51
|
McKerlie C. Cause and Effect Considerations in Diagnostic Pathology and Pathology Phenotyping of Genetically Engineered Mice (GEM). ILAR J 2006; 47:156-62. [PMID: 16547372 DOI: 10.1093/ilar.47.2.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Over the next several decades, biology is embarking on its most ambitious project yet: to annotate the human genome functionally, prioritizing and focusing on those genes relevant to development and disease. Model systems are fundamental prerequisites for this task, and genetically engineered mice (GEM) are by far the most accessible mammalian system because of their anatomical, physiological, and genetic similarity to humans. The scientific utility of GEM has become commonplace since the technology to produce them was established in the early 1980s. Conceptually, however, an efficiently coordinated high-throughput approach that permits correlation between newly discovered genes, functional properties of their protein products, and biological relevance of these products as drug targets has yet to be established. The discipline of veterinary anatomical pathology (hereafter referred to as pathology) is not immune to this requirement for evolution and adaptation, and to address relationships and tissue consequences between tens of thousands of genes and their cognate proteins, novel interdisciplinary technologies and approaches must emerge. Although many of the techniques of pathology are well established, in the context of pathology's contribution to functional annotation of the genome, several conceptually important and unresolved issues remain to be addressed. While an ever-increasing arsenal of genetic and molecular tool-sets are available to evaluate and understand the function of genes and their pathophysiological mechanisms, pathology will continue to play an essential role in confirming cause and effect relationships of gene function in development and disease. This role will continue to be dependent on keen observation, a systematic but disciplined approach, expert knowledge of strain-dependent anatomical differences and incidental lesions, and relevant tissue-based evidence. Miniaturization and high-throughput adaptation of these methods must also continue so that they can complement parallel phenotyping efforts, provide pathology-based data in pace with concurrent phenotyping efforts, and continue to find new utility in the collective effort of functional annotation.
Collapse
Affiliation(s)
- Colin McKerlie
- Pathology Core of the Centre for Modeling Human Disease, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
52
|
Culiat CT, Klebig ML, Liu Z, Monroe H, Stanford B, Desai J, Tandan S, Hughes L, Kerley MK, Carpenter DA, Johnson DK, Rinchik EM, Li Q. Identification of mutations from phenotype-driven ENU mutagenesis in mouse chromosome 7. Mamm Genome 2005; 16:555-66. [PMID: 16180137 DOI: 10.1007/s00335-005-0032-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have used the new high-throughput mutation-scanning technique temperature-gradient capillary electrophoresis (TGCE) for the identification of point mutations induced by N-ethyl-N-nitrosourea (ENU) in the mouse genome. TGCE detects the presence of heteroduplex molecules formed between a wild-type gene segment and the corresponding homologous segment containing an induced mutation or a naturally occurring single nucleotide polymorphism (SNP). Partially denatured heteroduplex molecules are resolved from homoduplexes by virtue of their differential mobilities during capillary electrophoresis conducted in a finely controlled temperature gradient. Simultaneous heteroduplex analysis of 96 amplicons ranging from 150 to 600 bp in size is achieved in approximately 45 min without the need for predetermining the melting profile of each fragment. Initially, we exploited known mouse mutations to develop TGCE protocols for analyzing unpurified PCR samples amplified from crude tail-DNA preparations. TGCE was then applied to the rapid identification of three new ENU-induced mutations recovered from regional mutagenesis screens of a segment of mouse Chromosome 7. Enzyme assays and quantitative reverse transcription-PCR (qRT-PCR) methods validated these new mutations. Our data demonstrate that rapid mutation scanning with TGCE, followed by sequence verification only of detected positives, is an efficient approach to the identification of point mutations in the mouse genome.
Collapse
Affiliation(s)
- Cymbeline T Culiat
- Life Sciences Division, Oak Ridge National Laboratory, Bethel Valley Road, P.O. Box 2008, Oak Ridge, Tennessee, 37831-6445, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
Molecular techniques allowing in vivo modulation of gene expression have provided unique opportunities and challenges for behavioural studies aimed at understanding the function of particular genes or biological systems under physiological or pathological conditions. Although various animal models are available, the laboratory mouse (Mus musculus) has unique features and is therefore a preferred animal model. The mouse shares a remarkable genetic resemblance and aspects of behaviour with humans. In this review, first we describe common mouse models for behavioural analyses. As both genetic and environmental factors influence behavioural performance and need to be carefully evaluated in behavioural experiments, considerations for designing and interpretations of these experiments are subsequently discussed. Finally, common behavioural tests used to assess brain function are reviewed, and it is illustrated how behavioural tests are used to increase our understanding of the role of histaminergic neurotransmission in brain function.
Collapse
Affiliation(s)
- Peter van Meer
- *Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, U.S.A
| | - Jacob Raber
- *Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, U.S.A
- †Department of Neurology and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon 97239, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
54
|
Ruan HB, Zhang N, Gao X. Identification of a novel point mutation of mouse proto-oncogene c-kit through N-ethyl-N-nitrosourea mutagenesis. Genetics 2005; 169:819-31. [PMID: 15731517 PMCID: PMC1449128 DOI: 10.1534/genetics.104.027177] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Manipulation of the mouse genome has emerged as an important approach for studying gene function and establishing human disease models. In this study, the mouse mutants were generated through N-ethyl-N-nitrosourea (ENU)-induced mutagenesis in C57BL/6J mice. The screening for dominant mutations yielded several mice with fur color abnormalities. One of them causes a phenotype similar to that shown by dominant-white spotting (W) allele mutants. This strain was named Wads because the homozygous mutant mice are white color, anemic, deaf, and sterile. The new mutation was mapped to 42 cM on chromosome five, where proto-oncogene c-kit resides. Sequence analysis of c-kit cDNA from Wads(m/m) revealed a unique T-to-C transition mutation that resulted in Phe-to-Ser substitution at amino acid 856 within a highly conserved tyrosine kinase domain. Compared with other c-kit mutants, Wads may present a novel loss-of-function or hypomorphic mutation. In addition to the examination of adult phenotypes in hearing loss, anemia, and mast cell deficiency, we also detected some early developmental defects during germ cell differentiation in the testis and ovary of neonatal Wads(m/m) mice. Therefore, the Wads mutant may serve as a new disease model of human piebaldism, anemia, deafness, sterility, and mast cell diseases.
