51
|
Fioretto L, Gallo C, Mercogliano M, Ziaco M, Nuzzo G, d'Ippolito G, Follero O, DellaGreca M, Giaccio P, Nittoli V, Ambrosino C, Sordino P, Soluri A, Soluri A, Massari R, D'Amelio M, De Palma R, Fontana A, Manzo E. BODIPY-Based Analogue of the TREM2-Binding Molecular Adjuvant Sulfavant A, a Chemical Tool for Imaging and Tracking Biological Systems. Anal Chem 2024; 96:3362-3372. [PMID: 38348659 DOI: 10.1021/acs.analchem.3c04322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Recently, we described synthetic sulfolipids named Sulfavants as a novel class of molecular adjuvants based on the sulfoquinovosyl-diacylglycerol skeleton. The members of this family, Sulfavant A (1), Sulfavant R (2), and Sulfavant S (3), showed important effects on triggering receptor expressed on myeloid cells 2 (TREM2)-induced differentiation and maturation of human dendritic cells (hDC), through a novel cell mechanism underlying the regulation of the immune response. As these molecules are involved in biological TREM2-mediated processes crucial for cell survival, here, we report the synthesis and application of a fluorescent analogue of Sulfavant A bearing the 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene moiety (Me4-BODIPY). The fluorescent derivative, named PB-SULF A (4), preserving the biological activity of Sulfavants, opens the way to chemical biology and cell biology experiments to better understand the interactions with cellular and in vivo organ targets and to improve our comprehension of complex molecular mechanisms underlying the not fully understood ligand-induced TREM2 activity.
Collapse
Affiliation(s)
- Laura Fioretto
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Carmela Gallo
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Marcello Mercogliano
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80136 Napoli, Italy
| | - Marcello Ziaco
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Genoveffa Nuzzo
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Giuliana d'Ippolito
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Olimpia Follero
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80136 Napoli, Italy
| | - Paolo Giaccio
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Valeria Nittoli
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino, Avellino, Italy
| | - Concetta Ambrosino
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino, Avellino, Italy
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
- IEOS-CNR, 80131 Naples, Italy
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Sicily Marine Centre, Stazione Zoologica Anton Dohrn, via Consolare Pompea 29, 98167 Messina,Italy
| | - Alessandro Soluri
- National Research Council of Italy (CNR), c/o International Campus "A. Buzzati-Traverso″, Institute of Biochemistry and Cell Biology (IBBC), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Andrea Soluri
- National Research Council of Italy (CNR), c/o International Campus "A. Buzzati-Traverso″, Institute of Biochemistry and Cell Biology (IBBC), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy
- Department of Medicine and Surgery, Unit of Molecular Neurosciences, University Campus Bio-Medico, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Roberto Massari
- National Research Council of Italy (CNR), c/o International Campus "A. Buzzati-Traverso″, Institute of Biochemistry and Cell Biology (IBBC), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Unit of Molecular Neurosciences, University Campus Bio-Medico, via Álvaro del Portillo 21, 00128 Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Raffaele De Palma
- Clinica di Medicina Interna, Immunologia Clinica e Medicina Traslazionale, Ospedale San Martino, Largo Rosanna Benzi 10, 16132 Genova,Italy
| | - Angelo Fontana
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
- Department of Biology, University of Naples "Federico II″, via Cinthia, Bldg.7, 80126 Naples, Italy
| | - Emiliano Manzo
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| |
Collapse
|
52
|
Acuña-Castillo C, Escobar A, García-Gómez M, Bachelet VC, Huidobro-Toro JP, Sauma D, Barrera-Avalos C. P2X7 Receptor in Dendritic Cells and Macrophages: Implications in Antigen Presentation and T Lymphocyte Activation. Int J Mol Sci 2024; 25:2495. [PMID: 38473744 DOI: 10.3390/ijms25052495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
The P2X7 receptor, a member of the P2X purinergic receptor family, is a non-selective ion channel. Over the years, it has been associated with various biological functions, from modulating to regulating inflammation. However, its emerging role in antigen presentation has captured the scientific community's attention. This function is essential for the immune system to identify and respond to external threats, such as pathogens and tumor cells, through T lymphocytes. New studies show that the P2X7 receptor is crucial for controlling how antigens are presented and how T cells are activated. These studies focus on antigen-presenting cells, like dendritic cells and macrophages. This review examines how the P2X7 receptor interferes with effective antigen presentation and activates T cells and discusses the fundamental mechanisms that can affect the immune response. Understanding these P2X7-mediated processes in great detail opens up exciting opportunities to create new immunological therapies.
Collapse
Affiliation(s)
- Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Alejandro Escobar
- Laboratorio Biología Celular y Molecular, Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 8380000, Chile
| | - Moira García-Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Vivienne C Bachelet
- Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Juan Pablo Huidobro-Toro
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
- Centro Ciencia & Vida, Av. Del Valle Norte 725, Huechuraba 8580000, Chile
| | - Carlos Barrera-Avalos
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| |
Collapse
|
53
|
Lv D, Jiang H, Yang X, Li Y, Niu W, Zhang D. Advances in understanding of dendritic cell in the pathogenesis of acute kidney injury. Front Immunol 2024; 15:1294807. [PMID: 38433836 PMCID: PMC10904453 DOI: 10.3389/fimmu.2024.1294807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Acute kidney injury (AKI) is characterized by a rapid decline in renal function and is associated with a high morbidity and mortality rate. At present, the underlying mechanisms of AKI remain incompletely understood. Immune disorder is a prominent feature of AKI, and dendritic cells (DCs) play a pivotal role in orchestrating both innate and adaptive immune responses, including the induction of protective proinflammatory and tolerogenic immune reactions. Emerging evidence suggests that DCs play a critical role in the initiation and development of AKI. This paper aimed to conduct a comprehensive review and analysis of the role of DCs in the progression of AKI and elucidate the underlying molecular mechanism. The ultimate objective was to offer valuable insights and guidance for the treatment of AKI.
Collapse
Affiliation(s)
- Dongfang Lv
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huihui Jiang
- Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianzhen Yang
- Department of Urology, Afliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Li
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Weipin Niu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Key Laboratory of Dominant Diseases of traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Denglu Zhang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Key Laboratory of Dominant Diseases of traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
54
|
Lensch V, Gabba A, Hincapie R, Bhagchandani SH, Basak A, Alam MM, Irvine DJ, Shalek AK, Johnson JA, Finn MG, Kiessling LL. Glycan-costumed virus-like particles promote type 1 anti-tumor immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.575711. [PMID: 38293025 PMCID: PMC10827186 DOI: 10.1101/2024.01.18.575711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Cancer vaccine development is inhibited by a lack of strategies for directing dendritic cell (DC) induction of effective tumor-specific cellular immunity. Pathogen engagement of DC lectins and toll-like receptors (TLRs) shapes immunity by directing T cell function. Strategies to activate specific DC signaling pathways via targeted receptor engagement are crucial to unlocking type 1 cellular immunity. Here, we engineered a glycan-costumed virus-like particle (VLP) vaccine that delivers programmable peptide antigens to induce tumor-specific cellular immunity in vivo. VLPs encapsulating TLR7 agonists and decorated with a selective mannose-derived ligand for the lectin DC-SIGN induced robust DC activation and type 1 cellular immunity, whereas VLPs lacking this key DC-SIGN ligand failed to promote DC-mediated immunity. Vaccination with glycan-costumed VLPs generated tumor antigen-specific Th1 CD4+ and CD8+ T cells that infiltrated solid tumors, inhibiting tumor growth in a murine melanoma model. Thus, VLPs employing lectin-driven immune reprogramming provide a framework for advancing cancer immunotherapies.
Collapse
Affiliation(s)
- Valerie Lensch
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adele Gabba
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Hincapie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sachin H. Bhagchandani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ankit Basak
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | | | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Alex K. Shalek
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jeremiah A. Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
55
|
Shbeer AM. Current state of knowledge and challenges for harnessing the power of dendritic cells in cancer immunotherapy. Pathol Res Pract 2024; 253:155025. [PMID: 38147726 DOI: 10.1016/j.prp.2023.155025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
DCs have great promise for cancer immunotherapy and are essential for coordinating immune responses. In the battle against cancer, using DCs' ability to stimulate the immune system and focus it on tumor cells has shown to be a viable tactic. This study offers a thorough summary of recent developments as well as potential future paths for DC-based immunotherapy against cancer. This study reviews the many methods used in DC therapy, such as vaccination and active cellular immunotherapy. The effectiveness and safety of DC-based treatments for metastatic castration-resistant prostate cancer and non-small cell lung cancer are highlighted in these investigations. The findings indicate longer survival times and superior results for particular patient groups. We are aware of the difficulties and restrictions of DC-based immunotherapy, though. These include the immunosuppressive tumor microenvironment, the intricacy of DC production, and the heterogeneity within DC populations. More study and development are needed to overcome these challenges to enhance immunological responses, optimize treatment regimens, and increase scalability.
Collapse
Affiliation(s)
- Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
56
|
Abramson J, Dobeš J, Lyu M, Sonnenberg GF. The emerging family of RORγt + antigen-presenting cells. Nat Rev Immunol 2024; 24:64-77. [PMID: 37479834 PMCID: PMC10844842 DOI: 10.1038/s41577-023-00906-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/23/2023]
Abstract
Antigen-presenting cells (APCs) are master regulators of the immune response by directly interacting with T cells to orchestrate distinct functional outcomes. Several types of professional APC exist, including conventional dendritic cells, B cells and macrophages, and numerous other cell types have non-classical roles in antigen presentation, such as thymic epithelial cells, endothelial cells and granulocytes. Accumulating evidence indicates the presence of a new family of APCs marked by the lineage-specifying transcription factor retinoic acid receptor-related orphan receptor-γt (RORγt) and demonstrates that these APCs have key roles in shaping immunity, inflammation and tolerance, particularly in the context of host-microorganism interactions. These RORγt+ APCs include subsets of group 3 innate lymphoid cells, extrathymic autoimmune regulator-expressing cells and, potentially, other emerging populations. Here, we summarize the major findings that led to the discovery of these RORγt+ APCs and their associated functions. We discuss discordance in recent reports and identify gaps in our knowledge in this burgeoning field, which has tremendous potential to advance our understanding of fundamental immune concepts.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Mengze Lyu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
57
|
Szafranska K, Sørensen KK, Lalor PF, McCourt P. Sinusoidal cells and liver immunology. SINUSOIDAL CELLS IN LIVER DISEASES 2024:53-75. [DOI: 10.1016/b978-0-323-95262-0.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
58
|
Wu J, Pu K. Leveraging Semiconducting Polymer Nanoparticles for Combination Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308924. [PMID: 37864513 DOI: 10.1002/adma.202308924] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Indexed: 10/23/2023]
Abstract
Cancer immunotherapy has become a promising method for cancer treatment, bringing hope to advanced cancer patients. However, immune-related adverse events caused by immunotherapy also bring heavy burden to patients. Semiconducting polymer nanoparticles (SPNs) as an emerging nanomaterial with high biocompatibility, can eliminate tumors and induce tumor immunogenic cell death through different therapeutic modalities, including photothermal therapy, photodynamic therapy, and sonodynamic therapy. In addition, SPNs can work as a functional nanocarrier to synergize with a variety of immunomodulators to amplify anti-tumor immune responses. In this review, SPNs-based combination cancer immunotherapy is comprehensively summarized according to the SPNs' therapeutic modalities and the type of loaded immunomodulators. The in-depth understanding of existing SPNs-based therapeutic modalities will hopefully inspire the design of more novel nanomaterials with potent anti-tumor immune effects, and ultimately promote their clinical translation.
