regulated kinase (ERK1/2) which reversed 1 day post-partum. Electron microscopy revealed close appositioning of neighbouring myometrial cells across a narrow extracellular cleft adjoining plasmalemmal dense plaques. Collectively, these results suggest a physiological basis of myometrial length adaptation, long known to be a property of many smooth muscles, whereupon plasmalemmal dense plaque proteins serve as molecular signalling and structural platforms contributing to functional (contractile) remodelling in response to chronic stretch.
Collapse
Affiliation(s)
- X Wu
- School of Clinical & Laboratory Sciences, University of Manchester, Great Britain
| | | | | | | | | |
Collapse
|
76
|
Nanoscale organization of the MEC-4 DEG/ENaC sensory mechanotransduction channel in Caenorhabditis elegans touch receptor neurons. J Neurosci 2008; 27:14089-98. [PMID: 18094248 DOI: 10.1523/jneurosci.4179-07.2007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hearing, touch and proprioception are thought to involve direct activation of mechano-electrical transduction (MeT) channels. In Caenorhabditis elegans touch receptor neurons (TRNs), such channels contain two pore-forming subunits (MEC-4 and MEC-10) and two auxiliary subunits (MEC-2 and MEC-6). MEC-4 and MEC-10 belong to a large superfamily of ion channel proteins (DEG/ENaCs) that form nonvoltage-gated, amiloride-sensitive Na+ channels. In TRNs, unique 15-protofilament microtubules and an electron-dense extracellular matrix have been proposed to serve as gating tethers critical for MeT channel activation. We combined high-pressure freezing and serial-section immunoelectron microscopy to determine the position of MeT channels relative to putative gating tethers. MeT channels were visualized using antibodies against MEC-4 and MEC-2. This nanometer-resolution view of a sensory MeT channel establishes structural constraints on the mechanics of channel gating. We show here that MEC-2 and MEC-5 collagen, a putative extracellular tether, occupy overlapping but distinct domains in TRN neurites. Although channels decorate all sides of TRN neurites; they are not associated with the distal endpoints of 15-protofilament microtubules hypothesized to be gating tethers. These specialized microtubules, which are unique to TRNs, assemble into a cross-linked bundle connected by a network of kinked filaments to the neurite membrane. We speculate that the microtubule bundle converts external point loads into membrane stretch which, in turn, facilitates MeT channel activation.
Collapse
|
77
|
Li J, Zhao Z, Wang J, Chen G, Yang J, Luo S. The role of extracellular matrix, integrins, and cytoskeleton in mechanotransduction of centrifugal loading. Mol Cell Biochem 2007; 309:41-8. [PMID: 18026855 DOI: 10.1007/s11010-007-9641-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 10/18/2007] [Indexed: 12/24/2022]
Abstract
The study was aimed to investigate the role of the "extracellular matrix (ECM)-integrins-cytoskeleton" signal pathway in mechanotransduction of centrifugal loading. MG-63 osteoblasts were exposed to centrifugal loading at 209xg for 10 min. Uncentrifuged cells and centrifuged cells that have been trypsinized and suspended in liquors were designed as control. The changes in F-actin and alpha-actin cytoskeleton, gene transcription of ECM components, and integrins expression were analyzed by LSCM, Real-Time RT-PCR and FCM, respectively. A temporary and fast reversible change was observed in F-actin and alpha-actin cytoskeleton. And the change was paralleled with the fast autoregulation in gene transcription of ECM components of fibronection, osteopontin and Collagen I, and integrins expression of both alpha2 and beta1 subunits. The result suggested that cytoskeleton was a possible mechanical sensor to centrifugal stimuli, and the cytoskeleton regulation to centrifugal loading was in an ECM-dependent and integrin-mediated manner.
