51
|
MMP1, MMP9, and COX2 expressions in promonocytes are induced by breast cancer cells and correlate with collagen degradation, transformation-like morphological changes in MCF-10A acini, and tumor aggressiveness. BIOMED RESEARCH INTERNATIONAL 2013; 2013:279505. [PMID: 23762835 PMCID: PMC3665169 DOI: 10.1155/2013/279505] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/10/2013] [Indexed: 12/13/2022]
Abstract
Tumor-associated immune cells often lack immune effector activities, and instead they present protumoral functions. To understand how tumors promote this immunological switch, invasive and noninvasive breast cancer cell (BRC) lines were cocultured with a promonocytic cell line in a Matrigel-based 3D system. We hypothesized that if communication exists between tumor and immune cells, coculturing would result in augmented expression of genes associated with tumor malignancy. Upregulation of proteases MMP1 and MMP9 and inflammatory COX2 genes was found likely in response to soluble factors. Interestingly, changes were more apparent in promonocytes and correlated with the aggressiveness of the BRC line. Increased gene expression was confirmed by collagen degradation assays and immunocytochemistry of prostaglandin 2, a product of COX2 activity. Untransformed MCF-10A cells were then used as a sensor of soluble factors with transformation-like capabilities, finding that acini formed in the presence of supernatants of the highly aggressive BRC/promonocyte cocultures often exhibited total loss of the normal architecture. These data support that tumor cells can modify immune cell gene expression and tumor aggressiveness may importantly reside in this capacity. Modeling interactions in the tumor stroma will allow the identification of genes useful as cancer prognostic markers and therapy targets.
Collapse
|
52
|
Bartel C, Tichy A, Schoenkypl S, Aurich C, Walter I. Effects of steroid hormones on differentiated glandular epithelial and stromal cells in a three dimensional cell culture model of the canine endometrium. BMC Vet Res 2013; 9:86. [PMID: 23618385 PMCID: PMC3660264 DOI: 10.1186/1746-6148-9-86] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 04/22/2013] [Indexed: 12/21/2022] Open
Abstract
Background Oestrogens and progesterone have a significant impact on the endometrium during the canine oestrous cycle. Their receptors mediate plasma steroid hormone levels and are expressed in several endometrial cell types. Altered steroid receptor expression patterns are involved in serious uterine diseases; however the mechanisms of hormone action during pathogenesis in these tissues remain unclear. The development of 3D culture systems of canine endometrial cells provides an opportunity for the effects of steroid hormones to be quantitatively assessed in a more in vivo-like setting. The present study aimed to determine the effects of the steroid hormones 17β-estradiol (E) and progesterone (P) on the expression of the oestrogen and progesterone receptors (ER and PR), and on proliferative activity, in a 3D co-culture system of canine uterine origin, comprising differentiated endometrial glands, and stromal cells (SCs). Results Morphology, differentiation, and apical-basolateral polarity of cultured glandular epithelial cells (GECs) were comparable to those in native uterine tissue as assessed by immunohistochemistry using differentiation markers (β-catenin, laminin), lectin histochemistry, and transmission electron microscopy. Supplementation of our 3D-culture system with E (at 15, 30 and 100 pg/mL) resulted in constant levels of ER expression in GECs, but reduced expression levels in SCs. PR expression was reduced in both GECs and SCs following treatment with E. 3 ng/mL P resulted in increased ER expression in GECs, but a decrease in SCs. PR expression in GECs increased in all P-treated groups, whereas PRs in SCs decreased with the lowest and highest doses, but increased with the middle dose of treatment. Proliferative activity, assessed by Ki67 staining, remained below 1% in all assays and cell types. Conclusions The present study demonstrates the applicability of our 3D organotypic canine endometrium-derived culture system for cellular-level studies. 3D cultures represent near-physiological systems allowing reproducible quantitative experimentation, thus reducing the need to experiment on living animals. The results of the present investigation emphasize the importance of co-culture of the uterine glands with SCs, as it was shown that the responsiveness of the different cell types to steroid hormones were divergent in the 3D cell culture model.
Collapse
Affiliation(s)
- Cordula Bartel
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine, Veterinaerplatz 1, Vienna A - 1210, Austria.
| | | | | | | | | |
Collapse
|
53
|
Nguyen HT, Zhuang Y, Sun L, Kantrow SP, Kolls JK, You Z, Zhuo Y, Shan B. Src-mediated morphology transition of lung cancer cells in three-dimensional organotypic culture. Cancer Cell Int 2013; 13:16. [PMID: 23409704 PMCID: PMC3626791 DOI: 10.1186/1475-2867-13-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/11/2013] [Indexed: 11/10/2022] Open
Abstract
A fribotic tumor microenvironment promotes progression of cancer. In this study, we utilize a reconstituted basement membrane mimics Matrigel based three-dimensional organotypic culture (rBM 3-D) to investigate the mechanisms that mediate the tumor promoting effects of the fibrogenic mediators TGF-β1 and type I collagen (Col-1) on lung adenocarcinoma cells. Similar to normal alveolar epithelial cells, the well-differentiated lung adenocarcinoma cells in rBM 3-D culture undergo acinar morphogeneis that features polarized epithelial cell spheres with a single central lumen. Either TGF-β1 or Col-1 modestly distorts acinar morphogenesis. On the other hand, TGF-β1 and Col-1 synergistically induce a transition from acinar morphology into stellate morphology that is characteristic of invasive and metastatic cancer cells. Inhibition of the Src kinase activity abrogates induction of stellate morphology, activation of Akt and mTOR, and the expression of tumor promoting genes by TGF-β1 and Col-1. To a similar extent, pharmacological inhibition of mTOR abrogates the cellular responses to TGF-β1 and Col-1. In summary, we demonstrate that TGF-β1 and Col-1 promote stellate morphogenesis of lung cancer cells. Our findings further suggest that the Src-Akt-mTOR axis mediates stellate morphogenesis. These findings also indicate that rBM 3-D culture can serve as an ideal platform for swift and cost-effective screening of therapeutic candidates at the interface of the tumor and its microenvironment.
Collapse
Affiliation(s)
- Hong T Nguyen
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Kambach DM, Sodi VL, Lelkes PI, Azizkhan-Clifford J, Reginato MJ. ErbB2, FoxM1 and 14-3-3ζ prime breast cancer cells for invasion in response to ionizing radiation. Oncogene 2013; 33:589-98. [PMID: 23318431 DOI: 10.1038/onc.2012.629] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/13/2012] [Accepted: 11/17/2012] [Indexed: 12/30/2022]
Abstract
ErbB2 is frequently highly expressed in premalignant breast cancers, including ductal carcinoma in situ (DCIS); however, little is known about the signals or pathways it contributes to progression into the invasive/malignant state. Radiotherapy is often used to treat early premalignant lesions regardless of ErbB2 status. Here, we show that clinically relevant doses of ionizing radiation (IR)-induce cellular invasion of ErbB2-expressing breast cancer cells, as well as MCF10A cells overexpressing ErbB2. ErbB2-negative breast cancer cells, such as MCF7 and T47D, do not invade following treatment with IR nor do MCF10A cells overexpressing epidermal growth factor receptor. ErbB2 becomes phosphorylated at tyrosine 877 in a dose- and time- dependent manner following exposure to X-rays, and activates downstream signaling cascades including PI3K/Akt. Inhibition of these pathways, as well as inhibition of reactive oxygen species (ROS) with antioxidants, prevents IR-induced invasion. Activation of ErbB2-dependent signaling results in upregulation of the forkhead family transcription factor, FoxM1, and its transcriptional targets, including matrix metalloproteinase 2 (MMP2). Inhibition of FoxM1 by RNA interference prevented induction of invasion by IR, and overexpression of FoxM1 in MCF10A cells was sufficient to promote IR-induced invasion. Moreover, we found that 14-3-3ζ is also upregulated by IR in cancer cells in a ROS-dependent manner, is required for IR-induced invasion in ErbB2-positive breast cancer cells and together with FoxM1 is sufficient for invasion in ErbB2-negative breast cancer cells. Thus, our data show that IR-mediated activation of ErbB2 and induction of 14-3-3ζ collaborate to regulate FoxM1 and promote invasion of breast cancer cells and furthermore, may serve as therapeutic targets to enhance radiosensitivity of breast cancers.