Collapse
Affiliation(s)
- Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
59
|
Aoki S. Elucidating the Mechanisms Underlying Interindividual Differences in the Onset of Adverse Drug Reactions. Biol Pharm Bull 2024; 47:1079-1086. [PMID: 38825461 DOI: 10.1248/bpb.b24-00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Idiosyncratic drug toxicities (IDTs) pose a significant challenge; they are marked by life-threatening adverse reactions that emerge aftermarket release and are influenced by intricate genetic and environmental variations. Recent genome-wide association studies have highlighted a strong correlation between specific human leukocyte antigen (HLA) polymorphisms and IDT onset. This review provides an overview of current research on HLA-mediated drug toxicities. In the last six years, HLA-transgenic (Tg) mice have been instrumental in advancing our understanding of these underlying mechanisms, uncovering systemic immune reactions that replicate human drug-induced immune stimulation. Additionally, the potential role of immune tolerance in shaping individual differences in adverse effects highlights its relevance to the interplay between HLA polymorphisms and IDTs. Although HLA-Tg mice offer valuable insights into systemic immune reactions, further exploration is essential to decipher the intricate interactions that lead to organ-specific adverse effects, especially in organs such as the skin or liver. Navigating the intricate interplay of HLA, which may potentially trigger intracellular immune responses, this review emphasizes the need for a holistic approach that integrates findings from both animal models and molecular/cellular investigations. The overarching goal is to enhance our comprehensive understanding of HLA-mediated IDTs and identify factors shaping individual variations in drug reactions. This review aims to facilitate the development of strategies to prevent severe adverse effects, address existing knowledge gaps, and provide guidance for future research initiatives in the field of HLA-mediated IDTs.
Collapse
Affiliation(s)
- Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
60
|
Zhu Y, Cui M, Liu Y, Ma Z, Xi J, Tian Y, Hu J, Song C, Fan L, Li Q. Uptake Quantification of Antigen Carried by Nanoparticles and Its Impact on Carrier Adjuvanticity Evaluation. Vaccines (Basel) 2023; 12:28. [PMID: 38250841 PMCID: PMC10818693 DOI: 10.3390/vaccines12010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Nanoparticles have been identified in numerous studies as effective antigen delivery systems that enhance immune responses. However, it remains unclear whether this enhancement is a result of increased antigen uptake when carried by nanoparticles or the adjuvanticity of the nanoparticle carriers. Consequently, it is important to quantify antigen uptake by dendritic cells in a manner that is free from artifacts in order to analyze the immune response when antigens are carried by nanoparticles. In this study, we demonstrated several scenarios (antigens on nanoparticles or inside cells) that are likely to contribute to the generation of artifacts in conventional fluorescence-based quantification. Furthermore, we developed the necessary assay for accurate uptake quantification. PLGA NPs were selected as the model carrier system to deliver EsxB protein (a Staphylococcus aureus antigen) in order to testify to the feasibility of the established method. The results showed that for the same antigen uptake amount, the antigen delivered by PLGA nanoparticles could elicit 3.6 times IL-2 secretion (representative of cellular immune response activation) and 1.5 times IL-12 secretion (representative of DC maturation level) compared with pure antigen feeding. The findings above give direct evidence of the extra adjuvanticity of PLGA nanoparticles, except for their delivery functions. The developed methodology allows for the evaluation of immune cell responses on an antigen uptake basis, thus providing a better understanding of the origin of the adjuvanticity of nanoparticle carriers. Ultimately, this research provides general guidelines for the formulation of nano-vaccines.
Collapse
Affiliation(s)
- Yupu Zhu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Minxuan Cui
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Yutao Liu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Zhengjun Ma
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Jiayue Xi
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Yi Tian
- Department of Oncology, Airforce Medical Center of PLA, 30th Fu Cheng Road, Beijing 100142, China;
| | - Jinwei Hu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Chaojun Song
- School of Life Science, Northwestern Polytechnical University, 127th Youyi West Road, Xi’an 710072, China;
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Quan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| |
Collapse
|
61
|
López Malizia A, Merlotti A, Bonte PE, Sager M, Arribas De Sandoval Y, Goudot C, Erra Díaz F, Pereyra-Gerber P, Ceballos A, Amigorena S, Geffner J, Sabatte J. Clusterin protects mature dendritic cells from reactive oxygen species mediated cell death. Oncoimmunology 2023; 13:2294564. [PMID: 38125724 PMCID: PMC10730137 DOI: 10.1080/2162402x.2023.2294564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Dendritic cells (DCs) play a key role in the induction of the adaptive immune response. They capture antigens in peripheral tissues and prime naïve T lymphocytes, triggering the adaptive immune response. In the course of inflammatory processes DCs face stressful conditions including hypoxia, low pH and high concentrations of reactive oxygen species (ROS), among others. How DCs survive under these adverse conditions remain poorly understood. Clusterin is a protein highly expressed by tumors and usually associated with bad prognosis. It promotes cancer cell survival by different mechanisms such as apoptosis inhibition and promotion of autophagy. Here, we show that, upon maturation, human monocyte-derived DCs (MoDCs) up-regulate clusterin expression. Clusterin protects MoDCs from ROS-mediated toxicity, enhancing DC survival and promoting their ability to induce T cell activation. In line with these results, we found that clusterin is expressed by a population of mature LAMP3+ DCs, called mregDCs, but not by immature DCs in human cancer. The expression of clusterin by intratumoral DCs was shown to be associated with a transcriptomic profile indicative of cellular response to stress. These results uncover an important role for clusterin in DC physiology.
Collapse
Affiliation(s)
- Alvaro López Malizia
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | | | | | - Melina Sager
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | | | - Christel Goudot
- Institut Curie, Université Paris Sciences et Lettres, Paris, France
| | - Fernando Erra Díaz
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | - Pehuén Pereyra-Gerber
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ana Ceballos
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | | | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | - Juan Sabatte
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| |
Collapse
|
62
|
Šlachtová V, Chovanec M, Rahm M, Vrabel M. Bioorthogonal Chemistry in Cellular Organelles. Top Curr Chem (Cham) 2023; 382:2. [PMID: 38103067 PMCID: PMC10725395 DOI: 10.1007/s41061-023-00446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/12/2023] [Indexed: 12/17/2023]
Abstract
While bioorthogonal reactions are routinely employed in living cells and organisms, their application within individual organelles remains limited. In this review, we highlight diverse examples of bioorthogonal reactions used to investigate the roles of biomolecules and biological processes as well as advanced imaging techniques within cellular organelles. These innovations hold great promise for therapeutic interventions in personalized medicine and precision therapies. We also address existing challenges related to the selectivity and trafficking of subcellular dynamics. Organelle-targeted bioorthogonal reactions have the potential to significantly advance our understanding of cellular organization and function, provide new pathways for basic research and clinical applications, and shape the direction of cell biology and medical research.
Collapse
Affiliation(s)
- Veronika Šlachtová
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Marek Chovanec
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Michal Rahm
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Milan Vrabel
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
63
|
Kim CG, Kim WK, Kim N, Pyung YJ, Park DJ, Lee JC, Cho CS, Chu H, Yun CH. Intranasal Immunization With Nanoparticles Containing an Orientia tsutsugamushi Protein Vaccine Candidate and a Polysorbitol Transporter Adjuvant Enhances Both Humoral and Cellular Immune Responses. Immune Netw 2023; 23:e47. [PMID: 38188601 PMCID: PMC10767547 DOI: 10.4110/in.2023.23.e47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/09/2024] Open
Abstract
Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite many attempts to develop a protective strategy, an effective preventive vaccine has not been developed. The identification of appropriate Ags that cover diverse antigenic strains and provide long-lasting immunity is a fundamental challenge in the development of a scrub typhus vaccine. We investigated whether this limitation could be overcome by harnessing the nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy. Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8+ and CD4+ T cells. Furthermore, the vaccines containing PST improved the mouse survival against O. tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both Ag-specific humoral immunity and T cell response, which are essential to effectively confer protective immunity against O. tsutsugamushi infection. These findings suggest that PST has potential for use in an intranasal vaccination strategy.
Collapse
Affiliation(s)
- Cheol Gyun Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Korea
| | - Won Kyong Kim
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Narae Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Young Jin Pyung
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Da-Jeong Park
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeong-Cheol Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyuk Chu
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
- Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
64
|
Mohapatra S, Kumar S, Kumar S, Singh AK, Nayak B. Immunodominant conserved moieties on spike protein of SARS-CoV-2 renders virulence factor for the design of epitope-based peptide vaccines. Virusdisease 2023; 34:456-482. [PMID: 38046066 PMCID: PMC10686954 DOI: 10.1007/s13337-023-00852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
UNLABELLED The outbreak of novel SARS-CoV-2 virion has wreaked havoc with a high prevalence of respiratory illness and high transmission due to a vague understanding of the viral antigenicity, augmenting the dire challenge to public health globally. This viral member necessitates the expansion of diagnostic and therapeutic tools to track its transmission and confront it through vaccine development. Therefore, prophylactic strategies are mandatory. Virulent spike proteins can be the most desirable candidate for the computational design of vaccines targeting SARS-CoV-2, followed by the meteoric development of immune epitopes. Spike protein was characterized using existing bioinformatics tools with a unique roadmap related to the immunological profile of SARS-CoV-2 to predict immunogenic virulence epitopes based on antigenicity, allergenicity, toxicity, immunogenicity, and population coverage. Applying in silico approaches, a set of twenty-four B lymphocyte-based epitopes and forty-six T lymphocyte-based epitopes were selected. The predicted epitopes were evaluated for their intrinsic properties. The physico-chemical characterization of epitopes qualifies them for further in vitro and in vivo analysis and pre-requisite vaccine development. This study presents a set of screened epitopes that bind to HLA-specific allelic proteins and can be employed for designing a peptide vaccine construct against SARS-CoV-2 that will confer vaccine-induced protective immunity due to its structural stability. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13337-023-00852-9.
Collapse
Affiliation(s)
- Subhashree Mohapatra
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Santosh Kumar
- RNA Biology Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Shashank Kumar
- Molecular Signalling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab 151401 India
| | - Atul Kumar Singh
- Molecular Signalling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab 151401 India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| |
Collapse
|
65
|
Li P, Jia L, Bian X, Tan S. Application of Engineered Dendritic Cell Vaccines in Cancer Immunotherapy: Challenges and Opportunities. Curr Treat Options Oncol 2023; 24:1703-1719. [PMID: 37962824 DOI: 10.1007/s11864-023-01143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/15/2023]
Abstract
OPINION STATEMENT The primary objective of this study is to evaluate the effectiveness of cancer vaccines containing genetically modified dendritic cells (DCs) in inducing transformational immune responses. This paper sheds considerable light on DCs' function in advancing treatment techniques. This objective is achieved by thoroughly analyzing the many facets of DCs and their strategic integration into cancer treatment. Due to their role as immune response regulators, DCs can potentially enhance cancer treatment strategies. DCs have the potential to revolutionize immunotherapy, as shown by a comprehensive analysis of their numerous characteristics. The review deftly transitions from examining the fundamentals of preclinical research to delving into the complexities of clinical implementation while acknowledging the inherent challenges in translating DC vaccine concepts into tangible progress. The analysis also emphasizes the potential synergistic outcomes that can be achieved by combining DC vaccines with established pharmaceuticals, thereby emphasizing the importance of employing a holistic approach to enhance treatment efficacy. Despite the existence of transformative opportunities, advancement is hindered by several obstacles. The exhaustive analysis of technical complexities, regulatory dynamics, and upcoming challenges provides valuable insights for overcoming obstacles requiring strategic navigation to incorporate DC vaccines successfully. This document provides a comprehensive analysis of the developments in DC-based immunotherapy, concentrating on its potential to transform cancer therapy radically.
