51
|
TrkB-expressing neurons in the dorsomedial hypothalamus are necessary and sufficient to suppress homeostatic feeding. Proc Natl Acad Sci U S A 2019; 116:3256-3261. [PMID: 30718415 DOI: 10.1073/pnas.1815744116] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic evidence indicates that brain-derived neurotrophic factor (BDNF) signaling through the TrkB receptor plays a critical role in the control of energy balance. Mutations in the BDNF or the TrkB-encoding NTRK2 gene have been found to cause severe obesity in humans and mice. However, it remains unknown which brain neurons express TrkB to control body weight. Here, we report that TrkB-expressing neurons in the dorsomedial hypothalamus (DMH) regulate food intake. We found that the DMH contains both glutamatergic and GABAergic TrkB-expressing neurons, some of which also express the leptin receptor (LepR). As revealed by Fos immunohistochemistry, a significant number of TrkB-expressing DMH (DMHTrkB) neurons were activated upon either overnight fasting or after refeeding. Chemogenetic activation of DMHTrkB neurons strongly suppressed feeding in the dark cycle when mice are physiologically hungry, whereas chemogenetic inhibition of DMHTrkB neurons greatly promoted feeding in the light cycle when mice are physiologically satiated, without affecting feeding in the dark cycle. Neuronal tracing revealed that DMHTrkB neurons do not innervate neurons expressing agouti-related protein in the arcuate nucleus, indicating that DMHTrkB neurons are distinct from previously identified LepR-expressing GABAergic DMH neurons that suppress feeding. Furthermore, selective Ntrk2 deletion in the DMH of adult mice led to hyperphagia, reduced energy expenditure, and obesity. Thus, our data show that DMHTrkB neurons are a population of neurons that are necessary and sufficient to suppress appetite and maintain physiological satiation. Pharmacological activation of these neurons could be a therapeutic intervention for the treatment of obesity.
Collapse
|
52
|
Exposure of pregnant mice to triclosan causes hyperphagic obesity of offspring via the hypermethylation of proopiomelanocortin promoter. Arch Toxicol 2018; 93:547-558. [PMID: 30377736 DOI: 10.1007/s00204-018-2338-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023]
Abstract
Triclosan (TCS), as a broad spectrum antibacterial agent, is commonly utilized in personal care and household products. Maternal urinary TCS level has been associated with changes in birth weight of infants. We in the present study investigated whether exposure of mice to 8 mg/kg TCS from gestational day (GD) 6 to GD14 alters prenatal and postnatal growth and development, and metabolic phenotypes in male and female offspring (TCS-offspring). Compared with control offspring, body weight in postnatal day (PND) 1 male or female TCS-offspring was reduced, but body weight gain was faster within postnatal 5 days. PND30 and PND60 TCS-offspring showed overweight with increases in visceral fat and adipocyte size. PND60 TCS-offspring displayed delayed glucose clearance and insulin resistance. PND30 TCS-offspring showed an increase in food intake without the changes in the oxygen consumption and respiratory exchange ratio (RER). The expression levels of proopiomelanocortin (POMC), α-melanocyte-stimulating hormone (α-MSH) and single-minded 1 (SIM1) in hypothalamus arcuate nucleus (ARC) and paraventricular nucleus (PVN), respectively, were significantly reduced in PND30 TCS-offspring compared to controls. The hypermethylation of CpG sites at the POMC promoter was observed in PND30 TCS-offspring, while the concentration of serum leptin was elevated and the level of STAT3 phosphorylation in ARC had no significant difference from control. This study demonstrates that TCS exposure during early/mid-gestation through the hypermethylation of the POMC promoter reduces the expression of anorexigenic neuropeptides to cause the postnatal hyperphagic obesity, leading to metabolic syndrome in adulthood.
Collapse
|
53
|
Speakman JR, Loos RJF, O'Rahilly S, Hirschhorn JN, Allison DB. GWAS for BMI: a treasure trove of fundamental insights into the genetic basis of obesity. Int J Obes (Lond) 2018; 42:1524-1531. [PMID: 29980761 PMCID: PMC6115287 DOI: 10.1038/s41366-018-0147-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/10/2018] [Indexed: 01/16/2023]
Abstract
Muller et al. [1] have provided a strong critique of the Genome-Wide Association Studies (GWAS) of body-mass index (BMI), arguing that the GWAS approach for the study of BMI is flawed, and has provided us with few biological insights. They suggest that what is needed instead is a new start, involving GWAS for more complex energy balance related traits. In this invited counter-point, we highlight the substantial advances that have occurred in the obesity field, directly stimulated by the GWAS of BMI. We agree that GWAS for BMI is not perfect, but consider that the best route forward for additional discoveries will likely be to expand the search for common and rare variants linked to BMI and other easily obtained measures of obesity, rather than attempting to perform new, much smaller GWAS for energy balance traits that are complex and expensive to measure. For GWAS in general, we emphasise that the power from increasing the sample size of a crude but easily measured phenotype outweighs the benefits of better phenotyping.
Collapse
Affiliation(s)
- J R Speakman
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
| | - R J F Loos
- The Charles Bronfman Insititute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S O'Rahilly
- Wellcome Trust-MRC Institute of Metabolic Science,Addenbrookes Treatment, Centre University of Cambridge, Cambridge, CB2 OQQ, UK
| | - J N Hirschhorn
- Division of Endocrinology and Center for Basic and Translational Research, Boston Children's Hospital, Boston, MA, USA
- Broad institute, Cambridge, MA, USA
| | - D B Allison
- School of Public Health, University of Indiana Bloomington, Bloomington, IN, USA
| |
Collapse
|
54
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
55
|
Vitale A, Labruna G, Mancini A, Alfieri A, Iaffaldano L, Nardelli C, Pasanisi F, Pastore L, Buono P, Lombardo B. 3q29 microduplication in a small family with complex metabolic phenotype from Southern Italy. Clin Chem Lab Med 2018; 56:e167-e170. [PMID: 29306918 DOI: 10.1515/cclm-2017-1090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Andrea Vitale
- Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Naples, Italy.,Ceinge Biotecnologie Avanzate, Naples, Italy
| | | | - Annamaria Mancini
- Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Naples, Italy.,Ceinge Biotecnologie Avanzate, Naples, Italy
| | - Andreina Alfieri
- Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Naples, Italy.,Ceinge Biotecnologie Avanzate, Naples, Italy
| | - Laura Iaffaldano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Naples, Italy
| | - Carmela Nardelli
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Naples, Italy
| | - Fabrizio Pasanisi
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Naples, Italy
| | - Lucio Pastore
- Ceinge Biotecnologie Avanzate, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Naples, Italy
| | - Pasqualina Buono
- Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Naples, Italy.,IRCCS SDN, Naples, Italy.,Ceinge Biotecnologie Avanzate, Via G. Salvatore 486, 80145, Naples, Italy, Phone: 00390813737892
| | - Barbara Lombardo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Naples, Italy.,Ceinge Biotecnologie Avanzate, Via G. Salvatore 486, 80145, Naples, Italy, Phone: 00390813737917
| |
Collapse
|
56
|
Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol 2018; 6:223-236. [PMID: 28919064 DOI: 10.1016/s2213-8587(17)30200-0] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 01/01/2023]
Abstract
Genome-wide association studies (GWAS) for BMI, waist-to-hip ratio, and other adiposity traits have identified more than 300 single-nucleotide polymorphisms (SNPs). Although there is reason to hope that these discoveries will eventually lead to new preventive and therapeutic agents for obesity, this will take time because such developments require detailed mechanistic understanding of how an SNP influences phenotype (and this information is largely unavailable). Fortunately, absence of functional information has not prevented GWAS findings from providing insights into the biology of obesity. Genes near loci regulating total body mass are enriched for expression in the CNS, whereas genes for fat distribution are enriched in adipose tissue itself. Gene by environment and lifestyle interaction analyses have revealed that our increasingly obesogenic environment might be amplifying genetic risk for obesity, yet those at highest risk could mitigate this risk by increasing physical activity and possibly by avoiding specific dietary components. GWAS findings have also been used in mendelian randomisation analyses probing the causal association between obesity and its many putative complications. In supporting a causal association of obesity with diabetes, coronary heart disease, specific cancers, and other conditions, these analyses have clinical relevance in identifying which outcomes could be preventable through weight loss interventions.