Collapse
Affiliation(s)
- D M Kambach
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - V L Sodi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - P I Lelkes
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - J Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - M J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
55
|
Kaur H, Mao S, Li Q, Sameni M, Krawetz SA, Sloane BF, Mattingly RR. RNA-Seq of human breast ductal carcinoma in situ models reveals aldehyde dehydrogenase isoform 5A1 as a novel potential target. PLoS One 2012; 7:e50249. [PMID: 23236365 PMCID: PMC3516505 DOI: 10.1371/journal.pone.0050249] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 10/22/2012] [Indexed: 01/16/2023] Open
Abstract
Breast ductal carcinoma in situ (DCIS) is being found in great numbers of women due to the widespread use of mammography. To increase knowledge of DCIS, we determined the expression changes that are common among three DCIS models (MCF10.DCIS, SUM102 and SUM225) compared to the MCF10A model of non-tumorigenic mammary epithelial cells in three dimensional (3D) overlay culture with reconstituted basement membrane (rBM). Extracted mRNA was subjected to 76 cycles of deep sequencing (RNA-Seq) using Illumina Genome Analyzer GAIIx. Analysis of RNA-Seq results showed 295 consistently differentially expressed transcripts in the DCIS models. These differentially expressed genes encode proteins that are associated with a number of signaling pathways such as integrin, fibroblast growth factor and TGFβ signaling, show association with cell-cell signaling, cell-cell adhesion and cell proliferation, and have a notable bias toward localization in the extracellular and plasma membrane compartments. RNA-Seq data was validated by quantitative real-time PCR of selected differentially expressed genes. Aldehyde dehydrogenase 5A1 (ALDH5A1) which is an enzyme that is involved in mitochondrial glutamate metabolism, was over-expressed in all three DCIS models at both the mRNA and protein levels. Disulfiram and valproic acid are known to inhibit ALDH5A1 and are safe for chronic use in humans for other disorders. Both of these drugs significantly inhibited net proliferation of the DCIS 3D rBM overlay models, but had minimal effect on MCF10A 3D rBM overlay models. These results suggest that ALDH5A1 may play an important role in DCIS and potentially serve as a novel molecular therapeutic target.
Collapse
Affiliation(s)
- Hitchintan Kaur
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Shihong Mao
- Center for Molecular Medicine and Genetics, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Quanwen Li
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Mansoureh Sameni
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Stephen A. Krawetz
- Center for Molecular Medicine and Genetics, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Bonnie F. Sloane
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Raymond R. Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
56
|
Monteleon CL, Sedgwick A, Hartsell A, Dai M, Whittington C, Voytik-Harbin S, D'Souza-Schorey C. Establishing epithelial glandular polarity: interlinked roles for ARF6, Rac1, and the matrix microenvironment. Mol Biol Cell 2012; 23:4495-505. [PMID: 23051733 PMCID: PMC3510012 DOI: 10.1091/mbc.e12-03-0246] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The depletion of ARF6 in epithelial cysts causes a striking inversion of glandular orientation. This requires temporal Rac1 inactivation and is accompanied in basement membrane cultures by improperly assembled laminins. In collagen I, these inverted cysts promote integrin-linked fibril linearization reminiscent of matrix remodeling in disease. Epithelial cysts comprise the structural units of the glandular epithelium. Although glandular inversion in epithelial tumors is thought to be a potential mechanism for the establishment of metastatic disease, little is known about the morphogenic cues and signaling pathways that govern glandular polarity and organization. Using organotypic cultures of Madin-Darby canine kidney cells in reconstituted basement membrane, we show that cellular depletion of the small GTP-binding protein ARF6 promotes the formation of inverted cysts, wherein the apical cell membrane faces the cyst exterior, and the basal domain faces the central lumen, while individual cell polarity is maintained. These cysts are also defective in interactions with laminin at the cyst–matrix interface. This inversion of glandular orientation is accompanied by Rac1 inactivation during early cystogenesis, and temporal activation of Rac1 is sufficient to recover the normal cyst phenotype. In an unnatural collagen I microenvironment, ARF6-depleted, inverted epithelial cysts exhibit some loss of cell polarity, a marked increase in Rho activation and Rac1 inactivation, and striking rearrangement of the surrounding collagen I matrix. These studies demonstrate the importance of ARF6 as a critical determinant of glandular orientation and the matrix environment in dictating structural organization of epithelial cysts.
Collapse
Affiliation(s)
- Christine L Monteleon
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Marchese S, Silva E. Disruption of 3D MCF-12A breast cell cultures by estrogens--an in vitro model for ER-mediated changes indicative of hormonal carcinogenesis. PLoS One 2012; 7:e45767. [PMID: 23056216 PMCID: PMC3462778 DOI: 10.1371/journal.pone.0045767] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/23/2012] [Indexed: 02/05/2023] Open
Abstract
Introduction Estrogens regulate the proliferation of normal and neoplastic breast epithelium. Although the intracellular mechanisms of estrogens in the breast are largely understood, little is known about how they induce changes in the structure of the mammary epithelium, which are characteristic of breast cancer. In vitro three dimensional (3D) cultures of immortalised breast epithelial cells recapitulate features of the breast epithelium in vivo, including formation of growth arrested acini with hollow lumen and basement membrane. This model can also reproduce features of malignant transformation and breast cancer, such as increased cellular proliferation and filling of the lumen. However, a system where a connection between estrogen receptor (ER) activation and disruption of acini formation can be studied to elucidate the role of estrogens is still missing. Methods/Principal Findings We describe an in vitro 3D model for breast glandular structure development, using breast epithelial MCF-12A cells cultured in a reconstituted basement membrane matrix. These cells are estrogen receptor (ER)α, ERβ and G-protein coupled estrogen receptor 1 (GPER) competent, allowing the investigation of the effects of estrogens on mammary gland formation and disruption. Under normal conditions, MCF-12A cells formed organised acini, with deposition of basement membrane and hollow lumen. However, treatment with 17β-estradiol, and the exogenous estrogens bisphenol A and propylparaben resulted in deformed acini and filling of the acinar lumen. When these chemicals were combined with ER and GPER inhibitors (ICI 182,780 and G-15, respectively), the deformed acini recovered normal features, such as a spheroid shape, proliferative arrest and luminal clearing, suggesting a role for the ER and GPER in the estrogenic disruption of acinar formation. Conclusion This new model offers the opportunity to better understand the role of the ER and GPER in the morphogenesis of breast glandular structure as well as the events implicated in breast cancer initiation and progression.
Collapse
MESH Headings
- Benzhydryl Compounds/pharmacology
- Benzodioxoles/pharmacology
- Cell Culture Techniques
- Cell Line
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estrogen Antagonists/pharmacology
- Estrogen Receptor Modulators/pharmacology
- Estrogen Receptor alpha/antagonists & inhibitors
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/antagonists & inhibitors
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Estrogens/pharmacology
- Estrogens, Non-Steroidal/pharmacology
- Female
- Fulvestrant
- Gene Expression/drug effects
- Humans
- Immunoblotting
- Mammary Glands, Human/cytology
- Mammary Glands, Human/drug effects
- Mammary Glands, Human/metabolism
- Microscopy, Confocal
- Parabens/pharmacology
- Phenols/pharmacology
- Quinolines/pharmacology
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Progesterone/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Trefoil Factor-1
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
| | - Elisabete Silva
- UCL School of Pharmacy, London, United Kingdom
- Institute for the Environment, Brunel University, Uxbridge, United Kingdom
- * E-mail:
| |
Collapse
|
58
|
Li C, Nguyen HT, Zhuang Y, Lin Z, Flemington EK, Zhuo Y, Kantrow SP, Morris GF, Sullivan DE, Shan B. Comparative profiling of miRNA expression of lung adenocarcinoma cells in two-dimensional and three-dimensional cultures. Gene 2012; 511:143-50. [PMID: 23036707 DOI: 10.1016/j.gene.2012.09.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 09/12/2012] [Accepted: 09/26/2012] [Indexed: 12/21/2022]
Abstract
Three-dimensional organotypic culture using reconstituted basement membrane matrix (rBM 3-D) is an invaluable tool to characterize morphogenesis of epithelial cells and to elucidate the tumor-modulating actions of extracellular matrix. microRNAs (miRNA) are a novel class of tumor modulating genes. A substantial amount of investigation of miRNAs in cancer is carried out using monolayer 2-D culture on plastic substratum, which lacks a consideration of the matrix-mediated regulation of miRNAs. In the current study we compared the expression of miRNAs in rBM 3-D and 2-D cultures of two lung adenocarcinoma cell lines. Our findings revealed a profound difference in miRNA profiles between 2-D and rBM 3-D cultures of lung adenocarcinoma cells. The rBM 3-D culture-specific miRNA profile was highlighted with higher expression of the tumor suppressive miRNAs (i.e., miR-200 family) and lower expression of the oncogenic miRNAs (i.e., miR-17-92 cluster and miR-21) than that of 2-D culture. Moreover, the expression pattern of miR-17, miR-21, and miR-200a in rBM 3-D culture correlated with the expression of their targets and acinar morphogenesis, a differentiation behavior of lung epithelial cells in rBM 3-D culture. Over-expression of miR-21 suppressed its target PTEN and disrupted acinar morphogenesis. In summary, we provide the first miRNA profile of lung adenocarcinoma cells in rBM 3-D culture with respect to acinar morphogenesis. These results indicate that rBM 3-D culture is essential to a comprehensive understanding of the miRNA biology in lung epithelial cells pertinent to lung adenocarcinoma.
