51
|
Kalinina E, Novichkova M. Glutathione in Protein Redox Modulation through S-Glutathionylation and S-Nitrosylation. Molecules 2021; 26:molecules26020435. [PMID: 33467703 PMCID: PMC7838997 DOI: 10.3390/molecules26020435] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
S-glutathionylation and S-nitrosylation are reversible post-translational modifications on the cysteine thiol groups of proteins, which occur in cells under physiological conditions and oxidative/nitrosative stress both spontaneously and enzymatically. They are important for the regulation of the functional activity of proteins and intracellular processes. Connecting link and “switch” functions between S-glutathionylation and S-nitrosylation may be performed by GSNO, the generation of which depends on the GSH content, the GSH/GSSG ratio, and the cellular redox state. An important role in the regulation of these processes is played by Trx family enzymes (Trx, Grx, PDI), the activity of which is determined by the cellular redox status and depends on the GSH/GSSG ratio. In this review, we analyze data concerning the role of GSH/GSSG in the modulation of S-glutathionylation and S-nitrosylation and their relationship for the maintenance of cell viability.
Collapse
|
52
|
Wu ZE, Fraser K, Kruger MC, Sequeira IR, Yip W, Lu LW, Plank LD, Murphy R, Cooper GJS, Martin JC, Hollingsworth KG, Poppitt SD. Untargeted metabolomics reveals plasma metabolites predictive of ectopic fat in pancreas and liver as assessed by magnetic resonance imaging: the TOFI_Asia study. Int J Obes (Lond) 2021; 45:1844-1854. [PMID: 33994541 PMCID: PMC8310794 DOI: 10.1038/s41366-021-00854-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 04/10/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Excess visceral obesity and ectopic organ fat is associated with increased risk of cardiometabolic disease. However, circulating markers for early detection of ectopic fat, particularly pancreas and liver, are lacking. METHODS Lipid storage in pancreas, liver, abdominal subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from 68 healthy or pre-diabetic Caucasian and Chinese women enroled in the TOFI_Asia study was assessed by magnetic resonance imaging/spectroscopy (MRI/S). Plasma metabolites were measured with untargeted liquid chromatography-mass spectroscopy (LC-MS). Multivariate partial least squares (PLS) regression identified metabolites predictive of VAT/SAT and ectopic fat; univariate linear regression adjusting for potential covariates identified individual metabolites associated with VAT/SAT and ectopic fat; linear regression adjusted for ethnicity identified clinical and anthropometric correlates for each fat depot. RESULTS PLS identified 56, 64 and 31 metabolites which jointly predicted pancreatic fat (R2Y = 0.81, Q2 = 0.69), liver fat (RY2 = 0.8, Q2 = 0.66) and VAT/SAT ((R2Y = 0.7, Q2 = 0.62)) respectively. Among the PLS-identified metabolites, none of them remained significantly associated with pancreatic fat after adjusting for all covariates. Dihydrosphingomyelin (dhSM(d36:0)), 3 phosphatidylethanolamines, 5 diacylglycerols (DG) and 40 triacylglycerols (TG) were associated with liver fat independent of covariates. Three DGs and 12 TGs were associated with VAT/SAT independent of covariates. Notably, comparison with clinical correlates showed better predictivity of ectopic fat by these PLS-identified plasma metabolite markers. CONCLUSIONS Untargeted metabolomics identified candidate markers of visceral and ectopic fat that improved fat level prediction over clinical markers. Several plasma metabolites were associated with level of liver fat and VAT/SAT ratio independent of age, total and visceral adiposity, whereas pancreatic fat deposition was only associated with increased sulfolithocholic acid independent of adiposity-related parameters, but not age.
Collapse
Affiliation(s)
- Zhanxuan E. Wu
- grid.417738.e0000 0001 2110 5328Food Nutrition & Health, Food and Bio-based Products, AgResearch Limited, Palmerston North, New Zealand ,grid.148374.d0000 0001 0696 9806School of Health Sciences, Massey University, Palmerston North, New Zealand ,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Karl Fraser
- grid.417738.e0000 0001 2110 5328Food Nutrition & Health, Food and Bio-based Products, AgResearch Limited, Palmerston North, New Zealand ,High-Value Nutrition National Science Challenge, Auckland, New Zealand ,grid.148374.d0000 0001 0696 9806Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Marlena C. Kruger
- grid.148374.d0000 0001 0696 9806School of Health Sciences, Massey University, Palmerston North, New Zealand ,grid.148374.d0000 0001 0696 9806Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ivana R. Sequeira
- High-Value Nutrition National Science Challenge, Auckland, New Zealand ,grid.9654.e0000 0004 0372 3343Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Wilson Yip
- High-Value Nutrition National Science Challenge, Auckland, New Zealand ,grid.9654.e0000 0004 0372 3343Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Louise W. Lu
- High-Value Nutrition National Science Challenge, Auckland, New Zealand ,grid.9654.e0000 0004 0372 3343Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Lindsay D. Plank
- grid.9654.e0000 0004 0372 3343Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Rinki Murphy
- High-Value Nutrition National Science Challenge, Auckland, New Zealand ,grid.9654.e0000 0004 0372 3343Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Garth J. S. Cooper
- grid.9654.e0000 0004 0372 3343Department of Medicine, University of Auckland, Auckland, New Zealand ,grid.9654.e0000 0004 0372 3343School of Biological Sciences University of Auckland, Auckland, New Zealand ,grid.5379.80000000121662407Centre for Advanced Discovery and Experimental Therapeutics, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Jean-Charles Martin
- grid.5399.60000 0001 2176 4817Aix-Marseille University, INSERM, INRAe, C2VN, BioMeT, Marseille, France
| | - Kieren G. Hollingsworth
- grid.1006.70000 0001 0462 7212Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sally D. Poppitt
- High-Value Nutrition National Science Challenge, Auckland, New Zealand ,grid.148374.d0000 0001 0696 9806Riddet Institute, Massey University, Palmerston North, New Zealand ,grid.9654.e0000 0004 0372 3343Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand ,grid.9654.e0000 0004 0372 3343Department of Medicine, University of Auckland, Auckland, New Zealand ,grid.9654.e0000 0004 0372 3343School of Biological Sciences University of Auckland, Auckland, New Zealand
| |
Collapse
|
53
|
Kelly B, Carrizo GE, Edwards-Hicks J, Sanin DE, Stanczak MA, Priesnitz C, Flachsmann LJ, Curtis JD, Mittler G, Musa Y, Becker T, Buescher JM, Pearce EL. Sulfur sequestration promotes multicellularity during nutrient limitation. Nature 2021; 591:471-476. [PMID: 33627869 PMCID: PMC7969356 DOI: 10.1038/s41586-021-03270-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
The behaviour of Dictyostelium discoideum depends on nutrients1. When sufficient food is present these amoebae exist in a unicellular state, but upon starvation they aggregate into a multicellular organism2,3. This biology makes D. discoideum an ideal model for investigating how fundamental metabolism commands cell differentiation and function. Here we show that reactive oxygen species-generated as a consequence of nutrient limitation-lead to the sequestration of cysteine in the antioxidant glutathione. This sequestration limits the use of the sulfur atom of cysteine in processes that contribute to mitochondrial metabolism and cellular proliferation, such as protein translation and the activity of enzymes that contain an iron-sulfur cluster. The regulated sequestration of sulfur maintains D. discoideum in a nonproliferating state that paves the way for multicellular development. This mechanism of signalling through reactive oxygen species highlights oxygen and sulfur as simple signalling molecules that dictate cell fate in an early eukaryote, with implications for responses to nutrient fluctuations in multicellular eukaryotes.
Collapse
Affiliation(s)
- Beth Kelly
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Gustavo E. Carrizo
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Joy Edwards-Hicks
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - David E. Sanin
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Michal A. Stanczak
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Chantal Priesnitz
- grid.5963.9Institute of Biochemistry and Molecular Biology, ZMBZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany ,grid.5963.9Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lea J. Flachsmann
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Jonathan D. Curtis
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Gerhard Mittler
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Yaarub Musa
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Becker
- grid.10388.320000 0001 2240 3300Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Joerg M. Buescher
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Erika L. Pearce
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany ,grid.21107.350000 0001 2171 9311Present Address: The Bloomberg–Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
54
|
Guo W, Li K, Sun B, Xu D, Tong L, Yin H, Liao Y, Song H, Wang T, Jing B, Hu M, Liu S, Kuang Y, Ling J, Li Q, Wu Y, Wang Q, Yao F, Zhou BP, Lin SH, Deng J. Dysregulated Glutamate Transporter SLC1A1 Propels Cystine Uptake via Xc - for Glutathione Synthesis in Lung Cancer. Cancer Res 2020; 81:552-566. [PMID: 33229341 DOI: 10.1158/0008-5472.can-20-0617] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/20/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
Cancer cells need to generate large amounts of glutathione (GSH) to buffer oxidative stress during tumor development. A rate-limiting step for GSH biosynthesis is cystine uptake via a cystine/glutamate antiporter Xc-. Xc- is a sodium-independent antiporter passively driven by concentration gradients from extracellular cystine and intracellular glutamate across the cell membrane. Increased uptake of cystine via Xc- in cancer cells increases the level of extracellular glutamate, which would subsequently restrain cystine uptake via Xc-. Cancer cells must therefore evolve a mechanism to overcome this negative feedback regulation. In this study, we report that glutamate transporters, in particular SLC1A1, are tightly intertwined with cystine uptake and GSH biosynthesis in lung cancer cells. Dysregulated SLC1A1, a sodium-dependent glutamate carrier, actively recycled extracellular glutamate into cells, which enhanced the efficiency of cystine uptake via Xc- and GSH biosynthesis as measured by stable isotope-assisted metabolomics. Conversely, depletion of glutamate transporter SLC1A1 increased extracellular glutamate, which inhibited cystine uptake, blocked GSH synthesis, and induced oxidative stress-mediated cell death or growth inhibition. Moreover, glutamate transporters were frequently upregulated in tissue samples of patients with non-small cell lung cancer. Taken together, active uptake of glutamate via SLC1A1 propels cystine uptake via Xc- for GSH biosynthesis in lung tumorigenesis. SIGNIFICANCE: Cellular GSH in cancer cells is not only determined by upregulated Xc- but also by dysregulated glutamate transporters, which provide additional targets for therapeutic intervention.
Collapse
Affiliation(s)
- Wenzheng Guo
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kaimi Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Beibei Sun
- Translational Medical Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Dongliang Xu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingfeng Tong
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijing Yin
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueling Liao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyong Song
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Jing
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Hu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuli Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, the Ninth People's Hospital, College of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanbin Kuang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jing Ling
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yadi Wu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Shu-Hai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Jiong Deng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Translational Medical Research Center, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
55
|
Corkey BE, Deeney JT. The Redox Communication Network as a Regulator of Metabolism. Front Physiol 2020; 11:567796. [PMID: 33178037 PMCID: PMC7593883 DOI: 10.3389/fphys.2020.567796] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Key tissues are dysfunctional in obesity, diabetes, cardiovascular disease, fatty liver and other metabolic diseases. Focus has centered on individual organs as though each was isolated. Attention has been paid to insulin resistance as the key relevant pathosis, particularly insulin receptor signaling. However, many tissues play important roles in synergistically regulating metabolic homeostasis and should be considered part of a network. Our approach identifies redox as an acute regulator of the greater metabolic network. Redox reactions involve the transfer of electrons between two molecules and in this work refer to commonly shared molecules, reflective of energy state, that can readily lose electrons to increase or gain electrons to decrease the oxidation state of molecules including NAD(P), NAD(P)H, and thiols. Metabolism alters such redox molecules to impact metabolic function in many tissues, thus, responding to anabolic and catabolic stimuli appropriately and synergistically. It is also important to consider environmental factors that have arisen or increased in recent decades as putative modifiers of redox and reactive oxygen species (ROS) and thus metabolic state. ROS are highly reactive, controlled by the thiol redox state and influence the function of thousands of proteins. Lactate (L) and pyruvate (P) in cells are present in a ratio of about 10 reflective of the cytosolic NADH to NAD ratio. Equilibrium is maintained in cells because lactate dehydrogenase is highly expressed and near equilibrium. The major source of circulating lactate and pyruvate is muscle, although other tissues also contribute. Acetoacetate (A) is produced primarily by liver mitochondria where β-hydroxybutyrate dehydrogenase is highly expressed, and maintains a ratio of β-hydroxybutyrate (β) to A of about 2, reflective of the mitochondrial NADH to NAD ratio. All four metabolites as well as the thiols, cysteine and glutathione, are transported into and out of cells, due to high expression of relevant transporters. Our model supports regulation of all collaborating metabolic organs through changes in circulating redox metabolites, regardless of whether change was initiated exogenously or by a single organ. Validation of these predictions suggests novel ways to understand function by monitoring and impacting redox state.