Collapse
Affiliation(s)
- Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
57
|
Du J, Shen L, Tan Z, Zhang P, Zhao X, Xu Y, Gan M, Yang Q, Ma J, Jiang A, Tang G, Jiang Y, Jin L, Li M, Bai L, Li X, Wang J, Zhang S, Zhu L. Betaine Supplementation Enhances Lipid Metabolism and Improves Insulin Resistance in Mice Fed a High-Fat Diet. Nutrients 2018; 10:E131. [PMID: 29373534 PMCID: PMC5852707 DOI: 10.3390/nu10020131] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/07/2018] [Accepted: 01/18/2018] [Indexed: 01/22/2023] Open
Abstract
Obesity is a major driver of metabolic diseases such as nonalcoholic fatty liver disease, certain cancers, and insulin resistance. However, there are no effective drugs to treat obesity. Betaine is a nontoxic, chemically stable and naturally occurring molecule. This study shows that dietary betaine supplementation significantly inhibits the white fat production in a high-fat diet (HFD)-induced obese mice. This might be due to betaine preventing the formation of new white fat (WAT), and guiding the original WAT to burn through stimulated mitochondrial biogenesis and promoting browning of WAT. Furthermore, dietary betaine supplementation decreases intramyocellular lipid accumulation in HFD-induced obese mice. Further analysis shows that betaine supplementation reduced intramyocellular lipid accumulation might be associated with increasing polyunsaturated fatty acids (PUFA), fatty acid oxidation, and the inhibition of fatty acid synthesis in muscle. Notably, by performing insulin-tolerance tests (ITTs) and glucose-tolerance tests (GTTs), dietary betaine supplementation could be observed for improvement of obesity and non-obesity induced insulin resistance. Together, these findings could suggest that inhibiting WAT production, intramyocellular lipid accumulation and inflammation, betaine supplementation limits HFD-induced obesity and improves insulin resistance.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipocytes, White/cytology
- Adipocytes, White/metabolism
- Adipocytes, White/pathology
- Adipogenesis
- Adiposity
- Animals
- Animals, Outbred Strains
- Anti-Obesity Agents/therapeutic use
- Betaine/adverse effects
- Betaine/therapeutic use
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/diet therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diet, High-Fat/adverse effects
- Dietary Supplements
- Female
- Hyperglycemia/prevention & control
- Hypoglycemic Agents/therapeutic use
- Insulin Resistance
- Lipid Droplets/metabolism
- Lipid Droplets/pathology
- Lipid Metabolism
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Obesity/diet therapy
- Obesity/etiology
- Obesity/metabolism
- Obesity/pathology
- Weight Gain
Collapse
Affiliation(s)
- Jingjing Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Zhendong Tan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Peiwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Xue Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Yan Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Mailing Gan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Qiong Yang
- Department of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu 611100, China.
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - An'an Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Yanzhi Jiang
- College of Life and Biology Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Long Jin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Lin Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China.
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| |
Collapse
|
58
|
Abstract
Obesity is a complex disease with many causal factors, associated with multiple comorbidities that contribute to significant morbidity and mortality. It is a highly prevalent disease that poses an enormous health and economic burden to society. This article reviews the mechanisms of obesity and its related comorbidities.
Collapse
Affiliation(s)
- Jagriti Upadhyay
- Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, 150 South Huntington Avenue, Boston, MA 02130, USA; Division of Endocrinology, Boston Medical Center, Boston University, 88 East Newton Street, Boston, MA 02118; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Olivia Farr
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Wael Ghaly
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Christos Mantzoros
- Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, 150 South Huntington Avenue, Boston, MA 02130, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
59
|
Sheikh AB, Nasrullah A, Haq S, Akhtar A, Ghazanfar H, Nasir A, Afzal RM, Bukhari MM, Chaudhary AY, Naqvi SW. The Interplay of Genetics and Environmental Factors in the Development of Obesity. Cureus 2017; 9:e1435. [PMID: 28924523 PMCID: PMC5587406 DOI: 10.7759/cureus.1435] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Obesity is a major health issue in the developed nations, and it has been increasingly clear that both genetics and environment play an important role in determining if an individual will be obese or not. We reviewed the latest researches which were carried out to identify the obesity susceptible genes and to identify the metabolic pathways having a central role in energy balance. Obesity is a heritable disorder, and some of the many obesity susceptible genes are fat mass and obesity (FTO), leptin, and Melanocortin-4 receptor (MC4R). Glucose metabolism is the central pathway for fatty acid synthesis, de novo generating the major substrate acetyl-CoA. Further knowledge of these genes and their complex interaction with the environment will help devise individual, family and community-based preventive lifestyle interventions as well as nutritional and medical therapies.
Collapse
Affiliation(s)
| | - Adeel Nasrullah
- Department of Internal Medicine, Shifa International Hospital
| | - Shujaul Haq
- Department of Internal Medicine, Shifa International Hospital
| | - Aisha Akhtar
- Surgery, Texas Tech Health Sciences Center Lubbock
| | | | - Amara Nasir
- Shifa College of Medicine, Shifa International Hospital
| | - Rao M Afzal
- Internal Medicine, Shifa College Of Medicine
| | | | | | - Syed W Naqvi
- Shifa College of Medicine, Shifa International Hospital
| |
Collapse
|
60
|
Yu YH. Making sense of metabolic obesity and hedonic obesity. J Diabetes 2017; 9:656-666. [PMID: 28093902 DOI: 10.1111/1753-0407.12529] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/01/2023] Open
Abstract
Body weight is neither stationary nor does it change unidirectionally. Rather, body weight usually oscillates up and down around a set point. Two types of forces determine the direction of weight changes. Forces that push body weight away from the set point are defined as non-homeostatic and are governed by multiple mechanisms, including, but not limited to, hedonic regulation of food intake. Forces that restore the set point weight are defined as homeostatic, and they operate through mechanisms that regulate short-term energy balance driven by hunger and satiation and long-term energy balance driven by changes in adiposity. In the normal physiological state, the deviation of body weight from the set point is usually small and temporary, and is constantly corrected by homeostatic forces. Metabolic obesity develops when body weight set point is shifted to an abnormally high level and the obese body weight becomes metabolically defended. In hedonic obesity, the obese body weight is maintained by consistent overeating due to impairments in the reward system, although the set point is not elevated. Adaptive increases in energy expenditure are elicited in hedonic obesity because body weight is elevated above the set point. Neither subtype of obesity undergoes spontaneous resolution unless the underlying disorders are corrected. In this review, the need for both appropriate patient stratification and tailored treatments is discussed in the context of the new framework of metabolic and hedonic obesity.
Collapse
Affiliation(s)
- Yi-Hao Yu
- Department of Endocrinology, Greenwich Hospital and Northeast Medical Group, Yale-New Haven Health System, Greenwich, Connecticut, USA
| |
Collapse
|
61
|
Miller GD. Appetite Regulation: Hormones, Peptides, and Neurotransmitters and Their Role in Obesity. Am J Lifestyle Med 2017; 13:586-601. [PMID: 31662725 DOI: 10.1177/1559827617716376] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/18/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022] Open
Abstract
Understanding body weight regulation will aid in the development of new strategies to combat obesity. This review examines energy homeostasis and food intake behaviors, specifically with regards to hormones, peptides, and neurotransmitters in the periphery and central nervous system, and their potential role in obesity. Dysfunction in feeding signals by the brain is a factor in obesity. The hypothalamic (arcuate nucleus) and brainstem (nucleus tractus solitaris) areas integrate behavioral, endocrine, and autonomic responses via afferent and efferent pathways from and to the brainstem and peripheral organs. Neurons present in the arcuate nucleus express pro-opiomelanocortin, Neuropeptide Y, and Agouti Related Peptide, with the former involved in lowering food intake, and the latter two acutely increasing feeding behaviors. Action of peripheral hormones from the gut, pancreas, adipose, and liver are also involved in energy homeostasis. Vagal afferent neurons are also important in regulating energy homeostasis. Peripheral signals respond to the level of stored and currently available fuel. By studying their actions, new agents maybe developed that disable orexigenic responses and enhance anorexigenic signals. Although there are relatively few medications currently available for obesity treatment, a number of agents are in development that work through these pathways.
Collapse
Affiliation(s)
- Gary D Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
62
|
Affiliation(s)
- Amy L. Christison
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA
| | - Sandeep K. Gupta
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA
| |
Collapse
|
63
|
Kaur Y, de Souza RJ, Gibson WT, Meyre D. A systematic review of genetic syndromes with obesity. Obes Rev 2017; 18:603-634. [PMID: 28346723 DOI: 10.1111/obr.12531] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 11/29/2022]
Abstract
Syndromic monogenic obesity typically follows Mendelian patterns of inheritance and involves the co-presentation of other characteristics, such as mental retardation, dysmorphic features and organ-specific abnormalities. Previous reviews on obesity have reported 20 to 30 syndromes but no systematic review has yet been conducted on syndromic obesity. We searched seven databases using terms such as 'obesity', 'syndrome' and 'gene' to conduct a systematic review of literature on syndromic obesity. Our literature search identified 13,719 references. After abstract and full-text review, 119 relevant papers were eligible, and 42 papers were identified through additional searches. Our analysis of these 161 papers found that 79 obesity syndromes have been reported in literature. Of the 79 syndromes, 19 have been fully genetically elucidated, 11 have been partially elucidated, 27 have been mapped to a chromosomal region and for the remaining 22, neither the gene(s) nor the chromosomal location(s) have yet been identified. Interestingly, 54.4% of the syndromes have not been assigned a name, whereas 13.9% have more than one name. We report on organizational inconsistencies (e.g. naming discrepancies and syndrome classification) and provide suggestions for improvements. Overall, this review illustrates the need for increased clinical and genetic research on syndromes with obesity.