Collapse
Affiliation(s)
- Hai-Bin Ruan
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210089, People's Republic of China
| | | | | |
Collapse
|
55
|
Wang X, Ishimori N, Korstanje R, Rollins J, Paigen B. Identifying novel genes for atherosclerosis through mouse-human comparative genetics. Am J Hum Genet 2005; 77:1-15. [PMID: 15931593 PMCID: PMC1226181 DOI: 10.1086/431656] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 05/04/2005] [Indexed: 12/15/2022] Open
Abstract
Susceptibility to atherosclerosis is determined by both environmental and genetic factors. Its genetic determinants have been studied by use of quantitative-trait-locus (QTL) analysis. So far, 21 atherosclerosis QTLs have been identified in the mouse: 7 in a high-fat-diet model only, 9 in a sensitized model (apolipoprotein E- or LDL [low-density lipoprotein] receptor-deficient mice) only, and 5 in both models, suggesting that different gene sets operate in each model and that a subset operates in both. Among the 27 human atherosclerosis QTLs reported, 17 (63%) are located in regions homologous (concordant) to mouse QTLs, suggesting that these mouse and human atherosclerosis QTLs have the same underlying genes. Therefore, genes regulating human atherosclerosis will be found most efficiently by first finding their orthologs in concordant mouse QTLs. Novel mouse QTL genes will be found most efficiently by using a combination of the following strategies: identifying QTLs in new crosses performed with previously unused parental strains; inducing mutations in large-scale, high-throughput mutagenesis screens; and using new genomic and bioinformatics tools. Once QTL genes are identified in mice, they can be tested in human association studies for their relevance in human atherosclerotic disease.
Collapse
|
56
|
Lessard C, Pendola JK, Hartford SA, Schimenti JC, Handel MA, Eppig JJ. New mouse genetic models for human contraceptive development. Cytogenet Genome Res 2005; 105:222-7. [PMID: 15237210 DOI: 10.1159/000078192] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 11/19/2003] [Indexed: 11/19/2022] Open
Abstract
Genetic strategies for the post-genomic sequence age will be designed to provide information about gene function in a myriad of physiological processes. Here an ENU mutagenesis program (http://reprogenomics.jax.org) is described that is generating a large resource of mutant mouse models of infertility; male and female mutants with defects in a wide range of reproductive processes are being recovered. Identification of the genes responsible for these defects, and the pathways in which these genes function, will advance the fields of reproduction research and medicine. Importantly, this program has potential to reveal novel human contraceptive targets.
Collapse
Affiliation(s)
- C Lessard
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | | | |
Collapse
|
57
|
Abstract
Modern drug discovery is predominantly a target-driven process, where success is intricately linked to the selection of an appropriate molecular target. Ideally, there is conclusive functional evidence that a selected target is disease-relevant and, furthermore, suitable for drug development. Phenotype-first screening is a highly attractive approach for target identification because it offers the unique possibility to analyse entire genomes in an unbiased fashion for disease-related phenotypes. Various studies have demonstrated that phenotype-first screening can be successfully applied to the identification of drug targets, thus establishing this approach as a valuable tool for future target discovery efforts.
Collapse
Affiliation(s)
- Matthias Austen
- DeveloGen AG, Rudolf-Wissell-Strasse 28, 37079 Göttingen, Germany
| | | |
Collapse
|
58
|
Beutler B, Crozat K, Koziol JA, Georgel P. Genetic dissection of innate immunity to infection: the mouse cytomegalovirus model. Curr Opin Immunol 2005; 17:36-43. [PMID: 15653308 DOI: 10.1016/j.coi.2004.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resistance to infection is largely inherited rather than acquired, and is encoded by a definable set of host genes designated the 'resistome'. Logically speaking, piecemeal disruption of the resistome gives us the best chance to define it, and the most spectacular advances in understanding innate immunity have grown from spontaneous or induced germline mutations of the resistome. Mutations induced by random germline mutagenesis have now become so numerous that we are nearly in a position to define the size of the resistome, and both random and targeted mutations give us a fairly nice sketch of its components and how they interact. Our own N-ethyl-N-nitrosourea mutagenesis effort, which recently showed that components of Toll-like receptor signaling are essential constituents of the arsenal against MCMV infections, validated the forward genetic approach as a powerful tool to define the resistome.
Collapse
Affiliation(s)
- Bruce Beutler
- Department of Immunology and Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
59
|
Abstract
Animal models for anxiety-related behavior are based on the assumption that anxiety in animals is comparable to anxiety in humans. Being anxious is an adaptive response to an unfamiliar environment, especially when confronted with danger or threat. However, pathological variants of anxiety can strongly impede the daily life of those affected. To unravel neurobiological mechanisms underlying normal anxiety as well as its pathologi- cal variations, animal models are indispensable tools. What are the characteristics of an ideal animal model? First, it should display reduced anxiety when treated with anxiolytics (predictive validity). Second, the behavioral response of an animal model to a threatening stimulus should be comparable to the response known for humans (face validity). And third, the mechanisms underlying anxiety as well as the psychological causes should be identical (construct validity). Meeting these three requirements is difficult for any animal model. Since both the physiological and the behavioral response to aversive (threatening) stimuli are similar in humans and animals, it can be assumed that animal models can serve at least two distinct purposes: as (1) behavioral tests to screen for potential anxiolytic and antidepressant effects of new drugs and (2) tools to investigate specific pathogenetic aspects of cardinal symptoms of anxiety disorders. The examples presented in this chapter have been selected to illustrate the potential as well as the caveats of current models and the emerging possibilities offered by gene technology. The main concepts in generating animal models for anxiety-that is, selective breeding of rat lines, experience-related models, genetically engineered mice, and phenotype-driven approaches-are concisely introduced and discussed. Independent of the animal model used, one major challenge remains, which is to reliably identify animal behavioral characteristics. Therefore, a description of behavioral expressions of anxiety in rodents as well as tests assays to measure anxiety-related behavior in these animals is also included in this chapter.