Collapse
Affiliation(s)
- Barbara E. Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | | |
Collapse
|
56
|
de Oliveira IM, Cavallin MD, Corrêa DEDC, Razera A, Mariano DD, Ferreira F, Romano MA, Marino Romano R. Proteomic Profiles of Thyroid Gland and Gene Expression of the Hypothalamic-Pituitary-Thyroid Axis Are Modulated by Exposure to AgNPs during Prepubertal Rat Stages. Chem Res Toxicol 2020; 33:2605-2622. [PMID: 32972137 DOI: 10.1021/acs.chemrestox.0c00250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Silver nanoparticles (AgNPs) have potent antimicrobial activity and, for this reason, are incorporated into a variety of products, raising concern about their potential risks and impacts on human health and the environment. The developmental period is highly dependent on thyroid hormones (THs), and puberty is a sensitive period, where changes in the hormonal environment may have permanent effects. We evaluated the hypothalamic-pituitary (HP)-thyroid axis after exposure to low doses of AgNPs using a validated protocol to assess pubertal development and thyroid function in immature male rats. For stimulatory events of the HP-thyroid axis, we observed an increase in the expression of Trh mRNA and serum triiodothyronine. Negative feedback reduced the hypothalamic expression of Dio2 mRNA and increased the expression of Thra1, Thra2, and Thrb2 mRNAs. In the pituitary, there was a reduced expression of Mct-8 mRNA and Dio2 mRNA. For peripheral T3-target tissues, a reduced expression of Mct-8 mRNA was observed in the heart and liver. An increased expression of Dio3 mRNA was observed in the heart and liver, and an increased expression of Thrb2 mRNA was observed in the liver. The quantitative proteomic profile of the thyroid gland indicated a reduction in cytoskeletal proteins (Cap1, Cav1, Lasp1, Marcks, and Tpm4; 1.875 μg AgNP/kg) and a reduction in the profile of chaperones (Hsp90aa1, Hsp90ab1, Hspa8, Hspa9, P4hb) and proteins that participate in the N-glycosylation process (Ddost, Rpn1 and Rpn2) (15 μg AgNP/kg). Exposure to low doses of AgNPs during the window of puberty development affects the regulation of the HP-thyroid axis with further consequences in thyroid gland physiology.
Collapse
Affiliation(s)
- Isabela Medeiros de Oliveira
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Mônica Degraf Cavallin
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Deborah Elzita do Carmo Corrêa
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Amanda Razera
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Danielle Dobner Mariano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Francine Ferreira
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Marco Aurélio Romano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| | - Renata Marino Romano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080 Parana, Brazil
| |
Collapse
|
57
|
Lima A, Ferin R, Fontes A, Santos E, Martins D, Baptista J, Pavão ML. Cysteine is a better predictor of coronary artery disease than conventional homocysteine in high-risk subjects under preventive medication. Nutr Metab Cardiovasc Dis 2020; 30:1281-1288. [PMID: 32522470 DOI: 10.1016/j.numecd.2020.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND AIMS In Portugal, The Azores Archipelago has the highest standardized mortality rate for CAD. Therefore, the aim of this study was to evaluate conventional risk factors, as well as plasma and erythrocyte aminothiol concentration in high-risk Azorean patients undergoing elective coronary angiography and to investigate whether any aminothiol was associated with CAD risk and severity. METHODS AND RESULTS 174 subjects with symptomatic CAD (age 56±9y; 68% men) submitted to coronary angiography were split into 2 groups: one formed by CAD patients (≥50% stenosis in at least one major coronary vessel) and the other by non-CAD patients (<50% stenosis). Both groups were age-, sex- and BMI-matched. Plasma and erythrocyte aminothiol profiles were evaluated by RP-HPLC/FLD. CAD patients significantly exhibited both higher concentrations of plasma Cys and hypercysteinemia (Cys ≥ 300 μM) prevalence than those in the non-CAD group (261 ± 58 μM vs. 243 ± 56 μM; 22% vs. 10%, respectively). No differences were observed between groups regarding plasma Hcy levels or hyperhomocysteinemia prevalence. After adjustment for several confounders (including Hcy), subjects in the highest quartile of plasma Cys had a 3.31 (95% CI, 1.32-8.30, p = 0.011) fold risk for CAD, compared with those in the lowest quartiles. Furthermore, plasma Cys levels (but not Hcy) tended to increase with the number of stenotic vessels (1VD: 253 ± 64 μM; 2VD: 262 ± 52 μM; 3VD: 279 ± 57 μM, p = 0.129). CONCLUSION Hypercysteinemia revealed to be a better predictor of CAD than hyperhomocysteinemia. Moreover, plasma Cys showed to be a useful biomarker for CAD both in primary and secondary preventions, seeming to resist better than Hcy to oral medication therapy.
Collapse
Affiliation(s)
- Ana Lima
- DCFQE/ Faculty of Sciences and Technology, University of the Azores, 9501-855, Ponta Delgada, Azores, Portugal
| | - Rita Ferin
- DCFQE/ Faculty of Sciences and Technology, University of the Azores, 9501-855, Ponta Delgada, Azores, Portugal
| | - António Fontes
- Cardiology Department, Hospital Divino Espírito Santo de Ponta Delgada-EPER, Avenida D. Manuel, 9500-782, Ponta Delgada, Azores, Portugal
| | - Emília Santos
- Cardiology Department, Hospital Divino Espírito Santo de Ponta Delgada-EPER, Avenida D. Manuel, 9500-782, Ponta Delgada, Azores, Portugal
| | - Dinis Martins
- Cardiology Department, Hospital Divino Espírito Santo de Ponta Delgada-EPER, Avenida D. Manuel, 9500-782, Ponta Delgada, Azores, Portugal
| | - José Baptista
- DCFQE/ Faculty of Sciences and Technology, University of the Azores, 9501-855, Ponta Delgada, Azores, Portugal
| | - Maria L Pavão
- DCFQE/ Faculty of Sciences and Technology, University of the Azores, 9501-855, Ponta Delgada, Azores, Portugal.
| |
Collapse
|
58
|
Pessina F, Frosini M, Marcolongo P, Fusi F, Saponara S, Gamberucci A, Valoti M, Giustarini D, Fiorenzani P, Gorelli B, Francardi V, Botta M, Dreassi E. Antihypertensive, cardio- and neuro-protective effects of Tenebrio molitor (Coleoptera: Tenebrionidae) defatted larvae in spontaneously hypertensive rats. PLoS One 2020; 15:e0233788. [PMID: 32470081 PMCID: PMC7259609 DOI: 10.1371/journal.pone.0233788] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/12/2020] [Indexed: 01/05/2023] Open
Abstract
In pre-hypertension, moderate control of blood pressure (BP) can be obtained by a nutritional approach. The effects of a diet enriched with defatted larvae of the mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) (TM) endowed with ACE inhibitory activity was studied in both spontaneously hypertensive rats (SHR) and in the age-matched normotensive Wistar Kyoto strain. These were fed for 4 weeks with standard laboratory rodent chow supplemented with or without TM or captopril. In SHR, the TM diet caused a significant reduction in BP, heart rate and coronary perfusion pressure, as well as an increase in red blood cell glutathione/glutathione disulphide ratio. Rat brain slices of SHR were more resistant to oxidative stress and contained lower levels of inflammatory cytokines, while vascular and liver enzyme-activities were not affected. These results suggest that TM can be considered a new functional food that can lower BP in vivo and thus control cardiovascular-associated risk factors such as hypertension.
Collapse
Affiliation(s)
- Federica Pessina
- Dipartimento di Medicina Molecolare e dello Sviluppo, Università degli Studi di Siena, Siena, Italy
| | - Maria Frosini
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| | - Paola Marcolongo
- Dipartimento di Medicina Molecolare e dello Sviluppo, Università degli Studi di Siena, Siena, Italy
| | - Fabio Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Simona Saponara
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| | - Alessandra Gamberucci
- Dipartimento di Medicina Molecolare e dello Sviluppo, Università degli Studi di Siena, Siena, Italy
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| | - Daniela Giustarini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Paolo Fiorenzani
- Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze, Università degli Studi di Siena, Siena, Italy
| | - Beatrice Gorelli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| | - Valeria Francardi
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di ricerca Difesa e Certificazione (CREA-DC), Impruneta (Firenze), Italy
| | - Maurizio Botta
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
- Lead Discovery Siena Srl, Castelnuovo Berardenga, Siena, Italy
| | - Elena Dreassi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| |
Collapse
|
59
|
Watson WH, Greenwell JC, Zheng Y, Furmanek S, Torres-Gonzalez E, Ritzenthaler JD, Roman J. Impact of sex, age and diet on the cysteine/cystine and glutathione/glutathione disulfide plasma redox couples in mice. J Nutr Biochem 2020; 84:108431. [PMID: 32615368 DOI: 10.1016/j.jnutbio.2020.108431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/07/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
Age, sex and diet are well-established risk factors for several diseases. In humans, each of these variables has been linked to differences in plasma redox potentials (Eh) of the glutathione/glutathione disulfide (GSH/GSSG) and cysteine/cystine (Cys/CySS) redox couples. Mice have been very useful for modeling human disease processes, but it is unknown if age, sex and diet affect redox couples in mice as they do in humans. The purpose of the present study was to examine the effects of these factors on plasma redox potentials in C57BL/6J mice. We found that age had no effect on either redox couple in either sex. Plasma Eh Cys/CySS and Eh GSH/GSSG were both more oxidized (more positive) in females than in males. A 24-hour fast negated the sex differences in both redox potentials by oxidizing both redox couples in male mice, while having no effect on Eh Cys/CySS and a smaller effect on Eh GSH/GSSG in female mice. A diet with excess sulfur amino acids reduced the plasma Eh Cys/CySS in females to a level comparable to that seen in male mice. Thus, sex-specific differences in plasma Eh Cys/CySS could be normalized by two different dietary interventions. Some of these findings are consistent with reported human studies, while others are not. Most strikingly, mice do not exhibit age-dependent oxidation of plasma redox potentials. Care must be taken when designing and interpreting mouse studies to investigate redox regulation in humans.
Collapse
Affiliation(s)
- Walter H Watson
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - John C Greenwell
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yuxuan Zheng
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Stephen Furmanek
- Department of Medicine, Division of Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, USA
| | - Edilson Torres-Gonzalez
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jeffrey D Ritzenthaler
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jesse Roman
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
60
|
Determination of picomolar levels of methylmercury complexes with low molecular mass thiols by liquid chromatography tandem mass spectrometry and online preconcentration. Anal Bioanal Chem 2020; 412:1619-1628. [PMID: 31950236 PMCID: PMC7026298 DOI: 10.1007/s00216-020-02389-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/19/2023]
Abstract
Methylmercury (MeHg) is one of the most potent neurotoxins. It is produced in nature through the methylation of inorganic divalent mercury (HgII) by phylogenetically diverse anaerobic microbes. The mechanistic understanding of the processes that govern the extent of bacterial export of MeHg, its bioaccumulation, and bio-toxicity depends on accurate quantification of its species, especially its complexation with low molecular mass thiols; organometallic complexes that are difficult to detect and measure in natural conditions. Here, we report the development of a novel analytical method based on liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine 13 MeHg complexes with important thiol compounds which have been observed in the environment and in biological systems. By using online preconcentration via solid phase extraction (SPE), the method offers picomolar (12-530 pM) detection limits, the lowest reported so far for the determination of MeHg compounds. Among three different SPE materials, a weak cation exchange phase showed the best efficiency at a low pH of 2.5. We further report the presence of MeHg-cysteine, MeHg-cysteamine, MeHg-penicillamine, MeHg-cysteinylglycine, and MeHg-glutamylcysteine as the predominant MeHg-thiol complexes in the extracellular milieu of an important HgII methylating bacterium, Geobacter sulfurreducens PCA, exposed to 100 nM of HgII.