Collapse
Affiliation(s)
- Juan Li
- Department of Orthodontics, West China College of Stomatology, Sichuan University, 14#, 3rd section, Renmin South Road, Chengdu 610041, PR China
| | | | | | | | | | | |
Collapse
|
78
|
Martinez-Salgado C, Benckendorff AG, Chiang LY, Wang R, Milenkovic N, Wetzel C, Hu J, Stucky CL, Parra MG, Mohandas N, Lewin GR. Stomatin and sensory neuron mechanotransduction. J Neurophysiol 2007; 98:3802-8. [PMID: 17942620 DOI: 10.1152/jn.00860.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Somatic sensory neurons of the dorsal root ganglia are necessary for a large part of our mechanosensory experience. However, we only have a good knowledge of the molecules required for mechanotransduction in simple invertebrates such as the nematode Caenorhabiditis elegans. In C. elegans, a number of so-called mec genes have been isolated that are required for the transduction of body touch. One such gene, mec-2 codes for an integral membrane protein of the stomatin family, a large group of genes with a stomatin homology domain. Using stomatin null mutant mice, we have tested the hypothesis that the founding member of this family, stomatin might play a role in the transduction of mechanical stimuli by primary sensory neurons. We used the in vitro mouse skin nerve preparation to record from a large population of low- and high-threshold mechanoreceptors with myelinated A-fiber (n = 553) and unmyelinated C-fiber (n = 157) axons. One subtype of mechanoreceptor, the d-hair receptor, which is a rapidly adapting mechanoreceptor, had reduced sensitivity to mechanical stimulation in the absence of stomatin. Other cutaneous mechanoreceptors, including nociceptive C-fibers were not affected by the absence of a functional stomatin protein. Patch-clamp analysis of presumptive D-hair receptor mechanoreceptive neurons, which were identified by a characteristic rosette morphology in culture, showed no change in membrane excitability in the absence of the stomatin protein. We conclude that stomatin is required for normal mechanotransduction in a subpopulation of vertebrate sensory neurons.
Collapse
Affiliation(s)
- Carlos Martinez-Salgado
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Robert-Rössle Str, Berlin-Buch, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Browman DT, Hoegg MB, Robbins SM. The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol 2007; 17:394-402. [PMID: 17766116 DOI: 10.1016/j.tcb.2007.06.005] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 06/06/2007] [Accepted: 06/06/2007] [Indexed: 01/03/2023]
Abstract
Membrane microdomains with distinct lipid compositions, called lipid rafts, represent a potential mechanism for compartmentalizing cellular functions within the plane of biological membranes. SPFH domain-containing proteins are found in lipid raft microdomains in diverse cellular membranes. The functions of these proteins are just beginning to be elucidated. Recent advances in the understanding of structural features and their roles within lipid rafts include a potential function for SPFH proteins in the formation of membrane microdomains and lipid raft-associated processes, such as endocytosis and mechanosensation.
Collapse
Affiliation(s)
- Duncan T Browman
- Southern Alberta Cancer Research Institute, Department of Oncology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | | | | |
Collapse
|
80
|
Drew LJ, Rugiero F, Cesare P, Gale JE, Abrahamsen B, Bowden S, Heinzmann S, Robinson M, Brust A, Colless B, Lewis RJ, Wood JN. High-threshold mechanosensitive ion channels blocked by a novel conopeptide mediate pressure-evoked pain. PLoS One 2007; 2:e515. [PMID: 17565368 PMCID: PMC1885214 DOI: 10.1371/journal.pone.0000515] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 05/04/2007] [Indexed: 11/18/2022] Open
Abstract
Little is known about the molecular basis of somatosensory mechanotransduction in mammals. We screened a library of peptide toxins for effects on mechanically activated currents in cultured dorsal root ganglion neurons. One conopeptide analogue, termed NMB-1 for noxious mechanosensation blocker 1, selectively inhibits (IC50 1 µM) sustained mechanically activated currents in a subset of sensory neurons. Biotinylated NMB-1 retains activity and binds selectively to peripherin-positive nociceptive sensory neurons. The selectivity of NMB-1 was confirmed by the fact that it has no inhibitory effects on voltage-gated sodium and calcium channels, or ligand-gated channels such as acid-sensing ion channels or TRPA1 channels. Conversely, the tarantula toxin, GsMTx-4, which inhibits stretch-activated ion channels, had no effects on mechanically activated currents in sensory neurons. In behavioral assays, NMB-1 inhibits responses only to high intensity, painful mechanical stimulation and has no effects on low intensity mechanical stimulation or thermosensation. Unexpectedly, NMB-1 was found to also be an inhibitor of rapid FM1-43 loading (a measure of mechanotransduction) in cochlear hair cells. These data demonstrate that pharmacologically distinct channels respond to distinct types of mechanical stimuli and suggest that mechanically activated sustained currents underlie noxious mechanosensation. NMB-1 thus provides a novel diagnostic tool for the molecular definition of channels involved in hearing and pressure-evoked pain.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Behavior, Animal/drug effects