Collapse
Affiliation(s)
- F Ohl
- Laboratory Animal Science, University Utrecht, PO Box 80166, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
60
|
Hale KJ, Domostoj MM, El-Tanani M, Charles Campbell F, Mason CK. Chapter 11 Total synthesis and mechanism of action studies on the antitumor alkaloid, (-)-agelastatin a. STRATEGIES AND TACTICS IN ORGANIC SYNTHESIS 2005:352-394. [DOI: 10.1016/s1874-6004(05)80034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
61
|
Identification of cardiac malformations in mice lacking Ptdsr using a novel high-throughput magnetic resonance imaging technique. BMC DEVELOPMENTAL BIOLOGY 2004; 4:16. [PMID: 15615595 PMCID: PMC545075 DOI: 10.1186/1471-213x-4-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 12/22/2004] [Indexed: 11/10/2022]
Abstract
BACKGROUND Congenital heart defects are the leading non-infectious cause of death in children. Genetic studies in the mouse have been crucial to uncover new genes and signaling pathways associated with heart development and congenital heart disease. The identification of murine models of congenital cardiac malformations in high-throughput mutagenesis screens and in gene-targeted models is hindered by the opacity of the mouse embryo. RESULTS We developed and optimized a novel method for high-throughput multi-embryo magnetic resonance imaging (MRI). Using this approach we identified cardiac malformations in phosphatidylserine receptor (Ptdsr) deficient embryos. These included ventricular septal defects, double-outlet right ventricle, and hypoplasia of the pulmonary artery and thymus. These results indicate that Ptdsr plays a key role in cardiac development. CONCLUSIONS Our novel multi-embryo MRI technique enables high-throughput identification of murine models for human congenital cardiopulmonary malformations at high spatial resolution. The technique can be easily adapted for mouse mutagenesis screens and, thus provides an important new tool for identifying new mouse models for human congenital heart diseases.
Collapse
|
62
|
Gkoutos GV, Green ECJ, Mallon AM, Hancock JM, Davidson D. Using ontologies to describe mouse phenotypes. Genome Biol 2004; 6:R8. [PMID: 15642100 PMCID: PMC549069 DOI: 10.1186/gb-2004-6-1-r8] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 11/11/2004] [Accepted: 12/06/2004] [Indexed: 11/29/2022] Open
Abstract
By combining ontologies from different sources the authors developed a novel approach to describing phenotypes of mutant mice in a standard, structured manner. The mouse is an important model of human genetic disease. Describing phenotypes of mutant mice in a standard, structured manner that will facilitate data mining is a major challenge for bioinformatics. Here we describe a novel, compositional approach to this problem which combines core ontologies from a variety of sources. This produces a framework with greater flexibility, power and economy than previous approaches. We discuss some of the issues this approach raises.
Collapse
Affiliation(s)
- Georgios V Gkoutos
- Bioinformatics Group, MRC Mammalian Genetics Unit, Harwell, Oxfordshire, OX11 0RD, UK
| | - Eain CJ Green
- Bioinformatics Group, MRC Mammalian Genetics Unit, Harwell, Oxfordshire, OX11 0RD, UK
| | - Ann-Marie Mallon
- Bioinformatics Group, MRC Mammalian Genetics Unit, Harwell, Oxfordshire, OX11 0RD, UK
| | - John M Hancock
- Bioinformatics Group, MRC Mammalian Genetics Unit, Harwell, Oxfordshire, OX11 0RD, UK
| | | |
Collapse
|
63
|
Shima N, Munroe RJ, Schimenti JC. The mouse genomic instability mutation chaos1 is an allele of Polq that exhibits genetic interaction with Atm. Mol Cell Biol 2004; 24:10381-9. [PMID: 15542845 PMCID: PMC529050 DOI: 10.1128/mcb.24.23.10381-10389.2004] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 08/10/2004] [Accepted: 08/19/2004] [Indexed: 11/20/2022] Open
Abstract
chaos1 (for chromosome aberrations occurring spontaneously 1) is a recessive mutation that was originally identified in a phenotype-based screen for chromosome instability mutants in mice. Mutant animals exhibit significantly higher frequencies of spontaneous and radiation- or mitomycin C-induced micronucleated erythrocytes, indicating a potential defect in homologous recombination or interstrand cross-link repair. The chaos1 allele was genetically associated with a missense mutation in Polq, which encodes DNA polymerase theta;. We demonstrate here that chaos1 is a mutant allele of Polq by using two genetic approaches: chaos1 mutant phenotype correction by a bacterial artificial chromosome carrying wild-type Polq and a failed complementation test between chaos1 and a Polq-disrupted allele generated by gene targeting. To investigate the potential involvement of Polq in DNA double-strand break repair, we introduced chaos1 into an Atm (for ataxia telangiectasia mutated)-deficient background. The majority ( approximately 90%) of double-homozygous mice died during the neonatal period. Surviving double mutants exhibited synergistic phenotypes such as severe growth retardation and enhanced chromosome instability. However, remarkably, double mutants had delayed onset of thymic lymphoma, significantly increasing life span. These data suggest a unique role of Polq in maintaining genomic integrity, which is probably distinctive from the major homologous recombination pathway regulated by ATM.
Collapse
Affiliation(s)
- Naoko Shima
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, 9th Fl. Vet. Research Tower, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
64
|
Lowrey PL, Takahashi JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 2004; 5:407-41. [PMID: 15485355 PMCID: PMC3770722 DOI: 10.1146/annurev.genom.5.061903.175925] [Citation(s) in RCA: 710] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the past decade, the molecular mechanisms underlying the mammalian circadian clock have been defined. A core set of circadian clock genes common to most cells throughout the body code for proteins that feed back to regulate not only their own expression, but also that of clock output genes and pathways throughout the genome. The circadian system represents a complex multioscillatory temporal network in which an ensemble of coupled neurons comprising the principal circadian pacemaker in the suprachiasmatic nucleus of the hypothalamus is entrained to the daily light/dark cycle and subsequently transmits synchronizing signals to local circadian oscillators in peripheral tissues. Only recently has the importance of this system to the regulation of such fundamental biological processes as the cell cycle and metabolism become apparent. A convergence of data from microarray studies, quantitative trait locus analysis, and mutagenesis screens demonstrates the pervasiveness of circadian regulation in biological systems. The importance of maintaining the internal temporal homeostasis conferred by the circadian system is revealed by animal models in which mutations in genes coding for core components of the clock result in disease, including cancer and disturbances to the sleep/wake cycle.