Collapse
Affiliation(s)
- Ping Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Linan Jia
- Department of Urology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xiaobo Bian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang110004, China
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
66
|
Victor JR, Nahm DH. Mechanism underlying polyvalent IgG-induced regulatory T cell activation and its clinical application: Anti-idiotypic regulatory T cell theory for immune tolerance. Front Immunol 2023; 14:1242860. [PMID: 38094290 PMCID: PMC10716439 DOI: 10.3389/fimmu.2023.1242860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
The regulatory T (Treg) cells constitute a functionally defined subpopulation of T cells that modulate the immune system and maintain immune tolerance through suppression of the development of autoimmune responses to self-antigens and allergic reactions to external antigens. Reduction in the number or function of Treg cells has been suggested as a key immune abnormality underlying the development of autoimmune and allergic diseases. In vitro studies have demonstrated that purified polyvalent immunoglobulin G (IgG) from multiple healthy blood donors can exert immunomodulatory effects on Treg cells. Incubation of polyvalent human IgG with purified CD4+CD25high T cells increased the intracellular expression of interleukin (IL)-10. Intravenous administration of polyvalent human IgG induced significant expansions of CD4+ Foxp3+ Treg cells and clinical improvements in patients with autoimmune diseases. In human clinical trials, intramuscular administration of autologous total IgG significantly increased the percentage of IL-10-producing CD4+ Treg cells in the peripheral blood of healthy subjects and provided significant clinical improvements in patients with atopic dermatitis. These results suggest a clinical usefulness of polyvalent IgG-induced activation of Treg cells in human subjects. This review proposes a new hypothesis for immune tolerance mechanism by integrating the pre-existing "idiotypic network theory" and "Treg cell theory" into an "anti-idiotypic Treg cell theory." Based on this hypothesis, an "active anti-idiotypic therapy" for allergic and autoimmune diseases using autologous polyvalent IgG (as immunizing antigens) is suggested as follows: (1) Intramuscular or subcutaneous administration of autologous polyvalent IgG produces numerous immunogenic peptides derived from idiotypes of autologous IgG through processing of dendritic cells, and these peptides activate anti-idiotypic Treg cells in the same subject. (2) Activated anti-idiotypic Treg cells secrete IL-10 and suppress Th2 cell response to allergens and autoimmune T cell response to self-antigens. (3) These events can induce a long-term clinical improvements in patients with allergic and autoimmune diseases. Further studies are needed to evaluate the detailed molecular mechanism underlying polyvalent IgG-induced Treg cell activation and the clinical usefulness of this immunomodulatory therapy for autoimmune and allergic diseases.
Collapse
Affiliation(s)
- Jefferson Russo Victor
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo (USP), Sao Paulo, Brazil
- Post Graduation Program in Health Sciences, Santo Amaro University (UNISA), Sao Paulo, Brazil
| | - Dong-Ho Nahm
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
67
|
Ashitha KC, M G, N.R S, S B, P R. Leveraging mesoporous silica nanomaterial for optimal immunotherapeutics against cancer. IN VITRO MODELS 2023; 2:153-169. [PMID: 39872169 PMCID: PMC11756482 DOI: 10.1007/s44164-023-00061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/14/2023] [Accepted: 10/30/2023] [Indexed: 01/29/2025]
Abstract
Cancer represents a significant cause of morbidity and mortality. Definitive chemotherapy, surgery and radiotherapy treatment have not improved the "5-year survival period" and have shown recurrence. Currently, cancer immunotherapy is reported to be a promising therapeutic modality that aims to potentiate immune response against cancer by employing immune checkpoint inhibitors, cancer vaccines and immunomodulators. Inhibition of immune checkpoints such as PD-1/PDL1, CTLA and TIM molecules using monoclonal antibodies, ligands or both are proven to be the most successful anticancer immunotherapy. But the application of immunotherapy involves critical challenges such as non-responsiveness and systemic toxicity due to the administration of high dose. To mitigate the above challenges, nanomaterial-based delivery and therapy have been adopted to inhibit the immune checkpoints and induce an anticancer immune response. Specifically, mesoporous silica-based materials for cancer therapy are shown to be versatile materials for the above purpose. Mesoporous silica nanoparticle (MSN) based cancer immunotherapy overcomes numerous challenges and offers novel strategies for improving conventional immunotherapies. MSN has a high surface area, porosity and biocompatibility; it also has natural immune-adjuvant properties, which have been reported to be the best candidate material for immunotherapeutic delivery. This review will focus on the use of MSN as carriers for delivering immune checkpoint inhibitors and their efficacy in cancer combination therapy.
Collapse
Affiliation(s)
- K. C. Ashitha
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, 600025 India
| | - Gopinath M
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, 600025 India
| | - Sasirekha N.R
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, 600025 India
| | - Balakumar S
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai, India
| | - Rajashree P
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, 600025 India
| |
Collapse
|
68
|
Qulu WP, Mzobe G, Mtshali A, Letsoalo MP, Osman F, San JE, Kama AO, Garrett N, Mindel A, Rompalo A, Liebenberg LJP, Archary D, Sivro A, Ngcapu S. Metronidazole Treatment Failure and Persistent BV Lead to Increased Frequencies of Activated T- and Dendritic-Cell Subsets. Microorganisms 2023; 11:2643. [PMID: 38004655 PMCID: PMC10673474 DOI: 10.3390/microorganisms11112643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Metronidazole (MDZ) treatment failure and bacterial vaginosis (BV) recurrence rates are high among African women. This cohort study identified genital immune parameters associated with treatment response by comparing vaginal microbiota and immune cell frequencies in endocervical cytobrushes obtained from 32 South African women with symptomatic BV pre- and post-metronidazole treatment. Cervical T- and dendritic-cell subsets were phenotyped using multiparameter flow cytometry and the composition of vaginal microbial communities was characterized using 16S rRNA gene sequencing. MDZ treatment led to a modest decrease in the relative abundance of BV-associated bacteria, but colonization with Lactobacillus species (other than L. iners) was rare. At 6 and 12 weeks, MDZ-treated women had a significant increase in the frequencies of CCR5+ CD4+ T cells and plasmacytoid dendritic cells compared to the pre-treatment timepoint. In addition, MDZ non-responders had significantly higher frequencies of activated CD4 T cells and monocytes compared to MDZ responders. We conclude that MDZ treatment failure was characterized by an increased expression of activated T- and dendritic-cell subsets that may enhance HIV susceptibility. These data suggest the need to further assess the long-term impact of MDZ treatment on mucosal immune response and the vaginal microbiota.
Collapse
Affiliation(s)
- Wenkosi Perez Qulu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa; (W.P.Q.); (G.M.); (A.M.); (M.P.L.); (F.O.); (A.O.K.); (N.G.); (A.M.); (L.J.P.L.); (D.A.); (A.S.)
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Gugulethu Mzobe
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa; (W.P.Q.); (G.M.); (A.M.); (M.P.L.); (F.O.); (A.O.K.); (N.G.); (A.M.); (L.J.P.L.); (D.A.); (A.S.)
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Andile Mtshali
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa; (W.P.Q.); (G.M.); (A.M.); (M.P.L.); (F.O.); (A.O.K.); (N.G.); (A.M.); (L.J.P.L.); (D.A.); (A.S.)
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Marothi Peter Letsoalo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa; (W.P.Q.); (G.M.); (A.M.); (M.P.L.); (F.O.); (A.O.K.); (N.G.); (A.M.); (L.J.P.L.); (D.A.); (A.S.)
| | - Farzana Osman
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa; (W.P.Q.); (G.M.); (A.M.); (M.P.L.); (F.O.); (A.O.K.); (N.G.); (A.M.); (L.J.P.L.); (D.A.); (A.S.)
| | - James Emmanuel San
- KwaZulu-Natal Research Innovation and Sequencing Platform, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Asavela Olona Kama
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa; (W.P.Q.); (G.M.); (A.M.); (M.P.L.); (F.O.); (A.O.K.); (N.G.); (A.M.); (L.J.P.L.); (D.A.); (A.S.)
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa; (W.P.Q.); (G.M.); (A.M.); (M.P.L.); (F.O.); (A.O.K.); (N.G.); (A.M.); (L.J.P.L.); (D.A.); (A.S.)
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Adrian Mindel
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa; (W.P.Q.); (G.M.); (A.M.); (M.P.L.); (F.O.); (A.O.K.); (N.G.); (A.M.); (L.J.P.L.); (D.A.); (A.S.)
| | - Anne Rompalo
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa; (W.P.Q.); (G.M.); (A.M.); (M.P.L.); (F.O.); (A.O.K.); (N.G.); (A.M.); (L.J.P.L.); (D.A.); (A.S.)
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch 7600, South Africa
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa; (W.P.Q.); (G.M.); (A.M.); (M.P.L.); (F.O.); (A.O.K.); (N.G.); (A.M.); (L.J.P.L.); (D.A.); (A.S.)
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa; (W.P.Q.); (G.M.); (A.M.); (M.P.L.); (F.O.); (A.O.K.); (N.G.); (A.M.); (L.J.P.L.); (D.A.); (A.S.)
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3L5, Canada
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa; (W.P.Q.); (G.M.); (A.M.); (M.P.L.); (F.O.); (A.O.K.); (N.G.); (A.M.); (L.J.P.L.); (D.A.); (A.S.)
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
69
|
de Souza-Silva GA, Sulczewski FB, Boscardin SB. Recombinant antigen delivery to dendritic cells as a way to improve vaccine design. Exp Biol Med (Maywood) 2023; 248:1616-1623. [PMID: 37750021 PMCID: PMC10723026 DOI: 10.1177/15353702231191185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Dendritic cells are central to the development of immunity, as they are specialized in initiating antigen-specific immune responses. In this review, we briefly present the existing knowledge on dendritic cell biology and how their division in different dendritic cell subsets may impact the development of immune responses. In addition, we explore the use of chimeric monoclonal antibodies that bind to dendritic cell surface receptors, with an emphasis on the C-type lectin family of endocytic receptors, to deliver antigens directly to these cells. Promising preclinical studies have shown that it is possible to modulate the development of immune responses to different pathogens when monoclonal antibodies fused to pathogen-derived antigens are used to deliver the antigen to different subsets of dendritic cells. This approach can be used to improve the efficacy of vaccines against different pathogens.
Collapse
Affiliation(s)
| | - Fernando Bandeira Sulczewski
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Silvia Beatriz Boscardin
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-000, Brazil
- Instituto de Investigação em Imunologia (iii), Instituto Nacional de Ciência e Tecnologia, São Paulo, 05401-350, Brazil
| |
Collapse
|
70
|
Mahapatro A, Bawna F, Kumar V, Daryagasht AA, Gupta S, Raghuma N, Moghdam SS, Kolla A, Mahapatra SS, Sattari N, Amini-Salehi E, Nayak SS. Anti-inflammatory effects of probiotics and synbiotics on patients with non-alcoholic fatty liver disease: An umbrella study on meta-analyses. Clin Nutr ESPEN 2023; 57:475-486. [PMID: 37739694 DOI: 10.1016/j.clnesp.2023.07.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND AIM The impact of chronic low-grade inflammation in the development of non-alcoholic fatty liver disease (NAFLD) has been studied widely. Previous studies showed gut pathogens' effects on inflammation development in NAFLD patients; hence, hypothetically, gut microbial therapy by administration of probiotics, synbiotics, and prebiotics may alleviate inflammation in these individuals. Several studies were performed in this regard; however, conflicting results were obtained. In this study, we aimed to comprehensively evaluate the effects of gut microbial therapy on inflammatory markers in NAFLD patients in a meta-umbrella design. METHODS Two independent researchers investigated international databases, including PubMed, Web of Science, Scopus, and Cochrane Library, from inception until March 2023. Meta-analyses evaluating the impact of probiotics, synbiotics, or prebiotics on inflammatory markers of patients with NAFLD were eligible for our study. AMASTAR 2 checklist was used to evaluate the quality of included studies. Random effect model was performed for the analysis, and Egger's regression test was conducted to determine publication bias. RESULTS A total number of 12 studies were entered into our analysis. Our findings revealed that gut microbial therapy could significantly reduce serum C-reactive protein (CRP) levels among NAFLD patients (ES: -0.58; 95% CI: -0.73, -0.44, P < 0.001). In subgroup analysis, this reduction was observed with both probiotics (ES: -0.63; 95% CI: -0.81, -0.45, P < 0.001) and synbiotics (ES: -0.49; 95% CI: -0.74, -0.24, P < 0.001). In addition, gut microbial therapy could significantly decrease tumor necrosis factor-a (TNF-a) levels in NAFLD patients (ES: -0.48; 95% CI: -0.67 to -0.30, P < 0.001). In subgroup analysis, this decrease was observed with probiotics (ES: -0.32; 95% CI: -0.53, -0.11, P = 0.002) and synbiotics (ES: -0.96; 95% CI: -1.32, -0.60, P < 0.001). Not enough information was available for assessing prebiotics' impacts. CONCLUSION The results of this umbrella review suggest that probiotics and synbiotics have promising effects on inflammatory markers, including TNF-a and CRP; however, more research is needed regarding the effects of prebiotics. PROSPERO REGISTRATION CODE CRD42022346998.