Collapse
|
61
|
Tan X, Ji K, Wang X, Yao R, Han G, Villamena FA, Zweier JL, Song Y, Rockenbauer A, Liu Y. Discriminative Detection of Biothiols by Electron Paramagnetic Resonance Spectroscopy using a Methanethiosulfonate Trityl Probe. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Kaiyun Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Xing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Ru Yao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Guifang Han
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Frederick A. Villamena
- Department of Biological Chemistry and PharmacologyCollege of MedicineThe Ohio State University Columbus OH 43210 USA
| | - Jay L. Zweier
- Center for Biomedical EPR Spectroscopy and ImagingThe Davis Heart and Lung Research Institutethe Division of Cardiovascular MedicineDepartment of Internal MedicineThe Ohio State University Columbus OH 43210 USA
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of Sciences 1117 Budapest Hungary
- Department of PhysicsBudapest University of Technology and Economics Budafoki ut 8 1111 Budapest Hungary
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| |
Collapse
|
62
|
Wang F, Diesendruck CE. Effect of disulphide loop length on mechanochemical structural stability of macromolecules. Chem Commun (Camb) 2020; 56:2143-2146. [DOI: 10.1039/c9cc07439b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polymer chains folded with a single disulphide loop are shown to present distinct rates of mechanochemical fragmentation.
Collapse
Affiliation(s)
- Feng Wang
- Schulich Faculty of Chemistry and Russell-Berrie Nanotechnology Institute
- Technion – Israel Institute of Technology
- Haifa
- Israel
- School of Chemical Engineering
| | - Charles E. Diesendruck
- Schulich Faculty of Chemistry and Russell-Berrie Nanotechnology Institute
- Technion – Israel Institute of Technology
- Haifa
- Israel
| |
Collapse
|
63
|
Chen H, Tang X, Gong X, Chen D, Li A, Sun C, Lin H, Gao J. Reversible redox-responsive 1H/19F MRI molecular probes. Chem Commun (Camb) 2020; 56:4106-4109. [DOI: 10.1039/d0cc00778a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The redox-responsive manganese(ii)/(iii) complexes serve as a pair of reversible probes for 1H MRI and 19F MRI of biological redox species.
Collapse
Affiliation(s)
- Hongming Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Xiaoxue Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Xuanqing Gong
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Dongxia Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Chengjie Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|
64
|
Hawkins CL, Davies MJ. Detection, identification, and quantification of oxidative protein modifications. J Biol Chem 2019; 294:19683-19708. [PMID: 31672919 PMCID: PMC6926449 DOI: 10.1074/jbc.rev119.006217] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Exposure of biological molecules to oxidants is inevitable and therefore commonplace. Oxidative stress in cells arises from both external agents and endogenous processes that generate reactive species, either purposely (e.g. during pathogen killing or enzymatic reactions) or accidentally (e.g. exposure to radiation, pollutants, drugs, or chemicals). As proteins are highly abundant and react rapidly with many oxidants, they are highly susceptible to, and major targets of, oxidative damage. This can result in changes to protein structure, function, and turnover and to loss or (occasional) gain of activity. Accumulation of oxidatively-modified proteins, due to either increased generation or decreased removal, has been associated with both aging and multiple diseases. Different oxidants generate a broad, and sometimes characteristic, spectrum of post-translational modifications. The kinetics (rates) of damage formation also vary dramatically. There is a pressing need for reliable and robust methods that can detect, identify, and quantify the products formed on amino acids, peptides, and proteins, especially in complex systems. This review summarizes several advances in our understanding of this complex chemistry and highlights methods that are available to detect oxidative modifications-at the amino acid, peptide, or protein level-and their nature, quantity, and position within a peptide sequence. Although considerable progress has been made in the development and application of new techniques, it is clear that further development is required to fully assess the relative importance of protein oxidation and to determine whether an oxidation is a cause, or merely a consequence, of injurious processes.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
65
|
Huang J, Mondul AM, Weinstein SJ, Derkach A, Moore SC, Sampson JN, Albanes D. Prospective serum metabolomic profiling of lethal prostate cancer. Int J Cancer 2019; 145:3231-3243. [PMID: 30779128 PMCID: PMC6698432 DOI: 10.1002/ijc.32218] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
Impaired metabolism may play an important role in the pathogenesis of lethal prostate cancer, yet there is a paucity of evidence regarding the association. We conducted a large prospective serum metabolomic analysis of lethal prostate cancer in 523 cases and 523 matched controls nested within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Median time from baseline fasting serum collection to prostate cancer death was 18 years (maximum 30 years). We identified 860 known biochemicals through an ultrahigh-performance LC-MS/MS platform. Conditional logistic regression models estimated odds ratios (OR) and 95% confidence intervals of risk associated with 1-standard deviation (s.d.) increases in log-metabolite signals. We identified 34 metabolites associated with lethal prostate cancer with a false discovery rate (FDR) < 0.15. Notably, higher serum thioproline, and thioproline combined with two other cysteine-related amino acids and redox metabolites, cystine and cysteine, were associated with reduced risk (1-s.d. OR = 0.75 and 0.71, respectively; p ≤ 8.2 × 10-5 ). By contrast, the dipeptide leucylglycine (OR = 1.36, p = 8.2 × 10-5 ), and three gamma-glutamyl amino acids (OR = 1.28-1.30, p ≤ 4.6 × 10-4 ) were associated with increased risk of lethal prostate cancer. Cases with metastatic disease at diagnosis (n = 179) showed elevated risk for several lipids, including especially the ketone body 3-hydroxybutyrate (BHBA), acyl carnitines, and dicarboxylic fatty acids (1.37 ≤ OR ≤ 1.49, FDR < 0.15). These findings provide a prospective metabolomic profile of lethal prostate cancer characterized by altered biochemicals in the redox, dipeptide, pyrimidine, and gamma-glutamyl amino acid pathways, whereas ketone bodies and fatty acids were associated specifically with metastatic disease.
Collapse
Affiliation(s)
- Jiaqi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alison M. Mondul
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI
| | - Stephanie J. Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Andriy Derkach
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven C. Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Joshua N. Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
66
|
Tan X, Ji K, Wang X, Yao R, Han G, Villamena FA, Zweier JL, Song Y, Rockenbauer A, Liu Y. Discriminative Detection of Biothiols by Electron Paramagnetic Resonance Spectroscopy using a Methanethiosulfonate Trityl Probe. Angew Chem Int Ed Engl 2019; 59:928-934. [PMID: 31657108 DOI: 10.1002/anie.201912832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Indexed: 12/30/2022]
Abstract
Biothiols, such as glutathione (GSH), homocysteine (Hcy), and cysteine (Cys), coexist in biological systems with diverse biological roles. Thus, analytical techniques that can detect, quantify, and distinguish between multiple biothiols are desirable but challenging. Herein, we demonstrate the simultaneous detection and quantitation of multiple biothiols, including up to three different biothiols in a single sample, using electron paramagnetic resonance (EPR) spectroscopy and a trityl-radical-based probe (MTST). We term this technique EPR thiol-trapping. MTST could trap thiols through its methanethiosulfonate group to form the corresponding disulfide conjugate with an EPR spectrum characteristic of the trapped thiol. MTST was used to investigate effects of l-buthionine sulfoximine (BSO) and pyrrolidine dithiocarbamate (PDTC) on the efflux of GSH and Cys from HepG2 cells.
Collapse
Affiliation(s)
- Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Kaiyun Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Xing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Ru Yao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Guifang Han
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jay L Zweier
- Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.,Department of Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111, Budapest, Hungary
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| |
Collapse
|
67
|
Tocmo R, Parkin K. S-1-propenylmercaptocysteine protects murine hepatocytes against oxidative stress via persulfidation of Keap1 and activation of Nrf2. Free Radic Biol Med 2019; 143:164-175. [PMID: 31349040 DOI: 10.1016/j.freeradbiomed.2019.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
The onion-derived metabolite, S-1-propenylmercaptocysteine (CySSPe), protects against oxidative stress and exhibits anti-inflammatory effects by modulating cellular redox homeostasis. We sought to establish whether CySSPe activates nuclear factor erythroid 2-related factor 2 (Nrf2) and whether activation of Nrf2 by CySSPe involves modification of the Kelch-like ECH-associated protein-1 (Keap1) to manifest these effects. We found that CySSPe stabilized Nrf2 protein and facilitated nuclear translocation to induce expression of antioxidant enzymes, including NQO1, HO-1, and GCL. Moreover, CySSPe attenuated tert-butyl hydroperoxide-induced cytotoxicity and dose-dependently inhibited reactive oxygen species production. Silencing experiments using Nrf2-siRNA confirmed that CySSPe conferred protection against oxidative stress by activating Nrf2. CySSPe enhanced cellular pool of reduced glutathione (GSH) and improved GSH:GSSG ratio. Pretreatment of cells with l-buthionine-S,R-sulfoximine (BSO) confirmed that CySSPe increases de novo synthesis of GSH by upregulating expression of the GSH-synthesizing enzyme GCL. Treatment of cells with CySSPe elevated hydrogen sulfide (H2S) production. Inhibition of H2S-synthesizing enzymes, cystathionine-gamma-lyase (CSE) and cystathionine-beta-synthase (CBS), by pretreating cells with propargylglycine (PAG) and oxyaminoacetic acid (AOAA) revealed that H2S production was partially dependent on a CSE/CBS-catalyzed β-elimination reaction with CySSPe that likely produced 1-propenyl persulfide (RSSH). Depleting cells of their GSH pool by exposure to BSO and diethylmaleate attenuated H2S production, suggesting a GSH-dependent formation of H2S, likely via the reduction of RSSH by GSH. Finally, treatment of cells with CySSPe persulfidated Keap1, which may be the mechanism involved for the stabilization of Nrf2 by CySSPe. Taken together, our results showed that attenuation of oxidative stress by CySSPe is associated with its ability to produce H2S or RSSH, which persulfidates Keap1 and activates Nrf2 signaling. This study provides insights on the potential of CySSPe as an onion-derived dietary agent that modulates redox homeostasis and combats oxidative stress.
Collapse
Affiliation(s)
- Restituto Tocmo
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA.
| | - Kirk Parkin
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA
| |
Collapse
|
68
|
He ZQ, Duan H, Lin FH, Zhang J, Chen YS, Zhang GH, Guo CC, Ke C, Zhang XH, Chen ZH, Wang J, Chen ZP, Jiang XB, Mou YG. Pretreatment neutrophil-to-lymphocyte ratio plus albumin-to-gamma-glutamyl transferase ratio predict the diagnosis of grade III glioma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:623. [PMID: 31930024 DOI: 10.21037/atm.2019.11.24] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background The present study explored the predictive value of systemic inflammatory indexes in diagnosing grade III gliomas of oligodendroglial origin. Methods A retrospective study of 154 patients with grade III gliomas was conducted. Systemic inflammatory indexes, including neutrophil-to-lymphocyte ratio (NLR), albumin-to-gamma-glutamyl transferase ratio (AGR), platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, prognostic nutritional index, and fibrinogen-to-albumin ratio, were reviewed. The resulting predictive model was externally validated using a demographic-matched cohort of 49 grade III glioma patients. Results In the training set, gliomas of oligodendroglial origin tended to have a lower NLR (P=0.018) and a higher AGR (P=0.036) than those with tumors of astrocytic origin. Moreover, both NLR and AGR had predictive value for oligodendroglial tumors, when compared with astrocytic tumors. The best diagnostic value was obtained using NLR + AGR (AUC =64.9%, 95% CI: 55.5-74.3%, P=0.005). In the validation set, NLR + AGR satisfactorily predicted the presence of oligodendroglial tumors (AUC =66.5%, 95% CI: 50.6-82.4%, P<0.05) and co-deletion of 1p/19q (AUC =73.7%, 95% CI: 59.2-88.1%, P=0.005). Multivariate analysis further demonstrated NLR + AGR as an independent predictor for overall survival. Conclusions Pretreatment NLR and AGR aid in prognosis and diagnosing grade III oligodendroglial gliomas.