- Cells, Cultured
- Electrophysiology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/metabolism
- Intercellular Signaling Peptides and Proteins
- Ion Channels/drug effects
- Male
- Mechanotransduction, Cellular/drug effects
- Mice
- Mice, Inbred C57BL
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Pain/drug therapy
- Peptide Fragments/pharmacology
- Peptides/pharmacology
- Rats
- Rats, Sprague-Dawley
- Spider Venoms/pharmacology
Collapse
Affiliation(s)
- Liam J. Drew
- Department of Biology, University College London, London, United Kingdom
| | - Francois Rugiero
- Department of Biology, University College London, London, United Kingdom
| | - Paolo Cesare
- Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello, Rome, Italy
| | - Jonathan E. Gale
- Centre for Auditory Research, University College London Ear Institute, London, United Kingdom
| | - Bjarke Abrahamsen
- Department of Biology, University College London, London, United Kingdom
| | - Sarah Bowden
- Ionix Pharmaceuticals Ltd, Cambridge, United Kingdom
| | | | - Michelle Robinson
- Department of Biology, University College London, London, United Kingdom
| | | | | | - Richard J. Lewis
- Xenome Ltd, Indooroopilly, Queensland, Australia
- Institute for Molecular Bioscience and School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - John N. Wood
- Department of Biology, University College London, London, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
81
|
Althaus M, Bogdan R, Clauss WG, Fronius M. Mechano-sensitivity of epithelial sodium channels (ENaCs): laminar shear stress increases ion channel open probability. FASEB J 2007; 21:2389-99. [PMID: 17426066 DOI: 10.1096/fj.06-7694com] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epithelial cells are exposed to a variety of mechanical forces, but little is known about the impact of these forces on epithelial ion channels. Here we show that mechanical activation of epithelial sodium channels (ENaCs), which are essential for electrolyte and water balance, occurs via an increased ion channel open probability. ENaC activity of heterologously expressed rat (rENaC) and Xenopus (xENaC) orthologs was measured by whole-cell as well as single-channel recordings. Laminar shear stress (LSS), producing shear forces in physiologically relevant ranges, was used to mechanically stimulate ENaCs and was able to activate ENaC currents in whole-cell recordings. Preceding pharmacological activation of rENaC with Zn2+ and xENaC with gadolinium and glibenclamide largely prevented LSS-activated currents. In contrast, proteolytic cleavage with trypsin potentiated the LSS effect on rENaC whereas the LSS effect on xENaC was reversed (inhibition of xENaC current). Further, we found that exposure of excised outside-out patches to LSS led to an increased ion channel open probability without affecting the number of active channels. We suggest that mechano-sensitivity of ENaC may represent a ubiquitous feature for the physiology of epithelia, providing a putative mechanism for coupling transepithelial Na+ reabsorption to luminal transport.
Collapse
Affiliation(s)
- Mike Althaus
- Institute of Animal Physiology, Justus-Liebig University Giessen, Wartweg 95, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
82
|
Abstract
The ability to detect changes in temperature is a fundamental sensory mechanism for every species and provides organisms with a detailed view of the environment. This review focuses on what is known of the neuronal and molecular substrates for thermosensation across species, focusing on the three robust model systems extensively used to study sensory signaling, the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the laboratory mouse. Nematodes migrate to thermal climes that are amenable to their survival, a behavior that is regulated primarily through a single sensory neuron. Additionally, nematodes "learn" to seek out this temperate zone based upon their prior experience, a robust model of learning and memory. Drosophila larvae also prefer select thermal zones that are optimal for growth and have also developed vigorous mechanisms to avoid unfavorable conditions. In mammals, the transduction mechanisms for thermosensation have been identified primarily due to the fact that naturally occurring plant products evoke distinct psychophysical sensation of temperature change. More remarkably, the elucidation of the molecular sensors in mammals, along with those in Drosophila, has demonstrated conservation in the molecular mediators of temperature sensation across diverse species.