Collapse
Affiliation(s)
| | - Fnu Bawna
- Dow University of Health Sciences, Karachi, Pakistan
| | | | | | - Siddharth Gupta
- Baptist Memorial Hospital, North Mississippi, Mississippi, USA
| | - Nakka Raghuma
- GSL Medical College and General Hospital, Rajamahendravaram, Andhra Pradesh, India
| | | | - Akshita Kolla
- SRM Medical College Hospital and Research Center, Chennai, India
| | | | - Nazila Sattari
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Sandeep S Nayak
- Department of Internal Medicine, Bridgeport Hospital, Bridgeport, USA
| |
Collapse
|
71
|
Chen J, Wang H, Zhang L, Yan W, Sheng R. Facile preparation of PEGylated polyethylenimine polymers as vaccine carriers with reduced cytotoxicity and enhanced Interleukin-2 (IL-2) production. Colloids Surf B Biointerfaces 2023; 230:113520. [PMID: 37619373 DOI: 10.1016/j.colsurfb.2023.113520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
Developing low-cost, easy-to-prepare, biocompatible and highly efficient vaccine carriers is a promising approach to realize practical cancer immunotherapy. In this study, through facile modification of mPEG5k-4-toluenesulfonate (mPEG5k-OTs) on PEI25k under mild conditions, a series of "stealth" mPEG5k-PEI25k polymers (PP1, PP2 and PP3) were prepared, their structures and physicochemical properties were characterized and theoretically analyzed. The polymers could bind/load ovalbumin (OVA) to form mPEG5k-PEI25k/OVA complexes as negatively charged nanoparticles with small hydrodynamic particle size (80-210 nm) and narrow size distribution. Compared to PEI25k/OVA, lower cytotoxicity could be achieved on mPEG5k-PEI25k/OVA complexes in dendritic cells (DCs). In DCs-RF 33.70 T-cells co-culture system, the mPEG5k-PEI25k/OVA complexes could bring about higher IL-2 production /secretion than that of PEI25k/OVA, notably, the optimum IL-2 secretion could reach 9.3-folds of the PEI25k/OVA under serum condition (10% FBS). Moreover, the cell biological features could be optimized by selecting suitable mPEG5k-grafting ratios and/or mPEG5k-PEI25k/OVA weight ratios. Intracellular imaging results showed that the mPEG5k-PEI25k(PP3)/Rhodamine-OVA complexes mainly localized inside lysosomes. Taken together, this work provided a facile method to prepare "stealth" PEGylated-PEI25k polymers with reduced cytotoxicity, promoted OVA cross-presentation efficiency and improved serum compatibility towards cancer immunotherapy.
Collapse
Affiliation(s)
- Jian Chen
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China.
| | - Hui Wang
- School of Pharmacy, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Li Zhang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Dongchuan Road, Shanghai 200240, China.
| | - Wanying Yan
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Ruilong Sheng
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| |
Collapse
|
72
|
Saravanakumar S, Chatterjee J. The Use of In Silico Methods to Identify and Assess Antigenic Regions Suitable for the Development of Peptide-based Pan-viral Vaccines. Altern Lab Anim 2023; 51:313-322. [PMID: 37548284 DOI: 10.1177/02611929231193416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The constant evolution of pathogenic viral variants and the emergence of new viruses have reinforced the need for broad-spectrum vaccines to combat such threats. The spread of new viral variants leading to epidemic and pandemic infection can be effectively contained, if broad-spectrum vaccines effective against the newer viral variants are readily available. The development of broad-spectrum, pan-neutralising antibodies against viruses which, in general terms, are very antigenically different - such as HIV, influenza virus and paramyxoviruses - has been reported in the literature. The amino acid sequences used to generate a range of approved recombinant anti-viral vaccines were analysed by using in silico methods, with the aim of identifying highly antigenic peptide regions that may be suitable for the development of broad-spectrum peptide-based anti-viral vaccines. This was achieved through the use of open-source data, an algorithm-driven probability matrix, and published in silico prediction tools (SVMTriP, IEDB-AR, VaxiJen 2.0, AllergenFP v. 1.0, AllerTOP v. 2.0, ToxinPred and ProtParam) to evaluate antigenicity, MHC-I and MHC-II binding potential, immunogenicity, allergenicity, toxicity and physicochemical properties. We report a pan-antigenic peptide region with strong affinity for MHC-I and MHC-II, and good immunogenic potential. According to the output from the relevant in silico tools, the peptide was predicted to be non-toxic, non-allergic and to possess the desired physicochemical properties for potentially successful vaccine production. With further investigation and optimisation, this peptide could be considered for use in the development of a broad-spectrum anti-viral vaccine that may protect against emerging new viruses. Our approach of using in silico methods to identify candidate antigenic peptides with the desired physicochemical properties could potentially circumvent the use of some animal studies for peptide vaccine candidate evaluation.
Collapse
|
73
|
Miller DM, Yadanapudi K, Rai V, Rai SN, Chen J, Frieboes HB, Masters A, McCallum A, Williams BJ. Untangling the web of glioblastoma treatment resistance using a multi-omic and multidisciplinary approach. Am J Med Sci 2023; 366:185-198. [PMID: 37330006 DOI: 10.1016/j.amjms.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/01/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Glioblastoma (GBM), the most common human brain tumor, has been notoriously resistant to treatment. As a result, the dismal overall survival of GBM patients has not changed over the past three decades. GBM has been stubbornly resistant to checkpoint inhibitor immunotherapies, which have been remarkably effective in the treatment of other tumors. It is clear that GBM resistance to therapy is multifactorial. Although therapeutic transport into brain tumors is inhibited by the blood brain barrier, there is evolving evidence that overcoming this barrier is not the predominant factor. GBMs generally have a low mutation burden, exist in an immunosuppressed environment and they are inherently resistant to immune stimulation, all of which contribute to treatment resistance. In this review, we evaluate the contribution of multi-omic approaches (genomic and metabolomic) along with analyzing immune cell populations and tumor biophysical characteristics to better understand and overcome GBM multifactorial resistance to treatment.
Collapse
Affiliation(s)
- Donald M Miller
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA.
| | - Kavitha Yadanapudi
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Veeresh Rai
- Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Shesh N Rai
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Biostatistics and Informatics Shared Resources, University of Cincinnati Cancer Center, Cincinnati, OH, USA; Cancer Data Science Center of University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph Chen
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, USA
| | - Hermann B Frieboes
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, USA; Center for Preventative Medicine, University of Louisville, Louisville, KY, USA
| | - Adrianna Masters
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Radiation Oncology, University of Louisville, Louisville, KY, USA
| | - Abigail McCallum
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| | - Brian J Williams
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| |
Collapse
|
74
|
Lee YJ, Joo HG. Immunostimulatory activity and safety evaluation of Bordetella bronchiseptica-derived lipopolysaccharide, a new vaccine adjuvant candidate. Immunobiology 2023; 228:152709. [PMID: 37487385 DOI: 10.1016/j.imbio.2023.152709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/20/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
Adjuvants are used to elicit strong immune responses for vaccines that show poor immunogenicity. Previously, we demonstrated that a sonicated bacterin of Bordetella bronchiseptica can be used as a safe adjuvant that enhances the antigen-presenting capability of dendritic cells (DCs). In this study, we purified the lipopolysaccharide (LPS) of B. bronchiseptica (Bb-LPS) and investigated its immunogenic effects on DCs compared to those of Escherichia coli O26:B6 (O26)-derived LPS (O26-LPS), a positive control. Bb-LPS was purified using an LPS extraction kit. Limulus amebocyte lysate assay was performed to determine the optimal concentration of Bb-LPS and O26-LPS for treatment. Bb-LPS increased the metabolic activity of DCs at a concentration of 0 to 250 EU/mL, similar to that of O26-LPS. Bb-LPS significantly increased the expression level of CD40 and CD54, related to the immune responses of DCs. Bb-LPS enhanced the antigen-presenting capability of DCs and significantly increased the interferon-gamma/interleukin-4 ratio of CD4+ T cells co-cultured with DCs to 0.95 (p < 0.05). Moreover, Bb-LPS increased the production of pro-inflammatory cytokines in a safer manner than that obtained by O26-LPS. In vivo safety tests revealed that Bb-LPS was less toxic than O26-LPS in mice. This study demonstrated that Bb-LPS showed unique immune characteristics and immunogenic effects on the antigen-presenting capability of DCs, which differed from those of O26-LPS. This study provides valuable information for basic and clinical research for developing safe vaccine adjuvants.
Collapse
Affiliation(s)
- You-Jeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Hong-Gu Joo
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
75
|
Kajiyama S, Nagatake T, Ishikawa S, Hosomi K, Shimada Y, Matsui Y, Kunisawa J. Lentinula Edodes Mycelia extract regulates the function of antigen-presenting cells to activate immune cells and prevent tumor-induced deterioration of immune function. BMC Complement Med Ther 2023; 23:281. [PMID: 37553633 PMCID: PMC10408224 DOI: 10.1186/s12906-023-04106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
Immune cell activation is essential for cancer rejection; however, the tumor microenvironment leads to deterioration of immune function, which enables cancer cells to survive and proliferate. We previously reported that oral ingestion of Lentinula Edodes Mycelia (L.E.M.) extract enhances the tumor antigen-specific T-cell response and exerts an antitumor effect in a tumor-bearing mouse model. In this study, we focused on antigen-presenting cells (APCs) located upstream of the immune system, induced a T-cell response, then examined the impact of L.E.M. extract on the APCs. L.E.M. extract enhanced the expression of MHC-I, MHC-II, CD86, CD80, and CD40 in bone marrow-derived dendritic cells (DCs) and strongly induced the production of IL-12. L.E.M.-stimulated DCs enhanced IFN-γ production from CD8+ T cells and induced their differentiation into effector cells. Furthermore, L.E.M. extract promoted IL-12 production and suppressed the production of IL-10 and TGF-β by transforming bone marrow-derived macrophages into M1-like macrophages. Furthermore, in a B16F10 melanoma inoculation model, DCs in the spleen were decreased and their activation was suppressed by the presence of cancer; however, ingestion of L.E.M. extract prevented this functional deterioration of DCs. In the spleen of cancer-bearing mice, the number of CD11b- F4/80+ macrophages in a hypoactivated state was also increased, whereas L.E.M. extract suppressed the increase of such macrophages. These findings suggest that L.E.M. extract may exhibit an antitumor immune response by regulating the function of APCs to induce cytotoxic T lymphocytes, as well as by suppressing the decline in antigen-presenting cell activity caused by the presence of cancer.