Collapse
Affiliation(s)
- Cui Li
- Xiangya Hospital, Central South University, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Novel image analysis approach quantifies morphological characteristics of 3D breast culture acini with varying metastatic potentials. J Biomed Biotechnol 2012; 2012:102036. [PMID: 22665978 PMCID: PMC3362088 DOI: 10.1155/2012/102036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 01/07/2023] Open
Abstract
Prognosis of breast cancer is primarily predicted by the histological grading of the tumor, where pathologists manually evaluate microscopic characteristics of the tissue. This labor intensive process suffers from intra- and inter-observer variations; thus, computer-aided systems that accomplish this assessment automatically are in high demand. We address this by developing an image analysis framework for the automated grading of breast cancer in in vitro three-dimensional breast epithelial acini through the characterization of acinar structure morphology. A set of statistically significant features for the characterization of acini morphology are exploited for the automated grading of six (MCF10 series) cell line cultures mimicking three grades of breast cancer along the metastatic cascade. In addition to capturing both expected and visually differentiable changes, we quantify subtle differences that pose a challenge to assess through microscopic inspection. Our method achieves 89.0% accuracy in grading the acinar structures as nonmalignant, noninvasive carcinoma, and invasive carcinoma grades. We further demonstrate that the proposed methodology can be successfully applied for the grading of in vivo tissue samples albeit with additional constraints. These results indicate that the proposed features can be used to describe the relationship between the acini morphology and cellular function along the metastatic cascade.
Collapse
|
60
|
Hall MS, Long R, Hui CY, Wu M. Mapping three-dimensional stress and strain fields within a soft hydrogel using a fluorescence microscope. Biophys J 2012; 102:2241-50. [PMID: 22677377 DOI: 10.1016/j.bpj.2012.04.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 03/20/2012] [Accepted: 04/06/2012] [Indexed: 11/24/2022] Open
Abstract
Three-dimensional cell culture is becoming mainstream as it is recognized that many animal cell types require the biophysical and biochemical cues within the extracellular matrices to perform truly physiologically realistic functions. However, tools for characterizing cellular mechanical environment are largely limited to cell culture plated on a two-dimensional substrate. We present a three-dimensional traction microscopy that is capable of mapping three-dimensional stress and strain within a soft and transparent extracellular matrix using a fluorescence microscope and a simple forward data analysis algorithm. We validated this technique by mapping the strain and stress field within the bulk of a thin polyacrylamide gel layer indented by a millimeter-size glass ball, together with a finite-element analysis. The experimentally measured stress and strain fields are in excellent agreements with results of the finite-element simulation. The unique contributions of the presented three-dimensional traction microscopy technique are: 1), the use of a fluorescence microscope in contrast with the confocal microscope that is required for the current three-dimensional traction microscopes in the literature; 2), the determination of the pressure field of an incompressible gel from strains; and 3), the simple forward-data-analysis algorithm. Future application of this technique for mapping animal cell traction in three-dimensional nonlinear biological gels is discussed.
Collapse
Affiliation(s)
- Matthew S Hall
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | | | | | | |
Collapse
|
61
|
Cheriyath V, Kuhns MA, Jacobs BS, Evangelista P, Elson P, Downs-Kelly E, Tubbs R, Borden EC. G1P3, an interferon- and estrogen-induced survival protein contributes to hyperplasia, tamoxifen resistance and poor outcomes in breast cancer. Oncogene 2012; 31:2222-36. [PMID: 21996729 DOI: 10.1038/onc.2011.393] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 06/26/2011] [Accepted: 08/04/2011] [Indexed: 02/06/2023]
Abstract
Hormonally regulated survival factors can have an important role in breast cancer. Here we elucidate G1P3, a survival protein induced by interferons (IFNs), as a target of estrogen signaling and a contributor to poor outcomes in estrogen receptor-positive (ER(+)) breast cancer. Compared with normal breast tissue, G1P3 was upregulated in the malignant epithelium (50 × higher) and was induced by estrogen ex vivo. In accord with its overexpression in early stages of breast cancer (hyperplasia and ductal carcinoma in situ), in morphogenesis assays G1P3 enhanced the survival of MCF10A acinar luminal cells causing hyperplasia by suppressing detachment-induced loss of mitochondrial potential and apoptosis (anoikis). In cells undergoing anoikis, G1P3 attenuated the induction of Bim protein, a proapoptotic member of the Bcl-2 family and reversed the downmodulation of Bcl-2 protein. Downregulation of G1P3 induced spontaneous apoptosis in BT-549 breast cancer cells and significantly reduced the growth of ER(+) breast cancer cell MCF7 (P≤0.01), further suggesting its prosurvival activity. In agreement with its induction by estrogen, G1P3 antagonized tamoxifen, an inhibitor of ER in MCF7 cells. More importantly, elevated expression of G1P3 was significantly associated with decreased relapse-free and overall survival in ER(+) breast cancer patients (P≤0.01). Our studies suggest that elevated expression of G1P3 may perturb canonical tumor-suppressing activity of IFNs partly by affecting the balance of pro- and antiapoptotic members of Bcl-2 family proteins, leading to breast cancer development and resistance to therapies.
Collapse
Affiliation(s)
- V Cheriyath
- Translational Hematology and Oncology Research, Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Nguyen HT, Li C, Lin Z, Zhuang Y, Flemington EK, Burow ME, Lin YI, Shan B. The microRNA expression associated with morphogenesis of breast cancer cells in three-dimensional organotypic culture. Oncol Rep 2012; 28:117-126. [PMID: 22576799 DOI: 10.3892/or.2012.1764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/26/2012] [Indexed: 11/06/2022] Open
Abstract
Three-dimensional organotypic culture using reconstituted basement membrane matrix Matrigel (rBM 3-D) is an indispensable tool to characterize morphogenesis of mammary epithelial cells and to elucidate the tumor-modulating actions of extracellular matrix (ECM). microRNAs (miRNAs) are a novel class of oncogenes and tumor suppressors. The majority of our current knowledge of miRNA expression and function in cancer cells is derived from monolayer 2-D culture on plastic substratum, which lacks consideration of the influence of ECM-mediated morphogenesis on miRNAs. In the present study, we compared the expression of miRNAs in rBM 3-D and 2-D cultures of the non-invasive MCF-7 and the invasive MDA-MB231 cells. Our findings revealed a profound difference in miRNA profiles between 2-D and rBM 3-D cultures within each cell type. Moreover, rBM 3-D culture exhibited greater discrimination in miRNA profiles between MCF-7 and MDA-MB231 cells than 2-D culture. The disparate miRNA profiles correlated with distinct mass morphogenesis of MCF-7 and invasive stellate morphogenesis of MDA-MB231 cells in rBM 3-D culture. Supplementation of the tumor promoting type I collagen in rBM 3-D culture substantially altered the miRNA signature of mass morphologenesis of MCF-7 cells in rBM 3-D culture. Overexpression of the differentially expressed miR-200 family member miR429 in MDA-MB231 cells attenuated their invasive stellate morphogenesis in rBM 3-D culture. In summary, we provide the first miRNA signatures of morphogenesis of human breast cancer cells in rBM 3-D culture and warrant further utilization of rBM 3-D culture in investigation of miRNAs in breast cancer.
Collapse
Affiliation(s)
- Hong T Nguyen
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Cui Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Hunan 41008
| | - Zhen Lin
- Department of Pathology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Yan Zhuang
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Erik K Flemington
- Department of Pathology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Y I Lin
- Department of Obstetrics and Gynecology, Institute of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Bin Shan
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
63
|
Eritja N, Mirantes C, Llobet D, Masip G, Matias-Guiu X, Dolcet X. ERα-mediated repression of pro-inflammatory cytokine expression by glucocorticoids reveals a crucial role for TNFα and IL1α in lumen formation and maintenance. J Cell Sci 2012; 125:1929-44. [PMID: 22328525 DOI: 10.1242/jcs.095067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Most glandular tissues comprise polarized epithelial cells organized around a single central lumen. Although there is active research investigating the molecular networks involved in the regulation of lumenogenesis, little is known about the extracellular factors that influence lumen formation and maintenance. Using a three-dimensional culture system of epithelial endometrial cells, we have revealed a new role for pro-inflammatory cytokines such as TNFα and IL1α in the formation and, more importantly, maintenance of a single central lumen. We also studied the mechanism by which glucocorticoids repress TNFα and IL1α expression. Interestingly, regulation of pro-inflammatory cytokine expression and subsequent lumen formation is mediated by estrogen receptor α (ERα) but not by the glucocorticoid receptor. Finally, we investigated the signaling pathways involved in the regulation of lumen formation by pro-inflammatory cytokines. Our results demonstrate that activation of the ERK/MAPK signaling pathway, but not the PI3K/Akt signaling pathway, is important for the formation and maintenance of a single central lumen. In summary, our results suggest a novel role for ERα-regulated pro-inflammatory cytokine expression in lumen formation and maintenance.