Collapse
|
65
|
Wu BJ, Shao YX, Mao HH, Tang D, Liu J, Xue ZF, Li HD. Two kinds of ENU-induced scant hair mice and mapping of the mutant genes. J Dermatol Sci 2004; 36:149-56. [PMID: 15541636 DOI: 10.1016/j.jdermsci.2004.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 08/10/2004] [Accepted: 08/13/2004] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To establish mouse models for human diseases through N-ethyl-N-nitrosourea (ENU) mutagenesis, and to provide groundwork to clone genes and study their functions after mapping the mutant genes. METHODS 18 male D2 mice (G0) at age of 8-10 weeks old were injected intraperitoneally with ENU (100 mg/kg) once a week for three consecutive weeks. The treated male mice were mated with females of the same strain, and their offspring (G1) were used to screen for dominant and recessive mutation. After breeding the mutant F2 (D2B6 F1 intercrossing) mice, 39 microsatellites that are equally distributed on the mouse genome and are different between B6 and D2 strains were used to scan the genome. According to the log odds score (LODS) we determined whether these microsatellites were linked to the mutant genes and calculated the location of mutant genes based on their recombination ratio. RESULTS We screened 532 G1 mice, of which 14 exhibited mutation phenotypes. None was dominantly hereditable. Two cases of recessive inheritable scant hair mice were obtained through testing 30 G1 mice with normal phenotype and potential recessive mutant genes. All showed scant coat hair, grew slowly, and hyperkeratoses of epidermis and bollicular horn plug in histological sections. Their visceral organs were not markedly different from normal, and they were named scant hair 1 Baojin (symbol is snthr(-1Bao)) and scant hair 2 Baojin (symbol is snthr(-2Bao)). Through microsatellite screening we found that the LODS between snthr(-1Bao) and D9Mit243 was 7.73, and the linkage was determined. After analyzing the recombination ratio between snthr(-1Bao) and microsatellite D9Mit18 which was near snthr(-1Bao) based on a total number of 126 F2 mice with the scant hair phenotype, we determined that snthr(-1Bao) was located at chromosome 9 and was 71cM from centromere. Using the same technique, snthr(-2Bao) was mapped to the same position as snthr(-1Bao). CONCLUSION In our research, two cases of scant hair mice provide good models for the study of dermatology, and the location of mutant genes provides a solid foundation for cloning new mice scant hair genes.
Collapse
Affiliation(s)
- Bao-Jin Wu
- Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | | | | | | | | | | | | |
Collapse
|
66
|
Buchner DA, Seburn KL, Frankel WN, Meisler MH. Three ENU-induced neurological mutations in the pore loop of sodium channel Scn8a (Na(v)1.6) and a genetically linked retinal mutation, rd13. Mamm Genome 2004; 15:344-51. [PMID: 15170223 DOI: 10.1007/s00335-004-2332-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 12/02/2003] [Indexed: 02/07/2023]
Abstract
The goal of The Jackson Laboratory Neuroscience Mutagenesis Facility is to generate mouse models of human neurological disease. We describe three new models obtained from a three-generation screen for recessive mutations. Homozygous mutant mice from lines nmf2 and nmf5 exhibit hind limb paralysis and juvenile lethality. Homozygous nmf58 mice exhibit a less severe movement disorder that includes sustained dystonic postures. The mutations were mapped to the distal region of mouse Chromosome (Chr) 15. Failure to complement a mutant allele of a positional candidate gene, Scn8a, demonstrated that the mutations are new alleles of Scn8a. Missense mutations of evolutionarily conserved residues of the sodium channel were identified in the three lines, with the predicted amino acid substitutions N1370T, I1392F, and L1404H. These residues are located within the pore loop of domain 3 of sodium channel Na(v)1.6. The lethal phenotypes suggest that the new alleles encode proteins with partial or complete loss of function. Several human disorders are caused by mutation in the pore loop of domain 3 of paralogous sodium channel genes. Line nmf5 contains a second, independent mutation in the rd13 locus that causes a reduction in cell number in the outer nuclear layer of the retina. rd13 was mapped to the distal 4 Mb of Chr 15. No coding or splice site mutations were detected in Pde1b, a candidate gene for rd13. The generation of three independent Scn8a mutations among 1100 tested G3 families demonstrates that the Scn8a locus is highly susceptible to ENU mutagenesis. The new alleles of Scn8a will be valuable for analysis of sodium channel physiology and disease.
Collapse
Affiliation(s)
- David A Buchner
- Department of Human Genetics, University of Michigan, Ann Arbor 48109-0618, USA
| | | | | | | |
Collapse
|
67
|
Friddle CJ, Abuin A, Ramirez-Solis R, Richter LJ, Buxton EC, Edwards J, Finch RA, Gupta A, Hansen G, Holt KH, Hu Y, Huang W, Jaing C, Key BW, Kipp P, Kohlhauff B, Ma ZQ, Markesich D, Newhouse M, Perry T, Platt KA, Potter DG, Qian N, Shaw J, Schrick J, Shi ZZ, Sparks MJ, Tran D, Wann ER, Walke W, Wallace JD, Xu N, Zhu Q, Person C, Sands AT, Zambrowicz BP. High-throughput mouse knockouts provide a functional analysis of the genome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:311-5. [PMID: 15338631 DOI: 10.1101/sqb.2003.68.311] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- C J Friddle
- Lexicon Genetics Incorporated, The Woodlands, Texas 77381-1160, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Korstanje R, DiPetrillo K. Unraveling the genetics of chronic kidney disease using animal models. Am J Physiol Renal Physiol 2004; 287:F347-52. [PMID: 15297276 DOI: 10.1152/ajprenal.00159.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Identifying genes underlying common forms of kidney disease in humans has proven difficult, expensive, and time consuming. Quantitative trait loci (QTL) for several complex traits are concordant among mice, rats, and humans, suggesting that genetic findings from these animal models are relevant to human disease. Therefore, we reviewed the literature on genetic studies of kidney disease in rat and mouse and examined the concordance between kidney disease QTL across species. Fifteen genomic regions contribute to kidney disease in the rat, with 12 replicated either in a separate rat cross or in another species. Five loci found in humans were concordant to QTL found in the rat. Two of these were found by homology to a previously identified rat QTL on chromosome 1, demonstrating that kidney disease loci in animal models can predict the location of kidney disease loci in humans. In contrast to the rat, the mouse has been underutilized in the genetic analysis of polygenic kidney disease, although mutagenesis and QTL analysis in the mouse are likely to contribute new findings in the near future. Knowledge of kidney disease loci conserved between the mouse and rat will identify prime candidate loci to test for association with chronic kidney disease in humans.
