51
|
Alp HH, Huyut Z, Yildirim S, Başbugan Y, Ediz L, Şekeroğlu MR. The effect of PDE5 inhibitors on bone and oxidative damage in ovariectomy-induced osteoporosis. Exp Biol Med (Maywood) 2017; 242:1051-1061. [PMID: 28399643 PMCID: PMC5444643 DOI: 10.1177/1535370217703352] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/14/2017] [Indexed: 02/01/2023] Open
Abstract
Osteoporosis is a major public health problem associated with many factors, and it affects more than 50% of women over 50 years old. In the current study, our purpose was to investigate the effects of phosphodiestarase-5 inhibitors on osteoporosis via the nitric oxide/3',5'-cyclic guanosine monophosphate/protein kinase G signalling pathway. A total of 50 female albino Wistar rats were separated into five groups. The first group was appointed as the healthy control group with no ovariectomy. All animals in the other groups underwent a bilateral ovariectomy. Six months after the ovariectomy, vardenafil, udenafil and tadalafil were given to the third, fourth and fifth groups, respectively, but were not administered to the positive control group (10 mg/kg per day for two months). The bone mineral density values were determined using a densitometry apparatus for all groups pre- and post-ovariectomy as well as after treatment. The levels of nitric oxide, endothelial nitric oxidesynthase, asymmetric dimethylarginine, 3',5'-cyclic guanosine monophosphate, protein kinase G, phosphodiestarase-5, pyridinoline, deoxypyridinoline, carboxyterminal telopeptide fragments and plasma carboxy terminal propeptide of type I collagen were determined using an enzyme linked immunosorbent assay. The levels of malondialdehyde, 8-hydroxy-2-deoxy guanosine, deoxyguanosine and coenzyme Q10 were determined by a high-performance liquid chromatography assay. Additionally, the right femoral trabecular bone density and the epiphyseal plate were measured in all groups. Angiogenesis was histologically observed in the bone tissue. In addition, we determined that the inhibitors may have caused a positive impact on the increased bone mass density and reduction of bone resorption markers. We also observed the positive effects of these inhibitors on oxidative stress. In conclusion, these phosphodiestarase-5 inhibitors increase angiogenesis in bone tissue and improve the re-formation rate of bone in rats with osteoporosis. Chemical compounds studied in this article Udenafil (PubChem CID: 6918523); Tadalafil (PubChem CID: 110635); Vardanafil (PubCham CID: 110634). Impact statement The results in our study appear to establish the osteoporosis model and provide evidence of the positive effects of three separate PDE5 inhibitors (vardenafil, udenafil, and tadalafil). The positive effects of these PDE5 inhibitors are investigated and demonstrated by the bone mass density and bone resorption markers. These effects are associated with significant demonstrated antioxidant activities. Osteoporosis is a significant major public health problem especially in more aged populations. Advances in identifying and understanding new potential therapeutic modalities for this disease are significant. This study provides such an advance.
Collapse
Affiliation(s)
- Hamit H Alp
- Faculty of Medicine, Department of Biochemistry, Yuzuncu Yil University, Van 65080, Turkey
| | - Zübeyir Huyut
- Faculty of Medicine, Department of Biochemistry, Yuzuncu Yil University, Van 65080, Turkey
| | - Serkan Yildirim
- Faculty of Veterinary Medicine, Department of Pathology, Ataturk University, Erzurum 25240, Turkey
| | - Yıldıray Başbugan
- Faculty of Veterinary Medicine, Department of Internal Diseases, Yuzuncu Yil University, Van 65080, Turkey
| | - Levent Ediz
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Yuzuncu Yil University, Van 65080, Turkey
| | - Mehmet R Şekeroğlu
- Faculty of Medicine, Department of Biochemistry, Sakarya University, Sakarya 54187, Turkey
| |
Collapse
|
52
|
Abstract
Endothelial dysfunction is considered as a universal non-specific link in the pathogenesis of many diseases, primarily the cardiovascular system. This review is devoted to the discussion of the main functions of the endothelium and mechanisms for their implementation. One of the most striking features of endothelial cells is their morphological heterogeneity, which allows us to identify several typical forms of endothelial dysfunction (vasomotor, hemostatic, adhesion and angiogenous). Also, the review presents the most promising predictors of cardiovascular diseases and their complications among endothelial damage markers.
Collapse
Affiliation(s)
- L. V. Vasina
- Federal Almazov North-West Medical Research Centre; Pavlov First Saint Petersburg State Medical University
| | - N. N. Petrishchev
- Federal Almazov North-West Medical Research Centre; Pavlov First Saint Petersburg State Medical University
| | - T. D. Vlasov
- Federal Almazov North-West Medical Research Centre; Pavlov First Saint Petersburg State Medical University
| |
Collapse
|
53
|
Zheng D, Zou Y, Cobbina SJ, Wang W, Li Q, Chen Y, Feng W, Zou Y, Zhao T, Zhang M, Yang L, Wu X. Purification, characterization and immunoregulatory activity of a polysaccharide isolated from Hibiscus sabdariffa L. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1599-1606. [PMID: 27418109 DOI: 10.1002/jsfa.7908] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 04/13/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Hibiscus sabdariffa L. is not only used traditionally as a component of herbal drinks, beverages and flavoring agents but also as a herbal medicine in the drug industry. Bioactive polysaccharides are important constituents of H. sabdariffa that may contribute to the plant's beneficial effects. This study was designed to investigate the structural characteristics of a water-soluble polysaccharide from H. sabdariffa, HSP41, and its immunoregulatory activity on RAW264.7 cells. RESULTS HSP41 was mainly composed of arabinose, xylose and mannose at a molar ratio of 1:1.34:15.6, with an average molecular weight of 3.3 × 105 Da. Fourier transform infrared (FTIR) spectra exhibited absorption peaks characteristic of HSP41. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed the amorphous form and aggregation conformation of HSP41 respectively. HSP41 significantly induced interleukin 1β (IL-1β) and inducible nitric oxide synthase (iNOS) expression in RAW264.7 cells in vitro, promoting an increase in nuclear factor kB p65 (NF-kB p65) levels in the nucleus. CONCLUSION The results indicated that HSP41 up-regulated the immune response by stimulating RAW264.7 cell activity. HSP41, a promising immunoregulator, possibly contributes to the health benefits of H. sabdariffa and might have potential applications in health food or medicine. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Daheng Zheng
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
- School of Life Science, Shaoxing University, Chengnan Road 900, Shaoxing, 312000, Zhejiang, China
| | - Ye Zou
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Samuel Jerry Cobbina
- School of Environment and Safety, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Wei Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Qian Li
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Yao Chen
- School of Environment and Safety, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Weiwei Feng
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Yanmin Zou
- School of Pharmacy, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Xiangyang Wu
- School of Environment and Safety, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| |
Collapse
|
54
|
Caballano-Infantes E, Terron-Bautista J, Beltrán-Povea A, Cahuana GM, Soria B, Nabil H, Bedoya FJ, Tejedo JR. Regulation of mitochondrial function and endoplasmic reticulum stress by nitric oxide in pluripotent stem cells. World J Stem Cells 2017; 9:26-36. [PMID: 28289506 PMCID: PMC5329687 DOI: 10.4252/wjsc.v9.i2.26] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/09/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction and endoplasmic reticulum stress (ERS) are global processes that are interrelated and regulated by several stress factors. Nitric oxide (NO) is a multifunctional biomolecule with many varieties of physiological and pathological functions, such as the regulation of cytochrome c inhibition and activation of the immune response, ERS and DNA damage; these actions are dose-dependent. It has been reported that in embryonic stem cells, NO has a dual role, controlling differentiation, survival and pluripotency, but the molecular mechanisms by which it modulates these functions are not yet known. Low levels of NO maintain pluripotency and induce mitochondrial biogenesis. It is well established that NO disrupts the mitochondrial respiratory chain and causes changes in mitochondrial Ca2+ flux that induce ERS. Thus, at high concentrations, NO becomes a potential differentiation agent due to the relationship between ERS and the unfolded protein response in many differentiated cell lines. Nevertheless, many studies have demonstrated the need for physiological levels of NO for a proper ERS response. In this review, we stress the importance of the relationships between NO levels, ERS and mitochondrial dysfunction that control stem cell fate as a new approach to possible cell therapy strategies.
Collapse
|
55
|
Uludag MO, Ozdemir ED, Bal NB, Han S, Dayanir H, Babacan A, Emel Usanm S, Demirel-Yi E. Effects of Ozone Treatment in Endotoxin Induced Shock Model in Rats. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.166.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
56
|
Sharina IG, Martin E. The Role of Reactive Oxygen and Nitrogen Species in the Expression and Splicing of Nitric Oxide Receptor. Antioxid Redox Signal 2017; 26:122-136. [PMID: 26972233 PMCID: PMC7061304 DOI: 10.1089/ars.2016.6687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO)-dependent signaling is critical to many cellular functions and physiological processes. Soluble guanylyl cyclase (sGC) acts as an NO receptor and mediates the majority of NO functions. The signaling between NO and sGC is strongly altered by reactive oxygen and nitrogen species. Recent Advances: Besides NO scavenging, sGC is affected by oxidation/loss of sGC heme, oxidation, or nitrosation of cysteine residues and phosphorylation. Apo-sGC or sGC containing oxidized heme is targeted for degradation. sGC transcription and the stability of sGC mRNA are also affected by oxidative stress. CRITICAL ISSUES Studies cited in this review suggest the existence of compensatory processes that adapt cellular processes to diminished sGC function under conditions of short-term or moderate oxidative stress. Alternative splicing of sGC transcripts is discussed as a mechanism with the potential to both enhance and reduce sGC function. The expression of α1 isoform B, a functional and stable splice variant of human α1 sGC subunit, is proposed as one of such compensatory mechanisms. The expression of dysfunctional splice isoforms is discussed as a contributor to decreased sGC function in vascular disease. FUTURE DIRECTIONS Targeting the process of sGC splicing may be an important approach to maintain the composition of sGC transcripts that are expressed in healthy tissues under normal conditions. Emerging new strategies that allow for targeted manipulations of RNA splicing offer opportunities to use this approach as a preventive measure and to control the composition of sGC splice isoforms. Rational management of expressed sGC splice forms may be a valuable complementary treatment strategy for existing sGC-directed therapies. Antioxid. Redox Signal. 26, 122-136.