Collapse
Affiliation(s)
- Nuria Eritja
- Oncologic Pathology Group, Departamento de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | | | | | | | | | | |
Collapse
|
64
|
Leung CT, Brugge JS. Outgrowth of single oncogene-expressing cells from suppressive epithelial environments. Nature 2012; 482:410-3. [PMID: 22318515 PMCID: PMC3297969 DOI: 10.1038/nature10826] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 01/03/2012] [Indexed: 01/21/2023]
Abstract
Tumorigenesis is a clonal evolution process initiated from single cells within otherwise histologically normal tissue1. How single, sporadic mutant cells that have sustained oncogenic alterations evolve within tightly regulated tissue environment remains elusive. Here, we investigated the effects of inducing oncogene expression in single cells within organotypic mammary acini as a model to elucidate the processes by which oncogenic alterations initiate clonal progression from organized epithelial environments. We found that sporadic cells induced to overexpress oncogenes that specifically perturb cell-cycle checkpoints (HPV16-E7 and cyclinD1), deregulate c-Myc transcription, or activate AKT signaling, remain quiescent within growth-arrested acini. In contrast, single ErbB2-overexpressing cells initiate a cellular cascade involving cell translocation from the epithelial layer and luminal outgrowth characteristic of neoplastic progression in early-stage epithelial tumors. ErbB2-mediated luminal cell translocation is dependent on ERK and matrix metalloproteinase (MMP) activities, and genetic alterations that perturb local cell-matrix adhesion can drive cell translocation. We further provide evidence that luminal cell translocation may drive clonal selection by promoting either death or expansion of quiescent oncogene-expressing cells depending on whether preexisting alterations allow anchorage-independent survival and growth. Our data show that the initial outgrowth of single oncogene-expressing cells from organized epithelial structures is a highly regulated process, and we propose that a cell translocation mechanism allows sporadic mutant cells to evade suppressive microenvironments and provokes clonal selection for survival and proliferative expansion outside their native niches.
Collapse
Affiliation(s)
- Cheuk T Leung
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
65
|
Gene expression analysis of in vitro cocultures to study interactions between breast epithelium and stroma. J Biomed Biotechnol 2011; 2011:520987. [PMID: 22203785 PMCID: PMC3238808 DOI: 10.1155/2011/520987] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 12/21/2022] Open
Abstract
The interactions between breast epithelium and stroma are fundamental to normal tissue homeostasis and for tumor initiation and progression. Gene expression studies of in vitro coculture models demonstrate that in vitro models have relevance for tumor progression in vivo. For example, stromal gene expression has been shown to vary in association with tumor subtype in vivo, and analogous in vitro cocultures recapitulate subtype-specific biological interactions. Cocultures can be used to study cancer cell interactions with specific stromal components (e.g., immune cells, fibroblasts, endothelium) and different representative cell lines (e.g., cancer-associated versus normal-associated fibroblasts versus established, immortalized fibroblasts) can help elucidate the role of stromal variation in tumor phenotypes. Gene expression data can also be combined with cell-based assays to identify cellular phenotypes associated with gene expression changes. Coculture systems are manipulable systems that can yield important insights about cell-cell interactions and the cellular phenotypes that occur as tumor and stroma co-evolve.
Collapse
|
66
|
MCF-7 Cells as a Three-Dimensional Model for the Study of Human Breast Cancer. Tissue Eng Part C Methods 2011; 17:1097-107. [DOI: 10.1089/ten.tec.2011.0260] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
67
|
Avivar-Valderas A, Salas E, Bobrovnikova-Marjon E, Diehl JA, Nagi C, Debnath J, Aguirre-Ghiso JA. PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol Cell Biol 2011; 31:3616-29. [PMID: 21709020 PMCID: PMC3165554 DOI: 10.1128/mcb.05164-11] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 06/17/2011] [Indexed: 11/20/2022] Open
Abstract
Mammary epithelial cells (MECs) detached from the extracellular matrix (ECM) produce deleterious reactive oxygen species (ROS) and induce autophagy to survive. The coordination of such opposing responses likely dictates whether epithelial cells survive ECM detachment or undergo anoikis. Here, we demonstrate that the endoplasmic reticulum kinase PERK facilitates survival of ECM-detached cells by concomitantly promoting autophagy, ATP production, and an antioxidant response. Loss-of-function studies show that ECM detachment activates a canonical PERK-eukaryotic translation initiation factor 2α (eIF2α)-ATF4-CHOP pathway that coordinately induces the autophagy regulators ATG6 and ATG8, sustains ATP levels, and reduces ROS levels to delay anoikis. Inducible activation of an Fv2E-ΔNPERK chimera by persistent activation of autophagy and reduction of ROS results in lumen-filled mammary epithelial acini. Finally, luminal P-PERK and LC3 levels are reduced in PERK-deficient mammary glands, whereas they are increased in human breast ductal carcinoma in situ (DCIS) versus normal breast tissues. We propose that the normal proautophagic and antioxidant PERK functions may be hijacked to promote the survival of ECM-detached tumor cells in DCIS lesions.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Autophagy/physiology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Adhesion
- Cell Line
- Cell Survival
- Cells, Cultured
- Embryo, Mammalian/cytology
- Enzyme Activation
- Extracellular Matrix/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Immunoblotting
- Mammary Glands, Animal/metabolism
- Mice
- Mice, Knockout
- Microscopy, Fluorescence
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Oxidative Stress/physiology
- RNA Interference
- eIF-2 Kinase/genetics
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- Alvaro Avivar-Valderas
- Department of Medicine and Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029
| | - Eduardo Salas
- University of California San Francisco, Department of Pathology, and Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143
| | - Ekaterina Bobrovnikova-Marjon
- Department of Cancer Biology and Abramson Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - J. Alan Diehl
- Department of Cancer Biology and Abramson Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Chandandeep Nagi
- Department of Medicine and Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029
| | - Jayanta Debnath
- University of California San Francisco, Department of Pathology, and Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143
| | - Julio A. Aguirre-Ghiso
- Department of Medicine and Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029
| |
Collapse
|
68
|
Kim Y, Stolarska MA, Othmer HG. The role of the microenvironment in tumor growth and invasion. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:353-79. [PMID: 21736894 PMCID: PMC3156881 DOI: 10.1016/j.pbiomolbio.2011.06.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mathematical modeling and computational analysis are essential for understanding the dynamics of the complex gene networks that control normal development and homeostasis, and can help to understand how circumvention of that control leads to abnormal outcomes such as cancer. Our objectives here are to discuss the different mechanisms by which the local biochemical and mechanical microenvironment, which is comprised of various signaling molecules, cell types and the extracellular matrix (ECM), affects the progression of potentially-cancerous cells, and to present new results on two aspects of these effects. We first deal with the major processes involved in the progression from a normal cell to a cancerous cell at a level accessible to a general scientific readership, and we then outline a number of mathematical and computational issues that arise in cancer modeling. In Section 2 we present results from a model that deals with the effects of the mechanical properties of the environment on tumor growth, and in Section 3 we report results from a model of the signaling pathways and the tumor microenvironment (TME), and how their interactions affect the development of breast cancer. The results emphasize anew the complexities of the interactions within the TME and their effect on tumor growth, and show that tumor progression is not solely determined by the presence of a clone of mutated immortal cells, but rather that it can be 'community-controlled'.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics & Statistics, University of Michigan, Dearborn, MI 48128-2406, USA
| | | | | |
Collapse
|
69
|
Raof NA, Raja WK, Castracane J, Xie Y. Bioengineering embryonic stem cell microenvironments for exploring inhibitory effects on metastatic breast cancer cells. Biomaterials 2011; 32:4130-9. [PMID: 21411140 DOI: 10.1016/j.biomaterials.2011.02.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/15/2011] [Indexed: 12/21/2022]
Abstract
The recreation of an in vitro microenvironment to understand and manipulate the proliferation and migration of invasive breast cancer cells may allow one to put a halt to their metastasis capacity. Invasive cancer cells have been linked to embryonic stem (ES) cells as they possess certain similar characteristics and gene signatures. Embryonic microenvironments have the potential to reprogram cancer cells into a less invasive phenotype and help elucidate tumorigenesis and metastasis. In this study, we explored the feasibility of reconstructing embryonic microenvironments using mouse ES cells cultured in alginate hydrogel and investigated the interactions of ES cells and highly invasive breast cancer cells in 2D, 2&1/2D, and 3D cultures. Results showed that mouse ES cells inhibited the growth and tumor spheroid formation of breast cancer cells. The mouse ES cell microenvironment was further constructed and optimized in 3D alginate hydrogel microbeads, and co-cultured with breast cancer cells. Migration analysis displayed a significant reduction in the average velocity and trajectory of breast cancer cell locomotion compared to control, suggesting that bioengineered mouse ES cell microenvironments inhibited the proliferation and migration of breast cancer cells. This study may act as a platform to open up new options to understand and harness tumor cell plasticity and develop therapeutics for metastatic breast cancer.