Collapse
Affiliation(s)
- Ron Korstanje
- The Jackson Laboratory, 600 Main St., Box 74, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
69
|
Loosli F, Del Bene F, Quiring R, Rembold M, Martinez-Morales JR, Carl M, Grabher C, Iquel C, Krone A, Wittbrodt B, Winkler S, Sasado T, Morinaga C, Suwa H, Niwa K, Henrich T, Deguchi T, Hirose Y, Iwanami N, Kunimatsu S, Osakada M, Watanabe T, Yasuoka A, Yoda H, Winkler C, Elmasri H, Kondoh H, Furutani-Seiki M, Wittbrodt J. Mutations affecting retina development in Medaka. Mech Dev 2004; 121:703-14. [PMID: 15210178 DOI: 10.1016/j.mod.2004.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 02/20/2004] [Accepted: 03/01/2004] [Indexed: 02/03/2023]
Abstract
In a large scale mutagenesis screen of Medaka we identified 60 recessive zygotic mutations that affect retina development. Based on the onset and type of phenotypic abnormalities, the mutants were grouped into five categories: the first includes 11 mutants that are affected in neural plate and optic vesicle formation. The second group comprises 15 mutants that are impaired in optic vesicle growth. The third group includes 18 mutants that are affected in optic cup development. The fourth group contains 13 mutants with defects in retinal differentiation. 12 of these have smaller eyes, whereas one mutation results in enlarged eyes. The fifth group consists of three mutants with defects in retinal pigmentation. The collection of mutants will be used to address the molecular genetic mechanisms underlying vertebrate eye formation.
Collapse
Affiliation(s)
- Felix Loosli
- European Molecular Biology Laboratory, Developmental Biology Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Martin GM. New opportunities for genetic approaches to aging research using Roy Walford's favorite animal. Exp Gerontol 2004; 39:913-6. [PMID: 15217690 DOI: 10.1016/j.exger.2004.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- George M Martin
- Department of Pathology, Health Sciences Building, University of Washington, 1959 N.E. Pacific Street, Box 357470, Seattle, WA 98195-7470, USA.
| |
Collapse
|
71
|
Carter DA. Comprehensive strategies to study neuronal function in transgenic animal models. Biol Psychiatry 2004; 55:785-8. [PMID: 15050858 DOI: 10.1016/j.biopsych.2003.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Revised: 07/09/2003] [Accepted: 07/28/2003] [Indexed: 11/16/2022]
Abstract
In the last 20 years of transgenic research, transgenic technology has been developed and refined to provide a seemingly comprehensive range of experimental approaches to questions of neuronal gene function; however, parallel developments in other technologies, such as whole genome sequencing and microarray analysis of gene expression, has meant that the questions have gotten harder. The complexity of neuronal systems and the difficulty of modeling neurologic diseases in rodents also present considerable challenges to molecular neuroscientists. Future functional genomic studies of brain and behavior will involve the full range of available transgenic methods and the incorporation of new technologies, including RNA interference.
Collapse
Affiliation(s)
- David A Carter
- School of Biosciences, Cardiff University, PO Box 911, Museum Avenue, Cardiff CF10 3US, Wales, UK
| |
Collapse
|
72
|
Affiliation(s)
- Stanton L Gerson
- Case Comprehensive Cancer Center, University Hospitals of Cleveland and Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106, USA.
| |
Collapse
|
73
|
Kondrashov FA, Ogurtsov AY, Kondrashov AS. Bioinformatical assay of human gene morbidity. Nucleic Acids Res 2004; 32:1731-7. [PMID: 15020709 PMCID: PMC390328 DOI: 10.1093/nar/gkh330] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Only a fraction of eukaryotic genes affect the phenotype drastically. We compared 18 parameters in 1273 human morbid genes, known to cause diseases, and in the remaining 16 580 unambiguous human genes. Morbid genes evolve more slowly, have wider phylogenetic distributions, are more similar to essential genes of Drosophila melanogaster, code for longer proteins containing more alanine and glycine and less histidine, lysine and methionine, possess larger numbers of longer introns with more accurate splicing signals and have higher and broader expressions. These differences make it possible to classify as non-morbid 34% of human genes with unknown morbidity, when only 5% of known morbid genes are incorrectly classified as non-morbid. This classification can help to identify disease-causing genes among multiple candidates.
Collapse
Affiliation(s)
- Fyodor A Kondrashov
- National Center for Biotechnology Information, National Institutes of Health, 38a Center Drive, 6S602, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
74
|
Martinez-Morales JR, Naruse K, Mitani H, Shima A, Wittbrodt J. Rapid chromosomal assignment of medaka mutants by bulked segregant analysis. Gene 2004; 329:159-65. [PMID: 15033538 DOI: 10.1016/j.gene.2003.12.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 12/18/2003] [Accepted: 12/30/2003] [Indexed: 11/17/2022]
Abstract
Genetic screens in medaka are leading to the identification of an increasing number of unique mutant phenotypes. However, so far only a few genes responsible for these phenotypes have been characterized. Furthermore, no protocols using a systematic positional cloning strategy have been developed to determine the implicated genes. The PCR-based bulked segregant analysis is a fast and reliable tool to accomplish the initial steps of the positional cloning of a mutation. Here we describe the selection of a panel of genetic markers that, evenly distributed over the 24 chromosomes of medaka, provide a full coverage of the compact medaka genome (800 Mb) when used in bulked segregant analysis. The reference panel, which consists of 48 EST-derived markers, is anchored to a collection of more than 2000 polymorphic markers, thus facilitating a rapid transition from chromosomal assignment to fine mapping of the mutants. More importantly, since most of the genetic screens have been performed in the inbred Cab strain (derived from the Southern population), the selection of markers included in this panel was intended to optimize the recognition of polymorphisms between Cab and the polymorphic inbred mapping strain Kaga. Here we present a reliable mapping panel, confirmed both by the assignment of the locus responsible for the medaka mutation eyeless/Rx3 to chromosome 12, and by the analysis of its resolution power using representative markers.
Collapse
|
75
|
Abstract
The rapid development and characterization of the mouse genome sequence, coupled with comparative sequence analysis of human, has been paralleled by a reinforced enthusiasm for mouse functional genomics. The way to uncover the in vivo function of genes is to analyze the phenotypes of the mutant animals. From this standpoint, the mouse is a suitable and valuable model organism in the studies of functional genomics. Therefore, there have been enormous efforts to enrich the list of the mutant mice. Such a trend emphasizes the random mutagenesis, including ENU mutagenesis and gene-trap mutagenesis, to obtain a large stock of mutant mice. However, since various mutant alleles are needed to precisely characterize the role of a gene in vivo, mutations should be designed. The simplicity and utility of transgenic technology can satisfy this demand. The combination of RNA interference with transgenic technology will provide more opportunities for researchers. Nevertheless, gene targeting can solely define the in vivo function of a gene without a doubt. Thus, transgenesis and gene targeting will be the major strategies in the field of functional genomics.