Collapse
Affiliation(s)
- Zhen-Qiang He
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Hao Duan
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Fu-Hua Lin
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Ji Zhang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Yin-Sheng Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Guan-Hua Zhang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Cheng-Cheng Guo
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Chao Ke
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Xiang-Heng Zhang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Zheng-He Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Jian Wang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Xiao-Bing Jiang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Yong-Gao Mou
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| |
Collapse
|
69
|
Lee JO, Yang YM, Choi JH, Kim TW, Lee JW, Kim YP. Microbial Redox Regulator-Enabled Pulldown for Rapid Analysis of Plasma Low-Molecular-Weight Biothiols. Anal Chem 2019; 91:10064-10072. [PMID: 31286772 DOI: 10.1021/acs.analchem.9b01991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although low-molecular-weight (LMW) biothiols function as a disease indicator in plasma, rapidly and effectively analyzing them remains challenging in the extracellular oxidative environment due to technical difficulties. Here, we report a newly designed, affinity pulldown platform using a Bacillus subtilis-derived organic hydroperoxide resistance regulatory (OhrRBS) protein and its operator dsDNA for rapid and cost-effective analyses of plasma LMW biothiols. In the presence of organic hydroperoxide, LMW biothiols triggered the rapid dissociation of FAM-labeled dsDNA from FLAG-tagged OhrRBS via S-thiolation of OhrRBS on anti-FLAG antibody-coated beads, which led to a strong increase of fluorescence intensity in the supernatant after pulldown. This method was easily extended by using a reducing agent to detect free and total LMW biothiols simultaneously in mouse plasma. Unlike free plasma LMW biothiols, total plasma LMW biothiols were more elevated in ΔLDLR mice than those in normal mice. Owing to the rapid dissociation of OhrR/dsDNA complexes in response to LMW biothiols, this pulldown platform is immediately suitable for monitoring rapid redox changes in plasma LMW biothiols as well as studying oxidative stress and diseases in blood.
Collapse
Affiliation(s)
- Jin Oh Lee
- Department of Life Science , Hanyang University , Seoul 04763 , Republic of Korea.,Research Institute for Natural Sciences and Research Institute for Convergence of Basic Sciences , Hanyang University , Seoul 04763 , Republic of Korea
| | - Yoon-Mo Yang
- Department of Life Science , Hanyang University , Seoul 04763 , Republic of Korea
| | - Jae-Hoon Choi
- Department of Life Science , Hanyang University , Seoul 04763 , Republic of Korea.,Research Institute for Natural Sciences and Research Institute for Convergence of Basic Sciences , Hanyang University , Seoul 04763 , Republic of Korea
| | - Tae-Wuk Kim
- Department of Life Science , Hanyang University , Seoul 04763 , Republic of Korea.,Research Institute for Natural Sciences and Research Institute for Convergence of Basic Sciences , Hanyang University , Seoul 04763 , Republic of Korea
| | - Jin-Won Lee
- Department of Life Science , Hanyang University , Seoul 04763 , Republic of Korea.,Research Institute for Natural Sciences and Research Institute for Convergence of Basic Sciences , Hanyang University , Seoul 04763 , Republic of Korea
| | - Young-Pil Kim
- Department of Life Science , Hanyang University , Seoul 04763 , Republic of Korea.,Research Institute for Natural Sciences and Research Institute for Convergence of Basic Sciences , Hanyang University , Seoul 04763 , Republic of Korea.,Institute of Nano Science and Technology , Hanyang University , Seoul 04763 , Republic of Korea
| |
Collapse
|
70
|
Nomura N, Nishihara R, Nakajima T, Kim SB, Iwasawa N, Hiruta Y, Nishiyama S, Sato M, Citterio D, Suzuki K. Biothiol-Activatable Bioluminescent Coelenterazine Derivative for Molecular Imaging in Vitro and in Vivo. Anal Chem 2019; 91:9546-9553. [PMID: 31291724 DOI: 10.1021/acs.analchem.9b00694] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is a high demand for sensitive biothiol probes targeting cysteine, glutathione, and homocysteine. These biothiols are known as playing essential roles to maintain homeostasis and work as indicators of many diseases. This work presents a bioluminescent probe (named AMCM) to detect biothiols in live mammalian cells and in vivo with a limit of detection of 0.11 μM for cysteine in solution and high selectivity for biothiols, making it suitable for real-time biothiol detection in biological systems. Upon application to live cells, AMCM showed low cytotoxicity and sensitively reported bioluminescence in response to changes of biothiol levels. Furthermore, a bioluminescence resonance energy transfer system consisting of AMCM combined with the near-infrared fluorescent protein iRFP713 was applied to in vivo imaging, with emitted tissue-permeable luminescence in living mice. In summary, this work demonstrates that AMCM is of high practical value for the detection of biothiols in living cells and for deep tissue imaging in living animals.
Collapse
Affiliation(s)
| | | | - Takahiro Nakajima
- Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro , Tokyo , Japan
| | - Sung Bae Kim
- National Institute of Advanced Industrial Science and Technology , 1-1-1 Umezono , Tsukuba , Ibaraki 305-8560 , Japan
| | | | | | | | - Moritoshi Sato
- Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro , Tokyo , Japan
| | | | | |
Collapse
|
71
|
Hypercysteinemia, A Potential Risk Factor for Central Obesity and Related Disorders in Azores, Portugal. J Nutr Metab 2019; 2019:1826780. [PMID: 31321096 PMCID: PMC6609363 DOI: 10.1155/2019/1826780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023] Open
Abstract
In Azores, the standardized mortality rate for coronary artery disease (CAD) is nearly the double when compared to mainland Portugal. The aim of this study was to compare the prevalence of conventional CAD risk factors, as well as the plasma aminothiol profile (and its major determinants), between two groups of healthy subjects from Ponta Delgada (in Azores) and Lisbon (in mainland) cities, searching for precocious biomarker(s) of the disease. The study groups consisted of 101 healthy volunteers from Ponta Delgada (PDL) and 121 from Lisbon, aged 20–69 years. No differences in the prevalence of classical CAD risk factors were found between the study groups, except in physical inactivity and related central obesity, which were both higher in PDL men than in those from Lisbon. Hypercysteinemia, which seems to result from sulfur-rich amino acid diets and/or vitamin B12 malabsorption, revealed to be significantly more prevalent in PDL vs. Lisbon subjects (18% vs. 4%, P=0.001), namely, in male gender. Moreover, plasma Cys levels predicted waist circumference (β coefficient = 0.102, P=0.032) and concomitant central obesity and were also associated with insulin resistance. Nevertheless, hyperhomocysteinemia prevalence was similar in both groups, despite the fact that PDL subjects exhibited a higher rate of vitamin B12 deficiency compared to those from Lisbon (19% vs. 6%, P=0.003). Owing to the nature of this study design, a cause-effect relationship between high plasma Cys levels and central obesity or CAD risk could not be derived, but results strongly suggest that hypercysteinemia is a potential risk factor for metabolic disorders, i.e., obesity and insulin resistance, and CAD in Azores, a hypothesis that asks for confirmation through further large prospective studies.
Collapse
|
72
|
Optimization of tris(2-carboxyethyl) phosphine reduction conditions for fast analysis of total biothiols in mouse serum samples. Heliyon 2019; 5:e01598. [PMID: 31193090 PMCID: PMC6517333 DOI: 10.1016/j.heliyon.2019.e01598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/09/2019] [Accepted: 04/25/2019] [Indexed: 12/05/2022] Open
Abstract
In this study, we investigated suitable conditions for the reduction of disulfides in mouse serum samples by tris(2-carboxyethyl) phosphine (TCEP) for fast analysis of total biothiols. Disulfides were reduced with TCEP, and then, thiols were derivatized with the fluorogenic reagent, ammonium 7-fluoro-2,1,3-benzoxadiazole-4-sulfonate (SBD-F). Interference peaks on chromatograms of mouse serum samples disappeared when the TCEP reaction was conducted on ice instead of at room temperature, which is used classically. Low-molecular-weight disulfides, such as cystine and glutathione disulfide, were nearly completely reduced by TCEP on ice. Six SBD-biothiols (homocysteine, cysteine, cysteinylglycine, glutathione, γ-glutamylcysteine, and N-acetylcysteine) were separated within 7.5 min on a sulfoalkylbetain-type column (ZIC-HILIC: 150 × 2.1 mm i.d., 3.5 μm), without interference peaks. The developed method showed good linearity and reproducibility, with inter- and intra-day precisions of less than 3%.
Collapse
|
73
|
Sahli F, Godard A, Vileno B, Lepoittevin JP, Giménez-Arnau E. Formation of methyl radicals derived from cumene hydroperoxide in reconstructed human epidermis: an EPR spin trapping confirmation by using 13C-substitution. Free Radic Res 2019; 53:737-747. [PMID: 31130017 DOI: 10.1080/10715762.2019.1624741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Dermal exposure to cumene hydroperoxide (CumOOH) during manufacturing processes is a toxicological issue for the industry. Its genotoxicity, mutagenic action, ability to promote skin tumour, capacity to induce epidermal hyperplasia, and aptitude to induce allergic and irritant skin contact dermatitis are well known. These toxic effects appear to be mediated through the activation to free radical species such as hydroxyl, alkoxyl, and alkyl radicals characterised basically by electron paramagnetic resonance (EPR) and spin-trapping (ST) techniques. To be a skin sensitiser CumOOH needs to covalently bind to skin proteins in the epidermis to form the antigenic entity triggering the immunotoxic reaction. Cleavage of the O-O bond allows formation of unstable CumO•/CumOO• radicals rearranging to longer half-life specific carbon-centred radicals R• proposed to be at the origin of the antigen formation. Nevertheless, it is not still clear which R• is precisely formed in the epidermis and thus involved in the sensitisation process. The aim of this work was to elucidate in conditions closer to real-life sensitisation which specific R• are formed in a 3D reconstructed human epidermis (RHE) model by using 13C-substituted CumOOH at carbon positions precursors of potentially reactive radicals and EPR-ST. We demonstrated that most probably methyl radicals derived from β-scission of CumO• radicals occur in RHE through a one-electron reductive pathway suggesting that these could be involved in the antigen formation inducing skin sensitisation. We also describe a coupling between nitroxide radicals and β position 13C atoms that could be of an added value to the very few examples existing for the coupling of radicals with 13C atoms.
Collapse
Affiliation(s)
- Fatma Sahli
- a Dermatochemistry Laboratory, University of Strasbourg-CNRS UMR 7177 , Strasbourg , France
| | - Amélie Godard
- a Dermatochemistry Laboratory, University of Strasbourg-CNRS UMR 7177 , Strasbourg , France
| | - Bertrand Vileno
- b POMAM Laboratory, University of Strasbourg-CNRS UMR 7177 , Strasbourg , France.,c French EPR Federation of Research, REseau NAtional de Rpe InterDisciplinaire (RENARD) , France
| | | | - Elena Giménez-Arnau
- a Dermatochemistry Laboratory, University of Strasbourg-CNRS UMR 7177 , Strasbourg , France
| |
Collapse
|
74
|
Dennis KK, Go YM, Jones DP. Redox Systems Biology of Nutrition and Oxidative Stress. J Nutr 2019; 149:553-565. [PMID: 30949678 PMCID: PMC6461723 DOI: 10.1093/jn/nxy306] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/30/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
Diet and nutrition contribute to both beneficial and harmful aspects of oxidative processes. The harmful processes, termed oxidative stress, occur with many human diseases. Major advances in understanding oxidative stress and nutrition have occurred with broad characterization of dietary oxidants and antioxidants, and with mechanistic studies showing antioxidant efficacy. However, randomized controlled trials in humans with free-radical-scavenging antioxidants and the glutathione precursor N-acetylcysteine have provided limited or inconsistent evidence for health benefits. This, combined with emerging redox theory, indicates that holistic models are needed to understand the interplay of nutrition and oxidative stress. The purpose of this article is to highlight how recent advances in redox theory and the development of new omics tools and data-driven approaches provide a framework for future nutrition and oxidative stress research. Here we describe why a holistic approach is needed to understand the impact of nutrition on oxidative stress and how recent advances in omics and data analysis methods are viable tools for systems nutrition approaches. Based on the extensive research on glutathione and related thiol antioxidant systems, we summarize the advancing framework for diet and oxidative stress in which antioxidant systems are a component of a larger redox network that serves as a responsive interface between the environment and an individual. The feasibility for redox network analysis has been established by experimental models in which dietary factors are systematically varied and oxidative stress markers are linked through integrated omics (metabolome, transcriptome, proteome). With this framework, integrated redox network models will support optimization of diet to protect against oxidative stress and disease.
