51
|
Gaire BP, Koronyo Y, Fuchs DT, Shi H, Rentsendorj A, Danziger R, Vit JP, Mirzaei N, Doustar J, Sheyn J, Hampel H, Vergallo A, Davis MR, Jallow O, Baldacci F, Verdooner SR, Barron E, Mirzaei M, Gupta VK, Graham SL, Tayebi M, Carare RO, Sadun AA, Miller CA, Dumitrascu OM, Lahiri S, Gao L, Black KL, Koronyo-Hamaoui M. Alzheimer's disease pathophysiology in the Retina. Prog Retin Eye Res 2024; 101:101273. [PMID: 38759947 PMCID: PMC11285518 DOI: 10.1016/j.preteyeres.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ron Danziger
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Filippo Baldacci
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | | | - Ernesto Barron
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia; Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
52
|
Sun J, Song S. Advances in modeling permeability and selectivity of the blood-brain barrier using microfluidics. MICROFLUIDICS AND NANOFLUIDICS 2024; 28:44. [PMID: 39781566 PMCID: PMC11709447 DOI: 10.1007/s10404-024-02741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/15/2024] [Indexed: 01/12/2025]
Abstract
The blood-brain barrier (BBB) protects the brain by actively allowing the entry of ions and nutrients while limiting the passage of from toxins and pathogens. A healthy BBB has low permeability and high selectivity to maintain normal brain functions. Increased BBB permeability can result from neurological diseases and traumatic injuries. Modern engineering technologies such as microfluidics and fabrication techniques have advanced the development of BBB models to simulate the basic functions of BBB. However, the intrinsic BBB properties are difficult to replicate. Existing in vitro BBB models demonstrate inconsistent BBB permeability and selectivity due to variations in microfluidic design, cell types and arrangement, expression of tight junction (TJ) proteins, and use of shear stress. Specifically, microfluidic designs have flow channels of different sizes, complexity, topology, and modular structure. Different cell types are selected to mimic various physiological conditions. These factors make it challenging to compare results obtained using different experimental setups. This paper highlights key factors that play important roles in influencing microfluidic models and discusses how these factors contribute to permeability and selectivity of the BBB models.
Collapse
Affiliation(s)
- Jindi Sun
- Department of Biomedical Engineering, The University of Arizona, 1200 E University Blvd, Tucson 85721, Arizona, USA
| | - Shang Song
- Department of Biomedical Engineering, The University of Arizona, 1200 E University Blvd, Tucson 85721, Arizona, USA
- Departments of Neuroscience GIDP, Materials Science and Engineering, and BIO5 Institute, The University of Arizona, 1200 E University Blvd, Tucson 85721, Arizona, USA
| |
Collapse
|
53
|
Chen Y, Huang X, Chen H, Yi C. An easy-to-perform method for microvessel isolation and primary brain endothelial cell culture to study Alzheimer's disease. Heliyon 2024; 10:e33077. [PMID: 38994107 PMCID: PMC11238044 DOI: 10.1016/j.heliyon.2024.e33077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Dysfunction of the blood-brain barrier (BBB) has been increasingly recognised as a critical early event in Alzheimer's disease (AD) pathophysiology. Central to this mechanism is the impaired function of brain endothelial cells (BECs), the primary structural constituents of the BBB, the study of which is imperative for understanding AD pathophysiology. However, the published methods to isolate BECs are time-consuming and have a low success rate. Here, we developed a rapid and streamlined protocol for BEC isolation without using transgenic reporters, flow cytometry, and magnetic beads, which are essential for existing methods. Using this novel protocol, we isolated high-purity BECs from cell clusters of cortical microvessels from wild-type and APPswe/PS1dE9 (APP/PS1, a classical AD model) mice at 2, 4 and 9 months of age. Reduced levels of tight junction proteins Claudin-5 and Zonula Occludens-1, as well as glucose transporter 1, were observed in the isolated cortical microvessels from APP/PS1 mice and amyloid-β (Aβ) oligomer-treated BECs from wild-type mice. Trans-well permeability assay showed increased FITC-dextran leakage in BECs treated with Aβ, suggesting impaired BBB permeability. BECs obtained using our novel protocol can undergo various experimental analyses, including immunofluorescence staining, western blotting, real-time PCR, and trans-well permeability assay. In conclusion, our novel protocol represents a reliable and valuable tool for in vitro modelling BBB to study AD-related mechanisms and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yang Chen
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaomin Huang
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
54
|
Ritson M, Wheeler-Jones CPD, Stolp HB. Endothelial dysfunction in neurodegenerative disease: Is endothelial inflammation an overlooked druggable target? J Neuroimmunol 2024; 391:578363. [PMID: 38728929 DOI: 10.1016/j.jneuroim.2024.578363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Neurological diseases with a neurodegenerative component have been associated with alterations in the cerebrovasculature. At the anatomical level, these are centred around changes in cerebral blood flow and vessel organisation. At the molecular level, there is extensive expression of cellular adhesion molecules and increased release of pro-inflammatory mediators. Together, these has been found to negatively impact blood-brain barrier integrity. Systemic inflammation has been found to accelerate and exacerbate endothelial dysfunction, neuroinflammation and degeneration. Here, we review the role of cerebrovasculature dysfunction in neurodegenerative disease and discuss the potential contribution of intermittent pro-inflammatory systemic disease in causing endothelial pathology, highlighting a possible mechanism that may allow broad-spectrum therapeutic targeting in the future.