Collapse
Affiliation(s)
- David D McKemy
- Neurobiology Section, Department of Biological Sciences, School of Dentistry, University of Southern California, 925 West 34th Street, Los Angeles, CA 90089, USA.
| |
Collapse
|
83
|
MechanoTRPs and TRPA1. CURRENT TOPICS IN MEMBRANES 2007. [PMID: 25168138 DOI: 10.1016/s1063-5823(06)59008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Genetic and molecular searches in animals identify two families of ion channels used by specialized mechanosensory cells. These are the degenerin/epithelial Na+ channels (Deg/ENaCs) and transient receptor potential (TRP) channels. Some of these channels open in response to mechanical forces and/or mediate cellular responses to mechanical stimulation. TRPA1 is expressed in nociceptive neurons of peripheral ganglia and in the sensory epithelia of the inner ear. In nociceptors, TRPA1 forms chemosensitive channels that mediate the response to exogenous pain-producing chemicals as well as to the endogenous proalgesic bradykinin (BK). More indirect evidence suggests that TRPA1 might also form mechanosensory channels. Some of the TRP channels that mediate mechanical responses are not necessarily mechanically gated. For example, TRPV4 mutant mice have reduced sensitivity to noxious tactile stimulation, and heterologously expressed TRPV4 opens in response to hypotonic solution (which induces cell swelling and thus stretches membranes). TRPA1 genes in mammals are large, occupy around 50kb of chromosomal DNA and are encoded by at least 27 exons. In humans, the TRPA1 gene is located on chromosome 8q13.
Collapse
|
84
|
Abstract
Light touch, a sense of muscle position, and the responses to tissue-damaging levels of pressure all involve mechanosensitive sensory neurons that originate in the dorsal root or trigeminal ganglia. A variety of mechanisms of mechanotransduction are proposed. These ranges from direct activation of mechanically activated channels at the tips of sensory neurons to indirect effects of intracellular mediators, or chemical signals released from distended tissues, or specialized mechanosensory end organs. This chapter describes the properties of mechanosensitive channels present in sensory neurons and the potential molecular candidates that may underlie. Mechanically regulated electrical activity by touch and tissue damaging levels of pressure in sensory neurons seems to involve a variety of direct and indirect mechanisms and ion channels, and the involvement of specialized end organs in mechanotransduction complicates matters even more. Imaging studies are providing useful information about the events in the central nervous system associated with touch pain and allodynia (a pathological state where touch becomes painful this type of activity).
Collapse
Affiliation(s)
- Liam J Drew
- Molecular Nociception Group, Biology Department, University College London, London WC1E 6BT, United Kingdom
| | - Francois Rugiero
- Molecular Nociception Group, Biology Department, University College London, London WC1E 6BT, United Kingdom
| | - John N Wood
- Molecular Nociception Group, Biology Department, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
85
|
Bazopoulou D, Tavernarakis N. Mechanosensitive Ion Channels in Caenorhabditis elegans. CURRENT TOPICS IN MEMBRANES 2007; 59:49-79. [PMID: 25168133 DOI: 10.1016/s1063-5823(06)59003-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Caenorhabditis elegans depends critically on mechanosensory perception to negotiate its natural habitat, the soil. The worm displays a rich repertoire of mechanosensitive behaviors, which can be easily examined in the laboratory. This, coupled with the availability of sophisticated genetic and molecular biology tools, renders C. elegans a particularly attractive model organism to study the transduction of mechanical stimuli to biological responses. Systematic genetic analysis has facilitated the dissection of the molecular mechanisms that underlie mechanosensation in the nematode. Studies of various worm mechanosensitive behaviors have converged to identify highly specialized plasma membrane ion channels that are required for the conversion of mechanical energy to cellular signals. Strikingly, similar mechanosensitive ion channels appear to function at the core of the mechanotransduction apparatus in higher organisms, including humans. Thus, the mechanisms responsible for the detection of mechanical stimuli are likely conserved across metazoans. The nematode offers a powerful platform for elucidating the fundamental principles that govern the function of metazoan mechanotransducers. This chapter evaluates the current understanding of mechanotransduction in C. elegans and focuses on the role of mechanosensitive ion channels in specific mechanosensory behavioral responses. The chapter also outlines potential unifying themes, common to mechanosensory transduction in diverse species.