Collapse
Affiliation(s)
- Y Kaur
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - R J de Souza
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - W T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
64
|
Kaplan LM. What Bariatric Surgery Can Teach Us About Endoluminal Treatment of Obesity and Metabolic Disorders. Gastrointest Endosc Clin N Am 2017; 27:213-231. [PMID: 28292401 DOI: 10.1016/j.giec.2017.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bariatric surgical procedures, including gastric bypass, vertical sleeve gastrectomy, and biliopancreatic diversion, are the most effective and durable treatments for obesity. In addition, These operations induce metabolic changes that provide weight-independent improvement in type 2 diabetes, fatty liver disease and other metabolic disorders. Initially thought to work by mechanical restriction of food intake or malabsorption of ingested nutrients, these procedures are now known to work through complex changes in neuroendocrine and immune signals emanating from the gut, including peptide hormones, bile acids, vagal nerve activity, and metabolites generated by the gut microbiota, all collaborating to reregulate appetite, food preference, and energy expenditure. Development of less invasive means of achieving these benefits would allow much greater dissemination of effective, gastrointestinal (GI)-targeted therapies for obesity and metabolic disorders. To reproduce the benefits of bariatric surgery, however, these endoscopic procedures and devices will need to mimic the physiological rather than the mechanical effects of these operations.
Collapse
Affiliation(s)
- Lee M Kaplan
- Obesity, Metabolism and Nutrition Institute, Massachusetts General Hospital, 149 13th Street, Room 8219, Boston, MA 02129, USA.
| |
Collapse
|
65
|
Palomino R, Lee HW, Millhauser GL. The agouti-related peptide binds heparan sulfate through segments critical for its orexigenic effects. J Biol Chem 2017; 292:7651-7661. [PMID: 28264929 DOI: 10.1074/jbc.m116.772822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
Syndecans potently modulate agouti-related peptide (AgRP) signaling in the central melanocortin system. Through heparan sulfate moieties, syndecans are thought to anchor AgRP near its receptor, enhancing its orexigenic effects. Original work proposed that the N-terminal domain of AgRP facilitates this interaction. However, this is not compatible with evidence that this domain is posttranslationally cleaved. Addressing this long-standing incongruity, we used calorimetry and magnetic resonance to probe interactions of AgRP peptides with glycosaminoglycans, including heparan sulfate. We show that mature, cleaved, C-terminal AgRP, not the N-terminal domain, binds heparan sulfate. NMR shows that the binding site consists of regions distinct from the melanocortin receptor-binding site. Using a library of designed AgRP variants, we find that the strength of the syndecan interaction perfectly tracks orexigenic action. Our data provide compelling evidence that AgRP is a heparan sulfate-binding protein and localizes critical regions in the AgRP structure required for this interaction.
Collapse
Affiliation(s)
- Rafael Palomino
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Hsiau-Wei Lee
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Glenn L Millhauser
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| |
Collapse
|
66
|
Clifton EAD, Day FR, De Lucia Rolfe E, Forouhi NG, Brage S, Griffin SJ, Wareham NJ, Ong KK. Associations between body mass index-related genetic variants and adult body composition: The Fenland cohort study. Int J Obes (Lond) 2017; 41:613-619. [PMID: 28096530 PMCID: PMC5382973 DOI: 10.1038/ijo.2017.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND/OBJECTIVE Body mass index (BMI) is a surrogate measure of adiposity but does not distinguish fat from lean or bone mass. The genetic determinants of BMI are thought to predominantly influence adiposity but this has not been confirmed. Here we characterise the association between BMI-related genetic variants and body composition in adults. SUBJECTS/METHODS Among 9667 adults aged 29-64 years from the Fenland study, a genetic risk score for BMI (BMI-GRS) was calculated for each individual as the weighted sum of BMI-increasing alleles across 96 reported BMI-related variants. Associations between the BMI-GRS and body composition, estimated by dual-energy X-ray absorptiometry (DXA) scans, were examined using age-adjusted linear regression models, separately by sex. RESULTS The BMI-GRS was positively associated with all fat, lean and bone variables. Across body regions, associations of the greatest magnitude were observed for adiposity variables, for example, for each s.d. increase in BMI-GRS predicted BMI, we observed a 0.90 s.d. (95% confidence interval (CI): 0.71, 1.09) increase in total fat mass for men (P=3.75 × 10-21) and a 0.96 s.d. (95% CI: 0.77, 1.16) increase for women (P=6.12 × 10-22). Associations of intermediate magnitude were observed with lean variables, for example, total lean mass: men: 0.68 s.d. (95% CI: 0.49, 0.86; P=1.91 × 10-12); women: 0.85 s.d. (95% CI: 0.65, 1.04; P=2.66 × 10-17) and of a lower magnitude with bone variables, for example, total bone mass: men: 0.39 s.d. (95% CI: 0.20, 0.58; P=5.69 × 10-5); women: 0.45 s.d. (95% CI: 0.26, 0.65; P=3.96 × 106). Nominally significant associations with BMI were observed for 28 single-nucleotide polymorphisms. All 28 were positively associated with fat mass and 13 showed adipose-specific effects. CONCLUSIONS In adults, genetic susceptibility to elevated BMI influences adiposity more than lean or bone mass. This mirrors the association between BMI and body composition. The BMI-GRS can be used to model the effects of measured BMI and adiposity on health and other outcomes.
Collapse
Affiliation(s)
- E A D Clifton
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - F R Day
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - E De Lucia Rolfe
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - N G Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - S Brage
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - S J Griffin
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK.,Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, UK
| | - N J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - K K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| |
Collapse
|
67
|
Appetite responses to high-fat meals or diets of varying fatty acid composition: a comprehensive review. Eur J Clin Nutr 2017; 71:1154-1165. [DOI: 10.1038/ejcn.2016.250] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/02/2016] [Accepted: 09/26/2016] [Indexed: 02/08/2023]
|
68
|
Abstract
Critical illness is a major cause of morbidity and mortality around the world. While obesity is often detrimental in the context of trauma, it is paradoxically associated with improved outcomes in some septic patients. The reasons for these disparate outcomes are not well understood. A number of animal models have been used to study the obese response to various forms of critical illness. Just as there have been many animal models that have attempted to mimic clinical conditions, there are many clinical scenarios that can occur in the highly heterogeneous critically ill patient population that occupies hospitals and intensive care units. This poses a formidable challenge for clinicians and researchers attempting to understand the mechanisms of disease and develop appropriate therapies and treatment algorithms for specific subsets of patients, including the obese. The development of new, and the modification of existing animal models, is important in order to bring effective treatments to a wide range of patients. Not only do experimental variables need to be matched as closely as possible to clinical scenarios, but animal models with pre-existing comorbid conditions need to be studied. This review briefly summarizes animal models of hemorrhage, blunt trauma, traumatic brain injury, and sepsis. It also discusses what has been learned through the use of obese models to study the pathophysiology of critical illness in light of what has been demonstrated in the clinical literature.
Collapse
|
69
|
Abstract
Although diet and exercise have been the cornerstone of therapy for obesity, efficacy is suboptimal and short lived. Surgical procedures are durable but invasive therapy for obesity. Supplemental therapies for obesity that are minimally invasive, low risk, and effective are needed. Several therapeutic options are being developed that offer obese patients and their health care providers alternatives to what is currently available.
Collapse
Affiliation(s)
- Octavia Pickett-Blakely
- GI Nutrition, Obesity and Celiac Disease Program, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, 3400 Convention Avenue, 4 South, Philadelphia, PA 19104, USA.
| | - Carolyn Newberry
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
70
|
Contribution of adaptive thermogenesis to the hypothalamic regulation of energy balance. Biochem J 2016; 473:4063-4082. [DOI: 10.1042/bcj20160012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/13/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
Obesity and its related disorders are among the most pervasive diseases in contemporary societies, and there is an urgent need for new therapies and preventive approaches. Given (i) our poor social capacity to correct unhealthy habits, and (ii) our evolutionarily genetic predisposition to store excess energy as fat, the current environment of caloric surplus makes the treatment of obesity extremely difficult. During the last few decades, an increasing number of methodological approaches have increased our knowledge of the neuroanatomical basis of the control of energy balance. Compelling evidence underlines the role of the hypothalamus as a homeostatic integrator of metabolic information and its ability to adjust energy balance. A greater understanding of the neural basis of the hypothalamic regulation of energy balance might indeed pave the way for new therapeutic targets. In this regard, it has been shown that several important peripheral signals, such as leptin, thyroid hormones, oestrogens and bone morphogenetic protein 8B, converge on common energy sensors, such as AMP-activated protein kinase to modulate sympathetic tone on brown adipose tissue. This knowledge may open new ways to counteract the chronic imbalance underlying obesity. Here, we review the current state of the art on the role of hypothalamus in the regulation of energy balance with particular focus on thermogenesis.