Collapse
Affiliation(s)
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
75
|
Guo NN, Sun XJ, Xie YK, Yang GW, Kang CJ. Cloning and functional characterization of thioredoxin gene from kuruma shrimp Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2019; 86:429-435. [PMID: 30502470 DOI: 10.1016/j.fsi.2018.11.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
As an important disulfide reductase of the intracellular antioxidant system, Thioredoxin (Trx) plays an important role in maintaining oxidative stress balance and protecting cells from oxidative damage. In recent years, there is increasing evidence that Trx is a key molecule in the pathogenesis of various diseases and a potential therapeutic target for major diseases including lung, colon, cervical, gastric and pancreatic cancer. However, few knowledge is known about the function of Trx in virus infection. In this study, we reported the cloning and functional investigation of a Trx homologue gene, named MjTrx, in shrimp Marsupenaeus japonicus suffered white spot syndrome virus (WSSV) infection. MjTrx is a 105-amino acid polypeptide with a conservative Cys-Gly-Pro-Cys motif in the catalytic center. Phylogenetic trees analysis showed that MjTrx has a higher relationship with Trx from other invertebrate and clustered with Trx1 from arthropod. MjTrx transcripts is abundant in the gill and intestine tissues and can be detected in the hemocytes, heart, stomach, and hepatopancreas tissues. The transcription levels of MjTrx in hemocytes, gills and intestine tissues of shrimp were significantly up-regulated after white spot syndrome virus infection. MjTrx was recombinant expressed in vitro and exhibited obvious disulfide reductase activity. In addition, overexpression MjTrx in shrimp resulted in the increase of hydrogen peroxide (H2O2) concentration in vivo. All these results strongly suggested that MjTrx functioned in redox homeostasis regulating and played an important role in shrimp antiviral immunity.
Collapse
Affiliation(s)
- Ning-Ning Guo
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 72 Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Xue-Jun Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 72 Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Ya-Kai Xie
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 72 Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Gui-Wen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Cui-Jie Kang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 72 Jimo Binhai Road, Qingdao, Shandong, 266237, China.
| |
Collapse
|
76
|
Singh N, McMahon H, Bilderbeck A, Reed ZE, Tunbridge E, Brett D, Geddes JR, Churchill GC, Goodwin GM. Plasma glutathione suggests oxidative stress is equally present in early- and late-onset bipolar disorder. Bipolar Disord 2019; 21:61-67. [PMID: 29600584 DOI: 10.1111/bdi.12640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES We previously demonstrated oxidative stress in bipolar patients and a relationship between the age of illness onset and total glutathione, a principal antioxidant. In this study, we sought to replicate these findings in a new cohort of patients. METHODS We recruited bipolar patients from Warneford Hospital, Oxford, UK, of similar age and grouped them according to age of onset of illness. The early-onset group comprised patients with onset at <23 years, and the late group comprised patients with onset at >30 years. A third group, comprising age-matched healthy volunteers, was also included. Reduced and oxidized glutathione, cysteine, and cystine were determined in plasma, using high-performance liquid chromatography. Mitochondrial DNA copy number, measured in whole blood, was also compared between patients and healthy controls. RESULTS Significant increases in oxidative stress were observed in the patient groups, compared with the control group; however, no differences in glutathione-related oxidative stress measures were detected between the early- and late-onset bipolar patient groups. No differences were observed in the amount of mitochondrial DNA, and there was no correlation with mood state. CONCLUSION Using a more accurate method to quantify oxidative stress than in our previous study, we show that oxidative stress is a consistent feature of bipolar disorder. Although we did not reproduce our finding correlating age of onset of illness to oxidative stress, we have shown, once again, that oxidative stress is a consistent feature of bipolar disorder.
Collapse
Affiliation(s)
- Nisha Singh
- Department of Psychiatry and Oxford Health NHS Trust, Warneford Hospital, University of Oxford, Oxford, UK.,Department of Pharmacology, University of Oxford, Oxford, UK.,Centre for Neuroimaging Sciences, IoPPN, King's College, London, UK
| | - Hannah McMahon
- Department of Psychiatry and Oxford Health NHS Trust, Warneford Hospital, University of Oxford, Oxford, UK
| | - Amy Bilderbeck
- Department of Psychiatry and Oxford Health NHS Trust, Warneford Hospital, University of Oxford, Oxford, UK.,P1Vital, Wallingford, UK
| | - Zoe E Reed
- Department of Psychiatry and Oxford Health NHS Trust, Warneford Hospital, University of Oxford, Oxford, UK.,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Elizabeth Tunbridge
- Department of Psychiatry and Oxford Health NHS Trust, Warneford Hospital, University of Oxford, Oxford, UK
| | - Daniel Brett
- Department of Psychiatry and Oxford Health NHS Trust, Warneford Hospital, University of Oxford, Oxford, UK
| | - John R Geddes
- Department of Psychiatry and Oxford Health NHS Trust, Warneford Hospital, University of Oxford, Oxford, UK
| | | | - Guy M Goodwin
- Department of Psychiatry and Oxford Health NHS Trust, Warneford Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
77
|
Iron(III)–salen ion catalyzed s-oxidation of l-cysteine and s-alkyl-l-cysteines by H2O2: Spectral, kinetic and electrochemical study. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
78
|
Luo Z, Xu X, Sho T, Zhang J, Xu W, Yao J, Xu J. ROS-induced autophagy regulates porcine trophectoderm cell apoptosis, proliferation, and differentiation. Am J Physiol Cell Physiol 2018; 316:C198-C209. [PMID: 30485137 DOI: 10.1152/ajpcell.00256.2018] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Significant embryo loss remains a serious problem in pig production. Reactive oxygen species (ROS) play a critical role in embryonic implantation and placentation. However, the potential mechanism of ROS on porcine trophectoderm (pTr) cell fate during the peri-implantation period has not been investigated. This study aimed to elucidate the effects of ROS on pTr cell phenotypes and the regulatory role in cell attachment and differentiation. Herein, results showed that exogenous H2O2 inhibited pTr cell viability, arrested the cell cycle at S and G2/M phases, and increased cell apoptosis and autophagy protein light chain 3B and Beclin-1, whereas these effects were reversed by different concentrations of N-acetyl-l-cysteine (NAC) posttreatment. In addition, NAC abolished H2O2-induced autophagic flux, inhibited intracellular and mitochondrial ROS, and restored expression of genes important for mitochondrial DNA and biogenesis, cell attachment, and differentiation. NAC reversed H2O2-activated MAPK and Akt/mammalian target of rapamycin pathways in dose-dependent manners. Furthermore, analyses with pharmacological and RNA interference approaches suggested that autophagy regulated cell apoptosis and gene expression of caudal-related homeobox 2 and IL-1β. Collectively, these results provide new insights into the role of the ROS-induced autophagy in pTr cell apoptosis, attachment, and differentiation, indicating a promising target for decreasing porcine conceptus loss during the peri-implantation period.
Collapse
Affiliation(s)
- Zhen Luo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| | - Xue Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| | - Takami Sho
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| | - Jing Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| | - Weina Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University , Morgantown, West Virginia
| | - Jianxiong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| |
Collapse
|
79
|
Abstract
Recently greater emphasis has been given to combination therapy for generating synergistic effects of treating cancer. Recent studies on thiol-sensitive nanocarriers for the delivery of drug or gene have shown promising results. In this review, we will examine the rationale and advantage in using nanocarriers for the combined delivery of different anticancer drugs and biologics. Here, we also discuss the role of nanocarriers, particularly redox-sensitive polymers in evading or inhibiting the efflux pump in cancer and how they modulate the sensitivity of cancer cells. The review aims to provide a good understanding of the new pattern of cancer treatment and key concerns for designing nanomedicine of synergistic combinations for cancer therapy.
Collapse
|
80
|
Giustarini D, Galvagni F, Dalle Donne I, Milzani A, Severi FM, Santucci A, Rossi R. N-acetylcysteine ethyl ester as GSH enhancer in human primary endothelial cells: A comparative study with other drugs. Free Radic Biol Med 2018; 126:202-209. [PMID: 30114478 DOI: 10.1016/j.freeradbiomed.2018.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 02/08/2023]
Abstract
Several drugs are currently in use as glutathione (GSH) enhancers in clinical, pre-clinical and experimental research. Here we compare the ability of N-acetylcysteine (NAC), 2-oxothiazolidine-4-carboxylic acid (OTC), glutathione ethyl ester (GSH-EE) and N-acetylcysteine ethyl ester (NACET) to increase the intracellular concentration of GSH using primary human umbilical vein endothelial cells (HUVEC) as in vitro model. Our experiments highlighted that NACET is largely the most efficient molecule in increasing the intracellular levels of GSH, cysteine, and γ-glutamylcysteine. This is because NACET is lipophilic and can freely cross plasma membrane but, inside the cell, it is de-esterified to the more hydrophilic NAC, which, in turn, is trapped into the cell and slowly transformed into cysteine. The higher availability of cysteine is matched by an increase in GSH synthesis, cysteine availability being the rate limiting step for this reaction. Surprisingly, the increase in GSH concentration was not linear but peaked at 0.5 mM NACET and gradually decreased when cells were treated with higher concentrations of NACET. We demonstrated that this puzzling ceiling effect was due to the fact that NAC released from NACET turned out to be a competitive inhibitor of the enzyme glutamate-cysteine ligase, with a Ki value of 3.2 mM. By using a cell culture medium lacking of cysteine and methionine, we could demonstrate that the slight increase in intracellular levels of cysteine and GSH induced by NAC in HUVEC grown in standard medium was due to the reduction of the cystine present in the medium itself there rather than to the action of NAC as Cys pro-drug. This fact may explain why NAC works well as GSH enhancer at very high concentrations in pre-clinical and in vitro studies, whereas it failed in most clinical trials.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Via A. Moro 2, I-53100 Siena, Italy.
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Isabella Dalle Donne
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Aldo Milzani
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Filiberto Maria Severi
- Department of Molecular and Developmental Medicine, Via delle Scotte, University of Siena, Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Ranieri Rossi
- Department of Life Sciences, University of Siena, Via A. Moro 2, I-53100 Siena, Italy
| |
Collapse
|
81
|
Wang RS, Oldham WM, Maron BA, Loscalzo J. Systems Biology Approaches to Redox Metabolism in Stress and Disease States. Antioxid Redox Signal 2018; 29:953-972. [PMID: 29121773 PMCID: PMC6104248 DOI: 10.1089/ars.2017.7256] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/12/2017] [Accepted: 11/04/2017] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE All cellular metabolic processes are tied to the cellular redox environment. Therefore, maintaining redox homeostasis is critically important for normal cell function. Indeed, redox stress contributes to the pathobiology of many human diseases. The cellular redox response system is composed of numerous interconnected components, including free radicals, redox couples, protein thiols, enzymes, metabolites, and transcription factors. Moreover, interactions between and among these factors are regulated in time and space. Owing to their complexity, systems biology approaches to the characterization of the cellular redox response system may provide insights into novel homeostatic mechanisms and methods of therapeutic reprogramming. Recent Advances: The emergence and development of systems biology has brought forth a set of innovative technologies that provide new avenues for studying redox metabolism. This article will review these systems biology approaches and their potential application to the study of redox metabolism in stress and disease states. CRITICAL ISSUES Clarifying the scope of biological intermediaries affected by dysregulated redox metabolism requires methods that are suitable for analyzing big datasets as classical methods that do not account for multiple interactions are unlikely to portray the totality of perturbed metabolic systems. FUTURE DIRECTIONS Given the diverse redox microenvironments within cells, it will be important to improve the spatial resolution of omic approaches. Futures studies on the integration of multiple systems-based methods and heterogeneous omics data for redox metabolism are required to accelerate the development of the field of redox systems biology. Antioxid. Redox Signal. 29, 953-972.
Collapse
Affiliation(s)
- Rui-Sheng Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - William M. Oldham
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bradley A. Maron
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Section of Cardiology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
82
|
Giustarini D, Tazzari V, Bassanini I, Rossi R, Sparatore A. The new H 2S-releasing compound ACS94 exerts protective effects through the modulation of thiol homoeostasis. J Enzyme Inhib Med Chem 2018; 33:1392-1404. [PMID: 30173573 PMCID: PMC6127811 DOI: 10.1080/14756366.2018.1509211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The synthesis of a new dithiolethione-cysteine ethyl ester hybrid, ACS94, its metabolites, and its effect on GSH levels in rat tissues and on the concentration of circulating H2S is described. ACS94 rapidly enters the cells, where it is metabolised to cysteine and the dithiolethione moiety ACS48. Experiments performed through the oral administration of ACS94 to healthy rats showed that it is capable of increasing the GSH levels in most of the analysed organs and the concentration of circulating H2S. Although the increase in GSH concentration was similar to that obtained by ACS48 and N-acetylcysteine ethyl ester, the H2S increase was long-lasting and more evident with respect to the parent molecules. Moreover, a decrease of homocysteine in several rat organs and in plasma was noted. This effect may represent a potential therapeutic use of ACS94, as hyperhomocysteinaemia is considered a risk factor for cardiovascular diseases. Lastly, ACS94 was more efficient than N-acetylcysteine in protecting the liver and kidneys against acute acetaminophen toxicity.