Collapse
Affiliation(s)
- Nurazhani Abdul Raof
- The College of Nanoscale Science and Engineering, University at Albany, State University of New York (SUNY), 257 Fuller Road, Albany, NY 12203, USA
| | | | | | | |
Collapse
|
70
|
Smith BH, Gazda LS, Conn BL, Jain K, Asina S, Levine DM, Parker TS, Laramore MA, Martis PC, Vinerean HV, David EM, Qiu S, Cordon-Cardo C, Hall RD, Gordon BR, Diehl CH, Stenzel KH, Rubin AL. Three-Dimensional Culture of Mouse Renal Carcinoma Cells in Agarose Macrobeads Selects for a Subpopulation of Cells with Cancer Stem Cell or Cancer Progenitor Properties. Cancer Res 2011; 71:716-24. [DOI: 10.1158/0008-5472.can-10-2254] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
71
|
Baker EL, Lu J, Yu D, Bonnecaze RT, Zaman MH. Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential. Biophys J 2011; 99:2048-57. [PMID: 20923638 DOI: 10.1016/j.bpj.2010.07.051] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/22/2010] [Accepted: 07/23/2010] [Indexed: 01/10/2023] Open
Abstract
While significant advances have been made toward revealing the molecular mechanisms that influence breast cancer progression, much less is known about the associated cellular mechanical properties. To this end, we use particle-tracking microrheology to investigate the interplay among intracellular mechanics, three-dimensional matrix stiffness, and transforming potential in a mammary epithelial cell (MEC) cancer progression series. We use a well-characterized model system where human-derived MCF10A MECs overexpress either ErbB2, 14-3-3ζ, or both ErbB2 and 14-3-3ζ, with empty vector as a control. Our results show that MECs possessing ErbB2 transforming potential stiffen in response to elevated matrix stiffness, whereas non-transformed MECs or those overexpressing only 14-3-3ζ do no exhibit this response. We further observe that overexpression of ErbB2 alone is associated with the highest degree of intracellular sensitivity to matrix stiffness, and that the effect of transforming potential on intracellular stiffness is matrix-stiffness-dependent. Moreover, our intracellular stiffness measurements parallel cell migration behavior that has been previously reported for these MEC sublines. Given the current knowledge base of breast cancer mechanobiology, these findings suggest that there may be a positive relationship among intracellular stiffness sensitivity, cell motility, and perturbed mechanotransduction in breast cancer.
Collapse
Affiliation(s)
- Erin L Baker
- Department of Biomedical Engineering, The University of Texas, Austin, TX, USA
| | | | | | | | | |
Collapse
|
72
|
McCave EJ, Cass CAP, Burg KJL, Booth BW. The normal microenvironment directs mammary gland development. J Mammary Gland Biol Neoplasia 2010; 15:291-9. [PMID: 20824492 DOI: 10.1007/s10911-010-9190-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/23/2010] [Indexed: 11/29/2022] Open
Abstract
Normal development of the mammary gland is a multidimensional process that is controlled in part by its mammary microenvironment. The mammary microenvironment is a defined location that encompasses mammary somatic stem cells, neighboring signaling cells, the basement membrane and extracellular matrix, mammary fibroblasts as well as the intercellular signals produced and received by these cells. These dynamic signals take numerous forms including growth factors, steroids, cell-cell or cell-basement membrane physical interactions. Cellular growth and differentiation of the mammary gland throughout the developmental stages are regulated by changes in these signals and interactions. The purpose of this review is to summarize current information and research regarding the role of the mammary microenvironment during normal glandular development.
Collapse
Affiliation(s)
- Erin J McCave
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
73
|
Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 2010; 31:8494-506. [PMID: 20709389 DOI: 10.1016/j.biomaterials.2010.07.064] [Citation(s) in RCA: 488] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/15/2010] [Indexed: 11/18/2022]
Abstract
The behaviour of cells cultured within three-dimensional (3D) structures rather than onto two-dimensional (2D) culture plastic more closely reflects their in vivo responses. Consequently, 3D culture systems are becoming crucial scientific tools in cancer cell research. We used a novel 3D culture concept to assess cell-matrix interactions implicated in carcinogenesis: a synthetic hydrogel matrix equipped with key biomimetic features, namely incorporated cell integrin-binding motifs (e.g. RGD peptides) and the ability of being degraded by cell-secreted proteases (e.g. matrix metalloproteases). As a cell model, we chose epithelial ovarian cancer, an aggressive disease typically diagnosed at an advanced stage when chemoresistance occurs. Both cell lines used (OV-MZ-6, SKOV-3) proliferated similarly in 2D, but not in 3D. Spheroid formation was observed exclusively in 3D when cells were embedded within hydrogels. By exploiting the design flexibility of the hydrogel characteristics, we showed that proliferation in 3D was dependent on cell-integrin engagement and the ability of cells to proteolytically remodel their extracellular microenvironment. Higher survival rates after exposure to the anti-cancer drug paclitaxel were observed in cell spheroids grown in hydrogels (40-60%) compared to cell monolayers in 2D (20%). Thus, 2D evaluation of chemosensitivity may not reflect pathophysiological events seen in patients. Because of the design flexibility of their characteristics and their stability in long-term cultures (28 days), these biomimetic hydrogels represent alternative culture systems for the increasing demand in cancer research for more versatile, physiologically relevant and reproducible 3D matrices.
Collapse
Affiliation(s)
- Daniela Loessner
- Hormone Dependent Cancer Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | | | | | | | | | | |
Collapse
|
74
|
Souter LH, Andrews JD, Zhang G, Cook AC, Postenka CO, Al-Katib W, Leong HS, Rodenhiser DI, Chambers AF, Tuck AB. Human 21T breast epithelial cell lines mimic breast cancer progression in vivo and in vitro and show stage-specific gene expression patterns. J Transl Med 2010; 90:1247-58. [PMID: 20458274 DOI: 10.1038/labinvest.2010.97] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Early breast cancer progression involves advancement through specific morphological stages including atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS) and invasive mammary carcinoma (IMC), although not necessarily always in a linear fashion. Observational studies have examined genetic, epigenetic and gene expression differences in breast tissues representing these stages of progression, but model systems which would allow for experimental testing of specific factors influencing transition through these stages are scarce. The 21T series cell lines, all originally derived from the same patient with metastatic breast cancer, have been proposed to represent a mammary tumor progression series. We report here that three of the 21T cell lines indeed mimic specific stages of human breast cancer progression (21PT-derived cells, ADH; 21NT-derived cells, DCIS; 21MT-1 cells, IMC) when grown in the mammary fat pad of nude mice, albeit after a year. To develop a more rapid, readily manipulatable in vitro assay for examining the biological differences between these cell lines, we have used a 3D Matrigel system. When the three cell lines were grown in 3D Matrigel, they showed characteristic morphologies, in which quantifiable aspects of stage-specific in vivo behaviors (ie, differences in acinar structure formation, cell polarization, colony morphology, cell proliferation, cell invasion) were recapitulated in a reproducible fashion. Gene expression profiling revealed a characteristic pattern for each of the three cell lines. Interestingly, Wnt pathway alterations are particularly predominant in the early transition from 21PTci (ADH) to 21NTci (DCIS), whereas alterations in expression of genes associated with control of cell motility and invasion phenomena are more prominent in the later transition of 21NTci (DCIS) to 21MT-1 (IMC). This system thus reveals potential therapeutic targets and will provide a means of testing the influences of identified genes on transitions between these stages of pre-malignant to malignant growth.
Collapse
Affiliation(s)
- Lesley H Souter
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Zhang F, Xu R, Zhao MJ. QSG-7701 human hepatocytes form polarized acini in three-dimensional culture. J Cell Biochem 2010; 110:1175-86. [DOI: 10.1002/jcb.22632] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
76
|
Dhimolea E, Maffini MV, Soto AM, Sonnenschein C. The role of collagen reorganization on mammary epithelial morphogenesis in a 3D culture model. Biomaterials 2010; 31:3622-30. [DOI: 10.1016/j.biomaterials.2010.01.077] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 01/14/2010] [Indexed: 11/24/2022]
|
77
|
Burg T, Cass CAP, Groff R, Pepper M, Burg KJL. Building off-the-shelf tissue-engineered composites. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:1839-1862. [PMID: 20308106 DOI: 10.1098/rsta.2010.0002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Rapid advances in technology have created the realistic possibility of personalized medicine. In 2000, Time magazine listed tissue engineering as one of the 'hottest 10 career choices'. However, in the past decade, only a handful of tissue-engineered products were translated to the clinical market and none were financially viable. The reality of complex business planning and the high-investment, high-technology environment was not apparent, and the promise of tissue engineering was overstated. In the meantime, biologists were steadily applying three-dimensional benchtop tissue-culture systems for cellular research, but the systems were gelatinous and thus limited in their ability to facilitate the development of complex tissues. Now, the bioengineering literature has seen an emergence of literature describing biofabrication of tissues and organs. However, if one looks closely, again, the viable products appear distant. 'Rapid' prototyping to reproduce the intricate patterns of whole organs using large volumes of cellular components faces daunting challenges. Homogenous forms are being labelled 'tissues', but, in fact, do not represent the heterogeneous structure of the native biological system. In 2003, we disclosed the concept of combining rapid prototyping techniques with tissue engineering technologies to facilitate precision development of heterogeneous complex tissue-test systems, i.e. systems to be used for drug discovery and the study of cellular behaviour, biomedical devices and progression of disease. The focus of this paper is on the challenges we have faced since that time, moving this concept towards reality, using the case of breast tissue as an example.