Collapse
Affiliation(s)
- Shota Kajiyama
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki-city, Osaka, 567-0085, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Central R & D Laboratory, Kobayashi Pharmaceutical Co., Ltd, Ibaragi, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki-city, Osaka, 567-0085, Japan
- Laboratory of Functional Anatomy, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Satoru Ishikawa
- Central R & D Laboratory, Kobayashi Pharmaceutical Co., Ltd, Ibaragi, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki-city, Osaka, 567-0085, Japan
| | - Yuki Shimada
- Central R & D Laboratory, Kobayashi Pharmaceutical Co., Ltd, Ibaragi, Osaka, Japan
| | - Yasunori Matsui
- Central R & D Laboratory, Kobayashi Pharmaceutical Co., Ltd, Ibaragi, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki-city, Osaka, 567-0085, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
- Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan.
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, Graduate School of Dentistry, Graduate School of Science, Osaka University, Suita, Japan.
| |
Collapse
|
76
|
Zhao Z, Zhao Q, Chen H, Chen F, Wang F, Tang H, Xia H, Zhou Y, Sun Y. Role of dendritic cells in MYD88-mediated immune recognition and osteoinduction initiated by the implantation of biomaterials. Int J Oral Sci 2023; 15:31. [PMID: 37532700 PMCID: PMC10397189 DOI: 10.1038/s41368-023-00234-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/21/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects. Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials. Previous studies have mainly focused on innate immune cells such as macrophages. In our previous work, we found that T lymphocytes, as adaptive immune cells, are also essential in the osteoinduction procedure. As the most important antigen-presenting cell, whether dendritic cells (DCs) can recognize non-antigen biomaterials and participate in osteoinduction was still unclear. In this study, we found that surgical trauma associated with materials implantation induces necrocytosis, and this causes the release of high mobility group protein-1 (HMGB1), which is adsorbed on the surface of bone substitute materials. Subsequently, HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells, and the inflammatory response was activated. Finally, activated DCs release regeneration-related chemokines, recruit mesenchymal stem cells, and initiate the osteoinduction process. This study sheds light on the immune-regeneration process after bone substitute materials implantation, points out a potential direction for the development of bone substitute materials, and provides guidance for the development of clinical surgical methods.
Collapse
Affiliation(s)
- Zifan Zhao
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hu Chen
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Fanfan Chen
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Feifei Wang
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Hua Tang
- Institute of Infection and Immunity, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haibin Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yongsheng Zhou
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Yuchun Sun
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
77
|
Alexander S, Moghadam MG, Rothenbroker M, Y T Chou L. Addressing the in vivo delivery of nucleic-acid nanostructure therapeutics. Adv Drug Deliv Rev 2023; 199:114898. [PMID: 37230305 DOI: 10.1016/j.addr.2023.114898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
DNA and RNA nanostructures are being investigated as therapeutics, vaccines, and drug delivery systems. These nanostructures can be functionalized with guests ranging from small molecules to proteins with precise spatial and stoichiometric control. This has enabled new strategies to manipulate drug activity and to engineer devices with novel therapeutic functionalities. Although existing studies have offered encouraging in vitro or pre-clinical proof-of-concepts, establishing mechanisms of in vivo delivery is the new frontier for nucleic-acid nanotechnologies. In this review, we first provide a summary of existing literature on the in vivo uses of DNA and RNA nanostructures. Based on their application areas, we discuss current models of nanoparticle delivery, and thereby highlight knowledge gaps on the in vivo interactions of nucleic-acid nanostructures. Finally, we describe techniques and strategies for investigating and engineering these interactions. Together, we propose a framework to establish in vivo design principles and advance the in vivo translation of nucleic-acid nanotechnologies.
Collapse
Affiliation(s)
- Shana Alexander
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Meghan Rothenbroker
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
78
|
Schunke J, Mailänder V, Landfester K, Fichter M. Delivery of Immunostimulatory Cargos in Nanocarriers Enhances Anti-Tumoral Nanovaccine Efficacy. Int J Mol Sci 2023; 24:12174. [PMID: 37569548 PMCID: PMC10419017 DOI: 10.3390/ijms241512174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Finding a long-term cure for tumor patients still represents a major challenge. Immunotherapies offer promising therapy options, since they are designed to specifically prime the immune system against the tumor and modulate the immunosuppressive tumor microenvironment. Using nucleic-acid-based vaccines or cellular vaccines often does not achieve sufficient activation of the immune system in clinical trials. Additionally, the rapid degradation of drugs and their non-specific uptake into tissues and cells as well as their severe side effects pose a challenge. The encapsulation of immunomodulatory molecules into nanocarriers provides the opportunity of protected cargo transport and targeted uptake by antigen-presenting cells. In addition, different immunomodulatory cargos can be co-delivered, which enables versatile stimulation of the immune system, enhances anti-tumor immune responses and improves the toxicity profile of conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- Jenny Schunke
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Michael Fichter
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
79
|
Khazaei Monfared Y, Mahmoudian M, Zakeri-Milani P, Cecone C, Hayashi T, Ishii KJ, Conde J, Matencio A, Trotta F. Intratumoural Delivery of mRNA Loaded on a Cationic Hyper-Branched Cyclodextrin-Based Polymer Induced an Anti-Tumour Immunological Response in Melanoma. Cancers (Basel) 2023; 15:3748. [PMID: 37509409 PMCID: PMC10378402 DOI: 10.3390/cancers15143748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
mRNA technology has demonstrated potential for use as an effective cancer immunotherapy. However, inefficient in vivo mRNA delivery and the requirements for immune co-stimulation present major hurdles to achieving anti-tumour therapeutic efficacy. Therefore, we used a cationic hyper-branched cyclodextrin-based polymer to increase mRNA delivery in both in vitro and in vivo melanoma cancer. We found that the transfection efficacy of the mRNA-EGFP-loaded Ppoly system was significantly higher than that of lipofectamine and free mRNA in both 2D and 3D melanoma cancer cells; also, this delivery system did not show cytotoxicity. In addition, the biodistribution results revealed time-dependent and significantly higher mEGFP expression in complexes with Ppoly compared to free mRNA. We then checked the anti-tumour effect of intratumourally injected free mRNA-OVA, a foreign antigen, and loaded Ppoly; the results showed a considerable decrease in both tumour size and weight in the group treated with OVA-mRNA in loaded Ppoly compared to other formulations with an efficient adaptive immune response by dramatically increasing most leukocyte subtypes and OVA-specific CD8+ T cells in both the spleen and tumour tissues. Collectively, our findings suggest that the local delivery of cationic cyclodextrin-based polymer complexes containing foreign mRNA antigens might be a good and reliable concept for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Mohammad Mahmoudian
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Parvin Zakeri-Milani
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Claudio Cecone
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Tomoya Hayashi
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 113-8654, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 113-8654, Japan
| | - João Conde
- ToxOmics, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Adrián Matencio
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| |
Collapse
|
80
|
Chen M, Venturi V, Munier CML. Dissecting the Protective Effect of CD8 + T Cells in Response to SARS-CoV-2 mRNA Vaccination and the Potential Link with Lymph Node CD8 + T Cells. BIOLOGY 2023; 12:1035. [PMID: 37508464 PMCID: PMC10376827 DOI: 10.3390/biology12071035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
SARS-CoV-2 vaccines have played a crucial role in effectively reducing COVID-19 disease severity, with a new generation of vaccines that use messenger RNA (mRNA) technology being administered globally. Neutralizing antibodies have featured as the heroes of vaccine-induced immunity. However, vaccine-elicited CD8+ T cells may have a significant impact on the early protective effects of the mRNA vaccine, which are evident 12 days after initial vaccination. Vaccine-induced CD8+ T cells have been shown to respond to multiple epitopes of SARS-CoV-2 and exhibit polyfunctionality in the periphery at the early stage, even when neutralizing antibodies are scarce. Furthermore, SARS-CoV-2 mRNA vaccines induce diverse subsets of memory CD8+ T cells that persist for more than six months following vaccination. However, the protective role of CD8+ T cells in response to the SARS-CoV-2 mRNA vaccines remains a topic of debate. In addition, our understanding of CD8+ T cells in response to vaccination in the lymph nodes, where they first encounter antigen, is still limited. This review delves into the current knowledge regarding the protective role of polyfunctional CD8+ T cells in controlling the virus, the response to SARS-CoV-2 mRNA vaccines, and the contribution to supporting B cell activity and promoting immune protection in the lymph nodes.
Collapse
Affiliation(s)
- Mengfei Chen
- The Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
81
|
Xu Z, Peng Q, Liu W, Demongeot J, Wei D. Antibody Dynamics Simulation-A Mathematical Exploration of Clonal Deletion and Somatic Hypermutation. Biomedicines 2023; 11:2048. [PMID: 37509687 PMCID: PMC10377040 DOI: 10.3390/biomedicines11072048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
We have employed mathematical modeling techniques to construct a comprehensive framework for elucidating the intricate response mechanisms of the immune system, facilitating a deeper understanding of B-cell clonal deletion and somatic hypermutation. Our improved model introduces innovative mechanisms that shed light on positive and negative selection processes during T-cell and B-cell development. Notably, clonal deletion is attributed to the attenuated immune stimulation exerted by self-antigens with high binding affinities, rendering them less effective in eliciting subsequent B-cell maturation and differentiation. Secondly, our refined model places particular emphasis on the crucial role played by somatic hypermutation in modulating the immune system's functionality. Through extensive investigation, we have determined that somatic hypermutation not only expedites the production of highly specific antibodies pivotal in combating microbial infections but also serves as a regulatory mechanism to dampen autoimmunity and enhance self-tolerance within the organism. Lastly, our model advances the understanding of the implications of antibody in vivo evolution in the overall process of organismal aging. With the progression of time, the age-associated amplification of autoimmune activity becomes apparent. While somatic hypermutation effectively delays this process, mitigating the levels of autoimmune response, it falls short of reversing this trajectory entirely. In conclusion, our advanced mathematical model offers a comprehensive and scholarly approach to comprehend the intricacies of the immune system. By encompassing novel mechanisms for selection, emphasizing the functional role of somatic hypermutation, and illuminating the consequences of in vivo antibody evolution, our model expands the current understanding of immune responses and their implications in aging.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou 253023, China
| | - Qingzhi Peng
- Department of Life Science, Dezhou University, Dezhou 253023, China
| | - Weidong Liu
- Department of Physical Education, Dezhou University, Dezhou 253023, China
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France
| | - Dongqing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
82
|
Sun W, Ji P, Zhou T, Li Z, Xing C, Zhang L, Wei M, Yang G, Yuan L. Ultrasound Responsive Nanovaccine Armed with Engineered Cancer Cell Membrane and RNA to Prevent Foreseeable Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301107. [PMID: 37097746 PMCID: PMC10323640 DOI: 10.1002/advs.202301107] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Cancer vaccine has been considered as a promising immunotherapy by inducing specific anti-tumor immune response. Rational vaccination at suitable time to efficiently present tumor associated antigen will boost tumor immunity and is badly needed. Here, a poly (lactic-co-glycolic acid) (PLGA)-based cancer vaccine of nanoscale is designed, in which engineered tumor cell membrane proteins, mRNAs, and sonosensitizer chlorin e6 (Ce6) are encapsulated at high efficiency. The nanosized vaccine can be efficiently delivered into antigen presentation cells (APCs) in lymph nodes after subcutaneous injection. In the APCs, the encapsulated cell membrane and RNA from engineered cells, which have disturbed splicing resembling the metastatic cells, provide neoantigens of metastatic cancer in advance. Moreover, the sonosensitizer Ce6 together with ultrasound irradiation promotes mRNA escape from endosome, and augments antigen presentation. Through 4T1 syngeneic mouse model, it has been proved that the proposed nanovaccine is efficient to elicit antitumor immunity and thus prevent cancer metastasis.