Collapse
Affiliation(s)
| | - Valerio Tazzari
- b Department of Pharmaceutical Sciences , Università degli Studi di Milano , Milan , Italy
| | - Ivan Bassanini
- b Department of Pharmaceutical Sciences , Università degli Studi di Milano , Milan , Italy
| | - Ranieri Rossi
- a Department of Life Sciences , University of Siena , Siena , Italy
| | - Anna Sparatore
- b Department of Pharmaceutical Sciences , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
83
|
Cao Y, Huang S, Peng W, Lu M, Peng W, Lin J, Tang C, Tang L. Identification and functional characterization of thioredoxin-related protein of 14 kDa in Oncomelania hupensis, the intermediate host of Schistosoma japonicum. Mol Biochem Parasitol 2018; 225:38-46. [PMID: 30176262 DOI: 10.1016/j.molbiopara.2018.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Oncomelania hupensis is the unique intermediate host of the blood fluke Schistosoma japonicum, which causes schistosomiasis. In snails, highly toxic reactive oxygen species (ROS) can be continually generated by hemocytes in response to foreign particles or pathogens, and may be involved in damaging and eliminating digenean larvae. Thioredoxin-related protein of 14 kDa (TRP14) is a member of the Trx superfamily, and plays an important role in the scavenging of ROS. This study was designed to identify and characterize TRP14 from O. hupensis (OhTRP14), and investigate the involvement of OhTRP14 in the scavenging of ROS in snail host immune response to the parasite S. japonicum. Here we expressed and purified the recombinant OhTRP14 and its mutant, and rOhTRP14 displayed oxidoreductase activity dependent on the CPDC motif. OhTRP14 protein was ubiquitously present in all the tested snail tissues, and especially immunolocalized in the cytoplasm of immune cell types (hemocytes). Both the expression of OhTRP14 and ROS level increased significantly in snails following challenge with S. japonicum. The dsRNA-mediated knockdown of OhTRP14 was successfully conducted by oral feeding, and ROS production was increased by OhTRP14 knockdown, implying that OhTRP14 was involved in the scavenging of ROS in O. hupensis circulating hemocytes. Therefore, we conclude that OhTRP14 may be involved in the scavenging of ROS in snail host immune response to the parasite S. japonicum. The results expand our understanding of the interaction between this parasite and host, and lay a foundation for the establishment of Oncomelania-schistosome infection models.
Collapse
Affiliation(s)
- Yunchao Cao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shuaiqin Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Wuxian Peng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Mingke Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Wenfeng Peng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China
| | - Chongti Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Liang Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
84
|
Prasai PK, Shrestha B, Orr AW, Pattillo CB. Decreases in GSH:GSSG activate vascular endothelial growth factor receptor 2 (VEGFR2) in human aortic endothelial cells. Redox Biol 2018; 19:22-27. [PMID: 30096614 PMCID: PMC6086407 DOI: 10.1016/j.redox.2018.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/09/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023] Open
Abstract
The angiogenic capacity of local tissue critically regulates the response to ischemic injury. Elevated reactive oxygen species production, commonly associated with ischemic injury, has been shown to promote phosphorylation of the vascular endothelial growth factor receptor 2 (VEGFR2), a critical regulator of angiogenesis. Previous data from our lab demonstrated that diminished levels of the antioxidant glutathione positively augment ischemic angiogenesis. Here, we sought to determine the relationship between glutathione levels and oxidative stress in VEGFR2 signaling. We reveal that decreasing the ratio of GSH to GSSG with diamide leads to enhanced protein S-glutathionylation, increased reactive oxygen species (ROS) production, and enhanced VEGFR2 activation. However, increasing ROS alone was insufficient in activating VEGFR2, while ROS enhanced VEGF-stimulated VEGFR2 activation at supraphysiological levels. We also found that inhibiting glutathione reductase activity is sufficient to increase VEGFR2 activation and sensitizes cells to ROS-dependent VEGFR2 activation. Taken together, these data suggest that regulation of the cellular GSH:GSSG ratio critically regulates VEGFR2 activation. This work represents an important first step in separating thiol mediated signaling events from ROS dependent signaling.
Collapse
Affiliation(s)
- Priya K Prasai
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Bandana Shrestha
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - A Wayne Orr
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
85
|
Pei Z, Chen C, Chen J, Cruz-Chuh JD, Delarosa R, Deng Y, Fourie-O’Donohue A, Figueroa I, Guo J, Jin W, Khojasteh SC, Kozak KR, Latifi B, Lee J, Li G, Lin E, Liu L, Lu J, Martin S, Ng C, Nguyen T, Ohri R, Lewis Phillips G, Pillow TH, Rowntree RK, Stagg NJ, Stokoe D, Ulufatu S, Verma VA, Wai J, Wang J, Xu K, Xu Z, Yao H, Yu SF, Zhang D, Dragovich PS. Exploration of Pyrrolobenzodiazepine (PBD)-Dimers Containing Disulfide-Based Prodrugs as Payloads for Antibody–Drug Conjugates. Mol Pharm 2018; 15:3979-3996. [DOI: 10.1021/acs.molpharmaceut.8b00431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhonghua Pei
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Chunjiao Chen
- WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao
Free Trade Zone, Shanghai 200131, China
| | - Jinhua Chen
- Wuxi Apptec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | | - Reginald Delarosa
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yuzhong Deng
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Isabel Figueroa
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jun Guo
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Weiwei Jin
- WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao
Free Trade Zone, Shanghai 200131, China
| | - S. Cyrus Khojasteh
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R. Kozak
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Brandon Latifi
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - James Lee
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Guangmin Li
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Eva Lin
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Liling Liu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jiawei Lu
- WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao
Free Trade Zone, Shanghai 200131, China
| | - Scott Martin
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Carl Ng
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Trung Nguyen
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rachana Ohri
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Gail Lewis Phillips
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H. Pillow
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca K. Rowntree
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicola J. Stagg
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David Stokoe
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sheila Ulufatu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Vishal A. Verma
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- Wuxi Apptec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jing Wang
- Wuxi Apptec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Keyang Xu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Zijin Xu
- Wuxi Apptec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hui Yao
- Wuxi Apptec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shang-Fan Yu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Donglu Zhang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter S. Dragovich
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
86
|
Shrestha B, Prasai PK, Kaskas AM, Khanna A, Letchuman V, Letchuman S, Alexander JS, Orr AW, Woolard MD, Pattillo CB. Differential arterial and venous endothelial redox responses to oxidative stress. Microcirculation 2018; 25:e12486. [PMID: 29923664 DOI: 10.1111/micc.12486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/15/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Oxidative stress is a central event linked with endothelial dysfunction and inflammation in several vascular pathologies, marked by over-production of ROS and concomitant decreases in antioxidants, for example GSH. Here, we distinguish endothelial oxidative stress regulation and associated functional disparities in the two main vascular conduits, (arteries and veins) following decreases in GSH. METHODS MAECs and VCECs were used as models of arterial and venular endothelium, respectively, and BSO (0-100 μmol/L) was used to indirectly increase cellular oxidative stress. Inflammatory responses were measured using immune cell attachment and immunoblotting for endothelial cell adhesion molecule (ICAM-1, VCAM-1) expression, altered cell proliferation, and wound healing. RESULTS MAECs and VCECs exhibited differential responses to oxidative stress produced by GSH depletion with VCECs exhibiting greater sensitivity to oxidative stress. Compared to MAECs, VCECs showed a significantly increased inflammatory profile and a decreased proliferative phenotype in response to decreases in GSH levels. CONCLUSIONS Arterial and venous endothelial cells exhibit differential responses to oxidant stress, and decreases in GSH:GSSG are more exacerbated in venous endothelial cells. Specific pathogenesis in these vascular conduits, with respect to oxidant stress handling, warrants further study, especially considering surgical interventions such as Coronary artery bypass grafting that use both interchangeably.
Collapse
Affiliation(s)
- Bandana Shrestha
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Priya K Prasai
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Amir M Kaskas
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Ankur Khanna
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Vijay Letchuman
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Sunjay Letchuman
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Jonathan Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - A Wayne Orr
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Matthew D Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| |
Collapse
|
87
|
Implications of plasma thiol redox in disease. Clin Sci (Lond) 2018; 132:1257-1280. [DOI: 10.1042/cs20180157] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/09/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022]
Abstract
Thiol groups are crucially involved in signaling/homeostasis through oxidation, reduction, and disulphide exchange. The overall thiol pool is the resultant of several individual pools of small compounds (e.g. cysteine), peptides (e.g. glutathione), and thiol proteins (e.g. thioredoxin (Trx)), which are not in equilibrium and present specific oxidized/reduced ratios. This review addresses mechanisms and implications of circulating plasma thiol/disulphide redox pools, which are involved in several physiologic processes and explored as disease biomarkers. Thiol pools are regulated by mechanisms linked to their intrinsic reactivity against oxidants, concentration of antioxidants, thiol-disulphide exchange rates, and their dynamic release/removal from plasma. Major thiol couples determining plasma redox potential (Eh) are reduced cysteine (CyS)/cystine (the disulphide form of cysteine) (CySS), followed by GSH/disulphide-oxidized glutathione (GSSG). Hydrogen peroxide and hypohalous acids are the main plasma oxidants, while water-soluble and lipid-soluble small molecules are the main antioxidants. The thiol proteome and thiol-oxidoreductases are emerging investigative areas given their specific disease-related responses (e.g. protein disulphide isomerases (PDIs) in thrombosis). Plasma cysteine and glutathione redox couples exhibit pro-oxidant changes directly correlated with ageing/age-related diseases. We further discuss changes in thiol-disulphide redox state in specific groups of diseases: cardiovascular, cancer, and neurodegenerative. These results indicate association with the disease states, although not yet clear-cut to yield specific biomarkers. We also highlight mechanisms whereby thiol pools affect atherosclerosis pathophysiology. Overall, it is unlikely that a single measurement provides global assessment of plasma oxidative stress. Rather, assessment of individual thiol pools and thiol-proteins specific to any given condition has more solid and logical perspective to yield novel relevant information on disease risk and prognosis.
Collapse
|
88
|
Chen M, Zhang J, Xie X, Wu C. Cloning and functional characterization of thioredoxin genes from large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2018; 77:385-391. [PMID: 29601992 DOI: 10.1016/j.fsi.2018.03.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Thioredoxin(Trx)with a redox-active disulfide/dithiol in the active site, is an ubiquitous disulfide reductase majorly responsible for maintaining the balance of reactive oxygen species. In this study, the complete thioredoxin-like protein 1 (designated as LcTrx) was cloned from large yellow croaker Larimichthys crocea through rapid amplification of cDNA ends. The full-length cDNA of LcTrx was 1295 bp in length containing a 131 bp 5' untranslated region (UTR) ,a 3'UTR of 294bp with a poly (A) tail, and an 870 bp open reading frame (ORF) encoding a polypeptide of 289 amino acids. Protein sequence analysis revealed that LcTrx contains the evolutionarily conserved redox motif CRPC (Cys-Arg-Pro-Cys-). Multiple alignments revealed that LcTrx is highly identical to Trx from other organisms, especially in the CRPC motifs. The recombinant LcTrx showed obvious insulin reduction activity in vitro. The LcTrx transcripts were constitutively expressed in all examined tissues with the highest levels found in the muscles and the lowest in the head kidney. Results of Vibrio parahaemolyticus infection experiment showed that the expression levels of LcTrx were tissue and time dependent. In the liver and kidney, LcTrx was down-regulated both at 12 h and 48 h post-infection. In contrast, LcTrx showed induced expression in the spleen and head kidney at same post-infection time points. The different responses to pathogen stimulation indicated the diversified physiological function of LcTrx in the four examined tissues.