Collapse
Affiliation(s)
- Timothy Burg
- Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | |
Collapse
|
78
|
Eritja N, Llobet D, Domingo M, Santacana M, Yeramian A, Matias-Guiu X, Dolcet X. A novel three-dimensional culture system of polarized epithelial cells to study endometrial carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2722-31. [PMID: 20395448 DOI: 10.2353/ajpath.2010.090974] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development of three-dimensional (3D) cultures that mimic in vivo tissue organization has a pivotal role in the investigation of the involvement of cell adhesion and polarity genes in the pathogenesis of epithelial cancers. Here we describe a novel 3D culture model with primary mouse endometrial epithelial cells. In this model, isolated endometrial epithelial cells develop single-lumened, polarized glandular structures resembling those observed in endometrial tissue. Our in vitro 3D culture model of endometrial glands requires the use of serum-free defined medium with only epidermal growth factor and insulin as growth supplements and 3% Matrigel as reconstituted extracellular matrix. Under these culture conditions, glands of epithelial cells displaying typical apicobasal polarity and proper positioning of tight and adherent junctions are formed by hollowing as early as 7 to 8 days in culture. Addition of the phosphatidylinositol 3-kinase inhibitor LY294002 completely inhibits bromodeoxyuridine incorporation and cyclinD1 expression, confirming that in vitro growth of endometrial glands depends on phosphatidylinositol 3-kinase/Akt signaling. To prove that our culture method is a good model to study endometrial carcinogenesis, we knocked down E-cadherin or phosphatase and tensin homolog expression by lentivirus-delivered short hairpin RNAs. Down-regulation of E-cadherin resulted in complete loss of epithelial cell polarity and glandular formation, whereas phosphatase and tensin homolog down-regulation resulted in increased proliferation of glandular epithelial cells. These properties indicate that our 3D culture model is suitable to study the effect of growth factors, drugs, and gene alterations in endometrial carcinogenesis and to study normal endometrial biology/physiology.
Collapse
Affiliation(s)
- Núria Eritja
- Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida, University of Lleida, Lleida, Spain
| | | | | | | | | | | | | |
Collapse
|
79
|
Dou J, Gu N. Emerging strategies for the identification and targeting of cancer stem cells. Tumour Biol 2010; 31:243-53. [PMID: 20336402 DOI: 10.1007/s13277-010-0023-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 02/23/2010] [Indexed: 12/28/2022] Open
Abstract
The hypothesis of cancer stem cells (CSCs) is receiving increasing interest and has become the subject of considerable debate among cancer researchers. Recent rapid progress in CSC research has encountered increasing difficulties and challenges. Understanding the biologic characteristic of CSCs is crucial to start with better identification and diagnosis based on CSC markers and eventually targeting to CSCs will undoubtedly result in improved prevention and treatment of many types of CSCs. We discuss here some of the approaching strategies that include establishing special methods of identifying CSCs and targeting therapies of CSCs.
Collapse
Affiliation(s)
- Jun Dou
- Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Southeast University, Nanjing 210009, China.
| | | |
Collapse
|
80
|
Abstract
3D (three-dimensional) cell culture permits a more integrated analysis of the relationship between cells, inserting them into a structure more closely resembling the cellular microenvironment in vivo. The development of in vitro parameters to approximate in vivo 3D cellular environments makes a less reductionist interpretation of cell biology possible. For breast cells, in vitro 3D culture has proven to be an important tool for the analysis of luminal morphogenesis. A greater understanding of this process is necessary because alterations in the lumen arrangement are associated with carcinogenesis. Following lumen formation in 3D cell culture using laser scanning confocal microscopy, we observed alterations in the arrangement of cytoskeletal components (F-actin and microtubules) and increasing levels of cell death associated with lumen formation. The formation of a polarized monolayer facing the lumen was characterized through 3D reconstructions and the use of TEM (transmission electron microscopy), and this process was found to occur through the gradual clearing of cells from the medullary region of the spheroids. This process was associated with different types of cell death, such as apoptosis, autophagy and entosis. The present study showed that changes in the extracellular matrix associated with long periods of time in 3D cell culture lead to the formation of a lumen in MCF-7 cell spheroids and that features of differentiation such as lumen and budding formation occur after long periods in 3D culture, even in the absence of exogenous extracellular compounds.
Collapse
|
81
|
Binamé F, Pawlak G, Roux P, Hibner U. What makes cells move: requirements and obstacles for spontaneous cell motility. MOLECULAR BIOSYSTEMS 2010; 6:648-61. [PMID: 20237642 DOI: 10.1039/b915591k] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Movement of individual cells and of cellular cohorts, chains or sheets requires physical forces that are established through interactions of cells with their environment. In vivo, migration occurs extensively during embryonic development and in adults during wound healing and tumorigenesis. In order to identify the molecular events involved in cell movement, in vitro systems have been developed. These have contributed to the definition of a number of molecular pathways put into play in the course of migratory behaviours, such as mesenchymal and amoeboid movement. More recently, our knowledge of migratory modes has been enriched by analyses of cells exploring and moving through three-dimensional (3D) matrices. While the cells' morphologies differ in 2D and 3D environments, the basic mechanisms that put a cellular body into motion are remarkably similar. Thus, in both 2D and 3D, the polarity of the migrating cell is initially defined by a specific subcellular localization of signalling molecules and components of molecular machines required for motion. While the polarization can be initiated either in response to extracellular signalling or be a chance occurrence, it is reinforced and sustained by positive feedback loops of signalling molecules. Second, adhesion to a substratum is necessary to generate forces that will propel the cell engaged in either mesenchymal or ameboid migration. For collective cell movement, intercellular coordination constitutes an additional requirement: a cell cohort remains stationary if individual cells pull in opposite directions. Finally, the availability of space to move into is a general requirement to set cells into motion. Lack of free space is probably the main obstacle for migration of most healthy cells in an adult multicellular organism. Thus, the requirements for cell movement are both intrinsic to the cell, involving coordinated signalling and interactions with molecular machines, and extrinsic, imposed by the physicochemical nature of the environment. In particular, the geometry and stiffness of the support act on a range of signalling pathways that induce specific cell migratory responses. These issues are discussed in the present review in the context of published work and our own data on collective migration of hepatocyte cohorts.
Collapse
Affiliation(s)
- Fabien Binamé
- CNRS, UMR 5535, IGMM, 1919 route de Mende, 34293 Montpellier, France
| | | | | | | |
Collapse
|
82
|
Pancreatic cancer organotypic cultures. J Biotechnol 2010; 148:16-23. [PMID: 20083148 DOI: 10.1016/j.jbiotec.2010.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 12/20/2009] [Accepted: 01/12/2010] [Indexed: 01/27/2023]
Abstract
Pancreatic cancer, the fourth most common cause of cancer-related death, is a devastating disease with poor prognosis. Over the last four decades, no effective new treatments have been developed for this cancer. As a result, its prognosis has remained unchanged. Appropriate cancer models, representing all aspects of pancreatic cancer, will enhance our understanding of its biology. In this review we discuss the evolution and merit of organotypic culture models. These co-culture in vitro systems of cancer and stromal cells grown within, or on top of, reconstituted extracellular matrix gels model pancreatic cancer more realistically than 2D systems. Different methodologies are discussed which enable interrogation of various hypotheses examining the tumour-stroma cross-talk. Thus this validated organotypic culture model provides a system, which can be easily manipulated and used to test (novel) treatment options targeting the cancer, the stromal compartment or both, in a physiologically relevant environment. The big challenge for future research is to expand this model further so that its mimicry of the human tumour is more robust. This will increase our understanding of the biology of this aggressive tumour; ultimately resulting in improved therapies and, therefore, a better prognosis.
Collapse
|
83
|
Russo J, Snider K, Pereira JS, Russo IH. Estrogen induced breast cancer is the result in the disruption of the asymmetric cell division of the stem cell. Horm Mol Biol Clin Investig 2010; 1:53-65. [PMID: 21258630 PMCID: PMC3024544 DOI: 10.1515/hmbci.2010.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is evidence that in the human breast there is a stem cell population that can give rise to many different cell types and have the unique potential to divide asymmetrically. In this way stem cells maintain the stem cell pool and simultaneously generate committed cells that reconstitute the organ for example for preparing the breast for a new pregnancy after the involution from a previous pregnancy and lactation process. In addition to the in vivo models of mammary morphogenesis there are in vitro systems that are more amenable to study in critically determined conditions the ductulogenic pattern of growth of the breast epithelia. Primary mammary epithelial cells grown in collagen matrix are able to form tree-like structures resembling in vivo ductulogenesis. The human breast epithelial cells MCF-10F formed tubules when grown in type I collagen and we demonstrated that treatment of these cells with 17β-estradiol (E(2)) induces phonotypical changes indicative of neoplastic transformation. The transformation of MCF-10F by E(2) is associated with impaired ductal morphogenesis by altering the stem cells unique potential to divide asymmetrically inducing formation of solid masses mimicking intraductal carcinoma that progress to invasive and tumorigenic phenotype. In the present work we present evidence for the mechanism of cell asymmetry leading to normal ductulogenesis and how the normal stem cell is transformed to cancer stem cell by altering this process. Furthermore, we demonstrate that the carcinogenic agent, in this case E(2), induces a defect in the asymmetric cell division program of the normal mammary stem cell.