Collapse
Affiliation(s)
- Young Hoon Sung
- Samsung Biomedical Research Institute and Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon 440-746, Korea
| | | | | |
Collapse
|
76
|
Abstract
DNA and RNA quantifications are widely used in biological and biomedical research. In the last ten years, many technologies have been developed to enable automated and high-throughput analyses. In this review, we first give a brief overview of how DNA and RNA quantifications are carried out. Then, five technologies (microarrays, SAGE, differential display, real time PCR and real competitive PCR) are introduced, with an emphasis on how these technologies can be applied and what their limitations are. The technologies are also evaluated in terms of a few key aspects of nucleic acids quantification such as accuracy, sensitivity, specificity, cost and throughput.
Collapse
Affiliation(s)
- Chunming Ding
- Bioinformatics Program and Center for Advanced Biotechnology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
77
|
Four kinds of ENU-induced white spot mice and chromosome locations of the mutant genes. CHINESE SCIENCE BULLETIN-CHINESE 2003. [DOI: 10.1007/bf02901753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
78
|
Zambrowicz BP, Abuin A, Ramirez-Solis R, Richter LJ, Piggott J, BeltrandelRio H, Buxton EC, Edwards J, Finch RA, Friddle CJ, Gupta A, Hansen G, Hu Y, Huang W, Jaing C, Key BW, Kipp P, Kohlhauff B, Ma ZQ, Markesich D, Payne R, Potter DG, Qian N, Shaw J, Schrick J, Shi ZZ, Sparks MJ, Van Sligtenhorst I, Vogel P, Walke W, Xu N, Zhu Q, Person C, Sands AT. Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. Proc Natl Acad Sci U S A 2003; 100:14109-14. [PMID: 14610273 PMCID: PMC283554 DOI: 10.1073/pnas.2336103100] [Citation(s) in RCA: 280] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Indexed: 11/18/2022] Open
Abstract
The availability of both the mouse and human genome sequences allows for the systematic discovery of human gene function through the use of the mouse as a model system. To accelerate the genetic determination of gene function, we have developed a sequence-tagged gene-trap library of >270,000 mouse embryonic stem cell clones representing mutations in approximately 60% of mammalian genes. Through the generation and phenotypic analysis of knockout mice from this resource, we are undertaking a functional screen to identify genes regulating physiological parameters such as blood pressure. As part of this screen, mice deficient for the Wnk1 kinase gene were generated and analyzed. Genetic studies in humans have shown that large intronic deletions in WNK1 lead to its overexpression and are responsible for pseudohypoaldosteronism type II, an autosomal dominant disorder characterized by hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Consistent with the human genetic studies, Wnk1 heterozygous mice displayed a significant decrease in blood pressure. Mice homozygous for the Wnk1 mutation died during embryonic development before day 13 of gestation. These results demonstrate that Wnk1 is a regulator of blood pressure critical for development and illustrate the utility of a functional screen driven by a sequence-based mutagenesis approach.
Collapse
Affiliation(s)
- Brian P Zambrowicz
- Lexicon Genetics, 8800 Technology Forest Place, The Woodlands, TX 77381, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Ohl F, Keck ME. Behavioural screening in mutagenised mice—in search for novel animal models of psychiatric disorders. Eur J Pharmacol 2003; 480:219-28. [PMID: 14623364 DOI: 10.1016/j.ejphar.2003.08.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Complementary to the 'gene-driven' analysis of gene function, 'phenotype-driven' approaches can be performed and may be equally important. Despite the current availability of a long list of mouse mutants, there remains an appreciable need for behavioural phenotypes in mouse models permitting to learn more about the aetiology of psychiatric disorders. This lack can be compensated by phenotype-driven ethyl-nitrosourea (ENU)-mutagenesis programs which aim at identifying novel phenotypes without any a priori assumptions, thus, representing a unique possibility to create novel animal models which approximate the underlying genetic aetiology. The power of mouse mutagenesis critically depends on the phenotyping procedures performed. In the case of ENU-mutants, behavioural phenotyping is especially challenging, as behavioural profiles have to be identified in single individuals. For high-throughput screening, approaches have been made to establish standardised screening protocols including a combination of well-validated, easy to perform behavioural tests. Different strategies are being introduced, which are used in ENU-mutagenesis screens to identify behavioural mutants representing possible endophenotypes of psychiatric diseases.
Collapse
Affiliation(s)
- Frauke Ohl
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany.
| | | |
Collapse
|
80
|
Iwatate M, Gu Y, Dieterle T, Iwanaga Y, Peterson KL, Hoshijima M, Chien KR, Ross J. In vivo high-efficiency transcoronary gene delivery and Cre-LoxP gene switching in the adult mouse heart. Gene Ther 2003; 10:1814-20. [PMID: 12960971 DOI: 10.1038/sj.gt.3302077] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-efficiency somatic gene transfer in adult mouse heart has not yet been achieved in vivo. Here, we demonstrate high-efficiency in vivo transcoronary gene delivery to the adult murine myocardium using a catheter-based technique with recombinant adenovirus (AdV) and adeno-associated virus (AAV) vectors in normal and genetically engineered mice. The method involves immersion hypothermia followed by transient aortic and pulmonary artery occlusion with proximal intra-aortic segmental injection of cardioplegic solution containing substance P and viral vectors. Gene expression measured using a LacZ marker gene was observed throughout both ventricles. The expression efficiency of a cytoplasmic LacZ marker gene in the left ventricular myocardium was 56.4+/-14.5% (mean+/-s.d.) at 4 days with an AdV vector, and with an AAV vector it was 81.0+/-5.9% at 4 weeks. Following AAV gene transfer, no gene expression was found in kidney, brain, lung, and spleen, but there was slight expression in liver. In addition, we demonstrate temporally controlled genetic manipulation in the heart with an efficiency of 54.6+/-5.2%, by transferring an AdV vector carrying Cre recombinase in ROSA26 flox-LacZ reporter mice. Procedure-related mortality was 16% for AdV and zero for AAV transfer. Thus, this method provides efficient, relatively homogeneous gene expression in both ventricles of the adult mouse heart, and offers a novel approach for conditional gene rescue or ablation in genetically engineered mouse models.