Collapse
Affiliation(s)
- Wenqi Sun
- Department of Ultrasound DiagnosticsTangdu HospitalFourth Military Medical UniversityShaanxi710038China
- The State Laboratory of Cancer BiologyDepartment of Biochemistry and Molecular BiologyFourth Military Medical UniversityShaanxi710032China
| | - Panpan Ji
- Department of Digestive SurgeryXijing HospitalFourth Military Medical UniversityShaanxi710032China
| | - Tian Zhou
- Department of Ultrasound DiagnosticsTangdu HospitalFourth Military Medical UniversityShaanxi710038China
| | - Zhelong Li
- Department of Ultrasound DiagnosticsTangdu HospitalFourth Military Medical UniversityShaanxi710038China
- The State Laboratory of Cancer BiologyDepartment of Biochemistry and Molecular BiologyFourth Military Medical UniversityShaanxi710032China
| | - Changyang Xing
- Department of Ultrasound DiagnosticsTangdu HospitalFourth Military Medical UniversityShaanxi710038China
| | - Liang Zhang
- Department of Ultrasound DiagnosticsTangdu HospitalFourth Military Medical UniversityShaanxi710038China
| | - Mengying Wei
- The State Laboratory of Cancer BiologyDepartment of Biochemistry and Molecular BiologyFourth Military Medical UniversityShaanxi710032China
| | - Guodong Yang
- The State Laboratory of Cancer BiologyDepartment of Biochemistry and Molecular BiologyFourth Military Medical UniversityShaanxi710032China
| | - Lijun Yuan
- Department of Ultrasound DiagnosticsTangdu HospitalFourth Military Medical UniversityShaanxi710038China
| |
Collapse
|
83
|
Xiao Z, Wang R, Wang X, Yang H, Dong J, He X, Yang Y, Guo J, Cui J, Zhou Z. Impaired function of dendritic cells within the tumor microenvironment. Front Immunol 2023; 14:1213629. [PMID: 37441069 PMCID: PMC10333501 DOI: 10.3389/fimmu.2023.1213629] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Dendritic cells (DCs), a class of professional antigen-presenting cells, are considered key factors in the initiation and maintenance of anti-tumor immunity due to their powerful ability to present antigen and stimulate T-cell responses. The important role of DCs in controlling tumor growth and mediating potent anti-tumor immunity has been demonstrated in various cancer models. Accordingly, the infiltration of stimulatory DCs positively correlates with the prognosis and response to immunotherapy in a variety of solid tumors. However, accumulating evidence indicates that DCs exhibit a significantly dysfunctional state, ultimately leading to an impaired anti-tumor immune response due to the effects of the immunosuppressive tumor microenvironment (TME). Currently, numerous preclinical and clinical studies are exploring immunotherapeutic strategies to better control tumors by restoring or enhancing the activity of DCs in tumors, such as the popular DC-based vaccines. In this review, an overview of the role of DCs in controlling tumor progression is provided, followed by a summary of the current advances in understanding the mechanisms by which the TME affects the normal function of DCs, and concluding with a brief discussion of current strategies for DC-based tumor immunotherapy.
Collapse
Affiliation(s)
- Zhihua Xiao
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ruiqi Wang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xuyan Wang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Haikui Yang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jiamei Dong
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xin He
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yang Yang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jiahao Guo
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiawen Cui
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhiling Zhou
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| |
Collapse
|
84
|
Zheng Y, Li S, Tang H, Meng X, Zheng Q. Molecular mechanisms of immunotherapy resistance in triple-negative breast cancer. Front Immunol 2023; 14:1153990. [PMID: 37426654 PMCID: PMC10327275 DOI: 10.3389/fimmu.2023.1153990] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
The emergence of immunotherapy has profoundly changed the treatment model for triple-negative breast cancer (TNBC). But the heterogeneity of this disease resulted in significant differences in immunotherapy efficacy, and only some patients are able to benefit from this therapeutic modality. With the recent explosion in studies on the mechanism of cancer immunotherapy drug resistance, this article will focus on the processes of the immune response; summarize the immune evasion mechanisms in TNBC into three categories: loss of tumor-specific antigen, antigen presentation deficiency, and failure to initiate an immune response; together with the aberrant activation of a series of immune-critical signaling pathways, we will discuss how these activities jointly shape the immunosuppressive landscape within the tumor microenvironment. This review will attempt to elucidate the molecular mechanism of drug resistance in TNBC, identify potential targets that may assist in reversing drug resistance, and lay a foundation for research on identifying biomarkers for predicting immune efficacy and selection of breast cancer populations that may benefit from immunotherapy.
Collapse
Affiliation(s)
- Yiwen Zheng
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shujin Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongchao Tang
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Xuli Meng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Qinghui Zheng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| |
Collapse
|
85
|
Ligthart NAM, de Geus MAR, van de Plassche MAT, Torres García D, Isendoorn MME, Reinalda L, Ofman D, van Leeuwen T, van Kasteren SI. A Lysosome-Targeted Tetrazine for Organelle-Specific Click-to-Release Chemistry in Antigen Presenting Cells. J Am Chem Soc 2023. [PMID: 37269296 DOI: 10.1021/jacs.3c02139] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bioorthogonal deprotections are readily used to control biological function in a cell-specific manner. To further improve the spatial resolution of these reactions, we here present a lysosome-targeted tetrazine for an organelle-specific deprotection reaction. We show that trans-cyclooctene deprotection with this reagent can be used to control the biological activity of ligands for invariant natural killer T cells in the lysosome to shed light on the processing pathway in antigen presenting cells. We then use the lysosome-targeted tetrazine to show that long peptide antigens used for CD8+ T cell activation do not pass through this organelle, suggesting a role for the earlier endosomal compartments for their processing.
Collapse
Affiliation(s)
- Nina A M Ligthart
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mark A R de Geus
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Merel A T van de Plassche
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Diana Torres García
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marjolein M E Isendoorn
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Luuk Reinalda
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Daniëlle Ofman
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Tyrza van Leeuwen
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sander I van Kasteren
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
86
|
Pantazica AM, van Eerde A, Dobrica MO, Caras I, Ionescu I, Costache A, Tucureanu C, Steen H, Lazar C, Heldal I, Haugslien S, Onu A, Stavaru C, Branza-Nichita N, Liu Clarke J. The "humanized" N-glycosylation pathway in CRISPR/Cas9-edited Nicotiana benthamiana significantly enhances the immunogenicity of a S/preS1 Hepatitis B Virus antigen and the virus-neutralizing antibody response in vaccinated mice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1176-1190. [PMID: 36779605 DOI: 10.1111/pbi.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
The recent SARS-CoV-2 pandemic has taught the world a costly lesson about the devastating consequences of viral disease outbreaks but also, the remarkable impact of vaccination in limiting life and economic losses. Vaccination against human Hepatitis B Virus (HBV), a major human pathogen affecting 290 million people worldwide, remains a key action towards viral hepatitis elimination by 2030. To meet this goal, the development of improved HBV antigens is critical to overcome non-responsiveness to standard vaccines based on the yeast-produced, small (S) envelope protein. We have recently shown that combining relevant immunogenic determinants of S and large (L) HBV proteins in chimeric antigens markedly enhances the anti-HBV immune response. However, the demand for cost-efficient, high-quality antigens remains challenging. This issue could be addressed by using plants as versatile and rapidly scalable protein production platforms. Moreover, the recent generation of plants lacking β-1,2-xylosyltransferase and α-1,3-fucosyltransferase activities (FX-KO), by CRISPR/Cas9 genome editing, enables production of proteins with "humanized" N-glycosylation. In this study, we investigated the impact of plant N-glycosylation on the immunogenic properties of a chimeric HBV S/L vaccine candidate produced in wild-type and FX-KO Nicotiana benthamiana. Prevention of β-1,2-xylose and α-1,3-fucose attachment to the HBV antigen significantly increased the immune response in mice, as compared with the wild-type plant-produced counterpart. Notably, the antibodies triggered by the FX-KO-made antigen neutralized more efficiently both wild-type HBV and a clinically relevant vaccine escape mutant. Our study validates in premiere the glyco-engineered Nicotiana benthamiana as a substantially improved host for plant production of glycoprotein vaccines.
Collapse
Affiliation(s)
| | - André van Eerde
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | - Iuliana Caras
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Irina Ionescu
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Adriana Costache
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Catalin Tucureanu
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Hege Steen
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Catalin Lazar
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Inger Heldal
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | - Adrian Onu
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Crina Stavaru
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | | | | |
Collapse
|
87
|
Cao W, Liu J, Jiang Z, Tao Y, Wang H, Li J, Ni J, Wu X. Tumor Suppressor Adenomatous Polyposis Coli Sustains Dendritic Cell Tolerance through IL-10 in a β-Catenin-Dependent Manner. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1589-1597. [PMID: 37000474 DOI: 10.4049/jimmunol.2300046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/08/2023] [Indexed: 05/03/2023]
Abstract
Dendritic cells (DC) play important roles in balancing immunity and tolerance, in which β-catenin signaling plays an important role, yet the underlying mechanisms remain elusive. In this study, we investigated the functions of the tumor suppressor adenomatous polyposis coli (APC), also a key component of the β-catenin upstream destruction complex in DC. APC depletion in DC does not alter DC and T cell homeostasis under resting conditions. However, APC deficiency in DC leads to attenuated antitumor immunity in mice, which exhibit fewer CD8+ T cells and more Foxp3+ regulatory T cells in tumor and draining lymph nodes. Loss of APC in DC does not affect the expression levels of costimulatory molecules. However, APC-deficient DC produce more IL-10 and exhibit a higher ability of inducing regulatory T cells but a lower ability of priming CD8+ T cells, both of which can be reversed by IL-10 inhibition. Lastly, β-catenin depletion in APC-deficient DC rescues their antitumor immunity and reverses elevated IL-10 production. Taken together, our results identify that APC drives DC tolerance via the β-catenin/IL-10 axis.
Collapse
Affiliation(s)
- Wei Cao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiamin Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyan Jiang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuexiao Tao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huizi Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ni
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
88
|
Alakhras NS, Kaplan MH. Dendritic Cells as a Nexus for the Development of Multiple Sclerosis and Models of Disease. Adv Biol (Weinh) 2023:e2300073. [PMID: 37133870 DOI: 10.1002/adbi.202300073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/13/2023] [Indexed: 05/04/2023]
Abstract
Multiple sclerosis (MS) results from an autoimmune attack on the central nervous system (CNS). Dysregulated immune cells invade the CNS, causing demyelination, neuronal and axonal damage, and subsequent neurological disorders. Although antigen-specific T cells mediate the immunopathology of MS, innate myeloid cells have essential contributions to CNS tissue damage. Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that promote inflammation and modulate adaptive immune responses. This review focuses on DCs as critical components of CNS inflammation. Here, evidence from studies is summarized with animal models of MS and MS patients that support the critical role of DCs in orchestrating CNS inflammation.