Collapse
Affiliation(s)
- Iraida G Sharina
- 1 Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center in Houston Medical School , Houston, Texas
| | - Emil Martin
- 1 Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center in Houston Medical School , Houston, Texas.,2 School of Science and Technology, Nazarbayev University , Astana, Kazakhstan
| |
Collapse
|
57
|
Therapeutic role of nitric oxide as emerging molecule. Biomed Pharmacother 2017; 85:182-201. [DOI: 10.1016/j.biopha.2016.11.125] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 11/10/2016] [Accepted: 11/27/2016] [Indexed: 01/21/2023] Open
|
58
|
ATM-ROS-iNOS axis regulates nitric oxide mediated cellular senescence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:177-190. [DOI: 10.1016/j.bbamcr.2016.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 10/20/2016] [Accepted: 11/10/2016] [Indexed: 12/18/2022]
|
59
|
Estrago-Franco MF, Moustafa MT, Riazi-Esfahani M, Sapkal AU, Piche-Lopez R, Patil AJ, Sharma A, Falatoonzadeh P, Chwa M, Luczy-Bachman G, Kuppermann BD, Kenney MC. Effects of Benzo(e)pyrene on Reactive Oxygen/Nitrogen Species and Inflammatory Cytokines Induction in Human RPE Cells and Attenuation by Mitochondrial-involved Mechanism. J Ophthalmic Vis Res 2016; 11:385-393. [PMID: 27994808 PMCID: PMC5139551 DOI: 10.4103/2008-322x.194091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Purpose: To identify inhibitors that could effectively lower reactive oxygen/nitrogen species (ROS/RNS), complement and inflammatory cytokine levels induced by Benzo(e)pyrene [B(e)p], an element of cigarette smoke, in human retinal pigment epithelial cells (ARPE-19) in vitro. Methods: ARPE-19 cells were treated for 24 hours with 200 μM, 100 μM, and 50 μM B(e)p or DMSO (dimethyl sulfoxide)-equivalent concentrations. Some cultures were pre-treated with ROS/RNS inhibitors (NG nitro-L-arginine, inhibits nitric oxide synthase; Apocynin, inhibits NADPH oxidase; Rotenone, inhibits mitochondrial complex I; Antimycin A, inhibits mitochondria complex III) and ROS/RNS levels were measured with a fluorescent H2 DCFDA assay. Multiplex bead arrays were used to measure levels of Interleukin-6 (IL-6), Interleukin-8 (IL-8), Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF), Transforming Growth Factor alpha (TGF-α) and Vascular Endothelial Growth Factor (VEGF). IL-6 levels were also measured by an enzyme-linked immunosorbent assay. Real-time qPCR analyses were performed with primers for C3 (component 3), CFH (inhibits complement activation), CD59 (inhibitor of the complement membrane attack complex (MAC)) and CD55/DAF (accelerates decay of target complement target proteins). Results: The ARPE-19 cultures treated with B(e)p showed significantly increased ROS/RNS levels (P < 0.001), which were then partially reversed by 6 μM Antimycin A (19%, P = 0.03), but not affected by the other ROS/RNS inhibitors. The B(e)p treated cultures demonstrated increased levels of IL-6 (33%; P = 0.016) and GM-CSF (29%; P = 0.0001) compared to DMSO-equivalent controls, while the expression levels for components of the complement pathway (C3, CFH, CD59 and CD55/DAF) were not changed. Conclusion: The cytotoxic effects of B(e)p include elevated ROS/RNS levels along with pro-inflammatory IL-6 and GM-CSF proteins. Blocking the Qi site of cytochrome c reductase (complex III) with Antimycin A led to partial reduction in B(e)p induced ROS production. Our findings suggest that inhibitors for multiple pathways would be necessary to protect the retinal cells from B(e)p induced toxicity.
Collapse
Affiliation(s)
- M Fernanda Estrago-Franco
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA; Clinica Dres Estrago, Corrientes, Argentina
| | - M Tarek Moustafa
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA; Ophthalmology Department, Minia University, Egypt
| | - Mohammad Riazi-Esfahani
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA; Eye Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashish U Sapkal
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - Rhina Piche-Lopez
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - A Jayaprakash Patil
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA; Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Trust, Lancaster, UK
| | - Ashish Sharma
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA; Lotus Eye Care Hospital, Coimbatore, Tamil Nadu, India
| | - Payam Falatoonzadeh
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - Marilyn Chwa
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | | | - Baruch D Kuppermann
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - M Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| |
Collapse
|
60
|
Farombi EO, Adedara IA, Awoyemi OV, Njoku CR, Micah GO, Esogwa CU, Owumi SE, Olopade JO. Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats. Food Funct 2016; 7:913-21. [PMID: 26691887 DOI: 10.1039/c5fo01228g] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study investigated the antioxidant and anti-inflammatory effects of dietary protocatechuic acid (PCA), a simple hydrophilic phenolic compound commonly found in many edible vegetables, on dextran sulphate sodium (DSS)-induced ulcerative colitis and its associated hepatotoxicity in rats. PCA was administered orally at 10 mg kg(-1) to dextran sulphate sodium exposed rats for five days. The result revealed that administration of PCA significantly (p < 0.05) prevented the incidence of diarrhea and bleeding, the decrease in the body weight gain, shortening of colon length and the increase in colon mass index in DSS-treated rats. Furthermore, PCA prevented the increase in the plasma levels of pro-inflammatory cytokines, markers of liver toxicity and markedly suppressed the DSS-mediated elevation in colonic nitric oxide concentration and myeloperoxidase activity in the treated rats. Administration of PCA significantly protected against colonic and hepatic oxidative damage by increasing the antioxidant status and concomitantly decreased hydrogen peroxide and lipid peroxidation levels in the DSS-treated rats. Moreover, histological examinations confirmed PCA chemoprotection against colon and liver damage. Immunohistochemical analysis showed that PCA significantly inhibited cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in the colon of DSS-treated rats. In conclusion, the effective chemoprotective role of PCA in colitis and the associated hepatotoxicity is related to its intrinsic anti-inflammatory and anti-oxidative properties.
Collapse
Affiliation(s)
- Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Omolola V Awoyemi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Chinonye R Njoku
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Gabriel O Micah
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Cynthia U Esogwa
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Unit, Department of Biochemistry, College of Medicine, Nigeria
| | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Nigeria
| |
Collapse
|
61
|
Bandara N, Gurusinghe S, Lim SY, Chen H, Chen S, Wang D, Hilbert B, Wang LX, Strappe P. Molecular control of nitric oxide synthesis through eNOS and caveolin-1 interaction regulates osteogenic differentiation of adipose-derived stem cells by modulation of Wnt/β-catenin signaling. Stem Cell Res Ther 2016; 7:182. [PMID: 27927230 PMCID: PMC5142348 DOI: 10.1186/s13287-016-0442-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 01/12/2023] Open
Abstract
Background Nitric oxide (NO) plays a role in a number of physiological processes including stem cell differentiation and osteogenesis. Endothelial nitric oxide synthase (eNOS), one of three NO-producing enzymes, is located in a close conformation with the caveolin-1 (CAV-1WT) membrane protein which is inhibitory to NO production. Modification of this interaction through mutation of the caveolin scaffold domain can increase NO release. In this study, we genetically modified equine adipose-derived stem cells (eASCs) with eNOS, CAV-1WT, and a CAV-1F92A (CAV-1WT mutant) and assessed NO-mediated osteogenic differentiation and the relationship with the Wnt signaling pathway. Methods NO production was enhanced by lentiviral vector co-delivery of eNOS and CAV-1F92A to eASCs, and osteogenesis and Wnt signaling was assessed by gene expression analysis and activity of a novel Runx2-GFP reporter. Cells were also exposed to a NO donor (NONOate) and the eNOS inhibitor, l-NAME. Results NO production as measured by nitrite was significantly increased in eNOS and CAV-1F92A transduced eASCs +(5.59 ± 0.22 μM) compared to eNOS alone (4.81 ± 0.59 μM) and un-transduced control cells (0.91 ± 0.23 μM) (p < 0.05). During osteogenic differentiation, higher NO correlated with increased calcium deposition, Runx2, and alkaline phosphatase (ALP) gene expression and the activity of a Runx2-eGFP reporter. Co-expression of eNOS and CAV-1WT transgenes resulted in lower NO production. Canonical Wnt signaling pathway-associated Wnt3a and Wnt8a gene expressions were increased in eNOS-CAV-1F92A cells undergoing osteogenesis whilst non-canonical Wnt5a was decreased and similar results were seen with NONOate treatment. Treatment of osteogenic cultures with 2 mM l-NAME resulted in reduced Runx2, ALP, and Wnt3a expressions, whilst Wnt5a expression was increased in eNOS-delivered cells. Co-transduction of eASCs with a Wnt pathway responsive lenti-TCF/LEF-dGFP reporter only showed activity in osteogenic cultures co-transduced with a doxycycline inducible eNOS. Lentiviral vector expression of canonical Wnt3a and non-canonical Wnt5a in eASCs was associated with induced and suppressed osteogenic differentiation, respectively, whilst treatment of eNOS-osteogenic cells with the Wnt inhibitor Dkk-1 significantly reduced expressions of Runx2 and ALP. Conclusions This study identifies NO as a regulator of canonical Wnt/β-catenin signaling to promote osteogenesis in eASCs which may contribute to novel bone regeneration strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0442-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadeeka Bandara
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Saliya Gurusinghe
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Shiang Yong Lim
- O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.,Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, VIC, 3002, Australia
| | - Haying Chen
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Shuangfeng Chen
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Dawei Wang
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Bryan Hilbert
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Le-Xin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Padraig Strappe
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
62
|
Nagababu E. Ferriheme catalyzes nitric oxide reaction with glutathione to form S-nitrosoglutathione: A novel mechanism for formation of S-nitrosothiols. Free Radic Biol Med 2016; 101:296-304. [PMID: 27693379 DOI: 10.1016/j.freeradbiomed.2016.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022]
Abstract
S-nitrosothiols (SNO) perform many important functions in biological systems, but the mechanism by which they are generated in vivo remains a contentious issue. Nitric oxide (NO) reacts with thiols to form SNO only in the presence of a molecule that will accept an electron from either NO or the thiol. In this study, we present evidence that ferriheme accepts an electron from NO or glutathione (GSH) to generate S-nitrosoglutathione (GSNO) in vitro under anaerobic or hypoxic (2% O2) conditions. Ferriheme formed charge transfer-stable complexes with NO to form ferriheme-NO (heme-Fe(II)-NO+) and with GSH to form ferriheme-GS (heme-Fe(II)-GS•) under anaerobic conditions. The reaction between GSH and the heme-Fe(II)-NO+ complex or between NO and the heme-Fe(II)-GS• complex resulted in simultaneous reductive ferriheme nitrosylation (heme-Fe(II)NO) and the generation of GSNO. Thus, ferriheme is readily reduced to ferroheme in the presence of NO and GSH together, but not with either individually. The reaction between NO and the heme-Fe(II)-GS• complex to generate GSNO occurred more rapidly than NO was consumed by endothelial cells, but not red blood cells. In addition, pretreatment of endothelial cells with ferriheme or the ferriheme-GS complex generated SNO upon addition of NO under hypoxic conditions. The results of this study raise the possibility that in vivo, ferriheme can complex with GSH to form ferriheme-GS complex (heme-Fe(II)-GS•), which rapidly reacts with NO to generate GSNO under intracellular oxygen levels. The GSNO formation by this mechanism is more efficient than any other in vitro mechanism(s) reported so far.