Collapse
Affiliation(s)
- Dafne Bazopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 71110, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 71110, Crete, Greece
| |
Collapse
|
86
|
ENaC Proteins in Vascular Smooth Muscle Mechanotransduction. CURRENT TOPICS IN MEMBRANES 2007; 59:127-53. [DOI: 10.1016/s1063-5823(06)59006-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
87
|
Wetzel C, Hu J, Riethmacher D, Benckendorff A, Harder L, Eilers A, Moshourab R, Kozlenkov A, Labuz D, Caspani O, Erdmann B, Machelska H, Heppenstall PA, Lewin GR. A stomatin-domain protein essential for touch sensation in the mouse. Nature 2006; 445:206-9. [PMID: 17167420 DOI: 10.1038/nature05394] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 10/30/2006] [Indexed: 11/09/2022]
Abstract
Touch and mechanical pain are first detected at our largest sensory surface, the skin. The cell bodies of sensory neurons that detect such stimuli are located in the dorsal root ganglia, and subtypes of these neurons are specialized to detect specific modalities of mechanical stimuli. Molecules have been identified that are necessary for mechanosensation in invertebrates but so far not in mammals. In Caenorhabditis elegans, mec-2 is one of several genes identified in a screen for touch insensitivity and encodes an integral membrane protein with a stomatin homology domain. Here we show that about 35% of skin mechanoreceptors do not respond to mechanical stimuli in mice with a mutation in stomatin-like protein 3 (SLP3, also called Stoml3), a mammalian mec-2 homologue that is expressed in sensory neurons. In addition, mechanosensitive ion channels found in many sensory neurons do not function without SLP3. Tactile-driven behaviours are also impaired in SLP3 mutant mice, including touch-evoked pain caused by neuropathic injury. SLP3 is therefore indispensable for the function of a subset of cutaneous mechanoreceptors, and our data support the idea that this protein is an essential subunit of a mammalian mechanotransducer.
Collapse
Affiliation(s)
- Christiane Wetzel
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Sun HW, Li CJ, Chen HQ, Lin HL, Lv HX, Zhang Y, Zhang M. Involvement of integrins, MAPK, and NF-kappaB in regulation of the shear stress-induced MMP-9 expression in endothelial cells. Biochem Biophys Res Commun 2006; 353:152-8. [PMID: 17174275 DOI: 10.1016/j.bbrc.2006.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
Variations in the matrix metalloproteinase (MMP)-9 gene are related to the presence and severity of atherosclerosis. The aim of this study was to determine the signaling pathways of MMP-9 in endothelial cells subjected to low fluid shear stress. We found that low fluid shear stress significantly increased MMP-9 expression, IkappaBalpha degradation, NF-kappaB DNA-binding activity and phosphorylation of MAPK in cultured human umbilical vein endothelial cells (HUVECs). Inhibition of NF-kappaB resulted in remarkable downregulation of stress-induced MMP-9 expression. Pretreatment of HUVECs with inhibitors of p38 mitogen-activating protein kinase (MAPK) and extracellular signal-regulated kinase1/2 (ERK1/2) also led to significant suppression of stress-induced MMP-9 expression and NF-kappaB DNA-binding activity. Similarly, addition of integrins inhibitor to HUVECs suppressed the stress-induced MMP-9 expression, IkappaBalpha degradation, NF-kappaB DNA-binding activity and the phosphorylation of p38 MAPK, ERK1/2. Our findings demonstrated that the shear stress-induced MMP-9 expression involved integrins-p38 MAPK or ERK1/2-NF-kappaB signaling pathways.