Collapse
Affiliation(s)
- Nada S Alakhras
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Dr, MS420, Indianapolis, IN, 46202, USA
| |
Collapse
|
89
|
Song K, Xu H, Da LT. Loading dynamics of one SARS-CoV-2-derived peptide into MHC-II revealed by kinetic models. Biophys J 2023; 122:1665-1677. [PMID: 36964657 PMCID: PMC10036144 DOI: 10.1016/j.bpj.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/24/2022] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
Major histocompatibility complex class II (MHC-II) plays an indispensable role in activating CD4+ T cell immune responses by presenting antigenic peptides on the cell surface for recognition by T cell receptors. The assembly of MHC-II and antigenic peptide is therefore a prerequisite for the antigen presentation. To date, however, the atomic-level mechanism underlying the peptide-loading dynamics for MHC-II is still elusive. Here, by constructing Markov state models based on extensive all-atom molecular dynamics simulations, we reveal the complete peptide-loading dynamics into MHC-II for one SARS-CoV-2 S-protein-derived antigenic peptide (235ITRFQTLLALHRSYL249). Our Markov state model identifies six metastable states (S1-S6) during the peptide-loading process and determines two dominant loading pathways. The peptide could potentially approach the antigen-binding groove via either its N- or C-terminus. Then, the consecutive insertion of several anchor residues into the binding pockets profoundly dictates the peptide-loading dynamics. Notably, the MHC-II αA52-E55 motif could guide the peptide loading into the antigen-binding groove via forming β-sheets conformation with the incoming peptide. The rate-limiting step, namely S5→S6, is mainly attributed to a considerable desolvation penalty triggered by the binding of the peptide C-terminus. Moreover, we further examined the conformational changes associated with the peptide exchange process catalyzed by the chaperon protein HLA-DM. A flipped-out conformation of MHC-II αW43 captured in S1-S3 is considered a critical anchor point for HLA-DM to modulate the structural dynamics. Our work provides deep structural insights into the key regulatory factors in MHC-II responsible for peptide recognition and guides future design for peptide vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Kaiyuan Song
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Honglin Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
90
|
Sadeghi Shermeh A, Royzman D, Kuhnt C, Draßner C, Stich L, Steinkasserer A, Knippertz I, Wild AB. Differential Modulation of Dendritic Cell Biology by Endogenous and Exogenous Aryl Hydrocarbon Receptor Ligands. Int J Mol Sci 2023; 24:ijms24097801. [PMID: 37175508 PMCID: PMC10177790 DOI: 10.3390/ijms24097801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a decisive regulatory ligand-dependent transcription factor. It binds highly diverse ligands, which can be categorized as either endogenous or exogenous. Ligand binding activates AhR, which can adjust inflammatory responses by modulating immune cells such as dendritic cells (DCs). However, how different AhR ligand classes impact the phenotype and function of human monocyte-derived DCs (hMoDCs) has not been extensively studied in a comparative manner. We, therefore, tested the effect of the representative compounds Benzo(a)pyrene (BP), 6-formylindolo[3,2-b]carbazole (FICZ), and Indoxyl 3-sulfate (I3S) on DC biology. Thereby, we reveal that BP significantly induces a tolerogenic response in lipopolysaccharide-matured DCs, which is not apparent to the same extent when using FICZ or I3S. While all three ligand classes activate AhR-dependent pathways, BP especially induces the expression of negative immune regulators, and subsequently strongly subverts the T cell stimulatory capacity of DCs. Using the CRISPR/Cas9 strategy we also prove that the regulatory effect of BP is strictly AhR-dependent. These findings imply that AhR ligands contribute differently to DC responses and incite further studies to uncover the mechanisms and molecules which are involved in the induction of different phenotypes and functions in DCs upon AhR activation.
Collapse
Affiliation(s)
- Atefeh Sadeghi Shermeh
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Christina Draßner
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ilka Knippertz
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Andreas B Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
91
|
Qin Q, Zhou Y, Li P, Liu Y, Deng R, Tang R, Wu N, Wan L, Ye M, Zhou H, Wang Z. Phase-transition nanodroplets with immunomodulatory capabilities for potentiating mild magnetic hyperthermia to inhibit tumour proliferation and metastasis. J Nanobiotechnology 2023; 21:131. [PMID: 37069614 PMCID: PMC10108485 DOI: 10.1186/s12951-023-01885-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Magnetic hyperthermia (MHT)-mediated thermal ablation therapy has promising clinical applications in destroying primary tumours. However, traditional MHT still presents the challenges of damage to normal tissues adjacent to the treatment site and the destruction of tumour-associated antigens due to its high onset temperature (> 50 °C). In addition, local thermal ablation of tumours often exhibits limited therapeutic inhibition of tumour metastasis. RESULTS To address the above defects, a hybrid nanosystem (SPIOs + RPPs) was constructed in which phase transition nanodroplets with immunomodulatory capabilities were used to potentiate supermagnetic iron oxide nanoparticle (SPIO)-mediated mild MHT (< 44 °C) and further inhibit tumour proliferation and metastasis. Magnetic-thermal sensitive phase-transition nanodroplets (RPPs) were fabricated from the immune adjuvant resiquimod (R848) and the phase transition agent perfluoropentane (PFP) encapsulated in a PLGA shell. Because of the cavitation effect of microbubbles produced by RPPs, the temperature threshold of MHT could be lowered from 50℃ to approximately 44℃ with a comparable effect, enhancing the release and exposure of damage-associated molecular patterns (DAMPs). The exposure of calreticulin (CRT) on the cell membrane increased by 72.39%, and the released high-mobility group B1 (HMGB1) increased by 45.84% in vivo. Moreover, the maturation rate of dendritic cells (DCs) increased from 4.17 to 61.33%, and the infiltration of cytotoxic T lymphocytes (CTLs) increased from 10.44 to 35.68%. Under the dual action of mild MHT and immune stimulation, contralateral and lung metastasis could be significantly inhibited after treatment with the hybrid nanosystem. CONCLUSION Our work provides a novel strategy for enhanced mild magnetic hyperthermia immunotherapy and ultrasound imaging with great clinical translation potential.
Collapse
Affiliation(s)
- Qiaoxi Qin
- Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yang Zhou
- Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China.
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Pan Li
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, 400010, China
| | - Ying Liu
- Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, 400010, China
| | - Ruxi Deng
- Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Rui Tang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, 400010, China
| | - Nianhong Wu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, 400010, China
| | - Li Wan
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, 400010, China
- Department of Health Management (Physical Examination) Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ming Ye
- Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Hong Zhou
- Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Zhiming Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
92
|
Arslan M. Whole-genome sequencing and genomic analysis of Norduz goat (Capra hircus). Mamm Genome 2023:10.1007/s00335-023-09990-3. [PMID: 37004528 DOI: 10.1007/s00335-023-09990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
Artificial and natural selective breeding of goats has resulted in many different goat breeds all around the world. Norduz goat is one of these breeds, and it is a local goat breed of Turkey. The goats are favorable due to pre-weaning viability and reproduction values compared to the regional breeds. Development in sequencing technologies has let to understand huge genomic structures and complex phenotypes. Until now, such a comprehensive study has not been carried out to understand the genomic structure of the Norduz goats, yet. In the study, the next-generation sequencing was carried out to understand the genomic structure of Norduz goat. Real-time PCR was used to evaluate prominent CNVs in the Norduz goat individuals. Whole genome of the goat was constructed with an average of 33.1X coverage level. In the stringent filtering condition, 9,757,980 SNPs, 1,536,715 InDels, and 290 CNVs were detected in the Norduz goat genome. Functional analysis of high-impact SNP variations showed that the classical complement activation biological process was affected significantly in the goat. CNVs in the goat genome were found in genes related to defense against viruses, immune response, and cell membrane transporters. It was shown that GBP2, GBP5, and mammalian ortholog GBP1, which are INF-stimulated GTPases, were found to be high copy numbers in the goats. To conclude, genetic variations mainly in immunological response processes suggest that Norduz goat is an immunologically improved goat breed and natural selection could take an important role in the genetical improvements of the goats.
Collapse
Affiliation(s)
- Mevlüt Arslan
- Department of Genetics, Faculty of Veterinary Medicine, Van Yüzüncü Yıl University, Tuşba, 65080, Van, Turkey.
| |
Collapse
|
93
|
Zhang Q, Zhang S, Chen J, Xie Z. The Interplay between Integrins and Immune Cells as a Regulator in Cancer Immunology. Int J Mol Sci 2023; 24:6170. [PMID: 37047140 PMCID: PMC10093897 DOI: 10.3390/ijms24076170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Integrins are a group of heterodimers consisting of α and β subunits that mediate a variety of physiological activities of immune cells, including cell migration, adhesion, proliferation, survival, and immunotolerance. Multiple types of integrins act differently on the same immune cells, while the same integrin may exert various effects on different immune cells. In the development of cancer, integrins are involved in the regulation of cancer cell proliferation, invasion, migration, and angiogenesis; conversely, integrins promote immune cell aggregation to mediate the elimination of tumors. The important roles of integrins in cancer progression have provided valuable clues for the diagnosis and targeted treatment of cancer. Furthermore, many integrin inhibitors have been investigated in clinical trials to explore effective regimens and reduce side effects. Due to the complexity of the mechanism of integrin-mediated cancer progression, challenges remain in the research and development of cancer immunotherapies (CITs). This review enumerates the effects of integrins on four types of immune cells and the potential mechanisms involved in the progression of cancer, which will provide ideas for more optimal CIT in the future.
Collapse
Affiliation(s)
- Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China
| |
Collapse
|
94
|
Wang L, Jia Q, Chu Q, Zhu B. Targeting tumor microenvironment for non-small cell lung cancer immunotherapy. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:18-29. [PMID: 39170874 PMCID: PMC11332857 DOI: 10.1016/j.pccm.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/21/2022] [Accepted: 11/23/2022] [Indexed: 08/23/2024]
Abstract
The tumor microenvironment (TME) is composed of different cellular and non-cellular elements. Constant interactions between tumor cells and the TME are responsible for tumor initiation, tumor progression, and responses to therapies. Immune cells in the TME can be classified into two broad categories, namely adaptive and innate immunity. Targeting these immune cells has attracted substantial research and clinical interest. Current research focuses on identifying key molecular players and developing targeted therapies. These approaches may offer more efficient ways of treating different cancers. In this review, we explore the heterogeneity of the TME in non-small cell lung cancer, summarize progress made in targeting the TME in preclinical and clinical studies, discuss the potential predictive value of the TME in immunotherapy, and highlight the promising effects of bispecific antibodies in the era of immunotherapy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qingzhu Jia
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
95
|
Goodin DA, Frieboes HB. Evaluation of innate and adaptive immune system interactions in the tumor microenvironment via a 3D continuum model. J Theor Biol 2023; 559:111383. [PMID: 36539112 DOI: 10.1016/j.jtbi.2022.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Immune cells in the tumor microenvironment (TME) are known to affect tumor growth, vascularization, and extracellular matrix (ECM) deposition. Marked interest in system-scale analysis of immune species interactions within the TME has encouraged progress in modeling tumor-immune interactions in silico. Due to the computational cost of simulating these intricate interactions, models have typically been constrained to representing a limited number of immune species. To expand the capability for system-scale analysis, this study develops a three-dimensional continuum mixture model of tumor-immune interactions to simulate multiple immune species in the TME. Building upon a recent distributed computing implementation that enables efficient solution of such mixture models, major immune species including monocytes, macrophages, natural killer cells, dendritic cells, neutrophils, myeloid-derived suppressor cells (MDSC), cytotoxic, helper, regulatory T-cells, and effector and regulatory B-cells and their interactions are represented in this novel implementation. Immune species extravasate from blood vasculature, undergo chemotaxis toward regions of high chemokine concentration, and influence the TME in proportion to locally defined levels of stimulation. The immune species contribute to the production of angiogenic and tumor growth factors, promotion of myofibroblast deposition of ECM, upregulation of angiogenesis, and elimination of living and dead tumor species. The results show that this modeling approach offers the capability for quantitative insight into the modulation of tumor growth by diverse immune-tumor interactions and immune-driven TME effects. In particular, MDSC-mediated effects on tumor-associated immune species' activation levels, volume fraction, and influence on the TME are explored. Longer term, linking of the model parameters to particular patient tumor information could simulate cancer-specific immune responses and move toward a more comprehensive evaluation of immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dylan A Goodin
- Department of Bioengineering, University of Louisville, KY, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, KY, USA; Center for Predictive Medicine, University of Louisville, KY, USA.