Collapse
Affiliation(s)
- Megan Ritson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | | | - Helen B Stolp
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK.
| |
Collapse
|
55
|
Denkinger M, Baker S, Inglis B, Kobayashi S, Juarez A, Mason S, Jagust W. Associations between regional blood-brain barrier permeability, aging, and Alzheimer's disease biomarkers in cognitively normal older adults. PLoS One 2024; 19:e0299764. [PMID: 38837947 PMCID: PMC11152304 DOI: 10.1371/journal.pone.0299764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/05/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Increased blood-brain barrier permeability (BBBp) has been hypothesized as a feature of aging that may lead to the development of Alzheimer's disease (AD). We sought to identify the brain regions most vulnerable to greater BBBp during aging and examine their regional relationship with neuroimaging biomarkers of AD. METHODS We studied 31 cognitively normal older adults (OA) and 10 young adults (YA) from the Berkeley Aging Cohort Study (BACS). Both OA and YA received dynamic contrast-enhanced MRI (DCE-MRI) to quantify Ktrans values, as a measure of BBBp, in 37 brain regions across the cortex. The OA also received Pittsburgh compound B (PiB)-PET to create distribution volume ratios (DVR) images and flortaucipir (FTP)- PET to create partial volume corrected standardized uptake volume ratios (SUVR) images. Repeated measures ANOVA assessed the brain regions where OA showed greater BBBp than YA. In OA, Ktrans values were compared based on sex, Aβ positivity status, and APOE4 carrier status within a composite region across the areas susceptible to aging. We used linear models and sparse canonical correlation analysis (SCCA) to examine the relationship between Ktrans and AD biomarkers. RESULTS OA showed greater BBBp than YA predominately in the temporal lobe, with some involvement of parietal, occipital and frontal lobes. Within an averaged ROI of affected regions, there was no difference in Ktrans values based on sex or Aβ positivity, but OA who were APOE4 carriers had significantly higher Ktrans values. There was no direct relationship between averaged Ktrans and global Aβ pathology, but there was a trend for an Ab status by tau interaction on Ktrans in this region. SCCA showed increased Ktrans was associated with increased PiB DVR, mainly in temporal and parietal brain regions. There was not a significant relationship between Ktrans and FTP SUVR. DISCUSSION Our findings indicate that the BBB shows regional vulnerability during normal aging that overlaps considerably with the pattern of AD pathology. Greater BBBp in brain regions affected in aging is related to APOE genotype and may also be related to the pathological accumulation of Aβ.