Collapse
Affiliation(s)
- M Iwatate
- Institute of Molecular Medicine and Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Lee SH, Dimock K, Gray DA, Beauchemin N, Holmes KV, Belouchi M, Realson J, Vidal SM. Maneuvering for advantage: the genetics of mouse susceptibility to virus infection. Trends Genet 2003; 19:447-57. [PMID: 12902163 PMCID: PMC7127612 DOI: 10.1016/s0168-9525(03)00172-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genetic studies of host susceptibility to infection contribute to our understanding of an organism's response to pathogens at the immunological, cellular, and molecular levels. In this review we describe how the study of host genetics in mouse models has helped our understanding of host defense mechanisms against viral infection, and how this knowledge can be extended to human infections. We focus especially on the innate mechanisms that function as the host's first line of defense against infection. We also discuss the main issues that confront this field, as well as its future.
Collapse
Affiliation(s)
- Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Dow JT, Davies SA. Integrative physiology and functional genomics of epithelial function in a genetic model organism. Physiol Rev 2003; 83:687-729. [PMID: 12843407 DOI: 10.1152/physrev.00035.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Classically, biologists try to understand their complex systems by simplifying them to a level where the problem is tractable, typically moving from whole animal and organ-level biology to the immensely powerful "cellular" and "molecular" approaches. However, the limitations of this reductionist approach are becoming apparent, leading to calls for a new, "integrative" physiology. Rather than use the term as a rallying cry for classical organismal physiology, we have defined it as the study of how gene products integrate into the function of whole tissues and intact organisms. From this viewpoint, the convergence between integrative physiology and functional genomics becomes clear; both seek to understand gene function in an organismal context, and both draw heavily on transgenics and genetics in genetic models to achieve their goal. This convergence between historically divergent fields provides powerful leverage to those physiologists who can phrase their research questions in a particular way. In particular, the use of appropriate genetic model organisms provides a wealth of technologies (of which microarrays and knock-outs are but two) that allow a new precision in physiological analysis. We illustrate this approach with an epithelial model system, the Malpighian (renal) tubule of Drosophila melanogaster. With the use of the beautiful genetic tools and extensive genomic resources characteristic of this genetic model, it has been possible to gain unique insights into the structure, function, and control of epithelia.
Collapse
Affiliation(s)
- Julian T Dow
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK.
| | | |
Collapse
|
83
|
Delmas V, Martinozzi S, Bourgeois Y, Holzenberger M, Larue L. Cre-mediated recombination in the skin melanocyte lineage. Genesis 2003; 36:73-80. [PMID: 12820167 DOI: 10.1002/gene.10197] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Organ-specific expression of a Cre recombinase allows the analysis of gene function in a particular tissue or cell type. Using a 6.1 kb promoter from the mouse tyrosinase gene, we generated and characterized two lines of transgenic mice that express Cre recombinase in melanoblasts. Utilizing a Cre-responsive reporter mouse strain, genetic recombination was detected in the melanoblasts of the skin from embryonic day 11.5. In addition, Cre-expression was detected in the skin and eyes of mice. Cre transgene activity was occasionally detected in the brain and peripheral nerves but not in other tissues. When Tyr::Cre mice were crossed with mice carrying a homozygous loxP conditional mutation for the insulin-like growth factor receptor gene (Igf1r), Cre-melanoblast-specific recombination pattern was confirmed and no abnormal phenotype was observed. In conclusion, Tyr::Cre transgenic mice provide a valuable tool to follow the cell lineage and to examine gene function in melanocyte development and transformation.
Collapse
|
84
|
Abstract
Functional genomics is a systematic and high-throughput effort to analyze the functions of genes and gene products. Functional genomics is divided into gene- and phenotype-driven approaches. Gene-driven approaches to the functional genomics of sleep have demonstrated that transcripts of many genes change as a function of behavioral state. A phenotype-driven approach includes identification and characterization of gene function through the analyses of natural polygenic traits, creation of transgenic animals or high-throughput mutagenesis. Identification of a gene for narcolepsy through QTL analyses and concomitantly using a transgenic approach is one example of the phenotype-driven approach to the functional genomics of sleep. Though the majority of functional genomics is currently performed in mice, the rat is emerging as an important model for genomic research. Since rest in Drosophila shares many features with mammalian sleep, this allows a comparative functional genomics approach to the study of rest and sleep. The concepts outlined here for the functional genomics of sleep are applicable to respiration research.
Collapse
Affiliation(s)
- Miroslaw Mackiewicz
- Department of Medicine, Division of Sleep Medicine, Center for Sleep and Respiratory Neurobiology, Hospital of the University of Pennsylvania, 991 Maloney Building, Philadelphia, PA 19104-4283, USA
| | | |
Collapse
|
85
|
Abstract
The evolutionarily conserved Hox gene family of transcriptional regulators has originally been known for specifying positional identities along the longitudinal body axis of bilateral metazoans, including mouse and man. It is believed that subsequent to this archaic role, subsets of Hox genes have been co-opted for patterning functions in phylogenetically more recent structures, such as limbs and epithelial appendages. Among these, the hair follicle is of particular interest, as it is the only organ undergoing cyclical phases of regression and regeneration during the entire life span of an organism. Furthermore, the hair follicle is increasingly capturing the attention of developmental geneticists, as this abundantly available miniature organ mimics key aspects of embryonic patterning and, in addition, presents a model for studying organ renewal. The first Hox gene shown to play a universal role in hair follicle development is Hoxc13, as both Hoxc13-deficient and overexpressing mice exhibit severe hair growth and patterning defects. Differential gene expression analyses in the skin of these mutants, as well as in vitro DNA binding studies performed with potential targets for HOXC13 transcriptional regulation in human hair, identified genes encoding hair-specific keratins and keratin-associated proteins (KAPs) as major groups of presumptive Hoxc13 downstream effectors in the control of hair growth. The Hoxc13 mutant might thus serve as a paradigm for studying hair-specific roles of Hoxc13 and other members of this gene family, whose distinct spatio-temporally restricted expression patterns during hair development and cycling suggest discrete functions in follicular patterning and hair cycle control. The main conclusion from a discussion of these potential roles vis-à-vis current expression data in mouse and man, and from the perspective of the results obtained with the Hoxc13 transgenic models, is that members of the Hox family are likely to fulfill essential roles of great functional diversity in hair that require complex transcriptional control mechanisms to ensure proper spatio-temporal patterns of Hox gene expression at homeostatic levels.