Collapse
Affiliation(s)
- Enika Nagababu
- Integrated Vascular Biology Laboratory, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, 720 Rutland Ave, Ross 1150, Baltimore, MD 21205, United States; Molecular Dynamics Section, National Institute on Aging, Baltimore, MD 21224, United States.
| |
Collapse
|
63
|
Sansalone L, Tang S, Zhang Y, Thapaliya ER, Raymo FM, Garcia-Amorós J. Semiconductor Quantum Dots with Photoresponsive Ligands. Top Curr Chem (Cham) 2016; 374:73. [DOI: 10.1007/s41061-016-0073-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
|
64
|
Guizoni DM, Dorighello GG, Oliveira HCF, Delbin MA, Krieger MH, Davel AP. Aerobic exercise training protects against endothelial dysfunction by increasing nitric oxide and hydrogen peroxide production in LDL receptor-deficient mice. J Transl Med 2016; 14:213. [PMID: 27435231 PMCID: PMC4950099 DOI: 10.1186/s12967-016-0972-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Endothelial dysfunction associated with hypercholesterolemia is an early event in atherosclerosis characterized by redox imbalance associated with high superoxide production and reduced nitric oxide (NO) and hydrogen peroxide (H2O2) production. Aerobic exercise training (AET) has been demonstrated to ameliorate atherosclerotic lesions and oxidative stress in advanced atherosclerosis. However, whether AET protects against the early mechanisms of endothelial dysfunction in familial hypercholesterolemia remains unclear. This study investigated the effects of AET on endothelial dysfunction and vascular redox status in the aortas of LDL receptor knockout mice (LDLr(-/-)), a genetic model of familial hypercholesterolemia. METHODS Twelve-week-old C57BL/6J (WT) and LDLr(-/-) mice were divided into sedentary and exercised (AET on a treadmill 1 h/5 × per week) groups for 4 weeks. Changes in lipid profiles, endothelial function, and aortic NO, H2O2 and superoxide production were examined. RESULTS Total cholesterol and triglycerides were increased in sedentary and exercised LDLr(-/-) mice. Endothelium-dependent relaxation induced by acetylcholine was impaired in aortas of sedentary LDLr(-/-) mice but not in the exercised group. Inhibition of NO synthase (NOS) activity or H2O2 decomposition by catalase abolished the differences in the acetylcholine response between the animals. No changes were noted in the relaxation response induced by NO donor sodium nitroprusside or H2O2. Neuronal NOS expression and endothelial NOS phosphorylation (Ser1177), as well as NO and H2O2 production, were reduced in aortas of sedentary LDLr(-/-) mice and restored by AET. Incubation with apocynin increased acetylcholine-induced relaxation in sedentary, but not exercised LDLr(-/-) mice, suggesting a minor participation of NADPH oxidase in the endothelium-dependent relaxation after AET. Consistent with these findings, Nox2 expression and superoxide production were reduced in the aortas of exercised compared to sedentary LDLr(-/-) mice. Furthermore, the aortas of sedentary LDLr(-/-) mice showed reduced expression of superoxide dismutase (SOD) isoforms and minor participation of Cu/Zn-dependent SODs in acetylcholine-induced, endothelium-dependent relaxation, abnormalities that were partially attenuated in exercised LDLr(-/-) mice. CONCLUSION The data gathered by this study suggest AET as a potential non-pharmacological therapy in the prevention of very early endothelial dysfunction and redox imbalance in familial hypercholesterolemia via increases in NO bioavailability and H2O2 production.
Collapse
Affiliation(s)
- Daniele M Guizoni
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, P.O. Box 6109, Campinas, São Paulo, Brazil
| | - Gabriel G Dorighello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, P.O. Box 6109, Campinas, São Paulo, Brazil
| | - Helena C F Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, P.O. Box 6109, Campinas, São Paulo, Brazil
| | - Maria A Delbin
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, P.O. Box 6109, Campinas, São Paulo, Brazil
| | - Marta H Krieger
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, P.O. Box 6109, Campinas, São Paulo, Brazil
| | - Ana P Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, P.O. Box 6109, Campinas, São Paulo, Brazil.
| |
Collapse
|
65
|
Zhou Z, Martin E, Sharina I, Esposito I, Szabo C, Bucci M, Cirino G, Papapetropoulos A. Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide. Pharmacol Res 2016; 111:556-562. [PMID: 27378567 DOI: 10.1016/j.phrs.2016.06.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/07/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Soluble guanylate cyclase (sGC) is a receptor for nitric oxide (NO). Binding of NO to ferrous (Fe(2+)) heme increases its catalytic activity, leading to the production of cGMP from GTP. Hydrogen sulfide (H2S) is a signaling molecule that exerts both direct and indirect anti-oxidant effects. In the present, study we aimed to determine whether H2S could regulate sGC redox state and affect its responsiveness to NO-releasing agents and sGC activators. Using cultured rat aortic smooth muscle cells, we observed that treatment with H2S augmented the response to the NO donor DEA/NO, while attenuating the response to the heme-independent activator BAY58-2667 that targets oxidized sGC. Similarly, overexpression of H2S-synthesizing enzyme cystathionine-γ lyase reduced the ability of BAY58-2667 to promote cGMP accumulation. In experiments with phenylephrine-constricted mouse aortic rings, treatment with rotenone (a compound that increases ROS production), caused a rightward shift of the DEA/NO concentration-response curve, an effect partially restored by H2S. When rings were pre-treated with H2S, the concentration-response curve to BAY 58-2667 shifted to the right. Using purified recombinant human sGC, we observed that treatment with H2S converted ferric to ferrous sGC enhancing NO-donor-stimulated sGC activity and reducing BAY 58-2667-triggered cGMP formation. The present study identified an additional mechanism of cross-talk between the NO and H2S pathways at the level of redox regulation of sGC. Our results provide evidence that H2S reduces sGC heme Fe, thus, facilitating NO-mediated cellular signaling events.
Collapse
Affiliation(s)
- Zongmin Zhou
- 1st Department of Critical Care and Pulmonary Services, Faculty of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Greece
| | - Emil Martin
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School at Houston, TX, USA
| | - Iraida Sharina
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School at Houston, TX, USA
| | - Iolanda Esposito
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of NaplesFederico II, Italy
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mariarosaria Bucci
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of NaplesFederico II, Italy
| | - Giuseppe Cirino
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of NaplesFederico II, Italy
| | - Andreas Papapetropoulos
- 1st Department of Critical Care and Pulmonary Services, Faculty of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece.
| |
Collapse
|
66
|
Regulatory mechanism of the flavoprotein Tah18-dependent nitric oxide synthesis and cell death in yeast. Nitric Oxide 2016; 57:85-91. [DOI: 10.1016/j.niox.2016.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 04/12/2016] [Indexed: 01/31/2023]
|
67
|
Investigation on Quantitative Structure Activity Relationships of a Series of Inducible Nitric Oxide. Interdiscip Sci 2016; 8:346-351. [DOI: 10.1007/s12539-016-0176-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 10/17/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022]
|
68
|
Seo YJ, Jeong M, Lee KT, Jang DS, Choi JH. Isocyperol, isolated from the rhizomes of Cyperus rotundus, inhibits LPS-induced inflammatory responses via suppression of the NF-κB and STAT3 pathways and ROS stress in LPS-stimulated RAW 264.7 cells. Int Immunopharmacol 2016; 38:61-9. [PMID: 27240136 DOI: 10.1016/j.intimp.2016.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 01/05/2023]
Abstract
The rhizomes of Cyperus rotundus (cyperaceae) have been used in Korean traditional medicines for treating diverse inflammatory diseases. However, little is known about the biological activities of isocyperol, a sesquiterpene isolated from C. rotundus, and their associated molecular mechanisms. In this study, we found that isocyperol significantly inhibited lipopolysaccharide (LPS)-induced production of nitrite oxide (NO) and prostaglandin E2 (PGE2) and suppressed LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels in RAW 264.7 macrophages. In addition, isocyperol downregulated the LPS-induced expression of several proinflammatory cytokines, such as interleukin-1beta (IL-1β), IL-6, and monocyte chemotactic protein-1 (MCP-1). Isocyperol treatment suppressed the LPS-induced nuclear translocation and transcriptional activation of nuclear factor-kappaB (NF-κB) in macrophages. Moreover, the activation of STAT3, another proinflammatory signal, was suppressed by isocyperol in LPS-stimulated RAW 264.7 cells. Isocyperol pretreatment also induced heme oxygenase-1 (HO-1) expression and reduced LPS-stimulated reactive oxygen species (ROS) accumulation in macrophages. Furthermore, isocyperol significantly increased the survival rate and attenuated serum levels of NO, PGE2, and IL-6 in LPS-induced septic shock mouse model. Taken together, these data indicate that isocyperol suppress septic shock through negative regulation of pro-inflammatory factors through inhibition of the NF-κB and STAT3 pathways and ROS. To our knowledge, this is the first report on the biological activity of isocyperol and its molecular mechanism of action.
Collapse
Affiliation(s)
- Yun-Ji Seo
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea; Division of Molecular Biology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea
| | - Miran Jeong
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea; Division of Molecular Biology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea; Division of Molecular Biology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, South Korea.
| |
Collapse
|
69
|
Lan Z, Wei M, Chen L, Xie G, Liu X, Zhang X. Role of Sinomenine on Complete Freund's Adjuvant-Induced Arthritis in Rats. IUBMB Life 2016; 68:429-35. [DOI: 10.1002/iub.1499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/17/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Zhou Lan
- School of Pharmacy; Hubei University of Chinese Medicine; Wuhan People's Republic of China
| | - Meng Wei
- School of Pharmacy; Hubei University of Chinese Medicine; Wuhan People's Republic of China
| | - Lvyi Chen
- School of Pharmacy; South-Central University for Nationalities; Wuhan People's Republic of China
| | - Guangjing Xie
- School of Basic Medicine; Hubei University of Chinese Medicine; Wuhan People's Republic of China
| | - Xiao Liu
- School of Basic Medicine; Hubei University of Chinese Medicine; Wuhan People's Republic of China
| | - Xiuqiao Zhang
- School of Pharmacy; Hubei University of Chinese Medicine; Wuhan People's Republic of China
| |
Collapse
|
70
|
Dai YW, Zhang CC, Zhao HX, Wan JZ, Deng LL, Zhou ZY, Dun YY, Liu CQ, Yuan D, Wang T. Chikusetsusaponin V attenuates lipopolysaccharide-induced liver injury in mice. Immunopharmacol Immunotoxicol 2016; 38:167-74. [DOI: 10.3109/08923973.2016.1153109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
71
|
Arora D, Jain P, Singh N, Kaur H, Bhatla SC. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radic Res 2016; 50:291-303. [PMID: 26554526 DOI: 10.3109/10715762.2015.1118473] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO) acts in a concentration and redox-dependent manner to counteract oxidative stress either by directly acting as an antioxidant through scavenging reactive oxygen species (ROS), such as superoxide anions (O(2)(-)*), to form peroxynitrite (ONOO(-)) or by acting as a signaling molecule, thereby altering gene expression. NO can interact with different metal centres in proteins, such as heme-iron, zinc-sulfur clusters, iron-sulfur clusters, and copper, resulting in the formation of a stable metal-nitrosyl complex or production of varied biochemical signals, which ultimately leads to modification of protein structure/function. The thiols (ferrous iron-thiol complex and nitrosothiols) are also involved in the metabolism and mobilization of NO. Thiols bind to NO and transport it to the site of action whereas nitrosothiols release NO after intercellular diffusion and uptake into the target cells. S-nitrosoglutathione (GSNO) also has the ability to transnitrosylate proteins. It is an NO˙ reservoir and a long-distance signaling molecule. Tyrosine nitration of proteins has been suggested as a biomarker of nitrosative stress as it can lead to either activation or inhibition of target proteins. The exact molecular mechanism(s) by which exogenous and endogenously generated NO (or reactive nitrogen species) modulate the induction of various genes affecting redox homeostasis, are being extensively investigated currently by various research groups. Present review provides an in-depth analysis of the mechanisms by which NO interacts with and modulates the activity of various ROS scavenging enzymes, particularly accompanying ROS generation in plants in response to varied abiotic stress.