Collapse
Affiliation(s)
- Marisa Denkinger
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Suzanne Baker
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Ben Inglis
- Henry H. Wheeler Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, California, United States of America
| | - Sarah Kobayashi
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Alexis Juarez
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Suzanne Mason
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
56
|
Oh G, Moon Y, Moon WJ, Ye JC. Unpaired deep learning for pharmacokinetic parameter estimation from dynamic contrast-enhanced MRI without AIF measurements. Neuroimage 2024; 291:120571. [PMID: 38518829 DOI: 10.1016/j.neuroimage.2024.120571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024] Open
Abstract
DCE-MRI provides information about vascular permeability and tissue perfusion through the acquisition of pharmacokinetic parameters. However, traditional methods for estimating these pharmacokinetic parameters involve fitting tracer kinetic models, which often suffer from computational complexity and low accuracy due to noisy arterial input function (AIF) measurements. Although some deep learning approaches have been proposed to tackle these challenges, most existing methods rely on supervised learning that requires paired input DCE-MRI and labeled pharmacokinetic parameter maps. This dependency on labeled data introduces significant time and resource constraints and potential noise in the labels, making supervised learning methods often impractical. To address these limitations, we present a novel unpaired deep learning method for estimating pharmacokinetic parameters and the AIF using a physics-driven CycleGAN approach. Our proposed CycleGAN framework is designed based on the underlying physics model, resulting in a simpler architecture with a single generator and discriminator pair. Crucially, our experimental results indicate that our method does not necessitate separate AIF measurements and produces more reliable pharmacokinetic parameters than other techniques.
Collapse
Affiliation(s)
- Gyutaek Oh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, 120-1, Neungdong-ro, Gwangjin-gu, 05030, Seoul, Republic of Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, 120-1, Neungdong-ro, Gwangjin-gu, 05030, Seoul, Republic of Korea.
| | - Jong Chul Ye
- Kim Jaechul Graduate School of AI, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea.
| |
Collapse
|
57
|
Reiter JT, Schulte F, Bauer T, David B, Endler C, Isaak A, Schuch F, Bitzer F, Witt JA, Hattingen E, Deichmann R, Attenberger U, Becker AJ, Helmstaedter C, Radbruch A, Surges R, Friedman A, Rüber T. Evidence for interictal blood-brain barrier dysfunction in people with epilepsy. Epilepsia 2024; 65:1462-1474. [PMID: 38436479 DOI: 10.1111/epi.17929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE Interictal blood-brain barrier dysfunction in chronic epilepsy has been demonstrated in animal models and pathological specimens. Ictal blood-brain barrier dysfunction has been shown in humans in vivo using an experimental quantitative magnetic resonance imaging (MRI) protocol. Here, we hypothesized that interictal blood-brain barrier dysfunction is also present in people with drug-resistant epilepsy. METHODS Thirty-nine people (21 females, mean age at MRI ± SD = 30 ± 8 years) with drug-resistant epilepsy were prospectively recruited and underwent interictal T1-relaxometry before and after administration of a paramagnetic contrast agent. Likewise, quantitative T1 was acquired in 29 people without epilepsy (12 females, age at MRI = 48 ± 18 years). Quantitative T1 difference maps were calculated and served as a surrogate imaging marker for blood-brain barrier dysfunction. Values of quantitative T1 difference maps inside hemispheres ipsilateral to the presumed seizure onset zone were then compared, on a voxelwise level and within presumed seizure onset zones, to the contralateral side of people with epilepsy and to people without epilepsy. RESULTS Compared to the contralateral side, ipsilateral T1 difference values were significantly higher in white matter (corrected p < .05), gray matter (uncorrected p < .05), and presumed seizure onset zones (p = .04) in people with epilepsy. Compared to people without epilepsy, significantly higher T1 difference values were found in the anatomical vicinity of presumed seizure onset zones (p = .004). A subgroup of people with hippocampal sclerosis demonstrated significantly higher T1 difference values in the ipsilateral hippocampus and in regions strongly interconnected with the hippocampus compared to people without epilepsy (corrected p < .01). Finally, z-scores reflecting the deviation of T1 difference values within the presumed seizure onset zone were associated with verbal memory performance (p = .02) in people with temporal lobe epilepsy. SIGNIFICANCE Our results indicate a blood-brain barrier dysfunction in drug-resistant epilepsy that is detectable interictally in vivo, anatomically related to the presumed seizure onset zone, and associated with cognitive deficits.