Collapse
Affiliation(s)
- Alexander Awgulewitsch
- Departments of Medicine and Dermatology, and Hollings Cancer Center, Medical University of South Carolina, 96 Jonathan Lucas St., CSB 912, Charleston, SC 29425, USA.
| |
Collapse
|
86
|
Xie W, Uppal H. Drug discovery perspective of chemical-driven mouse mutagenesis. Drug Discov Today 2003; 8:199. [PMID: 12634009 DOI: 10.1016/s1359-6446(03)02619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
87
|
Fitch KR, McGowan KA, van Raamsdonk CD, Fuchs H, Lee D, Puech A, Hérault Y, Threadgill DW, Hrabé de Angelis M, Barsh GS. Genetics of dark skin in mice. Genes Dev 2003; 17:214-28. [PMID: 12533510 PMCID: PMC195979 DOI: 10.1101/gad.1023703] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chemical mutagenesis in the mouse is a powerful approach for phenotype-driven genetics, but questions remain about the efficiency with which new mutations ascertained by their phenotype can be localized and identified, and that knowledge applied to a specific biological problem. During a global screen for dominant phenotypes in about 30,000 animals, a novel class of pigmentation mutants were identified by dark skin (Dsk). We determined the genetic map location, homozygous phenotype, and histology of 10 new Dsk and 2 new dark coat (Dcc) mutations, and identified mutations in Agouti (Met1Leu, Dcc4), Sox18 (Leu220ter, Dcc1), Keratin 2e (Thr500Pro, Dsk2), and Egfr (Leu863Gln, Dsk5). Cutaneous effects of most Dsk mutations are limited to melanocytes, except for the Keratin 2e and Egfr mutations, in which hyperkeratosis and epidermal thickening precede epidermal melanocytosis by 3-6 wk. The Dsk2 mutation is likely to impair intermediate filament assembly, leading to cytolysis of suprabasal keratinocytes and secondary hyperkeratosis and melanocytosis. The Dsk5 mutation causes increased tyrosine kinase activity and a decrease in steady-state receptor levels in vivo. The Dsk mutations represent genes or map locations not implicated previously in pigmentation, and delineate a developmental pathway in which mutations can be classified on the basis of body region, microscopic site, and timing of pigment accumulation.
Collapse
Affiliation(s)
- Karen R Fitch
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
In the postgenomic era the mouse will be central to the challenge of ascribing a function to the 40,000 or so genes that constitute our genome. In this review, we summarize some of the classic and modern approaches that have fueled the recent dramatic explosion in mouse genetics. Together with the sequencing of the mouse genome, these tools will have a profound effect on our ability to generate new and more accurate mouse models and thus provide a powerful insight into the function of human genes during the processes of both normal development and disease.
Collapse
|
89
|
Russ A, Stumm G, Augustin M, Sedlmeier R, Wattler S, Nehls M. Random mutagenesis in the mouse as a tool in drug discovery. Drug Discov Today 2002; 7:1175-83. [PMID: 12547018 DOI: 10.1016/s1359-6446(02)02515-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The flood of raw information generated by large-scale data acquisition technologies in genomics, microarrays and proteomics is changing the early stages of the drug discovery process. Although many more potential drug targets are now available compared with the pre-genomics era, knowledge about the physiological context in which these targets act--information crucial to both discovery and development--is scarce. Random mutagenesis strategies in the mouse provide scalable approaches for both the gene-driven validation of candidate targets in vivo and the discovery of new physiological pathways by phenotype-driven screens.
Collapse
Affiliation(s)
- Andreas Russ
- Ingenium Pharmaceuticals, Fraunhoferstrasse 13, D-82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
90
|
|
91
|
Rosenthal N, Ashburner M. Taking stock of our models: the function and future of stock centres. Nat Rev Genet 2002; 3:711-7. [PMID: 12209145 DOI: 10.1038/nrg891] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stock centres for our animal models are as important as other scientific resources, such as the primary literature or genome databases. But they need forward planning, international cooperation and secure funding to keep pace with the explosion in functional genomics that relies so heavily on them.
Collapse
Affiliation(s)
- Nadia Rosenthal
- Mouse Biology Programme, European Molecular Biology Laboratory, via Ramarini 32, 00016 Monterotondo, Rome, Italy.
| | | |
Collapse
|
92
|
Affiliation(s)
- H A Nash
- Laboratory of Molecular Biology, National Institute of Mental Health, Building 36/Room 1B08, 9000 Rockville Pike, Bethesda, MD 20892-4034, USA
| |
Collapse
|
93
|
Abstract
The p53 protein plays a critical role in the prevention of cancer. It responds to a variety of cellular stresses to induce either apoptosis, a transient cell cycle arrest, or a terminal cell cycle arrest called senescence. Senescence in cultured cells is associated with augmented p53 activity and abrogation of p53 activity may delay in vitro senescence. Increasing evidence suggests that p53 may also influence aspects of organismal aging. Several mutant mouse models that display alterations in longevity and aging-related phenotypes have defects in genes that alter p53 signaling. Recently, my laboratory has developed and characterized a p53 mutant mouse line that appears to have an enhanced p53 response. These p53 mutants exhibit increased cancer resistance, yet have a shortened longevity and display a number of early aging-associated phenotypes, suggesting a role for p53 in the aging process. The nature of the aging phenotypes observed in this p53 mutant line is consistent with a model in which aging is driven in part by a gradual depletion of stem cell functional capacity.
Collapse
Affiliation(s)
- Lawrence A Donehower
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
94
|
Affiliation(s)
- Gail E Herman
- Children's Research Institute and Division of Molecualr and Human Genetics, Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
95
|
Abstract
Genetically engineered animals have opened new frontiers in the study of physiology and disease processes. Mutant animals offer more accurate disease models and increased precision for pathogenesis and treatment studies. Their use offers hope for improved therapy to patients with conditions that currently have poor or ineffective treatments. These advantages have fostered an increase in studies using mice in recent years, a development viewed with alarm by those who oppose the use of animals in research. Scientists point out that the mice are replacing more sentient species, such as nonhuman primates, and are increasing the quality of research being conducted. They assert that study of genetically engineered animals will eventually permit decreases in numbers of animals used in research. Nevertheless, the increase in use of genetically altered animals presents many challenges in reviewing protocols and providing care. Identification and resolution of any welfare problems is a responsibility that is shared by institutional animal care and use committee, veterinary, animal care, and research staffs. To identify potential welfare concerns, a database such as TBASE (<http://tbase.jax.org>) can be searched to learn what has been reported for established mutant lines. In addition, newly created lines should be monitored by a surveillance system and have phenotype assessment to identify the effects of altering the genome. Methods of ensuring welfare can include treatment of conditions produced, restriction of gene expression to tissues of interest or to certain time periods, and establishment of endpoints for removing animals from a study before problems appear.
Collapse
Affiliation(s)
- Melvin B Dennis
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|