Collapse
Affiliation(s)
- Dhara Arora
- a Laboratory of Plant Physiology and Biochemistry, Department of Botany , University of Delhi , Delhi , India
| | - Prachi Jain
- a Laboratory of Plant Physiology and Biochemistry, Department of Botany , University of Delhi , Delhi , India
| | - Neha Singh
- a Laboratory of Plant Physiology and Biochemistry, Department of Botany , University of Delhi , Delhi , India
| | - Harmeet Kaur
- a Laboratory of Plant Physiology and Biochemistry, Department of Botany , University of Delhi , Delhi , India
| | - Satish C Bhatla
- a Laboratory of Plant Physiology and Biochemistry, Department of Botany , University of Delhi , Delhi , India
| |
Collapse
|
72
|
Lautner G, Meyerhoff ME, Schwendeman SP. Biodegradable poly(lactic-co-glycolic acid) microspheres loaded with S-nitroso-N-acetyl-D-penicillamine for controlled nitric oxide delivery. J Control Release 2016; 225:133-9. [PMID: 26763376 DOI: 10.1016/j.jconrel.2015.12.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/03/2015] [Accepted: 12/31/2015] [Indexed: 01/27/2023]
Abstract
Nitric oxide (NO) is a fascinating and important endogenous free-radical gas with potent antimicrobial, vasodilating, smooth muscle relaxant, and growth factor stimulating effects. However, its wider biomedical applicability is hindered by its cumbersome administration, since NO is unstable especially in biological environments. In this work, to ultimately develop site-specific controlled release vehicles for NO, the NO donor S-nitroso-N-acetyl-D-penicillamine (SNAP) was encapsulated within poly(lactic-co-glycolic acid) 50:50 (PLGA) microspheres by using a solid-in-oil-in-water emulsion solvent evaporation method. The highest payload was 0.56(±0.01) μmol SNAP/mg microspheres. The in vitro release kinetics of the donor were controlled by the bioerosion of the PLGA microspheres. By using an uncapped PLGA (Mw=24,000-38,000) SNAP was slowly released for over 10days, whereas by using the ester capped PLGA (Mw=38,000-54,000) the release lasted for over 4weeks. The presence of copper ions and/or ascorbate in solution was necessary to efficiently decompose the released NO donor and obtain sustained NO release. It was also demonstrated that light can be used to induce rapid NO release from the microspheres over several hours. SNAP exhibited excellent storage stability when encapsulated in the PLGA microspheres. These new microsphere formulations may be useful for site-specific administration and treatment of pathologies associated with dysfunction in endogenous NO production, e.g. treatment of diabetic wounds, or in diseases involving other biological functions of NO including vasodilation, antimicrobial, anticancer, and neurotransmission.
Collapse
Affiliation(s)
- Gergely Lautner
- Department of Chemistry, The University of Michigan, 930 N. University, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Mark E Meyerhoff
- Department of Chemistry, The University of Michigan, 930 N. University, Ann Arbor, MI 48109, USA.
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA.
| |
Collapse
|
73
|
Galatro A, Puntarulo S. Measurement of Nitric Oxide (NO) Generation Rate by Chloroplasts Employing Electron Spin Resonance (ESR). Methods Mol Biol 2016; 1424:103-112. [PMID: 27094414 DOI: 10.1007/978-1-4939-3600-7_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chloroplasts are among the more active organelles involved in free energy transduction in plants (photophosphorylation). Nitric oxide (NO) generation by soybean (Glycine max, var ADM 4800) chloroplasts was measured as an endogenous product assessed by electron paramagnetic resonance (ESR) spin-trapping technique. ESR spectroscopy is a methodology employed to detect species with unpaired electrons (paramagnetic). This technology has been successfully applied to different plant tissues and subcellular compartments to asses both, NO content and generation. The spin trap MGD-Fe(2+) is extensively employed to efficiently detect NO. Here, we describe a simple methodology to asses NO generation rate by isolated chloroplasts in the presence of either L-Arginine or nitrite (NO2 (-)) as substrates, since these compounds are required for enzymatic activities considered as the possible sources of NO generation in plants.
Collapse
Affiliation(s)
- Andrea Galatro
- Physical Chemistry-Institute of Biochemistry and Molecular Medicine (IBIMOL), School of Pharmacy and Biochemistry, University of Buenos Aires-CONICET, Junín, 956, C1113AAD, Buenos Aires, Argentina
| | - Susana Puntarulo
- Physical Chemistry-Institute of Biochemistry and Molecular Medicine (IBIMOL), School of Pharmacy and Biochemistry, University of Buenos Aires-CONICET, Junín, 956, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
74
|
Sharma NK, Kumar A, Kumari A, Tokar EJ, Waalkes MP, Bortner CD, Williams J, Ehrenshaft M, Mason RP, Sinha BK. Nitric Oxide Down-Regulates Topoisomerase I and Induces Camptothecin Resistance in Human Breast MCF-7 Tumor Cells. PLoS One 2015; 10:e0141897. [PMID: 26540186 PMCID: PMC4635000 DOI: 10.1371/journal.pone.0141897] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/14/2015] [Indexed: 11/19/2022] Open
Abstract
Camptothecin (CPT), a topoisomerase I poison, is an important drug for the treatment of solid tumors in the clinic. Nitric oxide (·NO), a physiological signaling molecule, is involved in many cellular functions, including cell proliferation, survival and death. We have previously shown that ·NO plays a significant role in the detoxification of etoposide (VP-16), a topoisomerase II poison in vitro and in human melanoma cells. ·NO/·NO-derived species are reported to modulate activity of several important cellular proteins. As topoisomerases contain a number of free sulfhydryl groups which may be targets of ·NO/·NO-derived species, we have investigated the roles of ·NO/·NO-derived species in the stability and activity of topo I. Here we show that ·NO/·NO-derived species induces a significant down-regulation of topoisomerase I protein via the ubiquitin/26S proteasome pathway in human colon (HT-29) and breast (MCF-7) cancer cell lines. Importantly, ·NO treatment induced a significant resistance to CPT only in MCF-7 cells. This resistance to CPT did not result from loss of topoisomerase I activity as there were no differences in topoisomerase I-induced DNA cleavage in vitro or in tumor cells, but resulted from the stabilization/induction of bcl2 protein. This up-regulation of bcl2 protein in MCF-7 cells was wtp53 dependent as pifithrine-α, a small molecule inhibitor of wtp53 function, completely reversed CPT resistance, suggesting that wtp53 and bcl2 proteins played important roles in CPT resistance. Because tumors in vivo are heterogeneous and contaminated by infiltrating macrophages, ·NO-induced down-regulation of topoisomerase I protein combined with bcl2 protein stabilization could render certain tumors highly resistant to CPT and drugs derived from it in the clinic.
Collapse
Affiliation(s)
- Nilesh K. Sharma
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Ashutosh Kumar
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Amrita Kumari
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Erik J. Tokar
- National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Michael P. Waalkes
- National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Carl D. Bortner
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Jason Williams
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Marilyn Ehrenshaft
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Ronald P. Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| | - Birandra K. Sinha
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, Durham, North Carolina, United States of America
| |
Collapse
|
75
|
Jiang D, Tikhomirova A, Bent SJ, Kidd SP. A discrete role for FNR in the transcriptional response to moderate changes in oxygen by Haemophilus influenzae Rd KW20. Res Microbiol 2015; 167:103-13. [PMID: 26499095 DOI: 10.1016/j.resmic.2015.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/21/2015] [Accepted: 09/29/2015] [Indexed: 11/28/2022]
Abstract
The survival by pathogenic bacteria within the specific conditions of an anatomical niche is critical for their persistence. These conditions include the combination of toxic chemicals, such as reactive oxygen (ROS) and reactive nitrogen species (RNS), with factors relevant to cell growth, such as oxygen. Haemophilus influenzae senses oxygen levels largely through the redox state of the intracellular fumarate-nitrate global regulator (FNR). H. influenzae certainly encounters oxygen levels that fluctuate, but in reality, these would rarely reach a state that results in FNR being fully reduced or oxidized. We were therefore interested in the response of H. influenzae to ROS and RNS at moderately high or low oxygen levels and the corresponding role of FNR. At these levels of oxygen, even though the growth rate of an H. influenzae fnr mutant was similar to wild type, its ROS and RNS tolerance was significantly different. Additionally, the subtle changes in oxygen did alter the whole cell transcriptional profile and this was different between the wild type and fnr mutant strains. It was the changed whole cell profile that impacted on ROS/RNS defence, but surprisingly, the FNR-regulated, anaerobic nitrite reductase (NrfA) continued to be expressed and had a role in this phenotype.
Collapse
Affiliation(s)
- Donald Jiang
- Research Centre for Infectious Disease, The University of Adelaide, Adelaide, Australia; School of Biological Science, The University of Adelaide, Adelaide, Australia; Agri-Food and Veterinary Authority of Singapore, Singapore.
| | - Alexandra Tikhomirova
- Research Centre for Infectious Disease, The University of Adelaide, Adelaide, Australia; School of Biological Science, The University of Adelaide, Adelaide, Australia.
| | - Stephen J Bent
- School of Biological Science, The University of Adelaide, Adelaide, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, Australia.
| | - Stephen P Kidd
- Research Centre for Infectious Disease, The University of Adelaide, Adelaide, Australia; School of Biological Science, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
76
|
Coumarins from Angelica decursiva inhibit lipopolysaccharide-induced nitrite oxide production in RAW 264.7 cells. Arch Pharm Res 2015; 39:115-26. [DOI: 10.1007/s12272-015-0668-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/03/2015] [Indexed: 12/22/2022]
|
77
|
Izzo A, Schneider R. The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:486-95. [PMID: 26348411 DOI: 10.1016/j.bbagrm.2015.09.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/07/2015] [Accepted: 09/02/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Linker histone H1 is a structural component of chromatin. It exists as a family of related proteins known as variants and/or subtypes. H1.1, H1.2, H1.3, H1.4 and H1.5 are present in most somatic cells, whereas other subtypes are mainly expressed in more specialized cells. SCOPE OF REVIEW H1 subtypes have been shown to have unique functions in chromatin structure and dynamics. This can occur at least in part via specific post-translational modifications of distinct H1 subtypes. However, while core histone modifications have been extensively studied, our knowledge of H1 modifications and their molecular functions has remained for a long time limited to phosphorylation. In this review we discuss the current state of knowledge of linker histone H1 modifications and where possible highlight functional differences in the modifications of distinct H1 subtypes. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE H1 histones are intensely post-translationally modified. These modifications are located in the N- and C-terminal tails as well as within the globular domain. Recently, advanced mass spectrometrical analysis revealed a large number of novel histone H1 subtype specific modification sites and types. H1 modifications include phosphorylation, acetylation, methylation, ubiquitination, and ADP ribosylation. They are involved in the regulation of all aspects of linker histone functions, however their mechanism of action is often only poorly understood. Therefore systematic functional characterization of H1 modifications will be necessary in order to better understand their role in gene regulation as well as in higher-order chromatin structure and dynamics.