Collapse
Affiliation(s)
- Johannes T Reiter
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Freya Schulte
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Tobias Bauer
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Bastian David
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Christoph Endler
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Fabiane Schuch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Felix Bitzer
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | | | - Elke Hattingen
- Institute of Neuroradiology, University Hospital and Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | | | | | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Departments of Cognitive and Brain Sciences, Physiology, and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Theodor Rüber
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
58
|
Bae J, Qayyum S, Zhang J, Das A, Reyes I, Aronowitz E, Stavarache MA, Kaplitt MG, Masurkar A, Kim SG. Feasibility of measuring blood-brain barrier permeability using ultra-short echo time radial magnetic resonance imaging. J Neuroimaging 2024; 34:320-328. [PMID: 38616297 PMCID: PMC11090723 DOI: 10.1111/jon.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The purpose of this study is to evaluate the feasibility of using 3-dimensional (3D) ultra-short echo time (UTE) radial imaging method for measurement of the permeability of the blood-brain barrier (BBB) to gadolinium-based contrast agent. In this study, we propose to use the golden-angle radial sparse parallel (GRASP) method with 3D center-out trajectories for UTE, hence named as 3D UTE-GRASP. We first examined the feasibility of using 3D UTE-GRASP dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) for differentiating subtle BBB disruptions induced by focused ultrasound (FUS). Then, we examined the BBB permeability changes in Alzheimer's disease (AD) pathology using Alzheimer's disease transgenic mice (5xFAD) at different ages. METHODS For FUS experiments, we used four Sprague Dawley rats at similar ages where we compared BBB permeability of each rat receiving the FUS sonication with different acoustic power (0.4-1.0 MPa). For AD transgenic mice experiments, we included three 5xFAD mice (6, 12, and 16 months old) and three wild-type mice (4, 8, and 12 months old). RESULTS The result from FUS experiments showed a progressive increase in BBB permeability with increase of acoustic power (p < .05), demonstrating the sensitivity of DCE-MRI method for detecting subtle changes in BBB disruption. Our AD transgenic mice experiments suggest an early BBB disruption in 5xFAD mice, which is further impaired with aging. CONCLUSION The results in this study substantiate the feasibility of using the proposed 3D UTE-GRASP method for detecting subtle BBB permeability changes expected in neurodegenerative diseases, such as AD.
Collapse
Affiliation(s)
- Jonghyun Bae
- Vilcek Institute of Graduate Biomedical Science, New York University School of Medicine
- Center for Biomedical Imaging, Radiology, New York University School of Medicine
- Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine
- Department of Radiology, Weill Cornell Medical College
| | - Sawwal Qayyum
- Department of Radiology, Weill Cornell Medical College
| | - Jin Zhang
- Department of Radiology, Weill Cornell Medical College
| | - Ayesha Das
- Department of Radiology, Weill Cornell Medical College
| | - Isabel Reyes
- Center for Cognitive Neurology, Department of Neurology, New York University School of Medicine
- Department of Neuroscience & Physiology, New York University School of Medicine
- Neuroscience Institute, New York University School of Medicine
| | | | | | | | - Arjun Masurkar
- Center for Cognitive Neurology, Department of Neurology, New York University School of Medicine
- Department of Neuroscience & Physiology, New York University School of Medicine
- Neuroscience Institute, New York University School of Medicine
| | | |
Collapse
|
59
|
Kamagata K, Saito Y, Andica C, Uchida W, Takabayashi K, Yoshida S, Hagiwara A, Fujita S, Nakaya M, Akashi T, Wada A, Kamiya K, Hori M, Aoki S. Noninvasive Magnetic Resonance Imaging Measures of Glymphatic System Activity. J Magn Reson Imaging 2024; 59:1476-1493. [PMID: 37655849 DOI: 10.1002/jmri.28977] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
The comprehension of the glymphatic system, a postulated mechanism responsible for the removal of interstitial solutes within the central nervous system (CNS), has witnessed substantial progress recently. While direct measurement techniques involving fluorescence and contrast agent tracers have demonstrated success in animal studies, their application in humans is invasive and presents challenges. Hence, exploring alternative noninvasive approaches that enable glymphatic research in humans is imperative. This review primarily focuses on several noninvasive magnetic resonance imaging (MRI) techniques, encompassing perivascular space (PVS) imaging, diffusion tensor image analysis along the PVS, arterial spin labeling, chemical exchange saturation transfer, and intravoxel incoherent motion. These methodologies provide valuable insights into the dynamics of interstitial fluid, water permeability across