Collapse
Affiliation(s)
- Mengnan Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Xiaoze Xie
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| |
Collapse
|
89
|
Wang Q, Man WL, Lam WWY, Yiu SM, Tse MK, Lau TC. Reduction of Ru VI≡N to Ru III-NH 3 by Cysteine in Aqueous Solution. Inorg Chem 2018; 57:5850-5858. [PMID: 29708333 DOI: 10.1021/acs.inorgchem.8b00238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reduction of metal nitride to ammonia is a key step in biological and chemical nitrogen fixation. We report herein the facile reduction of a ruthenium(VI) nitrido complex [(L)RuVI(N)(OH2)]+ (1, L = N, N'-bis(salicylidene)- o-cyclohexyldiamine dianion) to [(L)RuIII(NH3)(OH2)]+ by l-cysteine (Cys), an ubiquitous biological reductant, in aqueous solution. At pH 1.0-5.3, the reaction has the following stoichiometry: [(L)RuVI(N)(OH2)]+ + 3HSCH2CH(NH3)CO2 → [(L)RuIII(NH3)(OH2)]+ + 1.5(SCH2CH(NH3)CO2)2. Kinetic studies show that at pH 1 the reaction consists of two phases, while at pH 5 there are three distinct phases. For all phases the rate law is rate = k2[1][Cys]. Studies on the effects of acidity indicate that both HSCH2CH(NH3+)CO2- and -SCH2CH(NH3+)CO2- are kinetically active species. At pH 1, the reaction is proposed to go through [(L)RuIV(NHSCH2CHNH3CO2H)(OH2)]2+ (2a), [(L)RuIII(NH2SCH2CHNH3CO2H)(OH2)]2+ (3), and [(L)RuIV(NH2)(OH2)]+ (4) intermediates. On the other hand, at pH around 5, the proposed intermediates are [(L)RuIV(NHSCH2CHNH3CO2)(OH2)]+ (2b) and [(L)RuIV(NH2)(OH2)]+ (4). The intermediate ruthenium(IV) sulfilamido species, [(L)RuIV(NHSCH2CHNH3CO2H)(OH2)]2+ (2a) and the final ruthenium(III) ammine species, [(L)RuIII(NH3)(MeOH)]+ (5) (where H2O was replaced by MeOH) have been isolated and characterized by various spectroscopic methods.
Collapse
Affiliation(s)
- Qian Wang
- School of Chemistry and Chemical Engineering , Shandong University of Technology , Zibo 255049 , People's Republic of China
| | - Wai-Lun Man
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon Tong , Hong Kong
| | - William W Y Lam
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon Tong , Hong Kong.,Department of Food and Health Sciences , Technological and Higher Education Institute of Hong Kong , Tsing Yi Road , New Territories , Hong Kong
| | - Shek-Man Yiu
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon Tong , Hong Kong
| | - Man-Kit Tse
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon Tong , Hong Kong
| | - Tai-Chu Lau
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon Tong , Hong Kong
| |
Collapse
|
90
|
Wang F, Sun L, Sun Q, Liang L, Gao X, Li R, Pan A, Li H, Deng Y, Hu FB, Wu J, Zeng R, Lin X. Associations of Plasma Amino Acid and Acylcarnitine Profiles with Incident Reduced Glomerular Filtration Rate. Clin J Am Soc Nephrol 2018; 13:560-568. [PMID: 29519950 PMCID: PMC5969460 DOI: 10.2215/cjn.07650717] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/03/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Metabolomics is instrumental in identifying novel biomarkers of kidney function to aid in the prevention and management of CKD. However, data linking the metabolome to incident eGFR are sparse, particularly in Asian populations with different genetic backgrounds and environmental exposures. Therefore, we aimed to investigate the associations of amino acid and acylcarnitine profiles with change in eGFR in a Chinese cohort. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This study included 1765 community-living Chinese adults aged 50-70 years with baseline eGFR≥60 ml/min per 1.73 m2. At baseline, 22 amino acids and 34 acylcarnitines in plasma were quantified by gas or liquid chromatography coupled with mass spectrometry. Annual rate of change in eGFR was calculated, and incident eGFR decline was defined as eGFR<60 ml/min per 1.73 m2 by the end of 6 years of follow-up. RESULTS The mean (SD) unadjusted annual change in eGFR was 2.2±2.0 ml/min per 1.73 m2 and the incidence of reduced eGFR was 16%. After Bonferroni correction, 13 of 56 metabolites were significantly associated with annual eGFR change. After multivariable adjustment of baseline covariates, including baseline eGFR, seven of the 13 metabolites, including cysteine, long-chain acylcarnitines (C14:1OH, C18, C18:2, and C20:4), and other acylcarnitines (C3DC and C10), were significantly associated with incident reduced eGFR (relative risks ranged from 1.16 to 1.25 per SD increment of metabolites; P<3.8E-03 after Bonferroni correction of multiple testing of the 13 metabolites). Moreover, principal component analysis identified two factors, consisting of cysteine and long-chain acylcarnitines, respectively, that were associated with incident reduced eGFR. CONCLUSIONS Elevated plasma levels of cysteine and a panel of acylcarnitines were associated with a higher incidence of reduced eGFR in Chinese adults, independent of baseline eGFR and other conventional risk factors.
Collapse
Affiliation(s)
- Feijie Wang
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Sasaki K, Margonis GA, Andreatos N, Bagante F, Weiss M, Barbon C, Popescu I, Marques HP, Aldrighetti L, Maithel SK, Pulitano C, Bauer TW, Shen F, Poultsides GA, Soubrane O, Martel G, Koerkamp BG, Guglielmi A, Itaru E, Aucejo FN, Pawlik TM. Preoperative Risk Score and Prediction of Long-Term Outcomes after Hepatectomy for Intrahepatic Cholangiocarcinoma. J Am Coll Surg 2018; 226:393-403. [DOI: 10.1016/j.jamcollsurg.2017.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023]
|
92
|
Hemmi M, Ikeda Y, Shindo Y, Nakajima T, Nishiyama S, Oka K, Sato M, Hiruta Y, Citterio D, Suzuki K. Highly Sensitive Bioluminescent Probe for Thiol Detection in Living Cells. Chem Asian J 2018; 13:648-655. [PMID: 29359483 DOI: 10.1002/asia.201701774] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/20/2018] [Indexed: 12/21/2022]
Abstract
The sensitive detection of thiols including glutathione and cysteine is desirable owing to their roles as indispensable biomolecules in maintaining intracellular biological redox homeostasis. Herein, we report the design and synthesis of SEluc-1 (sulfinate ester luciferin), a chemoselective probe exhibiting a ratiometric and turn-on response towards thiols selectively in fluorescence and bioluminescence, respectively. The probe, which was designed based on the "caged" luciferin strategy, displays excellent selectivity, high signal/noise ratio (>240 in the case of bioluminescence), and a biologically relevant limit of detection (LOD, 80 nm for cysteine), which are all desirable traits for a sensitive bioluminescent sensor. SEluc-1 was further applied to fluorescence imaging of thiol activity in living human cervical cancer HeLa cell cultures, and was successfully able to detect fluctuations in thiol concentrations induced by oxidative stress in a bioluminescent assay utilizing African green monkey fibroblast COS-7 cells and human breast adenocarcinoma MCF-7 cells.
Collapse
Affiliation(s)
- Mayu Hemmi
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Yuma Ikeda
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Yutaka Shindo
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Takahiro Nakajima
- Graduate School of Arts and Sciences, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| | - Shigeru Nishiyama
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Kotaro Oka
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| | - Yuki Hiruta
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Daniel Citterio
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Koji Suzuki
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
93
|
Bettermann EL, Hartman TJ, Easley KA, Ferranti EP, Jones DP, Quyyumi AA, Vaccarino V, Ziegler TR, Alvarez JA. Higher Mediterranean Diet Quality Scores and Lower Body Mass Index Are Associated with a Less-Oxidized Plasma Glutathione and Cysteine Redox Status in Adults. J Nutr 2018; 148:245-253. [PMID: 29490099 PMCID: PMC6251672 DOI: 10.1093/jn/nxx045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
Background Both systemic redox status and diet quality are associated with risk outcomes in chronic disease. It is not known, however, the extent to which diet quality influences plasma thiol/disulfide redox status. Objective The purpose of this study was to investigate the influence of diet, as measured by diet quality scores and other dietary factors, on systemic thiol/disulfide redox status. Methods We performed a cross-sectional study of 685 working men and women (ages ≥18 y) in Atlanta, GA. Diet was assessed by 3 diet quality scores: the Alternative Healthy Eating Index (AHEI), Dietary Approaches to Stop Hypertension (DASH), and the Mediterranean Diet Score (MDS). We measured concentrations of plasma glutathione (GSH), cysteine, their associated oxidized forms [glutathione disulfide (GSSG) and cystine (CySS), respectively], and their redox potentials (EhGSSG and EhCySS) to determine thiol/disulfide redox status. Linear regression modeling was performed to assess relations between diet and plasma redox after adjustment for age, body mass index (BMI), sex, race, and history of chronic disease. Results MDS was positively associated with plasma GSH (β = 0.02; 95% CI: 0.003, 0.03) and total GSH (GSH + GSSG) (β = 0.02; 95% CI: 0.003, 0.03), and inversely associated with the CySS:GSH ratio (β = -0.02; 95% CI: -0.04, -0.004). There were significant independent associations between individual MDS components (dairy, vegetables, fish, and monounsaturated fat intake) and varying plasma redox indexes (P < 0.05). AHEI and DASH diet quality indexes and other diet factors of interest were not significantly correlated with plasma thiol and disulfide redox measures. Conclusion Adherence to the Mediterranean diet was significantly associated with a favorable plasma thiol/disulfide redox profile, independent of BMI, in a generally healthy working adult population. Although longitudinal studies are warranted, these findings contribute to the feasibility of targeting a Mediterranean diet to improve plasma redox status.
Collapse
Affiliation(s)
- Erika L Bettermann
- Departments of Epidemiology and Biostatistics and Bioinformatics, Rollins
School of Public Health, Emory University, Atlanta, GA
| | - Terryl J Hartman
- Departments of Epidemiology and Biostatistics and Bioinformatics, Rollins
School of Public Health, Emory University, Atlanta, GA
| | - Kirk A Easley
- Departments of Biostatistics and Bioinformatics, Rollins School of Public
Health, Emory University, Atlanta, GA
| | - Erin P Ferranti
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine,Center for Clinical and Molecular Nutrition and Divisions of Cardiology and
Endocrinology, Metabolism & Lipids, Department of Medicine, Emory University School of
Medicine, Atlanta, GA
| | - Arshed A Quyyumi
- Divisions of Cardiology and Endocrinology, Metabolism & Lipids, Department
of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Viola Vaccarino
- Departments of Epidemiology and Biostatistics and Bioinformatics, Rollins
School of Public Health, Emory University, Atlanta, GA
| | - Thomas R Ziegler
- Center for Clinical and Molecular Nutrition and Divisions of Cardiology and
Endocrinology, Metabolism & Lipids, Department of Medicine, Emory University School of
Medicine, Atlanta, GA,Center for Clinical and Molecular Nutrition and Divisions of Endocrinology,
Metabolism & Lipids, Department of Medicine, Emory University School of Medicine,
Atlanta, GA,Section of Endocrinology, Atlanta Veterans Affairs Medical Center, Atlanta,
GA
| | - Jessica A Alvarez
- Center for Clinical and Molecular Nutrition and Divisions of Cardiology and
Endocrinology, Metabolism & Lipids, Department of Medicine, Emory University School of
Medicine, Atlanta, GA,Center for Clinical and Molecular Nutrition and Divisions of Endocrinology,
Metabolism & Lipids, Department of Medicine, Emory University School of Medicine,
Atlanta, GA,Address correspondence to JAA (E-mail: )
| |
Collapse
|
94
|
Zhang P, Wu J, Xiao F, Zhao D, Luan Y. Disulfide bond based polymeric drug carriers for cancer chemotherapy and relevant redox environments in mammals. Med Res Rev 2018; 38:1485-1510. [PMID: 29341223 DOI: 10.1002/med.21485] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022]
Abstract
Increasing numbers of disulfide linkage-employing polymeric drug carriers that utilize the reversible peculiarity of this unique covalent bond have been reported. The reduction-sensitive disulfide bond is usually employed as a linkage between hydrophilic and hydrophobic polymers, polymers and drugs, or as cross-linkers in polymeric drug carriers. These polymeric drug carriers are designed to exploit the significant redox potential difference between the reducing intracellular environments and relatively oxidizing extracellular spaces. In addition, these drug carriers can release a considerable amount of anticancer drug in response to the reducing environment when they reach tumor tissues, effectively improving antitumor efficacy. This review focuses on various disulfide linkage-employing polymeric drug carriers. Important redox thiol pools, including GSH/GSSG, Cys/CySS, and Trx1, as well as redox environments in mammals, will be introduced.