Collapse
Affiliation(s)
- Annalisa Izzo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, 67404 Illkirch, France
| | - Robert Schneider
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
78
|
Devi KP, Malar DS, Nabavi SF, Sureda A, Xiao J, Nabavi SM, Daglia M. Kaempferol and inflammation: From chemistry to medicine. Pharmacol Res 2015; 99:1-10. [PMID: 25982933 DOI: 10.1016/j.phrs.2015.05.002] [Citation(s) in RCA: 390] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 02/08/2023]
Abstract
Inflammation is an important process of human healing response, wherein the tissues respond to injuries induced by many agents including pathogens. It is characterized by pain, redness and heat in the injured tissues. Chronic inflammation seems to be associated with different types of diseases such as arthritis, allergies, atherosclerosis, and even cancer. In recent years natural product based drugs are considered as the novel therapeutic strategy for prevention and treatment of inflammatory diseases. Among the different types of phyto-constituents present in natural products, flavonoids which occur in many vegetable foods and herbal medicines are considered as the most active constituent, which has the potency to ameliorate inflammation under both in vitro and in vivo conditions. Kaempferol is a natural flavonol present in different plant species, which has been described to possess potent anti-inflammatory properties. Despite the voluminous literature on the anti-inflammatory effects of kaempferol, only very limited review articles has been published on this topic. Hence the present review is aimed to provide a critical overview on the anti-inflammatory effects and the mechanisms of action of kaempferol, based on the current scientific literature. In addition, emphasis is also given on the chemistry, natural sources, bioavailability and toxicity of kaempferol.
Collapse
Affiliation(s)
- Kasi Pandima Devi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Dicson Sheeja Malar
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 19395 5487, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, and CIBERobn (Physiopathology of Obesity and Nutrition), E-07122 Palma de Mallorca, Balearic Islands, Spain
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 19395 5487, Tehran, Iran.
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
79
|
Kim YA, Kong CS, Park HH, Lee E, Jang MS, Nam KH, Seo Y. Anti-Inflammatory Activity of Heterocarpin from the Salt Marsh Plant Corydalis heterocarpa in LPS-Induced RAW 264.7 Macrophage Cells. Molecules 2015; 20:14474-86. [PMID: 26266403 PMCID: PMC6332082 DOI: 10.3390/molecules200814474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/14/2015] [Accepted: 07/30/2015] [Indexed: 11/16/2022] Open
Abstract
The inhibitory effect of three chromones 1-3 and two coumarins 4-5 on the production of nitric oxide (NO) was evaluated in LPS-induced RAW 264.7 macrophage cells. Among the compounds tested heterocarpin (1), a furochromone, significantly inhibited its production in a dose-dependent manner. In addition, heterocarpin suppressed prostaglandin E2 (PGE2) production and expression of cytokines such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6).
Collapse
Affiliation(s)
- You Ah Kim
- Division of Marine Bioscience, Korea Maritime & Ocean University, Busan 606-791, Korea.
| | - Chang-Suk Kong
- Department of Food and Nutrition, Silla University, Busan 617-736, Korea.
| | - Hyo Hyun Park
- Research and Development Division, Korea Promotion Institute for Traditional Medicine Industry, Gyeongsan 712-260, Korea.
| | - Eunkyung Lee
- Research and Development Division, Korea Promotion Institute for Traditional Medicine Industry, Gyeongsan 712-260, Korea.
| | - Mi-Soon Jang
- Food and Safety Research Center, National Fisheries Research & Development Institute, Busan 619-705, Korea.
| | - Ki-Ho Nam
- Food and Safety Research Center, National Fisheries Research & Development Institute, Busan 619-705, Korea.
| | - Youngwan Seo
- Division of Marine Bioscience, Korea Maritime & Ocean University, Busan 606-791, Korea.
- Ocean Science & Technology School, Korea Maritime & Ocean University, Busan 606-791, Korea.
| |
Collapse
|
80
|
Contribution of nitric oxide-dependent guanylate cyclase and reactive oxygen species signaling pathways to desensitization of μ-opioid receptors in the rat locus coeruleus. Neuropharmacology 2015; 99:422-31. [PMID: 26254861 DOI: 10.1016/j.neuropharm.2015.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/09/2015] [Accepted: 08/03/2015] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) is involved in desensitization of μ-opioid receptors (MOR). We used extracellular recordings in vitro to unmask the NO-dependent pathways involved in MOR desensitization in the rat locus coeruleus (LC). Perfusion with ME (3 and 10 μM) concentration-dependently reduced subsequent ME effect, indicative of MOR desensitization. ME (3 μM)-induced desensitization was enhanced by a NO donor (DEA/NO 100 μM), two soluble guanylate cyclase (sGC) activators (A 350619 30 μM and BAY 418543 1 μM) or a cGMP-dependent protein kinase (PKG) activator (8-pCPT-cGMP 30 μM). DEA/NO-induced enhancement was blocked by the sGC inhibitor NS 2028 (10 μM). A 350619 effect was also blocked by NS 2028, but not by the antioxidant Trolox. ME (10 μM)-induced desensitization was blocked by the neuronal NO synthase inhibitor 7-NI (100 μM) and restored by the PKG activator 8-Br-cGMP (100-300 μM). Paradoxically, ME (10 μM)-induced desensitization was not modified by sGC inhibitors (NS 2028 and ODQ), PKG inhibitors (H8 and Rp-8-Br-PET-cGMP) or antioxidant agents (Trolox, U-74389G and melatonin), but it was attenuated by a combination of NS 2028 and Trolox. In conclusion, MOR desensitization in the LC may be mediated or regulated by NO through sGC and reactive oxygen species signaling pathways.
Collapse
|
81
|
Hata T, Sakata N, Yoshimatsu G, Tsuchiya H, Fukase M, Ishida M, Aoki T, Katayose Y, Egawa S, Unno M. Cholestatic Liver Injury After Biliary Reconstruction Impairs Transplanted Islet Viability and Function. Am J Transplant 2015; 15:2085-95. [PMID: 25908212 DOI: 10.1111/ajt.13266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 02/03/2015] [Accepted: 02/11/2015] [Indexed: 01/25/2023]
Abstract
Islet autotransplantation following total pancreatectomy differs from allograft transplantation with respect to the requirement of biliary reconstruction. Although it is known that careful consideration should be given to postoperative cholestatic liver injury after biliary reconstruction, its direct effects on transplanted islets have not been completely elucidated. In this study, we developed a murine model of postoperative cholestatic liver injury after biliary reconstruction with islet autotransplantation that involved syngeneic intraportal islet transplantation into chemically induced diabetic mice and common bile duct ligation. We assessed the viability and function of the transplanted islets. The impaired viability of transplanted islets and increased blood glucose levels indicated restoration of the diabetic state after common bile duct ligation in this murine model. Furthermore, impaired islet viability and function occurred earlier in the transplanted islets than in the surrounding liver tissues, which was consistent with the faster and higher expression of oxidative stress markers in the transplanted islets. Transplanted islets may be more vulnerable to oxidative stress caused by cholestatic liver injury than the surrounding liver tissue. Therefore, patients should be intensively managed after total pancreatectomy with islet autotransplantation to preserve viability and function of the transplanted islets.
Collapse
Affiliation(s)
- T Hata
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - N Sakata
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - G Yoshimatsu
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - H Tsuchiya
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - M Fukase
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - M Ishida
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - T Aoki
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Y Katayose
- Division of Integrated Surgery and Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - S Egawa
- Division of International Cooperation for Disaster Medicine, International Research Institute of Disaster Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - M Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Integrated Surgery and Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
82
|
Gambaryan S, Tsikas D. A review and discussion of platelet nitric oxide and nitric oxide synthase: do blood platelets produce nitric oxide from L-arginine or nitrite? Amino Acids 2015; 47:1779-93. [PMID: 25929585 DOI: 10.1007/s00726-015-1986-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/09/2015] [Indexed: 02/07/2023]
Abstract
The NO/sGC/cGMP/PKG system is one of the most powerful mechanisms responsible for platelet inhibition. In numerous publications, expression of functional NO synthase (NOS) in human and mouse platelets has been reported. Constitutive and inducible NOS isoforms convert L-arginine to NO and L-citrulline. The importance of this pathway in platelets and in endothelial cells for the regulation of platelet function is discussed since decades. However, there are serious doubts in the literature concerning both expression and functionality of NOS in platelets. In this review, we aim to present and critically evaluate recent data concerning NOS expression and function in platelets, and to especially emphasise potential pitfalls of detection of NOS proteins and measurement of NOS activity. Prevailing analytical problems are probably the main sources of contradictory data on occurrence, activity and function of NOS in platelets. In this review we also address issues of how these problems can be resolved. NO donors including organic nitrites (RONO) and organic nitrate (RONO2) are inhibitors of platelet activation. Endogenous inorganic nitrite (NO2 (-)), the product of NO autoxidation, and exogenous inorganic nitrite are increasingly investigated as NO donors in the circulation. The role of platelets in the generation of NO from nitrite is also discussed.
Collapse
Affiliation(s)
- Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Prosp, St. Petersburg, 194223, Russia,
| | | |
Collapse
|
83
|
Beltran-Povea A, Caballano-Infantes E, Salguero-Aranda C, Martín F, Soria B, Bedoya FJ, Tejedo JR, Cahuana GM. Role of nitric oxide in the maintenance of pluripotency and regulation of the hypoxia response in stem cells. World J Stem Cells 2015; 7:605-617. [PMID: 25914767 PMCID: PMC4404395 DOI: 10.4252/wjsc.v7.i3.605] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/13/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Stem cell pluripotency and differentiation are global processes regulated by several pathways that have been studied intensively over recent years. Nitric oxide (NO) is an important molecule that affects gene expression at the level of transcription and translation and regulates cell survival and proliferation in diverse cell types. In embryonic stem cells NO has a dual role, controlling differentiation and survival, but the molecular mechanisms by which it modulates these functions are not completely defined. NO is a physiological regulator of cell respiration through the inhibition of cytochrome c oxidase. Many researchers have been examining the role that NO plays in other aspects of metabolism such as the cellular bioenergetics state, the hypoxia response and the relationship of these areas to stem cell stemness.
Collapse
|
84
|
Kovács M, Kiss A, Gönczi M, Miskolczi G, Seprényi G, Kaszaki J, Kohr MJ, Murphy E, Végh Á. Effect of sodium nitrite on ischaemia and reperfusion-induced arrhythmias in anaesthetized dogs: is protein S-nitrosylation involved? PLoS One 2015; 10:e0122243. [PMID: 25909651 PMCID: PMC4409072 DOI: 10.1371/journal.pone.0122243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 02/18/2015] [Indexed: 11/21/2022] Open
Abstract
Background and Purpose To provide evidence for the protective role of inorganic nitrite against acute ischaemia and reperfusion-induced ventricular arrhythmias in a large animal model. Experimental Approach Dogs, anaesthetized with chloralose and urethane, were administered intravenously with sodium nitrite (0.2 µmolkg-1min-1) in two protocols. In protocol 1 nitrite was infused 10 min prior to and during a 25 min occlusion of the left anterior descending (LAD) coronary artery (NaNO2-PO; n = 14), whereas in protocol 2 the infusion was started 10 min prior to reperfusion of the occluded vessel (NaNO2-PR; n = 12). Control dogs (n = 15) were infused with saline and subjected to the same period of ischaemia and reperfusion. Severities of ischaemia and ventricular arrhythmias, as well as changes in plasma nitrate/nitrite (NOx) levels in the coronary sinus blood, were assessed throughout the experiment. Myocardial superoxide and nitrotyrosine (NT) levels were determined during reperfusion. Changes in protein S-nitrosylation (SNO) and S-glutathionylation were also examined. Key Results Compared with controls, sodium nitrite administered either pre-occlusion or pre-reperfusion markedly suppressed the number and severity of ventricular arrhythmias during occlusion and increased survival (0% vs. 50 and 92%) upon reperfusion. There were also significant decreases in superoxide and NT levels in the nitrite treated dogs. Compared with controls, increased SNO was found only in NaNO2-PR dogs, whereas S-glutathionylation occurred primarily in NaNO2-PO dogs. Conclusions Intravenous infusion of nitrite profoundly reduced the severity of ventricular arrhythmias resulting from acute ischaemia and reperfusion in anaesthetized dogs. This effect, among several others, may result from an NO-mediated reduction in oxidative stress, perhaps through protein SNO and/or S-glutathionylation.