Collapse
Affiliation(s)
- Jose Russo
- Breast Cancer Research laboratory, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
84
|
Kim SHJ, Debnath J, Mostov K, Park S, Hunt CA. A computational approach to resolve cell level contributions to early glandular epithelial cancer progression. BMC SYSTEMS BIOLOGY 2009; 3:122. [PMID: 20043854 PMCID: PMC2814811 DOI: 10.1186/1752-0509-3-122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 12/31/2009] [Indexed: 01/01/2023]
Abstract
Background Three-dimensional (3D) embedded cell cultures provide an appropriate physiological environment to reconstruct features of early glandular epithelial cancer. Although these are orders of magnitude simpler than tissues, they too are complex systems that have proven challenging to understand. We used agent-based, discrete event simulation modeling methods to build working hypotheses of mechanisms of epithelial 3D culture phenotype and early cancer progression. Starting with an earlier software analogue, we validated an improved in silico epithelial analogue (ISEA) for cardinal features of a normally developed MDCK cyst. A set of axiomatic operating principles defined simulated cell actions. We explored selective disruption of individual simulated cell actions. New framework features enabled recording detailed measures of ISEA cell activities and morphology. Results Enabled by a small set of cell operating principles, ISEA cells multiplied and self-organized into cyst-like structures that mimicked those of MDCK cells in a 3D embedded cell culture. Selective disruption of "anoikis" or directional cell division caused the ISEA to develop phenotypic features resembling those of in vitro tumor reconstruction models and cancerous tissues in vivo. Disrupting either process, or both, altered cell activity patterns that resulted in morphologically similar outcomes. Increased disruption led to a prolonged presence of intraluminal cells. Conclusions ISEA mechanisms, behaviors, and morphological properties may have biological counterparts. To the extent that in silico-to-in vitro mappings are valid, the results suggest plausible, additional mechanisms of in vitro cancer reconstruction or reversion, and raise potentially significant implications for early cancer diagnosis based on histology. Further ISEA development and use are expected to provide a viable platform to complement in vitro methods for unraveling the mechanistic basis of epithelial morphogenesis and cancer progression.
Collapse
Affiliation(s)
- Sean H J Kim
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
85
|
Cichon MA, Radisky DC. Separation anxiety: detachment from the extracellular matrix induces metabolic changes that can stimulate tumorigenesis. J Mol Cell Biol 2009; 2:113-5. [PMID: 20022883 DOI: 10.1093/jmcb/mjp050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the earliest stages of tumor progression involves the ability of cells to survive and proliferate when not attached to the extracellular matrix (ECM). New research using a physiologically relevant breast cancer model reveals how separation from the ECM stimulates metabolic changes characteristic of developing tumors.
Collapse
|
86
|
Kocdor H, Kocdor MA, Russo J, Snider KE, Vanegas JE, Russo IH, Fernandez SV. Human chorionic gonadotropin (hCG) prevents the transformed phenotypes induced by 17 beta-estradiol in human breast epithelial cells. Cell Biol Int 2009; 33:1135-43. [PMID: 19647089 PMCID: PMC2783498 DOI: 10.1016/j.cellbi.2009.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 05/28/2009] [Accepted: 07/25/2009] [Indexed: 10/20/2022]
Abstract
Human chorionic gonadotropin (hCG), a hormone produced during pregnancy, can elicit life-long refractoriness to carcinogenesis by differentiation of the breast epithelium. Human breast epithelial cells MCF-10F form tubules in collagen, mimicking the normal ductules. We have shown that 17 beta-estradiol (E2) alter the ductulogenic pattern of these cells. The effect of the recombinant hCG (rhCG) in vitro was evaluated on the transformation of MCF-10F induced by E2. MCF-10F cells were treated with 70 nM E2 alone or in combination with 50 IU/ml rhCG during 2 weeks, while the controls were treated with DMSO (the solvent in which E2 was dissolved) or rhCG alone. At the end of treatment, the cells were plated in type I collagen matrix (3D-cultures) for detecting 2 main phenotypes of cell transformation, namely the loss of ductulogenic capacity and the formation of solid masses. Although E2 significantly increased solid mass formation, this effect was prevented when MCF-10F cells were treated with E2 in combination with rhCG. Furthermore, E2 increased the main duct width (p < 0.001), and caused a disruption of the luminal architecture, whereas rhCG increased the length of the tubules (p < 0.001) and produced tertiary branching. In conclusion, rhCG was able to abrogate the transforming abilities of estradiol, and had the differentiating property by increasing the branching of the tubules formed by breast epithelial cells in collagen. These results further support our hypothesis, known as the terminal differentiation hypothesis of breast cancer prevention, that predicts that hCG treatment results in protection from tumorigenic changes by the loss of susceptible stem cells 1 through a differentiation to refractory stem cells 2 and increase differentiation of the mammary gland.
Collapse
Affiliation(s)
- Hilal Kocdor
- Fox Chase Cancer Center, Breast Cancer Research Laboratory, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Kang SW, Bae YH. Cryopreservable and tumorigenic three-dimensional tumor culture in porous poly(lactic-co-glycolic acid) microsphere. Biomaterials 2009; 30:4227-32. [PMID: 19446875 PMCID: PMC2760435 DOI: 10.1016/j.biomaterials.2009.04.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 04/21/2009] [Indexed: 11/22/2022]
Abstract
In vitro tumor models that mimic in vivo conditions may be ideal for screening anticancer drugs and their formulations and developing tumors in animal models. Three-dimensional (3-D) culture of cancer cells on polymeric scaffolds can be an option for such models. In the present study, porous poly(lactic acid-co-glycolic acid) (PLGA) microsphere was used both as a cancer cell culture substrate to expand cells and as a cancer cell transplantation vehicle for tumor construction in mice. MCF-7 cells cultured on porous PLGA microspheres in stirred suspension bioreactors expanded by 2.8-fold over seven days and maintained viability. At three months after inoculation with 2x10(6) cells/site, the tumor formation by MCF-7 cells cultured on microspheres was much more effective (4 tumors/5 mice) than its counterpart cultured on plates (1/5). More importantly, cell viability and metabolic activity were not significantly changed even after one freeze-thaw cycle of the 3-D culture. MCF-7 cells cultured on the microspheres and the cells in 3-D after cryopreservation were more resistant to doxorubicin than MCF-7 cells cultured on plates.
Collapse
Affiliation(s)
- Sun-Woong Kang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, 421 Wakara Way, Suite 315, Utah 84108, USA
| | - You Han Bae
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, 421 Wakara Way, Suite 315, Utah 84108, USA
| |
Collapse
|
88
|
Cancer therapy beyond apoptosis: autophagy and anoikis as mechanisms of cell death. J Surg Res 2009; 164:301-8. [PMID: 20031162 DOI: 10.1016/j.jss.2009.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 06/10/2009] [Accepted: 07/08/2009] [Indexed: 12/11/2022]
Abstract
Apoptosis has long been recognized as a critical mechanism of programmed cell death that is preserved among all eukaryotes and is involved in a variety of disease processes. Malignant transformation of cells is associated with a constellation of pro-survival mutations rendering them resistant to apoptosis. Traditional cancer therapy evokes cell death by inducing apoptosis; however, the apoptotic resistance inherent in cancer cells has been a significant barrier to effective chemotherapy. More recently, other mechanisms of cell death have emerged as potential novel mechanisms for cancer therapies to induce cell death, either in addition to, or instead of, apoptosis-induced cytotoxic treatment. Autophagy is a process that occurs in all cells, but is induced in many types of cancer. Autophagy functions as both a cell survival and a cell death mechanism depending on the context and the stimuli, which are likely exploitable for cancer therapy. Anoikis is also a physiologic process in normal cells used to maintain homeostasis, in which cell death is induced in response to loss of extracellular membrane (ECM) attachment. Cancer cells are notoriously resistant to anoikis, enabling metastasis and new tumor growth beyond their original environment. Interestingly, autophagy may actually by a major contributor to anoikis resistance in cancer. As these two processes are elucidated in more detail, there is great potential for novel targets that affect cancer cell death, in addition to the current cytotoxic agents.
Collapse
|
89
|
Froeling FEM, Mirza TA, Feakins RM, Seedhar A, Elia G, Hart IR, Kocher HM. Organotypic culture model of pancreatic cancer demonstrates that stromal cells modulate E-cadherin, beta-catenin, and Ezrin expression in tumor cells. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:636-48. [PMID: 19608876 PMCID: PMC2716963 DOI: 10.2353/ajpath.2009.090131] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/15/2009] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is characterized by an intense stromal reaction. Reproducible three-dimensional in vitro systems for exploring interactions of the stroma with pancreatic cancer cells have not previously been available, prompting us to develop such a model. Cancer cells were grown on collagen/Matrigel and embedded with or without stromal cells (hTERT-immortalized human PS-1 stellate cells or MRC-5 fibroblasts) for 7 days. Proliferation and apoptosis, as well as important cell-cell adhesion and cytoskeleton-regulating proteins, were studied. PS-1 cells were confirmed as stellate based on the expression of key cytoskeletal proteins and lipid vesicles. Capan-1, and to a lesser extent PaCa-3, cells differentiated into luminal structures, exhibiting a central apoptotic core with a proliferating peripheral rim and an apico-basal polarity. Presence of either stromal cell type translocated Ezrin from apical (when stromal cells were absent) to basal aspects of cancer cells, where it was associated with invasive activity. Interestingly, the presence of 'normal' (not tumor-derived) stromal cells induced total tumor cell number reduction (P < 0.005) associated with a significant decrease in E-cadherin expression (P < 0.005). Conversely, beta-catenin expression was up-regulated (P < 0.01) in the presence of stromal cells with predominant cytoplasmic expression. Moreover, patient samples confirmed that these data recapitulated the clinical situation. In conclusion, pancreatic organotypic culture offers a reproducible, bio-mimetic, three-dimensional in vitro model that allows examination of the interactions between stromal elements and pancreatic cancer cells.