Collapse
Affiliation(s)
- Hui-Wen Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, PR China
| | | | | | | | | | | | | |
Collapse
|
89
|
Huber TB, Schermer B, Müller RU, Höhne M, Bartram M, Calixto A, Hagmann H, Reinhardt C, Koos F, Kunzelmann K, Shirokova E, Krautwurst D, Harteneck C, Simons M, Pavenstädt H, Kerjaschki D, Thiele C, Walz G, Chalfie M, Benzing T. Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci U S A 2006; 103:17079-86. [PMID: 17079490 PMCID: PMC1859892 DOI: 10.1073/pnas.0607465103] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The prohibitin (PHB)-domain proteins are membrane proteins that regulate a variety of biological activities, including mechanosensation, osmotic homeostasis, and cell signaling, although the mechanism of this regulation is unknown. We have studied two members of this large protein family, MEC-2, which is needed for touch sensitivity in Caenorhabditis elegans, and Podocin, a protein involved in the function of the filtration barrier in the mammalian kidney, and find that both proteins bind cholesterol. This binding requires the PHB domain (including palmitoylation sites within it) and part of the N-terminally adjacent hydrophobic domain that attaches the proteins to the inner leaflet of the plasma membrane. By binding to MEC-2 and Podocin, cholesterol associates with ion-channel complexes to which these proteins bind: DEG/ENaC channels for MEC-2 and TRPC channels for Podocin. Both the MEC-2-dependent activation of mechanosensation and the Podocin-dependent activation of TRPC channels require cholesterol. Thus, MEC-2, Podocin, and probably many other PHB-domain proteins by binding to themselves, cholesterol, and target proteins regulate the formation and function of large protein-cholesterol supercomplexes in the plasma membrane.
Collapse
Affiliation(s)
- Tobias B. Huber
- *Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Bernhard Schermer
- *Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany
| | | | - Martin Höhne
- *Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Malte Bartram
- *Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Andrea Calixto
- Department of Biological Sciences, Columbia University, New York, NY 10027-6902
| | - Henning Hagmann
- *Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Christian Reinhardt
- *Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany
- University Hospital Münster, D-48129 Münster, Germany
| | - Fabienne Koos
- *Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - Elena Shirokova
- Department of Molecular Genetics, German Institute of Human Nutrition, 14558 Nuthetal, Germany
| | - Dietmar Krautwurst
- Department of Molecular Genetics, German Institute of Human Nutrition, 14558 Nuthetal, Germany
| | | | - Matias Simons
- *Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany
| | | | - Dontscho Kerjaschki
- **Department of Pathology, University of Vienna, A-1010 Vienna, Austria; and
| | - Christoph Thiele
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Gerd Walz
- *Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, NY 10027-6902
- To whom correspondence may be addressed at:
Department of Biological Sciences, Columbia University, 1012 Fairchild Center, M.C. 2446 New York, NY 10027. E-mail:
| | - Thomas Benzing
- *Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany
- To whom correspondence may be addressed at:
Renal Division, University Hospital Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany. E-mail:
| |
Collapse
|
90
|
Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 2006; 15:2279-84. [PMID: 16360690 DOI: 10.1016/j.cub.2005.11.032] [Citation(s) in RCA: 681] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 11/01/2005] [Accepted: 11/08/2005] [Indexed: 01/15/2023]
Abstract
For studying the function of specific neurons in their native circuitry, it is desired to precisely control their activity. This often requires dissection to allow accurate electrical stimulation or neurotransmitter application , and it is thus inherently difficult in live animals, especially in small model organisms. Here, we employed channelrhodopsin-2 (ChR2), a directly light-gated cation channel from the green alga Chlamydomonas reinhardtii, in excitable cells of the nematode Caenorhabditis elegans, to trigger specific behaviors, simply by illumination. Channelrhodopsins are 7-transmembrane-helix proteins that resemble the light-driven proton pump bacteriorhodopsin , and they also utilize the chromophore all-trans retinal, but to open an intrinsic cation pore. In muscle cells, light-activated ChR2 evoked strong, simultaneous contractions, which were reduced in the background of mutated L-type, voltage-gated Ca2+-channels (VGCCs) and ryanodine receptors (RyRs). Electrophysiological analysis demonstrated rapid inward currents that persisted as long as the illumination. When ChR2 was expressed in mechanosensory neurons, light evoked withdrawal behaviors that are normally elicited by mechanical stimulation. Furthermore, ChR2 enabled activity of these neurons in mutants lacking the MEC-4/MEC-10 mechanosensory ion channel . Thus, specific neurons or muscles expressing ChR2 can be quickly and reversibly activated by light in live and behaving, as well as dissected, animals.