| |
Collapse
|
96
|
Xu Z, Wei D, Zhang H, Demongeot J. A Novel Mathematical Model That Predicts the Protection Time of SARS-CoV-2 Antibodies. Viruses 2023; 15:v15020586. [PMID: 36851801 PMCID: PMC9962246 DOI: 10.3390/v15020586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Infectious diseases such as SARS-CoV-2 pose a considerable threat to public health. Constructing a reliable mathematical model helps us quantitatively explain the kinetic characteristics of antibody-virus interactions. A novel and robust model is developed to integrate antibody dynamics with virus dynamics based on a comprehensive understanding of immunology principles. This model explicitly formulizes the pernicious effect of the antibody, together with a positive feedback stimulation of the virus-antibody complex on the antibody regeneration. Besides providing quantitative insights into antibody and virus dynamics, it demonstrates good adaptivity in recapturing the virus-antibody interaction. It is proposed that the environmental antigenic substances help maintain the memory cell level and the corresponding neutralizing antibodies secreted by those memory cells. A broader application is also visualized in predicting the antibody protection time caused by a natural infection. Suitable binding antibodies and the presence of massive environmental antigenic substances would prolong the protection time against breakthrough infection. The model also displays excellent fitness and provides good explanations for antibody selection, antibody interference, and self-reinfection. It helps elucidate how our immune system efficiently develops neutralizing antibodies with good binding kinetics. It provides a reasonable explanation for the lower SARS-CoV-2 mortality in the population that was vaccinated with other vaccines. It is inferred that the best strategy for prolonging the vaccine protection time is not repeated inoculation but a directed induction of fast-binding antibodies. Eventually, this model will inform the future construction of an optimal mathematical model and help us fight against those infectious diseases.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou 253023, China
- Correspondence: (Z.X.); (J.D.)
| | - Dongqing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hongmei Zhang
- Department of Life Science, Dezhou University, Dezhou 253023, China
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France
- Correspondence: (Z.X.); (J.D.)
| |
Collapse
|
97
|
Shahbazy M, Ramarathinam SH, Illing PT, Jappe EC, Faridi P, Croft NP, Purcell AW. Benchmarking bioinformatics pipelines in data-independent acquisition mass spectrometry for immunopeptidomics. Mol Cell Proteomics 2023; 22:100515. [PMID: 36796644 PMCID: PMC10060114 DOI: 10.1016/j.mcpro.2023.100515] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Immunopeptidomes are the peptide repertoires bound by the molecules encoded by the major histocompatibility complex (MHC) (human leukocyte antigen (HLA) in humans). These HLA-peptide complexes are presented on the cell surface for immune T-cell recognition. Immunopeptidomics denotes the utilization of tandem mass spectrometry (MS/MS) to identify and quantify peptides bound to HLA molecules. Data-independent acquisition (DIA) has emerged as a powerful strategy for quantitative proteomics and deep proteome-wide identification; however, DIA application to immunopeptidomics analyses has so far seen limited use. Further, of the many DIA data processing tools currently available, there is no consensus in the immunopeptidomics community on the most appropriate pipeline(s) for in-depth and accurate HLA peptide identification. Herein, we benchmarked four commonly used spectral library-based DIA pipelines developed for proteomics applications (Skyline, Spectronaut, DIA-NN, and PEAKS) for their ability to perform immunopeptidome quantification. We validated and assessed the capability of each tool to identify and quantify HLA-bound peptides. Generally, DIA-NN and PEAKS provided higher immunopeptidome coverage with more reproducible results. Skyline and Spectronaut conferred more accurate peptide identification with lower experimental false-positive rates. All tools demonstrated reasonable correlations in quantifying precursors of HLA-bound peptides. Our benchmarking study suggests a combined strategy of applying at least two complementary DIA software tools to achieve the greatest degree of confidence and in-depth coverage of immunopeptidome data.
Collapse
Affiliation(s)
- Mohammad Shahbazy
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sri H Ramarathinam
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Patricia T Illing
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Emma C Jappe
- Evaxion Biotech, Bredgade 34E, DK-1260 Copenhagen, Denmark
| | - Pouya Faridi
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia.
| | - Nathan P Croft
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Anthony W Purcell
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
98
|
Servaas NH, Hiddingh S, Chouri E, Wichers CGK, Affandi AJ, Ottria A, Bekker CPJ, Cossu M, Silva-Cardoso SC, van der Kroef M, Hinrichs AC, Carvalheiro T, Vazirpanah N, Beretta L, Rossato M, Bonte-Mineur F, Radstake TRDJ, Kuiper JJW, Boes M, Pandit A. Nuclear Receptor Subfamily 4A Signaling as a Key Disease Pathway of CD1c+ Dendritic Cell Dysregulation in Systemic Sclerosis. Arthritis Rheumatol 2023; 75:279-292. [PMID: 36482877 PMCID: PMC10108054 DOI: 10.1002/art.42319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study was undertaken to identify key disease pathways driving conventional dendritic cell (cDC) alterations in systemic sclerosis (SSc). METHODS Transcriptomic profiling was performed on peripheral blood CD1c+ cDCs (cDC2s) isolated from 12 healthy donors and 48 patients with SSc, including all major disease subtypes. We performed differential expression analysis for the different SSc subtypes and healthy donors to uncover genes dysregulated in SSc. To identify biologically relevant pathways, we built a gene coexpression network using weighted gene correlation network analysis. We validated the role of key transcriptional regulators using chromatin immunoprecipitation (ChIP) sequencing and in vitro functional assays. RESULTS We identified 17 modules of coexpressed genes in cDCs that correlated with SSc subtypes and key clinical traits, including autoantibodies, skin score, and occurrence of interstitial lung disease. A module of immunoregulatory genes was markedly down-regulated in patients with the diffuse SSc subtype characterized by severe fibrosis. Transcriptional regulatory network analysis performed on this module predicted nuclear receptor 4A (NR4A) subfamily genes (NR4A1, NR4A2, NR4A3) as the key transcriptional regulators of inflammation. Indeed, ChIP-sequencing analysis indicated that these NR4A members target numerous differentially expressed genes in SSc cDC2s. Inclusion of NR4A receptor agonists in culture-based experiments provided functional proof that dysregulation of NR4As affects cytokine production by cDC2s and modulates downstream T cell activation. CONCLUSION NR4A1, NR4A2, and NR4A3 are important regulators of immunosuppressive and fibrosis-associated pathways in SSc cDCs. Thus, the NR4A family represents novel potential targets to restore cDC homeostasis in SSc.
Collapse
Affiliation(s)
- Nila H Servaas
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sanne Hiddingh
- Center for Translational Immunology and Ophthalmo-Immunology Unit, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eleni Chouri
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Catharina G K Wichers
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alsya J Affandi
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andrea Ottria
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cornelis P J Bekker
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marta Cossu
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sandra C Silva-Cardoso
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maarten van der Kroef
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anneline C Hinrichs
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tiago Carvalheiro
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nadia Vazirpanah
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lorenzo Beretta
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Femke Bonte-Mineur
- Department of Rheumatology and Clinical Immunology, Maasstad Hospital, Rotterdam, The Netherlands
| | - Timothy R D J Radstake
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jonas J W Kuiper
- Center for Translational Immunology and Ophthalmo-Immunology Unit, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne Boes
- Department of Pediatrics, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Aridaman Pandit
- Center for Translational Immunology and Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
99
|
Aljabali AA, Obeid MA, Bashatwah RM, Serrano-Aroca Á, Mishra V, Mishra Y, El-Tanani M, Hromić-Jahjefendić A, Kapoor DN, Goyal R, Naikoo GA, Tambuwala MM. Nanomaterials and Their Impact on the Immune System. Int J Mol Sci 2023; 24:2008. [PMID: 36768330 PMCID: PMC9917130 DOI: 10.3390/ijms24032008] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Nanomaterials have been the focus of intensive development and research in the medical and industrial sectors over the past several decades. Some studies have found that these compounds can have a detrimental impact on living organisms, including their cellular components. Despite the obvious advantages of using nanomaterials in a wide range of applications, there is sometimes skepticism caused by the lack of substantial proof that evaluates potential toxicities. The interactions of nanoparticles (NPs) with cells of the immune system and their biomolecule pathways are an area of interest for researchers. It is possible to modify NPs so that they are not recognized by the immune system or so that they suppress or stimulate the immune system in a targeted manner. In this review, we look at the literature on nanomaterials for immunostimulation and immunosuppression and their impact on how changing the physicochemical features of the particles could alter their interactions with immune cells for the better or for the worse (immunotoxicity). We also look into whether the NPs have a unique or unexpected (but desired) effect on the immune system, and whether the surface grafting of polymers or surface coatings makes stealth nanomaterials that the immune system cannot find and get rid of.
Collapse
Affiliation(s)
- Alaa A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Mohammad A. Obeid
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Rasha M. Bashatwah
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab., Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Gowhar A. Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah PC 211, Oman
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
100
|
Schoenberg MB, Han Y, Li X, Li X, Bucher JN, Börner N, Koch D, Guba MO, Werner J, Bazhin AV. Dynamics of Peripheral Blood Immune Cells during the Perioperative Period after Digestive System Resections: A Systematic Analysis of the Literature. J Clin Med 2023; 12:jcm12020718. [PMID: 36675647 PMCID: PMC9866033 DOI: 10.3390/jcm12020718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/22/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
An operation in itself is a kind of trauma and may lead to immunosuppression followed by a bounce back. Not many studies exist that describe dynamics of the distribution of peripheral blood (PB) immune cells during the perioperative period. Considering this scarcity, we aggregated the data on the dynamics of immune cells in patients with digestive system resections during the perioperative period and the relationship with short- and long-term prognoses. By the systematic retrieval of documents, we collected perioperative period data on white blood cells (WBC), lymphocytes, neutrophil-lymphocyte ratio (NLR), CD4+ T cells, CD8+ T cells, helper T cells (Th), B cells, natural killer cells (NK), dendritic cells (DCs), regulatory T cells (Tregs), regulatory B cells (Bregs), and Myeloid derived suppressor cells (MDSC). The frequency and distribution of these immune cells and the relationship with the patient's prognosis were summarized. A total of 1916 patients' data were included. Compared with before surgery, WBC, lymphocytes, CD4+ cells, CD8+ T cells, MDSC, and NK cells decreased after surgery, and then returned to preoperative levels. After operation DCs increased, then gradually recovered to the preoperative level. No significant changes were found in B cell levels during the perioperative period. Compared with the preoperative time-point, Tregs and Bregs both increased postoperatively. Only high levels of the preoperative and/or postoperative NLR were found to be related to the patient's prognosis. In summary, the surgery itself can cause changes in peripheral blood immune cells, which might change the immunogenicity. Therefore, the immunosuppression caused by the surgical trauma should be minimized. In oncological patients this might even influence long-term results.
Collapse
Affiliation(s)
- Markus Bo Schoenberg
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Medical Center Gollierplatz, 80339 Munich, Germany
| | - Yongsheng Han
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Xiaokang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Xinyu Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Julian Nikolaus Bucher
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Nikolaus Börner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Dominik Koch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Markus Otto Guba
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
- Transplantation Center Munich, Hospital of the LMU, Campus Grosshadern, 81377 Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Alexandr V. Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Correspondence: ; Tel.: +49-89-4400-0
| |
Collapse
|