Collapse
Affiliation(s)
- Mária Kovács
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Kiss
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Márton Gönczi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gottfried Miskolczi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - György Seprényi
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - József Kaszaki
- Institute of Surgical Research, Albert Szent-Györgyi Medical Center, University of Szeged, Szeged, Hungary
| | - Mark J Kohr
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ágnes Végh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
85
|
Koodalingam A, Manikandan R, Indhumathi M, Kaviya ES. Cytoprotective and anti-inflammatory effects of kernel extract from Adenanthera pavonina on lipopolysaccharide-stimulated rat peritoneal macrophages. ASIAN PAC J TROP MED 2015; 8:112-9. [PMID: 25902024 DOI: 10.1016/s1995-7645(14)60300-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 11/10/2014] [Accepted: 12/22/2014] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To investigate mechanism of anti-inflammatory activity of Adenanthera pavonina (A. pavonina) extracts. METHODS Rat peritoneal macrophages were treated with different concentrations of lipopolysaccharide and H2O2 in the presence and absence of kernel extract from A. pavonina. Nitric oxide, Superoxide anion generation, cell viability and nuclear fragmentation were investigated. RESULTS The pre-treatment of kernel extract from A. pavonina suppressed nitric oxide, superoxide anion, cell death, nuclear fragmentation in lipopolysaccharide and H2O2 stimulated or induced macrophages, respectively. CONCLUSIONS These results suggest that A. pavonina extract suppresses the intra cellular peroxide production.
Collapse
Affiliation(s)
- Arunagirinathan Koodalingam
- Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram-631 561, Tamilnadu, India.
| | - Ramar Manikandan
- Department of Animal Health and Management, Alagappa University, Karaikudi-630 003, Tamilnadu, India
| | - Munisamy Indhumathi
- Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram-631 561, Tamilnadu, India
| | - Ethala Subramani Kaviya
- Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram-631 561, Tamilnadu, India
| |
Collapse
|
86
|
Zhang Z, Wang J, Chai R, Qiu H, Jiang H, Mao X, Wang Y, Liu F, Sun G. An S-(hydroxymethyl)glutathione dehydrogenase is involved in conidiation and full virulence in the rice blast fungus Magnaporthe oryzae. PLoS One 2015; 10:e0120627. [PMID: 25793615 PMCID: PMC4368689 DOI: 10.1371/journal.pone.0120627] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/24/2015] [Indexed: 11/25/2022] Open
Abstract
Magnaporthe oryzae is a hemibiotrophic fungal pathogen that causes rice blast disease. A compatible interaction requires overcoming plant defense responses to initiate colonization during the early infection process. Nitric oxide (NO) plays important roles in defense responses during host-pathogen interactions. Microbes generally protect themselves against NO-induced damage by using enzymes. Here, we characterized an S-(hydroxymethyl)-glutathione dehydrogenase gene in M. oryzae, MoSFA1, the homologs of which are involved in NO metabolism by specifically catalyzing the reduction of S-nitrosoglutathione (GSNO) in yeasts and plants. As expected from the activities of S-(hydroxymethyl)glutathione dehydrogenase in formaldehyde detoxification and GSNO reduction, MoSFA1 deletion mutants were lethal in formaldehyde containing medium, sensitive to exogenous NO and exhibited a higher level of S-nitrosothiols (SNOs) than that of the wild type. Notably, the mutants showed severe reduction of conidiation and appressoria turgor pressure, as well as significantly attenuated the virulence on rice cultivar CO-39. However, the virulence of MoSFA1 deletion mutants on wounded rice leaf was not affected. An infection assay on barley leaf further revealed that MoSFA1 deletion mutants exhibited a lower infection rate, and growth of infectious hyphae of the mutants was retarded not only in primary infected cells but also in expansion from cell to cell. Furthermore, barley leaf cell infected by MoSFA1 deletion mutants exhibited a stronger accumulation of H2O2 at 24 and 36 hpi. MoSFA1 deletion mutants displayed hypersensitivity to different oxidants, reduced activities of superoxide dismutases and peroxidases, and lower glutathione content in cells, compared with the wild type. These results imply that MoSFA1-mediated NO metabolism is important in redox homeostasis in response to development and host infection of M. oryzae. Taken together, this work identifies that MoSFA1 is required for conidiation and contributes to virulence in the penetration and biotrophic phases in M. oryzae.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaoyu Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rongyao Chai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haiping Qiu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Jiang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xueqin Mao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fengquan Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
87
|
Lewis AM, Matzdorf SS, Endres JL, Windham IH, Bayles KW, Rice KC. Examination of the Staphylococcus aureus nitric oxide reductase (saNOR) reveals its contribution to modulating intracellular NO levels and cellular respiration. Mol Microbiol 2015; 96:651-69. [PMID: 25651868 DOI: 10.1111/mmi.12962] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2015] [Indexed: 12/21/2022]
Abstract
Staphylococcus aureus nitrosative stress resistance is due in part to flavohemoprotein (Hmp). Although hmp is present in all sequenced S. aureus genomes, 37% of analyzed strains also contain nor, encoding a predicted quinol-type nitric oxide (NO) reductase (saNOR). DAF-FM staining of NO-challenged wild-type, nor, hmp and nor hmp mutant biofilms suggested that Hmp may have a greater contribution to intracellular NO detoxification relative to saNOR. However, saNOR still had a significant impact on intracellular NO levels and complemented NO detoxification in a nor hmp mutant. When grown as NO-challenged static (low-oxygen) cultures, hmp and nor hmp mutants both experienced a delay in growth initiation, whereas the nor mutant's ability to initiate growth was comparable with the wild-type strain. However, saNOR contributed to cell respiration in this assay once growth had resumed, as determined by membrane potential and respiratory activity assays. Expression of nor was upregulated during low-oxygen growth and dependent on SrrAB, a two-component system that regulates expression of respiration and nitrosative stress resistance genes. High-level nor promoter activity was also detectable in a cell subpopulation near the biofilm substratum. These results suggest that saNOR contributes to NO-dependent respiration during nitrosative stress, possibly conferring an advantage to nor+ strains in vivo.
Collapse
Affiliation(s)
- A M Lewis
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611-0700, USA
| | | | | | | | | | | |
Collapse
|
88
|
Nasuno R, Aitoku M, Manago Y, Nishimura A, Sasano Y, Takagi H. Nitric oxide-mediated antioxidative mechanism in yeast through the activation of the transcription factor Mac1. PLoS One 2014; 9:e113788. [PMID: 25423296 PMCID: PMC4244153 DOI: 10.1371/journal.pone.0113788] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae possesses various defense mechanisms against environmental stresses that generate reactive oxygen species, leading to growth inhibition or cell death. Our recent study showed a novel antioxidative mechanism mediated by nitric oxide (NO) in yeast cells, but the mechanism underlying the oxidative stress tolerance remained unclear. We report here one of the downstream pathways of NO involved in stress-tolerance mechanism in yeast. Our microarray and real-time quantitative PCR analyses revealed that exogenous NO treatment induced the expression of genes responsible for copper metabolism under the control of the transcription factor Mac1, including the CTR1 gene encoding high-affinity copper transporter. Our ChIP analysis also demonstrated that exogenous NO enhances the binding of Mac1 to the promoter region of target genes. Interestingly, we found that NO produced under high-temperature stress conditions increased the transcription level of the CTR1 gene. Furthermore, NO produced during exposure to high temperature also increased intracellular copper content, the activity of Cu,Zn-superoxide dismutase Sod1, and cell viability after exposure to high-temperature in a manner dependent on Mac1. NO did not affect the expression of the MAC1 gene, indicating that NO activates Mac1 through its post-translational modification. Based on the results shown here, we propose a novel NO-mediated antioxidative mechanism that Mac1 activated by NO induces the CTR1 gene, leading to an increase in cellular copper level, and then Cu(I) activates Sod1. This is the first report to unveil the mechanism of NO-dependent antioxidative system in yeast.
Collapse
Affiliation(s)
- Ryo Nasuno
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Miho Aitoku
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yuki Manago
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Akira Nishimura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yu Sasano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
- * E-mail:
| |
Collapse
|
89
|
Nicholls SM, Copland DA, Vitova A, Kuffova L, Forrester JV, Dick AD. Local targeting of the CD200-CD200R axis does not promote corneal graft survival. Exp Eye Res 2014; 130:1-8. [PMID: 25450061 DOI: 10.1016/j.exer.2014.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/17/2014] [Accepted: 11/10/2014] [Indexed: 12/14/2022]
Abstract
Corneal graft rejection is primarily a CD4(+) T cell-mediated mechanism in which macrophages may play an important inflammatory role. CD200Fc fusion protein is an artificial agonist of CD200R1, a receptor expressed predominantly on myeloid cells, engagement of which is known to down-regulate macrophage function. We therefore wished to test whether CD200Fc could be used as a therapeutic agent to prolong corneal graft survival. The distribution of CD200R1 and CD200, its natural ligand, was examined by immunohistology in the cornea and conjunctiva of unoperated rats and rats that had received corneal allografts. Mouse CD200Fc was injected subconjunctivally into transplanted rats on six occasions from the day of surgery until day 10 after transplantation. Control groups received injections of mouse IgG or diluent PBS. Allo-transplants were also performed in CD200(-/-) and control mice. The ability of CD200Fc to bind rat macrophages in vitro and to inhibit nitric oxide production was tested. Mean day of rejection in CD200Fc, IgG and PBS-treated rats was 12, 10 and 9 respectively (p=0.24). Mean day of rejection in CD200(-/-) and wild type mice was 17.5 and 16.0 respectively (p=0.07). Mouse CD200Fc bound to rat macrophages in a dose-dependent manner, but was unable to inhibit nitric oxide production. The fact that treatment with CD200Fc did not inhibit graft rejection and the failure of CD200 deficiency to affect graft survival suggests that local targeting of the CD200-CD200R axis to suppress macrophage activation is not a useful therapeutic strategy in corneal graft rejection.