Collapse
Affiliation(s)
- Georg Nagel
- Max Planck Institute for Biophysics, Max-von-Laue-Str. 3, D-60438 Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
91
|
Hamill OP. Twenty odd years of stretch-sensitive channels. Pflugers Arch 2006; 453:333-51. [PMID: 17021800 DOI: 10.1007/s00424-006-0131-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 06/27/2006] [Indexed: 01/15/2023]
Abstract
After formation of the giga-seal, the membrane patch can be stimulated by hydrostatic or osmotic pressure gradients applied across the patch. This feature led to the discovery of stretch-sensitive or mechanosensitive (MS) channels, which are now known to be ubiquitously expressed in cells representative of all the living kingdoms. In addition to mechanosensation, MS channels have been implicated in many basic cell functions, including regulation of cell volume, shape, and motility. The successful cloning, overexpression, and crystallization of bacterial MS channel proteins combined with patch clamp and modeling studies have provided atomic insight into the working of these nanomachines. In particular, studies of MS channels have revealed new understanding of how the lipid bilayer modulates membrane protein function. Three major membrane protein families, transient receptor potential, 2 pore domain K(+), and the epithelial Na(+) channels, have been shown to form MS channels in animal cells, and their polymodal activation embrace fields far beyond mechanosensitivity. The discovery of new drugs highly selective for MS channels ("mechanopharmaceutics") and the demonstration of MS channel involvement in several major human diseases ("mechanochannelopathies") provide added motivation for devising new techniques and approaches for studying MS channels.
Collapse
Affiliation(s)
- O P Hamill
- Neurosciences and Cell Biology, UTMB, Galveston, TX, 77555, USA.
| |
Collapse
|
92
|
Abstract
The abilities to sense environmental and internal temperatures are required for survival, both for maintenance of homeostasis and for avoidance of tissue-damaging noxious temperatures. Vertebrates can sense external physical stimuli via specialized classes of neurons in the peripheral nervous system that project to the skin. Temperature-sensitive neurons can be divided into two classes: innocuous thermosensors (warm or cool) and noxious thermonociceptors (hot or cold). ThermoTRPs, a subset of the transient receptor potential family of ion channels, which are expressed in sensory nerve endings and in skin, respond to distinct thermal thresholds. In this review, we examine the extent to which thermoTRPs are responsible for providing a molecular basis for thermal sensation.
Collapse
Affiliation(s)
- Ajay Dhaka
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
93
|
Satlin LM, Carattino MD, Liu W, Kleyman TR. Regulation of cation transport in the distal nephron by mechanical forces. Am J Physiol Renal Physiol 2006; 291:F923-31. [PMID: 16849691 DOI: 10.1152/ajprenal.00192.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Thiazide and loop diuretics induce renal K(+) secretion, often leading to renal K(+) wasting and hypokalemia. This phenomenon has been proposed to reflect an increase in delivery to and reabsorption of Na(+) by the distal nephron, with a resultant increase in the driving force for passive K(+) efflux across the apical membrane. Recent studies suggest that cellular mechanisms that lead to enhanced rates of Na(+) reabsorption as well as K(+) secretion in response to increases tubular flow rates are more complex. Increases in tubular flow rates directly enhance the activity of apical membrane Na(+) channels and indirectly activate a class of K(+) channels, referred to as maxi-K, that are functionally inactive under low flow states. This review addresses the role of biomechanical forces, generated by variations in urinary flow rate and tubular fluid volume, in the regulation of transepithelial Na(+) and K(+) transport in the distal nephron. The question of why the distal nephron has evolved to include a component of flow-dependent K(+) secretion is also addressed.
Collapse
Affiliation(s)
- Lisa M Satlin
- Renal-Electrolyte Div, Univ. of Pittsburgh, A919 Scaife Hall, 3550 Terrace St, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
94
|
Beckingham KM, Texada MJ, Baker DA, Munjaal R, Armstrong JD. Genetics of graviperception in animals. ADVANCES IN GENETICS 2006; 55:105-45. [PMID: 16291213 DOI: 10.1016/s0065-2660(05)55004-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Gravity is a constant stimulus for life on Earth and most organisms have evolved structures to sense gravitational force and incorporate its influence into their behavioral repertoire. Here we focus attention on animals and their diverse structures for perceiving and responding to the gravitational vector-one of the few static reference stimuli for any mobile organism. We discuss vertebrate, arthropod, and nematode models from the perspective of the role that genetics is playing in our understanding of graviperception in each system. We describe the key sensory structures in each class of organism and present what is known about the genetic control of development of these structures and the molecular signaling pathways operating in the mature organs. We also discuss the role of large genetic screens in identifying specific genes with roles in mechanosensation and graviperception.