Collapse
|
71
|
Zhang JP, Lencz T, Zhang RX, Nitta M, Maayan L, John M, Robinson DG, Fleischhacker WW, Kahn RS, Ophoff RA, Kane JM, Malhotra AK, Correll CU. Pharmacogenetic Associations of Antipsychotic Drug-Related Weight Gain: A Systematic Review and Meta-analysis. Schizophr Bull 2016; 42:1418-1437. [PMID: 27217270 PMCID: PMC5049532 DOI: 10.1093/schbul/sbw058] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although weight gain is a serious but variable adverse effect of antipsychotics that has genetic underpinnings, a comprehensive meta-analysis of pharmacogenetics of antipsychotic-related weight gain is missing. In this review, random effects meta-analyses were conducted for dominant and recessive models on associations of specific single nucleotide polymorphisms (SNP) with prospectively assessed antipsychotic-related weight or body mass index (BMI) changes (primary outcome), or categorical increases in weight or BMI (≥7%; secondary outcome). Published studies, identified via systematic database search (last search: December 31, 2014), plus 3 additional cohorts, including 222 antipsychotic-naïve youth, and 81 and 141 first-episode schizophrenia adults, each with patient-level data at 3 or 4 months treatment, were meta-analyzed. Altogether, 72 articles reporting on 46 non-duplicated samples (n = 6700, mean follow-up = 25.1wk) with 38 SNPs from 20 genes/genomic regions were meta-analyzed (for each meta-analysis, studies = 2-20, n = 81-2082). Eleven SNPs from 8 genes were significantly associated with weight or BMI change, and 4 SNPs from 2 genes were significantly associated with categorical weight or BMI increase. Combined, 13 SNPs from 9 genes (Adrenoceptor Alpha-2A [ADRA2A], Adrenoceptor Beta 3 [ADRB3], Brain-Derived Neurotrophic Factor [BDNF], Dopamine Receptor D2 [DRD2], Guanine Nucleotide Binding Protein [GNB3], 5-Hydroxytryptamine (Serotonin) Receptor 2C [HTR2C], Insulin-induced gene 2 [INSIG2], Melanocortin-4 Receptor [MC4R], and Synaptosomal-associated protein, 25kDa [SNAP25]) were significantly associated with antipsychotic-related weight gain (P-values < .05-.001). SNPs in ADRA2A, DRD2, HTR2C, and MC4R had the largest effect sizes (Hedges' g's = 0.30-0.80, ORs = 1.47-1.96). Less prior antipsychotic exposure (pediatric or first episode patients) and short follow-up (1-2 mo) were associated with larger effect sizes. Individual antipsychotics did not significantly moderate effect sizes. In conclusion, antipsychotic-related weight gain is polygenic and associated with specific genetic variants, especially in genes coding for antipsychotic pharmacodynamic targets.
Collapse
Affiliation(s)
- Jian-Ping Zhang
- *To whom correspondence should be addressed; Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health System, 75-59 263rd Street, Glen Oaks, NY 11020, US; tel: 718-470-8471, fax: 718-470-1905, e-mail:
| | | | - Ryan X. Zhang
- Department of Psychology and Neuroscience, Duke University, Durham, NY
| | - Masahiro Nitta
- Drug Development Division, Sumitomo Dainippon Pharma Co. Ltd, Tokyo, Japan
| | - Lawrence Maayan
- Department of Psychiatry, New York University School of Medicine, New York, NY
| | - Majnu John
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health System, Glen Oaks, NY;,Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY;,Department of Mathematics, Hofstra University, Hempstead, NY
| | | | | | - Rene S. Kahn
- Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Roel A. Ophoff
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA
| | - John M. Kane
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY
| | | | - Christoph U. Correll
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY,Both authors contributed equally to the article
| |
Collapse
|
72
|
Lee H, Song J, Jung JH, Ko HW. Primary cilia in energy balance signaling and metabolic disorder. BMB Rep 2016; 48:647-54. [PMID: 26538252 PMCID: PMC4791320 DOI: 10.5483/bmbrep.2015.48.12.229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell's antenna to obesity and type II diabetes.
Collapse
Affiliation(s)
- Hankyu Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Jieun Song
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Joo Hyun Jung
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Hyuk Wan Ko
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| |
Collapse
|
73
|
Melanocortin-4 Receptor Deficiency Phenotype with an Interstitial 18q Deletion: A Case Report of Severe Childhood Obesity and Tall Stature. Case Rep Pediatr 2016; 2016:6123150. [PMID: 27738543 PMCID: PMC5050361 DOI: 10.1155/2016/6123150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/28/2016] [Indexed: 11/24/2022] Open
Abstract
Childhood obesity is a growing health concern, associated with significant physical and psychological morbidity. Childhood obesity is known to have a strong genetic component, with mutations in the melanocortin-4 receptor (MC4R) gene being the most common monogenetic cause of obesity. Over 166 different MC4R mutations have been identified in persons with hyperphagia, severe childhood obesity, and increased linear growth. However, it is unclear whether the MC4-R deficiency phenotype is due to haploinsufficiency or dominant-negative effects by the mutant receptor. We report the case of a four-and-a-half-year-old boy with an interstitial deletion involving the long arm of chromosome 18 (46,XY,del(18)(q21.32q22.1)) encompassing the MC4R gene. This patient presented with tall stature and hyperphagia within his first 18 months of life leading to significant obesity. This case supports haploinsufficiency of MC4-R as it describes a MC4-R deficiency phenotype in a patient heterozygous for a full MC4R gene deletion. The intact functional allele with MC4-R haploinsufficiency has the potential to favor a therapeutic response to gastric surgery. Currently, small molecule MC4-R agonists are under development for pharmacologic therapy.
Collapse
|
74
|
Larsen L, Le Foll C, Dunn-Meynell AA, Levin BE. IL-6 ameliorates defective leptin sensitivity in DIO ventromedial hypothalamic nucleus neurons. Am J Physiol Regul Integr Comp Physiol 2016; 311:R764-R770. [PMID: 27534878 DOI: 10.1152/ajpregu.00258.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/11/2016] [Indexed: 12/25/2022]
Abstract
Rats selectively bred to develop diet-induced obesity (DIO) have an early onset reduction in the sensitivity of their ventromedial hypothalamic nucleus (VMN) neurons to leptin compared with diet-resistant (DR) rats. This reduced sensitivity includes decreased leptin receptor (Lepr-b) mRNA expression, leptin receptor binding, leptin-induced phosphorylation of STAT3 (pSTAT3), and impaired leptin excitation (LepE) of VMN neurons. When administered exogenously, the pancreatic peptide, amylin, acts synergistically to reduce food intake and body weight in obese, leptin-resistant DIO rats by increasing VMN leptin signaling, likely by stimulation of microglia IL-6, which acts on its receptor to increase leptin-induced pSTAT3. Here, we demonstrate that incubation of cultured VMN neurons of outbred rats with IL-6 increases their leptin sensitivity. Control, dissociated DIO VMN neurons express 66% less Lepr-b and 75% less Bardet Biedl Syndrome-6 (BBS6) mRNA and have reduced leptin-induced activation of LepE neurons compared with DR neurons. Incubation for 4 days with IL-6 increased DIO neuron Lepr-b expression by 77% and BBS6 by 290% and corrected their defective leptin activation of LepE neurons to DR levels. Since BBS6 enhances trafficking of Lepr-b to the cell membrane, the increases in Lepr-b and BBS6 expression appear to account for correction of the reduced leptin excitation of DIO LepE neurons to that of control DR rats. These data support prior findings suggesting that IL-6 mediates the leptin-sensitizing effects of amylin on VMN neurons and that the inherent leptin resistance of DIO rats can be effectively reversed at a cellular level by IL-6.
Collapse
Affiliation(s)
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | | | - Barry E Levin
- Department of Neurology, Rutgers, New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
75
|
Abstract
Ovarian steroids, such as estradiol (E2), control a vastness of physiological processes, such as puberty, reproduction, growth, development and metabolic rate. In fact, physiological, pathological, pharmacological or genetically-induced estrogen deficiency causes increased appetite and reduced energy expenditure, promoting weight gain and ultimately leading to obesity. Remarkably, estrogen replacement reverts those effects. Interestingly, although a wealth of evidence has shown that E2 can directly modulate peripheral tissues to exert their metabolic actions, novel data gathered in recent years have shown that those effects are mainly central and occur in the hypothalamus. Here, we will review what is known about the actions of E2 on energy homeostasis, with particular focus on brown adipose tissue (BAT) thermogenesis.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, Faculty of Medicine & CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain.