the blood-brain barrier, and cerebrospinal fluid flow within the cerebral parenchyma. Furthermore, the review elucidates the underlying concept and clinical applications of these noninvasive MRI techniques, highlighting their strengths and limitations. It addresses concerns about the relationship between glymphatic system activity and pathological alterations, emphasizing the necessity for further studies to establish correlations between noninvasive MRI measurements and pathological findings. Additionally, the challenges associated with conducting multisite studies, such as variability in MRI systems and acquisition parameters, are addressed, with a suggestion for the use of harmonization methods, such as the combined association test (COMBAT), to enhance standardization and statistical power. Current research gaps and future directions in noninvasive MRI techniques for assessing the glymphatic system are discussed, emphasizing the need for larger sample sizes, harmonization studies, and combined approaches. In conclusion, this review provides invaluable insights into the application of noninvasive MRI methods for monitoring glymphatic system activity in the CNS. It highlights their potential in advancing our understanding of the glymphatic system, facilitating clinical applications, and paving the way for future research endeavors in this field. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Seina Yoshida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | - Moto Nakaya
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kouhei Kamiya
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| |
Collapse
|
60
|
Zapata-Acevedo JF, Mantilla-Galindo A, Vargas-Sánchez K, González-Reyes RE. Blood-brain barrier biomarkers. Adv Clin Chem 2024; 121:1-88. [PMID: 38797540 DOI: 10.1016/bs.acc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The blood-brain barrier (BBB) is a dynamic interface that regulates the exchange of molecules and cells between the brain parenchyma and the peripheral blood. The BBB is mainly composed of endothelial cells, astrocytes and pericytes. The integrity of this structure is essential for maintaining brain and spinal cord homeostasis and protection from injury or disease. However, in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, and multiple sclerosis, the BBB can become compromised thus allowing passage of molecules and cells in and out of the central nervous system parenchyma. These agents, however, can serve as biomarkers of BBB permeability and neuronal damage, and provide valuable information for diagnosis, prognosis and treatment. Herein, we provide an overview of the BBB and changes due to aging, and summarize current knowledge on biomarkers of BBB disruption and neurodegeneration, including permeability, cellular, molecular and imaging biomarkers. We also discuss the challenges and opportunities for developing a biomarker toolkit that can reliably assess the BBB in physiologic and pathophysiologic states.
Collapse
Affiliation(s)
- Juan F Zapata-Acevedo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra Mantilla-Galindo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Karina Vargas-Sánchez
- Laboratorio de Neurofisiología Celular, Grupo de Neurociencia Traslacional, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
61
|
Ferrari-Souza JP, Brum WS, Hauschild LA, Da Ros LU, Ferreira PCL, Bellaver B, Leffa DT, Bieger A, Tissot C, Lussier FZ, De Bastiani MA, Povala G, Benedet AL, Therriault J, Wang YT, Ashton NJ, Zetterberg H, Blennow K, Martins SO, Souza DO, Rosa-Neto P, Karikari TK, Pascoal TA, Zimmer ER. Vascular risk burden is a key player in the early progression of Alzheimer's disease. Neurobiol Aging 2024; 136:88-98. [PMID: 38335912 PMCID: PMC11416150 DOI: 10.1016/j.neurobiolaging.2023.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 02/12/2024]
Abstract
Understanding whether vascular risk factors (VRFs) synergistically potentiate Alzheimer's disease (AD) progression is important in the context of emerging treatments for preclinical AD. In a group of 503 cognitively unimpaired individuals, we tested whether VRF burden interacts with AD pathophysiology to accelerate neurodegeneration and cognitive decline. Baseline VRF burden was calculated considering medical data and AD pathophysiology was assessed based on cerebrospinal fluid (CSF) amyloid-β1-42 (Aβ1-42) and tau phosphorylated at threonine 181 (p-tau181). Neurodegeneration was assessed with plasma neurofilament light (NfL) and global cognition with the modified version of the Preclinical Alzheimer's Cognitive Composite. The mean (SD) age of participants was 72.9 (6.1) years, and 220 (43.7%) were men. Linear mixed-effects models revealed that an elevated VRF burden synergistically interacted with AD pathophysiology to drive longitudinal plasma NfL increase and cognitive decline. Additionally, VRF burden was not associated with CSF Aβ1-42 or p-tau181 changes over time. Our results suggest that VRF burden and AD pathophysiology are independent processes; however, they synergistically lead to neurodegeneration and cognitive deterioration. In preclinical stages, the combination of therapies targeting VRFs and AD pathophysiology might potentiate treatment outcomes.