Collapse
Affiliation(s)
- Kathleen M Beckingham
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | | | | | | | |
Collapse
|
95
|
Hall DH, Lints R, Altun Z. Nematode neurons: anatomy and anatomical methods in Caenorhabditis elegans. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 69:1-35. [PMID: 16492460 DOI: 10.1016/s0074-7742(05)69001-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- David H Hall
- Center for C. elegans Anatomy, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | |
Collapse
|
96
|
Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 2006; 7:265-75. [PMID: 16607289 DOI: 10.1038/nrm1890] [Citation(s) in RCA: 1611] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The shapes of eukaryotic cells and ultimately the organisms that they form are defined by cycles of mechanosensing, mechanotransduction and mechanoresponse. Local sensing of force or geometry is transduced into biochemical signals that result in cell responses even for complex mechanical parameters such as substrate rigidity and cell-level form. These responses regulate cell growth, differentiation, shape changes and cell death. Recent tissue scaffolds that have been engineered at the micro- and nanoscale level now enable better dissection of the mechanosensing, transduction and response mechanisms.
Collapse
Affiliation(s)
- Viola Vogel
- Laboratory for Biologically Oriented Materials, Department of Materials, Swiss Federal Institute of Technology (ETH), Zurich, Wolfgang-Pauli-Strasse 10, ETH Hönggerberg, HCI F443, CH-8093 Zürich, Switzerland.
| | | |
Collapse
|
97
|
Li W, Feng Z, Sternberg PW, Xu XZS. A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 2006; 440:684-7. [PMID: 16572173 PMCID: PMC2865900 DOI: 10.1038/nature04538] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 12/19/2005] [Indexed: 11/08/2022]
Abstract
The nematode Caenorhabditis elegans is commonly used as a genetic model organism for dissecting integration of the sensory and motor systems. Despite extensive genetic and behavioural analyses that have led to the identification of many genes and neural circuits involved in regulating C. elegans locomotion behaviour, it remains unclear whether and how somatosensory feedback modulates motor output during locomotion. In particular, no stretch receptors have been identified in C. elegans, raising the issue of whether stretch-receptor-mediated proprioception is used by C. elegans to regulate its locomotion behaviour. Here we have characterized TRP-4, the C. elegans homologue of the mechanosensitive TRPN channel. We show that trp-4 mutant worms bend their body abnormally, exhibiting a body posture distinct from that of wild-type worms during locomotion, suggesting that TRP-4 is involved in stretch-receptor-mediated proprioception. We show that TRP-4 acts in a single neuron, DVA, to mediate its function in proprioception, and that the activity of DVA can be stimulated by body stretch. DVA both positively and negatively modulates locomotion, providing a unique mechanism whereby a single neuron can fine-tune motor activity. Thus, DVA represents a stretch receptor neuron that regulates sensory-motor integration during C. elegans locomotion.
Collapse
Affiliation(s)
- Wei Li
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
98
|
Abstract
Prokaryotic mechanosensitive channels function as molecular switches that transduce bilayer deformations into protein motion. These protein structural rearrangements generate large non-selective pores that function as a prokaryotic 'last line of defence' to sudden osmotic challenges. Once considered an electrophysiological artefact, recent structural, spectroscopic and functional data have placed this class of protein at the centre of efforts to understand the molecular basis of lipid-protein interactions and their influence on protein function.
Collapse
Affiliation(s)
- Eduardo Perozo
- Department of Biochemistry and Molecular Biology, and Institute of Molecular Pediatric Science, University of Chicago Pritzker School of Medicine, 929 East 57th Street, Chicago, Illinois 60637, USA.
| |
Collapse
|
99
|
Chapter 13 Finding Sensory Neuron Mechanotransduction Components. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
100
|
|