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|
76
|
Souza GFP, Solon C, Nascimento LF, De-Lima-Junior JC, Nogueira G, Moura R, Rocha GZ, Fioravante M, Bobbo V, Morari J, Razolli D, Araujo EP, Velloso LA. Defective regulation of POMC precedes hypothalamic inflammation in diet-induced obesity. Sci Rep 2016; 6:29290. [PMID: 27373214 PMCID: PMC4931679 DOI: 10.1038/srep29290] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 06/17/2016] [Indexed: 11/23/2022] Open
Abstract
Obesity is the result of a long-term positive energy balance in which caloric intake overrides energy expenditure. This anabolic state results from the defective activity of hypothalamic neurons involved in the sensing and response to adiposity. However, it is currently unknown what the earliest obesity-linked hypothalamic defect is and how it orchestrates the energy imbalance present in obesity. Using an outbred model of diet-induced obesity we show that defective regulation of hypothalamic POMC is the earliest marker distinguishing obesity-prone from obesity-resistant mice. The early inhibition of hypothalamic POMC was sufficient to transform obesity-resistant in obesity-prone mice. In addition, the post-prandial change in the blood level of β-endorphin, a POMC-derived peptide, correlates with body mass gain in rodents and humans. Taken together, these results suggest that defective regulation of POMC expression, which leads to a change of β-endorphin levels, is the earliest hypothalamic defect leading to obesity.
Collapse
Affiliation(s)
- Gabriela F P Souza
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Carina Solon
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Lucas F Nascimento
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Jose C De-Lima-Junior
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Guilherme Nogueira
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Rodrigo Moura
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Guilherme Z Rocha
- Department of Internal Medicine, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Milena Fioravante
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Vanessa Bobbo
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil.,Faculty of Nursing, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Joseane Morari
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Daniela Razolli
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Eliana P Araujo
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil.,Faculty of Nursing, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| |
Collapse
|
77
|
The Obesity-Breast Cancer Conundrum: An Analysis of the Issues. Int J Mol Sci 2016; 17:ijms17060989. [PMID: 27338371 PMCID: PMC4926517 DOI: 10.3390/ijms17060989] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023] Open
Abstract
Breast cancer develops over a timeframe of 2-3 decades prior to clinical detection. Given this prolonged latency, it is somewhat unexpected from a biological perspective that obesity has no effect or reduces the risk for breast cancer in premenopausal women yet increases the risk for breast cancer in postmenopausal women. This conundrum is particularly striking in light of the generally negative effects of obesity on breast cancer outcomes, including larger tumor size at diagnosis and poorer prognosis in both pre- and postmenopausal women. This review and analysis identifies factors that may contribute to this apparent conundrum, issues that merit further investigation, and characteristics of preclinical models for breast cancer and obesity that should be considered if animal models are used to deconstruct the conundrum.
Collapse
|
78
|
Zhang YP, Zhang YY, Duan DD. From Genome-Wide Association Study to Phenome-Wide Association Study: New Paradigms in Obesity Research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:185-231. [PMID: 27288830 DOI: 10.1016/bs.pmbts.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is a condition in which excess body fat has accumulated over an extent that increases the risk of many chronic diseases. The current clinical classification of obesity is based on measurement of body mass index (BMI), waist-hip ratio, and body fat percentage. However, these measurements do not account for the wide individual variations in fat distribution, degree of fatness or health risks, and genetic variants identified in the genome-wide association studies (GWAS). In this review, we will address this important issue with the introduction of phenome, phenomics, and phenome-wide association study (PheWAS). We will discuss the new paradigm shift from GWAS to PheWAS in obesity research. In the era of precision medicine, phenomics and PheWAS provide the required approaches to better definition and classification of obesity according to the association of obese phenome with their unique molecular makeup, lifestyle, and environmental impact.
Collapse
Affiliation(s)
- Y-P Zhang
- Pediatric Heart Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Y-Y Zhang
- Department of Cardiology, Changzhou Second People's Hospital, Changzhou, Jiangsu, China
| | - D D Duan
- Laboratory of Cardiovascular Phenomics, Center for Cardiovascular Research, Department of Pharmacology, and Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV, United States.
| |
Collapse
|
79
|
|
80
|
Association of genetic risk scores with body mass index in Swiss psychiatric cohorts. Pharmacogenet Genomics 2016; 26:208-17. [DOI: 10.1097/fpc.0000000000000210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
81
|
Zhao XY, Lin JD. Long Noncoding RNAs: A New Regulatory Code in Metabolic Control. Trends Biochem Sci 2016; 40:586-596. [PMID: 26410599 DOI: 10.1016/j.tibs.2015.08.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/27/2022]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as an integral part of the regulatory information encoded in the genome. lncRNAs possess the unique capability to interact with nucleic acids and proteins, and exert discrete effects on numerous biological processes. Recent studies have delineated multiple lncRNA pathways that control metabolic tissue development and function. The expansion of the regulatory code that links nutrient and hormonal signals to tissue metabolism gives new insights into the genetic and pathogenic mechanisms underlying metabolic disease. This review discusses lncRNA biology with a focus on their role in the development, signaling, and function of key metabolic tissues.
Collapse
Affiliation(s)
- Xu-Yun Zhao
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
82
|
Chevalier C, Stojanović O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, Rigo D, Fabbiano S, Stevanović A, Hagemann S, Montet X, Seimbille Y, Zamboni N, Hapfelmeier S, Trajkovski M. Gut Microbiota Orchestrates Energy Homeostasis during Cold. Cell 2016; 163:1360-74. [PMID: 26638070 DOI: 10.1016/j.cell.2015.11.004] [Citation(s) in RCA: 543] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/11/2015] [Accepted: 10/28/2015] [Indexed: 12/16/2022]
Abstract
Microbial functions in the host physiology are a result of the microbiota-host co-evolution. We show that cold exposure leads to marked shift of the microbiota composition, referred to as cold microbiota. Transplantation of the cold microbiota to germ-free mice is sufficient to increase insulin sensitivity of the host and enable tolerance to cold partly by promoting the white fat browning, leading to increased energy expenditure and fat loss. During prolonged cold, however, the body weight loss is attenuated, caused by adaptive mechanisms maximizing caloric uptake and increasing intestinal, villi, and microvilli lengths. This increased absorptive surface is transferable with the cold microbiota, leading to altered intestinal gene expression promoting tissue remodeling and suppression of apoptosis-the effect diminished by co-transplanting the most cold-downregulated strain Akkermansia muciniphila during the cold microbiota transfer. Our results demonstrate the microbiota as a key factor orchestrating the overall energy homeostasis during increased demand.
Collapse
Affiliation(s)
- Claire Chevalier
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Ozren Stojanović
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Didier J Colin
- Centre for BioMedical Imaging (CIBM), Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Nicolas Suarez-Zamorano
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Valentina Tarallo
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Christelle Veyrat-Durebex
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Dorothée Rigo
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Salvatore Fabbiano
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Ana Stevanović
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Stefanie Hagemann
- Institute for Infectious Diseases, University of Bern, 3010 Bern, Switzerland
| | - Xavier Montet
- Division of Radiology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Yann Seimbille
- Centre for BioMedical Imaging (CIBM), Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Nicola Zamboni
- Institute for Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | | | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Division of Biosciences, Institute of Structural and Molecular Biology, University College London (UCL), London WC1E 6BT, UK.
| |
Collapse
|
83
|
Korner G, Scherer T, Adamsen D, Rebuffat A, Crabtree M, Rassi A, Scavelli R, Homma D, Ledermann B, Konrad D, Ichinose H, Wolfrum C, Horsch M, Rathkolb B, Klingenspor M, Beckers J, Wolf E, Gailus-Durner V, Fuchs H, Hrabě de Angelis M, Blau N, Rozman J, Thöny B. Mildly compromised tetrahydrobiopterin cofactor biosynthesis due to Pts variants leads to unusual body fat distribution and abdominal obesity in mice. J Inherit Metab Dis 2016; 39:309-19. [PMID: 26830550 DOI: 10.1007/s10545-015-9909-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 12/31/2022]
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor for the aromatic amino acid hydroxylases, alkylglycerol monooxygenase, and nitric oxide synthases (NOS). Inborn errors of BH4 metabolism lead to severe insufficiency of brain monoamine neurotransmitters while augmentation of BH4 by supplementation or stimulation of its biosynthesis is thought to ameliorate endothelial NOS (eNOS) dysfunction, to protect from (cardio-) vascular disease and/or prevent obesity and development of the metabolic syndrome. We have previously reported that homozygous knock-out mice for the 6-pyruvolytetrahydropterin synthase (PTPS; Pts-ko/ko) mice with no BH4 biosynthesis die after birth. Here we generated a Pts-knock-in (Pts-ki) allele expressing the murine PTPS-p.Arg15Cys with low residual activity (15% of wild-type in vitro) and investigated homozygous (Pts-ki/ki) and compound heterozygous (Pts-ki/ko) mutants. All mice showed normal viability and depending on the severity of the Pts alleles exhibited up to 90% reduction of PTPS activity concomitant with neopterin elevation and mild reduction of total biopterin while blood L-phenylalanine and brain monoamine neurotransmitters were unaffected. Yet, adult mutant mice with compromised PTPS activity (i.e., Pts-ki/ko, Pts-ki/ki or Pts-ko/wt) had increased body weight and elevated intra-abdominal fat. Comprehensive phenotyping of Pts-ki/ki mice revealed alterations in energy metabolism with proportionally higher fat content but lower lean mass, and increased blood glucose and cholesterol. Transcriptome analysis indicated changes in glucose and lipid metabolism. Furthermore, differentially expressed genes associated with obesity, weight loss, hepatic steatosis, and insulin sensitivity were consistent with the observed phenotypic alterations. We conclude that reduced PTPS activity concomitant with mildly compromised BH4-biosynthesis leads to abnormal body fat distribution and abdominal obesity at least in mice. This study associates a novel single gene mutation with monogenic forms of obesity.