Collapse
Affiliation(s)
- Susan M Nicholls
- School of Clinical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| | - David A Copland
- School of Clinical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Andrea Vitova
- Section of Immunity, Infection and Inflammation (Ocular Immunology), Division of Applied Medicine, School of Medicine and Dentistry, Institute of Medical Sciences, Foresterhill, University of Aberdeen, AB25 2ZD, Scotland, UK
| | - Lucia Kuffova
- Section of Immunity, Infection and Inflammation (Ocular Immunology), Division of Applied Medicine, School of Medicine and Dentistry, Institute of Medical Sciences, Foresterhill, University of Aberdeen, AB25 2ZD, Scotland, UK
| | - John V Forrester
- Section of Immunity, Infection and Inflammation (Ocular Immunology), Division of Applied Medicine, School of Medicine and Dentistry, Institute of Medical Sciences, Foresterhill, University of Aberdeen, AB25 2ZD, Scotland, UK; Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Western Australia, 6009, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, 6009, Australia
| | - Andrew D Dick
- School of Clinical Sciences, University of Bristol, Bristol, BS8 1TD, UK; School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK; National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| |
Collapse
|
90
|
Sun Z, Jiang Q, Wang L, Zhou Z, Wang M, Yi Q, Song L. The comparative proteomics analysis revealed the modulation of inducible nitric oxide on the immune response of scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2014; 40:584-94. [PMID: 25149594 DOI: 10.1016/j.fsi.2014.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/28/2014] [Accepted: 08/07/2014] [Indexed: 05/16/2023]
Abstract
Nitric oxide (NO) is an important gasotransmitter which plays a key role on the modulation of immune response in all vertebrates and invertebrates. In the present study, the modulation of inducible NO on immune response of scallop Chlamys farreri was investigated via proteomic analysis. Total proteins from hepatopancreas of scallops treated with lipopolysaccharide (LPS) and/or the inhibitor of vertebrate inducible NO synthase (S-methylisothiourea sulfate, SMT) for 12 h were analyzed via 2-D PAGE and ImageMaster 2D Platinum. There were 890, 1189 and 1046 protein spots detected in the groups treated by phosphate buffered saline (PBS), LPS and LPS+SMT, respectively, and 26 differentially expressed protein spots were identified among them. These proteins were annotated with binding or catalytic activity, and most of them were involved in metabolic or cellular processes. Some immune-related or antioxidant-related molecules such as single Ig IL-1-related receptor, guanine nucleotide-binding protein subunit beta-like protein and peroxiredoxin were identified, and the changes of their expression levels in LPS group were intensified significantly after adding SMT. The decreased expression level of tyrosinase and increased level of glutathione S-transferase 4 in LPS group were diametrically reversed by appending SMT. Moreover, interferon stimulated exonuclease gene 20-like protein and copper chaperone for superoxide dismutase were only induced by LPS+SMT stimulation but not by LPS stimulation. These data indicated that NO could modulate many immunity processes in scallop, such as NF-κB transactivation, cytoskeleton reorganization and other pivotal processes, and it was also involved in the energy metabolism, posttranslational modification, detoxification and redox balance during the immune response.
Collapse
Affiliation(s)
- Zhibin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qilin Yi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
91
|
Wang T, Dai Y, Dun Y, Zhang C, Wan J, Deng L, Zhou Z, Liu C, Yuan D. Chikusetsusaponin V inhibits inflammatory responses via NF-κB and MAPK signaling pathways in LPS-induced RAW 264.7 macrophages. Immunopharmacol Immunotoxicol 2014; 36:404-11. [DOI: 10.3109/08923973.2014.960088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
92
|
Sharma MC. Comparative pharmacophore modeling and QSAR studies for structural requirements of some substituted 2-aminopyridines derivatives as inhibitors nitric oxide synthases. Interdiscip Sci 2014. [PMID: 25183347 DOI: 10.1007/s12539-013-0038-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 10/06/2013] [Accepted: 10/14/2014] [Indexed: 06/03/2023]
Abstract
The present studies are an attempt in this direction seeking for the development and comparison of QSAR models of substituted 2-aminopyridines derivatives as inhibitors of nitric oxide synthases by different feature selection methods. Comparing the two different feature selection methods, it is implicit that the model built with the selected variables by simulated annealing (SA) method gives better prediction in case of 2D and 3D QSAR modeling. The QSAR study was carried out on V-life Molecular Design Suite software and the derived best QSAR model was derived by partial component regression (PCR) method. The statistically significant best model with high correlation coefficient (r2 = 0.8408) was selected for further study. The model was further validated by means of crossed squared correlation coefficient (q2 = 0.7270 and pred r2 = 0.7889) which shows model has good predictive ability. 3D-QSAR analysis has been performed on a series of substituted 2-aminopyridines derivatives as which were screened as inhibitors of nitric oxide synthases, using the simulated annealing and step wise k-nearest neighbour Molecular Field Analysis. The best QSAR model showed q2 = 0.8377, r2 = 0.8739 and standard error = 0.1954. It was observed that steric properties predicted by k-nearest neighbour MFA contours can be related to inhibitors of nitric oxide synthases. The predictive ability of the resultant model was evaluated using a test set molecules and the predicted r2 = 0.8159. The distances between the pharmacophore sites were measured in order to confirm their significance to the activities. The results reveal that the acceptor (acc), donor (don), aliphatic and aromatic pharmacophore properties are favorable contours sites for both the activities. The two dimensional and k-nearest neighbour contour plots required for further understanding of the relationship between structural features of substituted 2-aminopyridines derivatives and their activities which should be applicable to design newer potential inducible nitric oxide synthases.
Collapse
Affiliation(s)
- Mukesh C Sharma
- Drug Design and Development Laboratory, School of Pharmacy, Devi Ahilya University, Takshila Campus, Khandwa Road, Indore, 452 001, India,
| |
Collapse
|
93
|
Keles S, Ates O, Kartal B, Alp HH, Ekinci M, Ceylan E, Ondas O, Arpali E, Dogan S, Yildirim K, Keles MS. Evaluation of cardiovascular biomarkers in patients with age-related wet macular degeneration. Clin Ophthalmol 2014; 8:1573-8. [PMID: 25210424 PMCID: PMC4154890 DOI: 10.2147/opth.s66160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
AIM To evaluate levels of homocysteine, asymmetric dimethylarginine (ADMA), and nitric oxide (NO), as well as activity of endothelial NO synthase (eNOS), in patients with age-related macular degeneration (AMD). METHODS The levels of homocysteine, ADMA, and NO and activity of eNOS in patients who were diagnosed with wet AMD by fundus fluorescein angiography (n=30) were compared to a control group with no retinal pathology (n=30). RESULTS Levels of homocysteine and ADMA were found to be significantly higher in the wet AMD group than in the control group (P<0.001), whereas NO levels and eNOS activity were higher in the control group (P<0.001). In the wet AMD group, we detected a 2.64- and 0.33-fold increase in the levels of ADMA and homocysteine, respectively, and a 0.49- and 2.41-fold decrease in the eNOS activity and NO level, respectively. CONCLUSION Elevated levels of homocysteine and ADMA were observed in patients with wet AMD. Increased ADMA may be responsible for the diminished eNOS activity found in these patients, which in turn contributes to the decrease in NO levels, which likely plays a role in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Sadullah Keles
- Department of Ophthalmology, School of Medicine, Ataturk University, Erzurum, Turkey
| | - Orhan Ates
- Department of Ophthalmology, School of Medicine, Ataturk University, Erzurum, Turkey
| | - Baki Kartal
- Department of Ophthalmology, Regional Training and Research Hospital, Erzurum, Turkey
| | - Hamit Hakan Alp
- Department of Biochemistry, School of Medicine, Yuzuncu Yil University, Van, Turkey
| | - Metin Ekinci
- Department of Ophthalmology, School of Medicine, Kafkas University, Kars, Turkey
| | - Erdinc Ceylan
- Department of Ophthalmology, Regional Training and Research Hospital, Erzurum, Turkey
| | - Osman Ondas
- Department of Ophthalmology, Erbaa Government Hospital, Tokat, Turkey
| | - Eren Arpali
- Department of Ophthalmology, Regional Training and Research Hospital, Erzurum, Turkey
| | - Semih Dogan
- Department of Ophthalmology, Kolan Hospital, Istanbul, Turkey
| | - Kenan Yildirim
- Department of Ophthalmology, Igdır Government Hospital, Igdır, Turkey
| | - Mevlut Sait Keles
- Department of Biochemistry, School of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
94
|
Chung IM, Kim YO, Ali M, Kim SH, Park I, Kim EH, Yang YS, Park HR, Son ES, Ahmad A. Triterpene glycosides from red ginseng marc and their anti-inflammatory activities. Bioorg Med Chem Lett 2014; 24:4203-8. [PMID: 25106885 DOI: 10.1016/j.bmcl.2014.07.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 11/17/2022]
Abstract
Three new triterpene glycosides ursan-3β,19α,22β-triol-3-O-β-D-glucopyranosyl (2'→1″)-β-D-glucopyranoside (1), ursan-3α,11β-diol-3-O-α-D-glucopyranosyl-(6'→1″)-α-D-glucopyranosyl-(6″→1‴)-α-D-glucopyranosyl-(6‴→1‴')-α-D-glucopyranoside (2) and lanost-5,24-dien-3β-ol-3-O-β-D-glucopyranosyl-(6'→1″)-β-D-glucopyranosyl-(6″→1‴)-β-D-glucopyranoside (3), together with one known compound were isolated and identified from the marc of red ginseng. Their structures were elucidated by spectroscopic data analysis. Compounds (1-3) were investigated for anti-inflammatory effects using the RAW 264.7 macrophage cell line. In the cell proliferation assay, lipopolysaccharide stimulation decreased cell proliferation of RAW 264.7 macrophage cells, but the suppression of cell proliferation was significantly protected by treatment with compounds 2 and 3. Compounds 2 and 3 had a suppressive effect on the production of nitric oxide (NO), and they inhibited mRNA expression of proinflammatory mediators such as inducible nitric oxide synthase, and cyclooxygenase-2, and proinflammatory cytokines such as two interleukins and tumor necrosis factor-α. These findings suggest that compounds 2 and 3 have potential anti-inflammatory activities.
Collapse
Affiliation(s)
- Ill-Min Chung
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 143-701, South Korea
| | - Young-Ock Kim
- Department of Medicinal Crop Research Institute, National Institute of Horticultural and Herbal Science, RDA, Eumseong 369-873, South Korea
| | - Mohammed Ali
- Faculty of Pharmacy, Hamdard University, New Delhi 110062, India
| | - Seung-Hyun Kim
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 143-701, South Korea
| | - Inmyoung Park
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, South Korea
| | - Eun-Hye Kim
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 143-701, South Korea
| | - Ye-Sul Yang
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 143-701, South Korea
| | - Hye-Ran Park
- Department of Applied Biochemistry, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, South Korea
| | - Eun-Suk Son
- Department of Applied Biochemistry, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, South Korea
| | - Ateeque Ahmad
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 143-701, South Korea.
| |
Collapse
|
95
|
Cruz MHC, Leal CLV, Cruz JF, Tan DX, Reiter RJ. Essential actions of melatonin in protecting the ovary from oxidative damage. Theriogenology 2014; 82:925-32. [PMID: 25107629 DOI: 10.1016/j.theriogenology.2014.07.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/02/2014] [Accepted: 07/05/2014] [Indexed: 01/03/2023]
Abstract
Free radicals and other reactive species are involved in normal ovarian physiology. However, they are also highly reactive with complex cellular molecules (proteins, lipids, and DNA) and alter their functions leading to oxidative stress. Oxidative damage may play a prominent role in the development of disorders that considerably influence female fertility. Melatonin, because of its amphiphilic nature that allows for crossing morphophysiological barriers, is an effective antioxidant for protecting macromolecules against oxidative stress caused by reactive species. The balance between reactive oxygen species and antioxidants within the follicle seems to be critical to the function of the oocyte and granulosa cells and evidence has accumulated showing that melatonin is involved in the protection of these cells. Melatonin appears to have varied functions at different stages of follicle development, oocyte maturation, and luteal stage. Melatonin concentration in the growing follicle may be an important factor in avoiding atresia, because melatonin in the follicular fluid reduces apoptosis of critical cells. Melatonin also has protective actions during oocyte maturation reducing intrafollicular oxidative damage. An association between melatonin concentrations in follicular fluid and oocyte quality has been reported; this would allow a preovulatory follicle to fully develop and provide a competent oocyte for fertilization. The functional role of reactive species and the cytoprotective properties of melatonin on the ovary from oxidative damage are summarized in this brief review.