Collapse
Affiliation(s)
- Fieke E M Froeling
- Centre for Tumour Biology, Institute of Cancer, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ
| | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
Integrin-mediated cell adhesion to extracellular matrix (ECM) is critical for normal epithelial cell survival; cells deprived of ECM contact rapidly undergo apoptotic cell death, termed anoikis. Recent work demonstrates that ECM detachment also robustly induces autophagy, which protects epithelial cells from the stresses of matrix detachment, allowing them to survive provided they can reattach in a timely manner. This chapter details the methods used to measure and manipulate detachment-induced autophagy during lumen formation in three-dimensional in vitro glandular epithelial cultures as well as in traditional substratum detachment assays employed to study anoikis.
Collapse
Affiliation(s)
- Jayanta Debnath
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
91
|
Boudou T, Ohayon J, Picart C, Pettigrew RI, Tracqui P. Nonlinear elastic properties of polyacrylamide gels: implications for quantification of cellular forces. Biorheology 2009; 46:191-205. [PMID: 19581727 PMCID: PMC4698164 DOI: 10.3233/bir-2009-0540] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Because of their tunable mechanical properties, polyacrylamide gels (PAG) are frequently used for studying cell adhesion and migratory responses to extracellular substrate stiffness. Since these responses are known to heavily depend on the tensional balance between cell contractility and substrate mechanical resistance, a precise knowledge of PAG's mechanical properties becomes quite crucial. Using the micropipette aspiration technique, we first exhibited the nonlinear elastic behavior of PAG and then successfully modeled it by an original strain-energy function. This function depends on the Poisson's ratio and on two material parameters, which have been explicitly related to acrylamide and bis-acrylamide concentrations. Implications of these results have been highlighted with regard to traction force microscopy experiments where cellular force quantification is derived from displacements of beads embedded in PAG. We found that considering PAG as a linear elastic medium tends to significantly underestimate traction forces for substrate displacements larger than 2 mum. Interestingly, we also showed that in the range of cellular force amplitude and PAG stiffness currently used in cell traction force experiments, finite size effects become critical for PAG substrate thickness below 60 mum. Thus, our improved characterization of PAG nonlinear mechanical properties through a new constitutive law could have significant impact onto biological experimentations where such extracellular substrates experience large strains.
Collapse
Affiliation(s)
- Thomas Boudou
- Laboratoire TIMC-IMAG, Equipe DynaCell, CNRS UMR 5525, Faculté de Médecine de Grenoble, Institut de l’Ingénierie et de l’Information de Santé, La Tronche, France
| | - Jacques Ohayon
- Laboratoire TIMC-IMAG, Equipe DynaCell, CNRS UMR 5525, Faculté de Médecine de Grenoble, Institut de l’Ingénierie et de l’Information de Santé, La Tronche, France
- Laboratory of Integrative Cardiovascular Imaging Science, National Institutes of Health, NIDDK, Bethesda, MD, USA
| | - Catherine Picart
- Laboratoire de Dynamique Moléculaire des Interactions Membranaires, CNRS-UMR 5539, Université de Montpellier II, 34095 Montpellier cedex 5, France
| | - Roderic I. Pettigrew
- Laboratory of Integrative Cardiovascular Imaging Science, National Institutes of Health, NIDDK, Bethesda, MD, USA
| | - Philippe Tracqui
- Laboratoire TIMC-IMAG, Equipe DynaCell, CNRS UMR 5525, Faculté de Médecine de Grenoble, Institut de l’Ingénierie et de l’Information de Santé, La Tronche, France
| |
Collapse
|
92
|
Abstract
Cells sense their physical surroundings through mechanotransduction - that is, by translating mechanical forces and deformations into biochemical signals such as changes in intracellular calcium concentration or by activating diverse signalling pathways. In turn, these signals can adjust cellular and extracellular structure. This mechanosensitive feedback modulates cellular functions as diverse as migration, proliferation, differentiation and apoptosis, and is crucial for organ development and homeostasis. Consequently, defects in mechanotransduction - often caused by mutations or misregulation of proteins that disturb cellular or extracellular mechanics - are implicated in the development of various diseases, ranging from muscular dystrophies and cardiomyopathies to cancer progression and metastasis.
Collapse
Affiliation(s)
- Diana E Jaalouk
- Brigham and Women's Hospital, Harvard Medical School, Department of Medicine, Cardiovascular Division, 65 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
93
|
Aranda V, Nolan ME, Muthuswamy SK. Par complex in cancer: a regulator of normal cell polarity joins the dark side. Oncogene 2008; 27:6878-87. [PMID: 19029931 PMCID: PMC3017320 DOI: 10.1038/onc.2008.340] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the past 20 years, the discovery and characterization of the molecular machinery that controls cellular polarization have enabled us to achieve a better understanding of many biological processes. Spatial asymmetry or establishment of cell polarity during embryogenesis, epithelial morphogenesis, neuronal differentiation, and migration of fibroblasts and T cells are thought to rely on a small number of evolutionarily conserved proteins and pathways. Correct polarization is crucial for normal cell physiology and tissue homeostasis, and is lost in cancer. Thus, cell polarity signaling is likely to have an important function in tumor progression. Recent findings have identified a regulator of cell polarity, the Par complex, as an important signaling node in tumorigenesis. In normal cell types, the Par complex is part of the molecular machinery that regulates cell polarity and maintains normal cell homeostasis. As such, the polarity regulators are proposed to have a tumor suppressor function, consistent with the loss of polarity genes associated with hyperproliferation in Drosophila melanogaster. However, recent studies showing that some members of this complex also display pro-oncogenic activities suggest a more complex regulation of the polarity machinery during cellular transformation. Here, we examine the existing data about the different functions of the Par complex. We discuss how spatial restriction, binding partners and substrate specificity determine the signaling properties of Par complex proteins. A better understanding of these processes will very likely shed some light on how the Par complex can switch from a normal polarity regulation function to promotion of transformation downstream of oncogenes.
Collapse
Affiliation(s)
- Victoria Aranda
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Marissa E Nolan
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Senthil K Muthuswamy
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
94
|
Abstract
Biomechanical regulation of tumor phenotypes have been noted for several decades, yet the function of mechanics in the co-evolution of the tumor epithelium and altered cancer extracellular matrix has not been appreciated until fairly recently. In this review, we examine the dynamic interaction between the developing epithelia and the extracellular matrix, and discuss how similar interactions are exploited by the genetically modified epithelium during tumor progression. We emphasize the process of mechanoreciprocity, which is a phenomenon observed during epithelial transformation, in which tension generated within the extracellular microenvironment induce and cooperate with opposing reactive forces within transformed epithelium to drive tumor progression and metastasis. We highlight the importance of matrix remodeling, and present a new, emerging paradigm that underscores the importance of tissue morphology as a key regulator of epithelial cell invasion and metastasis.
Collapse
Affiliation(s)
- JI Lopez
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California at San Francisco, San Francisco, CA, USA
| | - JK Mouw
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California at San Francisco, San Francisco, CA, USA
| | - VM Weaver
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California at San Francisco, San Francisco, CA, USA
- Institute for Regeneration Medicine, University of California at San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA and
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
95
|
Desclozeaux M, Venturato J, Wylie FG, Kay JG, Joseph SR, Le HT, Stow JL. Active Rab11 and functional recycling endosome are required for E-cadherin trafficking and lumen formation during epithelial morphogenesis. Am J Physiol Cell Physiol 2008; 295:C545-56. [PMID: 18579802 DOI: 10.1152/ajpcell.00097.2008] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The correct targeting and trafficking of the adherens junction protein epithelial cadherin (E-cadherin) is a major determinant for the acquisition of epithelial cell polarity and for the maintenance of epithelial integrity. The compartments and trafficking components required to sort and transport E-cadherin to the basolateral cell surface remain to be fully defined. On the basis of previous data, we know that E-cadherin is trafficked via the recycling endosome (RE) in nonpolarized and newly polarized cells. Here we explore the role of the RE throughout epithelial morphogenesis in MDCK monolayers and cysts. Time-lapse microscopy in live cells, altering RE function biochemically, and expressing a dominant-negative form of Rab11 (DN-Rab11), each showed that the RE is always requisite for E-cadherin sorting and trafficking. The RE remained important for E-cadherin trafficking in MDCK cells from a nonpolarized state through to fully formed, polarized epithelial monolayers. During the development of epithelial cysts, DN-Rab11 disrupted E-cadherin targeting and trafficking, the subapical localization of pERM and actin, and cyst lumen formation. This final effect demonstrated an early and critical interdependence of Rab11 and the RE for E-cadherin targeting, apical membrane formation, and cell polarity in cysts.
Collapse
Affiliation(s)
- Marion Desclozeaux
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072 Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|