Collapse
Affiliation(s)
- Germaine Korner
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
- Affiliated with the Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland
- Children's Research Center (CRC), Zürich, Switzerland
| | - Tanja Scherer
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
- Affiliated with the Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland
- Children's Research Center (CRC), Zürich, Switzerland
| | - Dea Adamsen
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
- Affiliated with the Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland
- Children's Research Center (CRC), Zürich, Switzerland
| | - Alexander Rebuffat
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
| | - Mark Crabtree
- BHF Centre of Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DU, Oxford, UK
| | - Anahita Rassi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zürich, Zürich, Switzerland
| | - Rossana Scavelli
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
| | - Daigo Homma
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Birgit Ledermann
- Division of Animal Facility, University of Zurich, Zürich, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Hiroshi Ichinose
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Christian Wolfrum
- Institute of Food Nutrition and Health, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | - Marion Horsch
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377, Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, Am Forum 8, 85354, Freising-Weihenstephan, Germany
- ZIEL - Center for Nutrition and Food Sciences, Technische Universität München, D-85350, Freising, Germany
| | - Johannes Beckers
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, D-85354, Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, D-85354, Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland.
- Dietmar-Hopp Metabolic Center, University Children's Hospital Heidelberg, Im Neuenheimer Feld 669, D-69120, Heidelberg, Germany.
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, Am Forum 8, 85354, Freising-Weihenstephan, Germany.
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| | - Beat Thöny
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland.
- Affiliated with the Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland.
- Children's Research Center (CRC), Zürich, Switzerland.
| |
Collapse
|
84
|
|
85
|
Kronenberg F, Paulweber B, Lamina C. [Genomwide association studies on obesity: what can we learn from these studies]. Wien Med Wochenschr 2016; 166:88-94. [PMID: 26795628 DOI: 10.1007/s10354-015-0429-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/30/2015] [Indexed: 01/10/2023]
Abstract
The introduction of genome-wide association studies resulted in a tremendous increase in the number of genes associated with obesity and related phenotypes (BMI, waist and waist-hip-ratio). Despite this enormous gain in knowledge the search for genes is only started since only a small fraction of the heritability of these phenotypes is explained yet: each single gene of the 97 hitherto known BMI-associated genes and 49 waist-hip-ratio-associated genes explains only a tiny fraction of the variance of these phenotypes. Sex-specific differences are mainly known for waist-hip-ratio and ̴40% of the genes showed only an effect in women but no or a markedly smaller effect in men. The functional characterization of the identified genes will take a lot of time. It is unclear whether and how fast the findings will result in therapeutic consequences. It is of utmost importance that we understand the involved mechanisms before new therapeutic strategies can be developed.
Collapse
Affiliation(s)
- Florian Kronenberg
- Division für Genetische Epidemiologie, Department für Medizinische Genetik, Molekulare and Klinische Pharmakologie, Medizinische Universität Innsbruck, Schöpfstr. 41, 6020, Innsbruck, Österreich.
| | - Bernhard Paulweber
- Universitätsklinik für Innere Medizin I der Paracelsus Medizinischen Privatuniversität Salzburg, St. Johanns-Spital, Müllner Hauptstraße 48, 5020, Salzburg, Österreich
| | - Claudia Lamina
- Division für Genetische Epidemiologie, Department für Medizinische Genetik, Molekulare and Klinische Pharmakologie, Medizinische Universität Innsbruck, Schöpfstr. 41, 6020, Innsbruck, Österreich
| |
Collapse
|
86
|
Alqahtani AR, Elahmedi MO, Al Qahtani AR, Lee J, Butler MG. Laparoscopic sleeve gastrectomy in children and adolescents with Prader-Willi syndrome: a matched-control study. Surg Obes Relat Dis 2016; 12:100-10. [PMID: 26431633 PMCID: PMC6866231 DOI: 10.1016/j.soard.2015.07.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/13/2015] [Accepted: 07/21/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Obesity is a leading cause of mortality and morbidity in Prader-Willi syndrome (PWS). OBJECTIVES To study weight loss and growth after laparoscopic sleeve gastrectomy (LSG) in pediatric patients with PWS compared with those without the syndrome. SETTING Academic center with a standardized care pathway for pediatric bariatric surgery as a part of a prospective clinical outcome study on children and adolescents undergoing weight loss surgery. METHODS Clinical data of all PWS patients who underwent LSG were abstracted from our prospective database, which included all pediatric patients who underwent bariatric surgery. These data were then compared with a 1:3 non-PWS group matched for age, gender, and body mass index (BMI). Data for up to 5 years follow-up were analyzed. RESULTS The 24 PWS patients (mean age 10.7; 6<8 yr old, range 4.9-18) had a preoperative BMI of 46.2 ± 12.2 kg/m(2). All PWS patients had obstructive sleep apnea (OSA), 62% had dyslipidemia, 43% had hypertension, and 29% had diabetes mellitus. BMI change at the first, second, third, fourth, and fifth annual visits was -14.7 (n = 22 patients), -15.0 (n = 18), 12.2 (n = 13), -12.7 (n = 11), and -10.7 (n = 7), respectively, in the PWS group, whereas the non-PWS group had a BMI change of -15.9 (n = 67), -18.0 (n = 50), -18.4 (n = 47), -18.9 (n = 26), and -19.0 (n = 20), respectively. No significant difference was observed in postoperative BMI change (P = .2-.7) or growth (postoperative height z-score P value at each annual visit = .2-.8); 95% of co-morbidities in both groups were in remission or improved, with no significant difference in the rate of co-morbidity resolution after surgery (P = .73). One PWS patient was readmitted 5 years after surgery with recurrence of OSA and heart failure. No other readmissions occurred, and there were no reoperations, postoperative leaks, or other complications. No mortality or major morbidity was observed during the 5 years of follow-up. Among the PWS patients who reached their follow-up visit time points the total follow-up rate was 94.1%, whereas in the non-PWS group it was 97%. All patients who missed a follow-up visit were subsequently seen in future follow-ups, and no patient was lost to follow-up in either group. CONCLUSIONS PWS children and adolescents underwent effective weight loss and resolution of co-morbidities after LSG, without mortality, significant morbidity, or slowing of growth. LSG should be offered to obese PWS patients with heightened mortality particularly because no other effective alternative therapy is available.
Collapse
Affiliation(s)
- Aayed R Alqahtani
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Mohamed O Elahmedi
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Awadh R Al Qahtani
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Jaehoon Lee
- College of Education, Texas Tech University, Lubbock, Texas
| | - Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
87
|
Pimentel GD, Contreras C, López M. Fatty Acids and Hypothalamic Dysfunction in Obesity. HANDBOOK OF LIPIDS IN HUMAN FUNCTION 2016:557-582. [DOI: 10.1016/b978-1-63067-036-8.00021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
88
|
Wilson JL, Enriori PJ. A talk between fat tissue, gut, pancreas and brain to control body weight. Mol Cell Endocrinol 2015; 418 Pt 2:108-19. [PMID: 26316427 DOI: 10.1016/j.mce.2015.08.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 12/18/2022]
Abstract
The incidence of obesity and its related disorders are increasing at a rate of pandemic proportions. Understanding the mechanisms behind the maintenance of energy balance is fundamental in developing treatments for clinical syndromes including obesity and diabetes. A neural network located in the nucleus of the solitary tract-area postrema complex in the hindbrain and the hypothalamus in the forebrain has long been implicated in the control of energy balance. In the hypothalamus this central neuronal network consists of small populations of nuclei with distinct functions such as the arcuate nucleus (ARH), the paraventricular nuclei of the hypothalamus (PVH), the dorsomedial (DMH), the ventromedial (VMH) and the lateral hypothalamus (LH). These hypothalamic areas form interconnected neuronal circuits that respond to fluctuations in energy status by altering the expression of neuropeptides, leading to changes in energy intake and expenditure. Regulation of these hypothalamic nuclei involves the actions of orexigenic peptides (ie ghrelin), which act to stimulate energy intake and decrease energy expenditure, and anorexigenic peptides (ie. leptin and insulin), which act to reduce energy intake and stimulate energy expenditure. Here we review the role of the ARH, DMH and PVH in the control of energy homeostasis and how recent advances in research technologies (Cre-loxP technology, optogenetics and pharmacogenetics) have shed light on the role of these hypothalamic nuclei in the control of energy balance. Such novel findings include the implication of ARH POMC and AgRP neurons in the browning of white adipose tissue to regulate energy expenditure as well as the likely existence of divergent hypothalamic pathways in the DMH and PVH in the control of food intake and energy expenditure.