Collapse
Affiliation(s)
- M H C Cruz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, USP, Pirassununga, SP, Brazil.
| | - C L V Leal
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, USP, Pirassununga, SP, Brazil
| | - J F Cruz
- Department of Plant Science and Animal Science, Southwest Bahia State University, UESB, Vitória da Conquista, BA, Brazil
| | - D X Tan
- Department of Cellular and Structural Biology, UT Health Science Center at San Antonio, San Antonio, Texas, USA
| | - R J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
96
|
Kim J, Won JS, Singh AK, Sharma AK, Singh I. STAT3 regulation by S-nitrosylation: implication for inflammatory disease. Antioxid Redox Signal 2014; 20:2514-27. [PMID: 24063605 PMCID: PMC4026100 DOI: 10.1089/ars.2013.5223] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS S-nitrosylation and S-glutathionylation, redox-based modifications of protein thiols, are recently emerging as important signaling mechanisms. In this study, we assessed S-nitrosylation-based regulation of Janus-activated kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway that plays critical roles in immune/inflammatory responses and tumorigenesis. RESULTS Our studies show that STAT3 in stimulated microglia underwent two distinct redox-dependent modifications, S-nitrosylation and S-glutathionylation. STAT3 S-nitrosylation was associated with inducible nitric oxide synthase (iNOS)-produced nitric oxide (NO) and S-nitrosoglutathione (GSNO), whereas S-glutathionylation of STAT3 was associated with cellular oxidative stress. NO produced by iNOS or treatment of microglia with exogenous GSNO inhibited STAT3 activation via inhibiting STAT3 phosphorylation (Tyr(705)). Consequently, the interleukin-6 (IL-6)-induced microglial proliferation and associated gene expressions were also reduced. In cell-free kinase assay using purified JAK2 and STAT3, STAT3 phosphorylation was inhibited by its selective preincubation with GSNO, but not by preincubation of JAK2 with GSNO, indicating that GSNO-mediated mechanisms inhibit STAT3 phosphorylation through S-nitrosylation of STAT3 rather than JAK2. In this study, we identified that Cys(259) was the target Cys residue of GSNO-mediated S-nitrosylation of STAT3. The replacement of Cys(259) residue with Ala abolished the inhibitory role of GSNO in IL-6-induced STAT3 phosphorylation and transactivation, suggesting the role of Cys(259) S-nitrosylation in STAT3 phosphorylation. INNOVATION Microglial proliferation is regulated by NO via S-nitrosylation of STAT3 (Cys(259)) and inhibition of STAT3 (Tyr(705)) phosphorylation. CONCLUSION Our results indicate the regulation of STAT3 by NO-based post-translational modification (S-nitrosylation). These findings have important implications for the development of new therapeutics targeting STAT3 for treating diseases associated with inflammatory/immune responses and abnormal cell proliferation, including cancer.
Collapse
Affiliation(s)
- Jinsu Kim
- 1 Department of Pediatrics, Medical University of South Carolina , Charleston, South Carolina
| | | | | | | | | |
Collapse
|
97
|
Buys ES, Potter LR, Pasquale LR, Ksander BR. Regulation of intraocular pressure by soluble and membrane guanylate cyclases and their role in glaucoma. Front Mol Neurosci 2014; 7:38. [PMID: 24904270 PMCID: PMC4032937 DOI: 10.3389/fnmol.2014.00038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/21/2014] [Indexed: 01/01/2023] Open
Abstract
Glaucoma is a progressive optic neuropathy characterized by visual field defects that ultimately lead to irreversible blindness (Alward, 2000; Anderson et al., 2006). By the year 2020, an estimated 80 million people will have glaucoma, 11 million of which will be bilaterally blind. Primary open-angle glaucoma (POAG) is the most common type of glaucoma. Elevated intraocular pressure (IOP) is currently the only risk factor amenable to treatment. How IOP is regulated and can be modulated remains a topic of active investigation. Available therapies, mostly geared toward lowering IOP, offer incomplete protection, and POAG often goes undetected until irreparable damage has been done, highlighting the need for novel therapeutic approaches, drug targets, and biomarkers (Heijl et al., 2002; Quigley, 2011). In this review, the role of soluble (nitric oxide (NO)-activated) and membrane-bound, natriuretic peptide (NP)-activated guanylate cyclases that generate the secondary signaling molecule cyclic guanosine monophosphate (cGMP) in the regulation of IOP and in the pathophysiology of POAG will be discussed.
Collapse
Affiliation(s)
- Emmanuel S Buys
- Department of Anesthesia, Critical Care, and Pain Medicine, Anesthesia Center for Critical Care Research, Harvard Medical School, Massachusetts General Hospital Boston, MA, USA
| | - Lincoln R Potter
- Department of Pharmacology, University of Minnesota Medical School Minneapolis, MN, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Glaucoma Service Mass Eye and Ear Infirmary and Channing Division of Network Medicine, Harvard Medical School, Brigham and Women's Hospital Boston, MA, USA
| | - Bruce R Ksander
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Schepens Eye Research Institute, Harvard Medical School Boston, MA, USA
| |
Collapse
|
98
|
Bluhm U, Boucher JL, Clement B, Girreser U, Heber D, Ramassamy B, Wolschendorf U. Synthesis, Characterization and NO Synthase Inhibition Testing of 2-Aryl-5-aroyl-3,4,5,6-tetrahydropyrimidinium Chlorides. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ullvi Bluhm
- Pharmaceutical Institute, Department of Pharmaceutical Chemistry; Christian-Albrechts-University of Kiel; Gutenbergstraße 76 D-24118 Kiel Germany
| | - Jean-Luc Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601; University Paris Descartes; 45 Rue des Saints-Pères 75270 Paris Cedex 06 France
| | - Bernd Clement
- Pharmaceutical Institute, Department of Pharmaceutical Chemistry; Christian-Albrechts-University of Kiel; Gutenbergstraße 76 D-24118 Kiel Germany
| | - Ulrich Girreser
- Pharmaceutical Institute, Department of Pharmaceutical Chemistry; Christian-Albrechts-University of Kiel; Gutenbergstraße 76 D-24118 Kiel Germany
| | - Dieter Heber
- Pharmaceutical Institute, Department of Pharmaceutical Chemistry; Christian-Albrechts-University of Kiel; Gutenbergstraße 76 D-24118 Kiel Germany
| | - Booma Ramassamy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601; University Paris Descartes; 45 Rue des Saints-Pères 75270 Paris Cedex 06 France
| | - Ulrich Wolschendorf
- Pharmaceutical Institute, Department of Pharmaceutical Chemistry; Christian-Albrechts-University of Kiel; Gutenbergstraße 76 D-24118 Kiel Germany
| |
Collapse
|
99
|
Peroxynitrite and peroxiredoxin in the pathogenesis of experimental amebic liver abscess. BIOMED RESEARCH INTERNATIONAL 2014; 2014:324230. [PMID: 24822193 PMCID: PMC4009108 DOI: 10.1155/2014/324230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/12/2014] [Indexed: 12/21/2022]
Abstract
The molecular mechanisms by which Entamoeba histolytica causes amebic liver abscess (ALA) are still not fully understood. Amebic mechanisms of adherence and cytotoxic activity are pivotal for amebic survival but apparently do not directly cause liver abscess. Abundant evidence indicates that chronic inflammation (resulting from an inadequate immune response) is probably the main cause of ALA. Reports referring to inflammatory mechanisms of liver damage mention a repertoire of toxic molecules by the immune response (especially nitric oxide and reactive oxygen intermediates) and cytotoxic substances released by neutrophils and macrophages after being lysed by amoebas (e.g., defensins, complement, and proteases). Nevertheless, recent evidence downplays these mechanisms in abscess formation and emphasizes the importance of peroxynitrite (ONOO−). It seems that the defense mechanism of amoebas against ONOO−, namely, the amebic thioredoxin system (including peroxiredoxin), is superior to that of mammals. The aim of the present text is to define the importance of ONOO− as the main agent of liver abscess formation during amebic invasion, and to explain the superior capacity of amoebas to defend themselves against this toxic agent through the peroxiredoxin and thioredoxin system.
Collapse
|
100
|
Medici V, Schroeder DI, Woods R, LaSalle JM, Geng Y, Shibata NM, Peerson J, Hodzic E, Dayal S, Tsukamoto H, Kharbanda KK, Tillman B, French SW, Halsted CH. Methylation and gene expression responses to ethanol feeding and betaine supplementation in the cystathionine beta synthase-deficient mouse. Alcohol Clin Exp Res 2014; 38:1540-9. [PMID: 24730561 DOI: 10.1111/acer.12405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/12/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Alcoholic steatohepatitis (ASH) is caused in part by the effects of ethanol (EtOH) on hepatic methionine metabolism. METHODS To investigate the phenotypic and epigenetic consequences of altered methionine metabolism in this disease, we studied the effects of 4-week intragastric EtOH feeding with and without the methyl donor betaine in cystathionine beta synthase (CβS) heterozygous C57BL/6J mice. RESULTS The histopathology of early ASH was induced by EtOH feeding and prevented by betaine supplementation, while EtOH feeding reduced and betaine supplementation maintained the hepatic methylation ratio of the universal methyl donor S-adenosylmethionine (SAM) to the methyltransferase inhibitor S-adenosylhomocysteine (SAH). MethylC-seq genomic sequencing of heterozygous liver samples from each diet group found 2 to 4% reduced methylation in gene bodies, but not promoter regions of all autosomes of EtOH-fed mice, each of which were normalized in samples from mice fed the betaine-supplemented diet. The transcript levels of nitric oxide synthase (Nos2) and DNA methyltransferase 1 (Dnmt1) were increased, while those of peroxisome proliferator receptor-α (Pparα) were reduced in EtOH-fed mice, and each was normalized in mice fed the betaine-supplemented diet. DNA pyrosequencing of CβS heterozygous samples found reduced methylation in a gene body of Nos2 by EtOH feeding that was restored by betaine supplementation and was correlated inversely with its expression and positively with SAM/SAH ratios. CONCLUSIONS The present study has demonstrated relationships among EtOH induction of ASH with aberrant methionine metabolism that was associated with gene body DNA hypomethylation in all autosomes and was prevented by betaine supplementation. The data imply that EtOH-induced changes in selected gene transcript levels and hypomethylation in gene bodies during the induction of ASH are a result of altered methionine metabolism that can be reversed through dietary supplementation of methyl donors.
Collapse
Affiliation(s)
- Valentina Medici
- Department of Internal Medicine, University of California Davis, Sacramento, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|