Collapse
Affiliation(s)
- Pei Zhang
- School of Pharmaceutical Science, Shandong University, Jinan, P. R. China
| | - Jilian Wu
- School of Pharmaceutical Science, Shandong University, Jinan, P. R. China
| | - Fengmei Xiao
- Binzhou Tuberculosis Prevention and Treatment Hospital, Binzhou, P. R. China
| | - Dujuan Zhao
- School of Pharmaceutical Science, Shandong University, Jinan, P. R. China
| | - Yuxia Luan
- School of Pharmaceutical Science, Shandong University, Jinan, P. R. China
| |
Collapse
|
95
|
Kuresepi S, Vileno B, Turek P, Lepoittevin JP, Giménez-Arnau E. Potential of EPR spin-trapping to investigate in situ free radicals generation from skin allergens in reconstructed human epidermis: cumene hydroperoxide as proof of concept. Free Radic Res 2018; 52:171-179. [DOI: 10.1080/10715762.2017.1420906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Salen Kuresepi
- Dermatochemistry Laboratory, University of Strasbourg, CNRS UMR 7177, Institut le Bel, Strasbourg, France
| | - Bertrand Vileno
- POMAM Laboratory, University of Strasbourg, CNRS UMR 7177, Institut le Bel, Strasbourg, France
- French EPR Federation of Research, REseau NAtional de Rpe interDisciplinaire, RENARD, Fédération IR-RPE CNRS #3443, Strasbourg, France
| | - Philippe Turek
- POMAM Laboratory, University of Strasbourg, CNRS UMR 7177, Institut le Bel, Strasbourg, France
- French EPR Federation of Research, REseau NAtional de Rpe interDisciplinaire, RENARD, Fédération IR-RPE CNRS #3443, Strasbourg, France
| | - Jean-Pierre Lepoittevin
- Dermatochemistry Laboratory, University of Strasbourg, CNRS UMR 7177, Institut le Bel, Strasbourg, France
| | - Elena Giménez-Arnau
- Dermatochemistry Laboratory, University of Strasbourg, CNRS UMR 7177, Institut le Bel, Strasbourg, France
| |
Collapse
|
96
|
Mutlu Agardan NB, Sarisozen C, Torchilin VP. Redox-triggered intracellular siRNA delivery. Chem Commun (Camb) 2018; 54:6368-6371. [DOI: 10.1039/c8cc01376d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stimuli-sensitive nanoformulation achieved successful intracellular siRNA delivery and GFP downregulation due to GSH-triggered disulfide bond breakage and PEG-de-shielding without toxicity.
Collapse
Affiliation(s)
| | - Can Sarisozen
- Center for Pharmaceutical Biotechnology and Nanomedicine
- Northeastern University
- Boston
- USA
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine
- Northeastern University
- Boston
- USA
| |
Collapse
|
97
|
Han JE, Alvarez JA, Staitieh B, Tangpricha V, Hao L, Ziegler TR, Martin GS, Brown LAS. Oxidative stress in critically ill ventilated adults: effects of vitamin D 3 and associations with alveolar macrophage function. Eur J Clin Nutr 2017; 72:744-751. [PMID: 29288250 PMCID: PMC5948109 DOI: 10.1038/s41430-017-0047-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/16/2017] [Accepted: 09/21/2017] [Indexed: 12/03/2022]
Abstract
Background Disruptions in redox balance lead to oxidative stress, a promoter of morbidity in critical illness. This study aimed to: 1) characterize the plasma and alveolar thiol/disulfide redox pools, 2) examine their associations with alveolar macrophage phagocytosis, and 3) determine the effect of high dose vitamin D3 on plasma thiol/disulfide redox. Methods Subjects were 30 critically ill, ventilated adults in a double-blind randomized trial of high-dose (250 000 or 500 000 IU) vitamin D3 or placebo. Baseline bronchoalveolar lavage fluid (BALF) samples were analyzed for determination of alveolar phagocytosis index (PI) and for concentrations of glutathione (GSH), glutathione disulfide (GSSG), cysteine (Cys), cystine (CySS), and their respective redox potentials (EhGSSG and EhCySS). Plasma redox outcomes were assessed at baseline and days 7 and 14. Results Baseline plasma Cys was inversely associated with alveolar PI (ρ = −0.69, P=0.003), and EhCySS was positively associated with PI (ρ = 0.61, P=0.01). Over time, among all subjects there was an increase in plasma GSH levels and a decrease in EhGSSG (P<0.01 for both), with no difference by treatment group. Vitamin D3 decreased oxidized plasma GSSG to a more normal state (P for group × time=0.009). Conclusions Oxidative stress indicators were positively associated with alveolar macrophage phagocytic function in acutely ill ventilated adults. High-dose vitamin D3 decreased plasma GSSG concentrations, which suggests that vitamin D can possibly improve the oxidative stress environment.
Collapse
Affiliation(s)
- Jenny E Han
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA. .,Emory Critical Care Center, Emory University, Atlanta, GA, USA.
| | - Jessica A Alvarez
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Bashar Staitieh
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA.,Emory Critical Care Center, Emory University, Atlanta, GA, USA
| | - Vin Tangpricha
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Li Hao
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Thomas R Ziegler
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Greg S Martin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA.,Emory Critical Care Center, Emory University, Atlanta, GA, USA
| | - Lou Ann S Brown
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
98
|
Rech VC, Mezzomo NJ, Athaydes GA, Feksa LR, Figueiredo VC, Kessler A, Franceschi IDDE, Wannmacher CMD. Thiol/disulfide status regulates the activity of thiol-containing kinases related to energy homeostasis in rat kidney. AN ACAD BRAS CIENC 2017; 90:99-108. [PMID: 29236866 DOI: 10.1590/0001-3765201720160348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/08/2016] [Indexed: 11/21/2022] Open
Abstract
Considering that thiol-containing enzymes like kinases are critical for several metabolic pathways and energy homeostasis, we investigated the effects of cystine dimethyl ester and/or cysteamine administration on kinases crucial for energy metabolism in the kidney of Wistar rats. Animals were injected twice a day with 1.6 µmol/g body weight cystine dimethyl ester and/or 0.26 µmol/g body weight cysteamine from the 16th to the 20th postpartum day and euthanized after 12 hours. Pyruvate kinase, adenylate kinase, creatine kinase activities and thiol/disulfide ratio were determined. Cystine dimethyl ester administration reduced thiol/disulfide ratio and inhibited the kinases activities. Cysteamine administration increased the thiol/disulfide ratio and co-administration with cystine dimethyl ester prevented the inhibition of the enzymes. Regression between the thiol/disulfide ratio, and the kinases activities were significant. These results suggest that redox status may regulate energy metabolism in the rat kidney. If thiol-containing enzymes inhibition and oxidative stress occur in patients with cystinosis, it is possible that lysosomal cystine depletion may not be the only beneficial effect of cysteamine administration, but also its antioxidant and thiol-protector effect.
Collapse
Affiliation(s)
- Virginia C Rech
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Nanociências, Laboratório de Nanotecnologia, Centro Universitário Franciscano, Rua dos Andradas, 1614, 97010-032 Santa Maria, RS, Brazil
| | - Nathana J Mezzomo
- Programa de Pós-Graduação em Nanociências, Laboratório de Nanotecnologia, Centro Universitário Franciscano, Rua dos Andradas, 1614, 97010-032 Santa Maria, RS, Brazil
| | - Genaro A Athaydes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil
| | - Luciane R Feksa
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil.,Instituto de Ciências da Saúde, Universidade Feevale, ERS-239, 2755, 93525-075 Novo Hamburgo, RS, Brazil
| | - Vandré C Figueiredo
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil
| | - Adriana Kessler
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil.,Faculdade de Enfermagem, Nutrição e Fisioterapia, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, Prédio 12, Partenon, 90619-900 Porto Alegre, RS, Brazil
| | - Itiane D DE Franceschi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil
| | - Clovis M D Wannmacher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil
| |
Collapse
|
99
|
Veltman K, Ahmad Y, Harris C, Jolliet O. Characterizing thiol redox dynamics in the organogenesis stage rat embryo. Free Radic Biol Med 2017; 113:97-108. [PMID: 28916472 DOI: 10.1016/j.freeradbiomed.2017.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/30/2017] [Accepted: 09/09/2017] [Indexed: 01/19/2023]
Abstract
Precise control of the glutathione (GSH): glutathione disulfide (GSSG) balance is vital for the developing embryo, but it is not yet well understood how GSH levels and the GSH redox state are regulated, maintained, and modulated over the course of mammalian embryonic development. In this study, we characterize and connect thiol redox dynamics, protein synthesis, volumetric growth and net cysteine fluxes over the course of early organogenesis (gestational day (GD) 10-GD11.13) in the rat embryo. Our results show that despite a significant exponential growth of conceptal volumes and protein mass, the GSH: GSSG redox balance is remarkably stable during early organogenesis, with distinct redox potentials for the visceral yolk sac (VYS) (- 218mV) and the embryo proper (EMB) (- 222mV). The yolk sac was found to play a key role in maintaining GSH levels and the GSH: GSSG redox balance in the developing embryo. Based on an overall cysteine (Cys) mass-balance, we show that until GD10.6, yolk sac supply of Cys, the rate-limiting precursor for GSH synthesis, is sufficient to sustain embryonic demands for its GSH synthesis and protein synthesis needs. After GD10.6, the EMB maintains the amino acid intake flux, resulting in a significant depletion of most thiols in the amniotic fluid and the yolk sac fluid. Cysteine, was found to be predominantly used for de novo protein synthesis in the developing embryo (approximately 90% of total Cys). Protein synthesis (rates) should thus be included in any quantitative assessment of GSH redox dynamics in the developing embryo. Our time-course dataset of thiol dynamics, developed exponential relationships for protein synthesis and volumetric growth, and yolk sac surface area-mediated protein influx, provide important quantitative insights in GSH redox dynamics during embryonic development and are a prerequisite to further develop quantitative 'systems biology' models for GSH metabolism in the developing embryo.
Collapse
Affiliation(s)
- K Veltman
- University of Michigan, School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States.
| | - Y Ahmad
- University of Michigan, School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - C Harris
- University of Michigan, School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - O Jolliet
- University of Michigan, School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| |
Collapse
|
100
|
Giustarini D, Colombo G, Garavaglia ML, Astori E, Portinaro NM, Reggiani F, Badalamenti S, Aloisi AM, Santucci A, Rossi R, Milzani A, Dalle-Donne I. Assessment of glutathione/glutathione disulphide ratio and S-glutathionylated proteins in human blood, solid tissues, and cultured cells. Free Radic Biol Med 2017; 112:360-375. [PMID: 28807817 DOI: 10.1016/j.freeradbiomed.2017.08.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/24/2022]
Abstract
Glutathione (GSH) is the major non-protein thiol in humans and other mammals, which is present in millimolar concentrations within cells, but at much lower concentrations in the blood plasma. GSH and GSH-related enzymes act both to prevent oxidative damage and to detoxify electrophiles. Under oxidative stress, two GSH molecules become linked by a disulphide bridge to form glutathione disulphide (GSSG). Therefore, assessment of the GSH/GSSG ratio may provide an estimation of cellular redox metabolism. Current evidence resulting from studies in human blood, solid tissues, and cultured cells suggests that GSH also plays a prominent role in protein redox regulation via S -glutathionylation, i.e., the conjugation of GSH to reactive protein cysteine residues. A number of methodologies that enable quantitative analysis of GSH/GSSG ratio and S-glutathionylated proteins (PSSG), as well as identification and visualization of PSSG in tissue sections or cultured cells are currently available. Here, we have considered the main methodologies applied for GSH, GSSG and PSSG detection in biological samples. This review paper provides an up-to-date critical overview of the application of the most relevant analytical, morphological, and proteomics approaches to detect and analyse GSH, GSSG and PSSG in mammalian samples as well as discusses their current limitations.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Graziano Colombo
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Emanuela Astori
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Nicola Marcello Portinaro
- Clinica ortopedica e traumatologica, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Salvatore Badalamenti
- Nephrology and Dialysis Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Anna Maria Aloisi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Ranieri Rossi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Aldo Milzani
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|