Collapse
Affiliation(s)
- Jenny L Wilson
- Department of Physiology, Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Pablo J Enriori
- Department of Physiology, Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
89
|
Dar R, Rasool S, Zargar AH, Jan TR, Andrabi KI. Polymorphic analysis of MC4R gene in ethnic Kashmiri population with type 2 diabetes. Int J Diabetes Dev Ctries 2015. [DOI: 10.1007/s13410-015-0454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
90
|
Abstract
The compact nervous system of Caenorhabditis elegans and its genetic tractability are features that make this organism highly suitable for investigating energy balance in an animal system. Here, we focus on molecular components and organizational principles emerging from the investigation of pathways that largely originate in the nervous system and regulate feeding behavior but also peripheral fat regulation through neuroendocrine signaling. We provide an overview of studies aimed at understanding how C. elegans integrate internal and external cues in feeding behavior. We highlight some of the similarities and differences in energy balance between C. elegans and mammals. We also provide our perspective on unresolved issues, both conceptual and technical, that we believe have hampered critical evaluation of findings relevant to fat regulation in C. elegans.
Collapse
Affiliation(s)
- George A Lemieux
- Department of Physiology, University of California, San Francisco, California 94158;
| | - Kaveh Ashrafi
- Department of Physiology, University of California, San Francisco, California 94158;
| |
Collapse
|
91
|
Balland E, Cowley MA. New insights in leptin resistance mechanisms in mice. Front Neuroendocrinol 2015; 39:59-65. [PMID: 26410445 DOI: 10.1016/j.yfrne.2015.09.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 11/18/2022]
Abstract
Leptin resistance is one of the main challenges of obesity. To date, two levels of resistance have been identified, first a decreased rate of leptin uptake into the brain and secondly a diminished central response to leptin. New findings have identified the mechanisms of leptin transport and demonstrated that it can be rescued in obesity, but it did not overcome the problem of central resistance. Alteration in the actions of leptin following diet-induced obesity (DIO) appears to be a multifactorial condition. Several phosphatases are inhibiting leptin signaling pathways in a pathological way. Besides, hypothalamic inflammation alters the neuronal circuits that control metabolism. Recent studies describing both mechanisms (inhibition of leptin signaling and inflammation), have provided key insights to potential new targets for treatment. However, recent data showing that DIO mice may conserve a cellular and physiological response to endogenous leptin, highlights the need to redefine the concept of "leptin resistance".
Collapse
Affiliation(s)
- Eglantine Balland
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Michael A Cowley
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
92
|
Navarro E, Funtikova AN, Fíto M, Schröder H. Can metabolically healthy obesity be explained by diet, genetics, and inflammation? Mol Nutr Food Res 2015; 59:75-93. [PMID: 25418549 DOI: 10.1002/mnfr.201400521] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 12/20/2022]
Abstract
A substantial proportion of obese individuals do not present cardiometabolic complications such as diabetes, hypertension, or dyslipidemia. Some, but not all, prospective studies observe similar risk of cardiovascular events and all-cause mortality among individuals with this so-called "metabolically healthy obese" (MHO) phenotype, compared to the metabolically healthy normal weight or metabolically healthy non-obese phenotypes. Compared to the metabolically unhealthy obese (MUO) phenotype, MHO is often characterized by a more favorable inflammatory profile, less visceral fat, less infiltration of macrophages into adipose tissue, and smaller adipocyte cell size. Tipping the inflammation balance in adipose tissue might be particularly important for metabolic health in the obese. While the potential role of genetic predisposition or lifestyle factors such as diet in the MHO phenotype is yet to be clarified, it is well known that diet affects inflammation profile and contributes to the functionality of adipose tissue. This review will discuss genetic predisposition and the molecular mechanisms underlying the potential effect of food on the development of the metabolic phenotype characteristic of obesity.
Collapse
|
93
|
Smitka K, Marešová D. Adipose Tissue as an Endocrine Organ: An Update on Pro-inflammatory and Anti-inflammatory Microenvironment. Prague Med Rep 2015; 116:87-111. [PMID: 26093665 DOI: 10.14712/23362936.2015.49] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Adipose tissue is recognized as an active endocrine organ that produces a number of endocrine substances referred to as "adipokines" including leptin, adiponectin, adipolin, visfatin, omentin, tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), resistin, pigment epithelium-derived factor (PEDF), and progranulin (PGRN) which play an important role in the food intake regulation and significantly influence insulin sensitivity and in some cases directly affect insulin resistance in skeletal muscle, liver, and adipose tissue. The review summarizes current knowledge about adipose tissue-derived hormones and their influence on energy homeostasis regulation. The possible therapeutic potential of these adipokines in the treatment of insulin resistance, endothelial dysfunction, a pro-inflammatory response, obesity, eating disorders, progression of atherosclerosis, type 1 diabetes, and type 2 diabetes is discussed.
Collapse
Affiliation(s)
- Kvido Smitka
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Dana Marešová
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| |
Collapse
|
94
|
Chang CC, Wu MJ, Yang JY, Camarillo IG, Chang CJ. Leptin-STAT3-G9a Signaling Promotes Obesity-Mediated Breast Cancer Progression. Cancer Res 2015; 75:2375-2386. [PMID: 25840984 PMCID: PMC4694051 DOI: 10.1158/0008-5472.can-14-3076] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/02/2015] [Indexed: 01/05/2023]
Abstract
Obesity has been linked to breast cancer progression but the underlying mechanisms remain obscure. Here we report how leptin, an obesity-associated adipokine, regulates a transcriptional pathway to silence a genetic program of epithelial homeostasis in breast cancer stem-like cells (CSC) that promotes malignant progression. Using genome-wide ChIP-seq and RNA expression profiling, we defined a role for activated STAT3 and G9a histone methyltransferase in epigenetic silencing of miR-200c, which promotes the formation of breast CSCs defined by elevated cell surface levels of the leptin receptor (OBR(hi)). Inhibiting the STAT3/G9a pathway restored expression of miR-200c, which in turn reversed the CSC phenotype to a more differentiated epithelial phenotype. In a rat model of breast cancer driven by diet-induced obesity, STAT3 blockade suppressed the CSC-like OBR(hi) population and abrogated tumor progression. Together, our results show how targeting STAT3-G9a signaling regulates CSC plasticity during obesity-related breast cancer progression, suggesting a novel therapeutic paradigm to suppress CSC pools and limit breast malignancy.
Collapse
Affiliation(s)
- Chao-Ching Chang
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
,Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Meng-Ju Wu
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
,Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Jer-Yen Yang
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
,Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Ignacio G. Camarillo
- Center for Cancer Research, Purdue University, West Lafayette, Indiana
,Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Chun-Ju Chang
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
,Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
95
|
Gautron L, Elmquist JK, Williams KW. Neural control of energy balance: translating circuits to therapies. Cell 2015; 161:133-145. [PMID: 25815991 DOI: 10.1016/j.cell.2015.02.023] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 12/18/2022]
Abstract
Recent insights into the neural circuits controlling energy balance and glucose homeostasis have rekindled the hope for development of novel treatments for obesity and diabetes. However, many therapies contribute relatively modest beneficial gains with accompanying side effects, and the mechanisms of action for other interventions remain undefined. This Review summarizes current knowledge linking the neural circuits regulating energy and glucose balance with current and potential pharmacotherapeutic and surgical interventions for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Laurent Gautron
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9077, USA.
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9077, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9077, USA
| | - Kevin W Williams
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9077, USA; Department of Neuroscience, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9077, USA.
| |
Collapse
|
96
|
Jackson VM, Breen DM, Fortin JP, Liou A, Kuzmiski JB, Loomis AK, Rives ML, Shah B, Carpino PA. Latest approaches for the treatment of obesity. Expert Opin Drug Discov 2015; 10:825-39. [DOI: 10.1517/17460441.2015.1044966] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- V Margaret Jackson
- 1Cardiovascular and Metabolic Diseases Research Unit, Pfizer PharmaTherapeutics, 610 Main Street, Cambridge, MA 02139, USA
| | - Danna M Breen
- 1Cardiovascular and Metabolic Diseases Research Unit, Pfizer PharmaTherapeutics, 610 Main Street, Cambridge, MA 02139, USA
| | - Jean-Philippe Fortin
- 1Cardiovascular and Metabolic Diseases Research Unit, Pfizer PharmaTherapeutics, 610 Main Street, Cambridge, MA 02139, USA
| | - Alice Liou
- 1Cardiovascular and Metabolic Diseases Research Unit, Pfizer PharmaTherapeutics, 610 Main Street, Cambridge, MA 02139, USA
| | - J Brent Kuzmiski
- 1Cardiovascular and Metabolic Diseases Research Unit, Pfizer PharmaTherapeutics, 610 Main Street, Cambridge, MA 02139, USA
| | - A Katrina Loomis
- 2Clinical Research, Pfizer PharmaTherapeutics, Eastern Point Road, Groton, CT 06340, USA
| | - Marie-Laure Rives
- 1Cardiovascular and Metabolic Diseases Research Unit, Pfizer PharmaTherapeutics, 610 Main Street, Cambridge, MA 02139, USA
| | - Bhavik Shah
- 1Cardiovascular and Metabolic Diseases Research Unit, Pfizer PharmaTherapeutics, 610 Main Street, Cambridge, MA 02139, USA
| | - Philip A Carpino
- 3Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer PharmaTherapeutics, 610 Main Street, Cambridge, MA 02139, USA
| |
Collapse
|
97
|
Maternal investment influences development of behavioural syndrome in swordtail fish, Xiphophorus multilineatus. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
98
|
Tomei S, Mamtani R, Al Ali R, Elkum N, Abdulmalik M, Ismail A, Cheema S, Rouh HA, Aigha II, Hani F, Al-Samraye S, Taher Aseel M, El Emadi N, Al Mujalli A, Abdelkerim A, Youssif S, Worschech A, El Sebakhy E, Temanni R, Khanna V, Wang E, Kizhakayil D, Al-Thani AA, Al-Thani M, Lowenfels A, Marincola FM, Sheikh J, Chouchane L. Obesity susceptibility loci in Qataris, a highly consanguineous Arabian population. J Transl Med 2015; 13:119. [PMID: 25890290 PMCID: PMC4422146 DOI: 10.1186/s12967-015-0459-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/10/2015] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES In Qataris, a population characterized by a small size and a high rate of consanguinity, between two-thirds to three-quarters of adults are overweight or obese. We investigated the relevance of 23 obesity-related loci in the Qatari population. METHODS Eight-hundred-four individuals assessed to be third generation Qataris were included in the study and assigned to 3 groups according to their body mass index (BMI): 190 lean (BMI < 25 kg/m(2)); 131 overweight (25 kg/m(2) ≤ BMI < 30 kg/m(2)) and 483 obese (BMI ≥ 30 kg/m(2)). Genomic DNA was isolated from peripheral blood and genotyped by TaqMan. RESULTS Two loci significantly associated with obesity in Qataris: the TFAP2B variation (rs987237) (A allele versus G allele: chi-square = 10.3; P = 0.0013) and GNPDA2 variation (rs10938397) (A allele versus G allele: chi-square = 6.15; P = 0.013). The TFAP2B GG genotype negatively associated with obesity (OR = 0.21; P = 0.0031). Conversely, the GNDPA2 GG homozygous genotype associated with higher risk of obesity in subjects of age < 32 years (P = 0.0358). CONCLUSION We showed a different genetic profile associated with obesity in the Qatari population compared to Western populations. Studying the genetic background of Qataris is of primary importance as the etiology of a given disease might be population-specific.
Collapse
Affiliation(s)
- Sara Tomei
- Department of Genetic Medicine, Laboratory of Genetic Medicine & Immunology, Weill Cornell Medical College in Qatar, Al Luqta Street, Qatar Foundation, Education City, Doha, Qatar, PO 24144. .,Sidra Medical and Research Center, Research Branch, Al Nasr Tower, Al Corniche Street, Qatar Foundation, Doha, Qatar, PO 26999.
| | - Ravinder Mamtani
- Global and Public Health Department, Weill Cornell Medical College in Qatar, Doha, Qatar.
| | - Rashid Al Ali
- Sidra Medical and Research Center, Research Branch, Al Nasr Tower, Al Corniche Street, Qatar Foundation, Doha, Qatar, PO 26999.
| | - Naser Elkum
- Sidra Medical and Research Center, Research Branch, Al Nasr Tower, Al Corniche Street, Qatar Foundation, Doha, Qatar, PO 26999.
| | | | - Awatef Ismail
- Global and Public Health Department, Weill Cornell Medical College in Qatar, Doha, Qatar.
| | - Sohaila Cheema
- Global and Public Health Department, Weill Cornell Medical College in Qatar, Doha, Qatar.
| | - Hekmat A Rouh
- Global and Public Health Department, Weill Cornell Medical College in Qatar, Doha, Qatar.
| | - Idil I Aigha
- Department of Genetic Medicine, Laboratory of Genetic Medicine & Immunology, Weill Cornell Medical College in Qatar, Al Luqta Street, Qatar Foundation, Education City, Doha, Qatar, PO 24144.
| | - Fatima Hani
- Department of Genetic Medicine, Laboratory of Genetic Medicine & Immunology, Weill Cornell Medical College in Qatar, Al Luqta Street, Qatar Foundation, Education City, Doha, Qatar, PO 24144.
| | - Sura Al-Samraye
- Global and Public Health Department, Weill Cornell Medical College in Qatar, Doha, Qatar.
| | | | | | | | | | | | - Andrea Worschech
- Department of Genetic Medicine, Laboratory of Genetic Medicine & Immunology, Weill Cornell Medical College in Qatar, Al Luqta Street, Qatar Foundation, Education City, Doha, Qatar, PO 24144.
| | - Emad El Sebakhy
- Sidra Medical and Research Center, Research Branch, Al Nasr Tower, Al Corniche Street, Qatar Foundation, Doha, Qatar, PO 26999.
| | - Ramzi Temanni
- Sidra Medical and Research Center, Research Branch, Al Nasr Tower, Al Corniche Street, Qatar Foundation, Doha, Qatar, PO 26999.
| | - Vineesh Khanna
- Sidra Medical and Research Center, Research Branch, Al Nasr Tower, Al Corniche Street, Qatar Foundation, Doha, Qatar, PO 26999.
| | - Ena Wang
- Sidra Medical and Research Center, Research Branch, Al Nasr Tower, Al Corniche Street, Qatar Foundation, Doha, Qatar, PO 26999.
| | - Dhanya Kizhakayil
- Department of Genetic Medicine, Laboratory of Genetic Medicine & Immunology, Weill Cornell Medical College in Qatar, Al Luqta Street, Qatar Foundation, Education City, Doha, Qatar, PO 24144.
| | | | | | | | - Francesco M Marincola
- Sidra Medical and Research Center, Research Branch, Al Nasr Tower, Al Corniche Street, Qatar Foundation, Doha, Qatar, PO 26999.
| | - Javaid Sheikh
- Dean's Office, Weill Cornell Medical College in Qatar, Doha, Qatar.
| | - Lotfi Chouchane
- Department of Genetic Medicine, Laboratory of Genetic Medicine & Immunology, Weill Cornell Medical College in Qatar, Al Luqta Street, Qatar Foundation, Education City, Doha, Qatar, PO 24144.
| |
Collapse
|
99
|
Albuquerque D, Stice E, Rodríguez-López R, Manco L, Nóbrega C. Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective. Mol Genet Genomics 2015; 290:1191-221. [DOI: 10.1007/s00438-015-1015-9] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/11/2015] [Indexed: 12/18/2022]
|
100
|
Sun M, Kraus WL. From discovery to function: the expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev 2015; 36:25-64. [PMID: 25426780 PMCID: PMC4309736 DOI: 10.1210/er.2014-1034] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a relatively poorly understood class of RNAs with little or no coding capacity transcribed from a set of incompletely annotated genes. They have received considerable attention in the past few years and are emerging as potentially important players in biological regulation. Here we discuss the evolving understanding of this new class of molecular regulators that has emerged from ongoing research, which continues to expand our databases of annotated lncRNAs and provide new insights into their physical properties, molecular mechanisms of action, and biological functions. We outline the current strategies and approaches that have been employed to identify and characterize lncRNAs, which have been instrumental in revealing their multifaceted roles ranging from cis- to trans-regulation of gene expression and from epigenetic modulation in the nucleus to posttranscriptional control in the cytoplasm. In addition, we highlight the molecular and biological functions of some of the best characterized lncRNAs in physiology and disease, especially those relevant to endocrinology, reproduction, metabolism, immunology, neurobiology, muscle biology, and cancer. Finally, we discuss the tremendous diagnostic and therapeutic potential of lncRNAs in cancer and other diseases.
Collapse
Affiliation(s)
- Miao Sun
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | |
Collapse
|