Collapse
Affiliation(s)
- João Pedro Ferrari-Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wagner S Brum
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lucas A Hauschild
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas U Da Ros
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pâmela C L Ferreira
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruna Bellaver
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas T Leffa
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrei Bieger
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cécile Tissot
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Firoza Z Lussier
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Marco Antônio De Bastiani
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Povala
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sheila O Martins
- Department of Neurology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Thomas K Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Pharmacology and Therapeuctis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
62
|
Stolp HB, Solito E. Developmental priming of early cerebrovascular ageing: Implications across a lifetime. Int J Geriatr Psychiatry 2024; 39:e6090. [PMID: 38629845 DOI: 10.1002/gps.6090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Neurological conditions such as Alzheimer's disease and stroke represent a substantial health burden to the world's ageing population. Cerebrovascular dysfunction is a key contributor to these conditions, affecting an individual's risk profile, age of onset, and severity of neurological disease. Recent data shows that early-life events, such as maternal health during pregnancy, birth weight and exposure to environmental toxins can 'prime' the vascular system for later changes. With age, blood vessels can become less flexible and more prone to damage. This can lead to reduced blood flow to the brain, which is associated with cognitive decline and an increased risk of stroke and other cerebrovascular diseases. These in turn increase the risk of vascular dementia and Alzheimer's disease. OBJECTIVES We aim to explore how early life factors influence cerebrovascular health, ageing and disease. METHODS We have reviewed recently published literature from epidemiological studies, clinical cases and basic research which explore mechanisms that contribute to cerebrovascular and blood-brain barrier dysfunction, with a particularly focus on those that assess contribution of early-life events or vascular priming to subsequent injury. RESULTS Perinatal events have been linked to acute cerebrovascular dysfunction and long-term structural reorganisation. Systemic disease throughout the lifetime that produce inflammatory or oxidative stress may further sensitise the cerebrovasculature to disease and contribute to neurodegeneration. CONCLUSIONS By identifying these early-life determinants and understanding their mechanisms, scientists aim to develop strategies for preventing or mitigating cerebrovascular ageing-related issues.
Collapse
Affiliation(s)
- Helen B Stolp
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Egle Solito
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
63
|
Parillo M, Mallio CA, Dekkers IA, Rovira À, van der Molen AJ, Quattrocchi CC. Late/delayed gadolinium enhancement in MRI after intravenous administration of extracellular gadolinium-based contrast agents: is it worth waiting? MAGMA (NEW YORK, N.Y.) 2024; 37:151-168. [PMID: 38386150 DOI: 10.1007/s10334-024-01151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
The acquisition of images minutes or even hours after intravenous extracellular gadolinium-based contrast agents (GBCA) administration ("Late/Delayed Gadolinium Enhancement" imaging; in this review, further termed LGE) has gained significant prominence in recent years in magnetic resonance imaging. The major limitation of LGE is the long examination time; thus, it becomes necessary to understand when it is worth waiting time after the intravenous injection of GBCA and which additional information comes from LGE. LGE can potentially be applied to various anatomical sites, such as heart, arterial vessels, lung, brain, abdomen, breast, and the musculoskeletal system, with different pathophysiological mechanisms. One of the most popular clinical applications of LGE regards the assessment of myocardial tissue thanks to its ability to highlight areas of acute myocardial damage and fibrotic tissues. Other frequently applied clinical contexts involve the study of the urinary tract with magnetic resonance urography and identifying pathological abdominal processes characterized by high fibrous stroma, such as biliary tract tumors, autoimmune pancreatitis, or intestinal fibrosis in Crohn's disease. One of the current areas of heightened research interest revolves around the possibility of non-invasively studying the dynamics of neurofluids in the brain (the glymphatic system), the disruption of which could underlie many neurological disorders.
Collapse
Affiliation(s)
- Marco Parillo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
- Operative Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - Carlo Augusto Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.
- Operative Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 200, 00128, Rome, Italy.
| | - Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Autonomous University of Barcelona and Hospital Vall d'Hebron, Passeig Vall d'Hebron, Barcelona, Spain
| | - Aart J van der Molen
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
64
|
Haghdel A, Smith N, Glodzik L, Li Y, Wang X, Crowder T, Zhu YS, Butler T, Blennow K, McIntire LB, Pahlajani S, Osborne J, Chiang G, de Leon M, Ivanidze J. Evidence of Pericyte Damage in a Cognitively Normal Cohort: Association With CSF and PET Biomarkers of Alzheimer Disease. Alzheimer Dis Assoc Disord 2024; 38:107-111. [PMID: 38752577 PMCID: PMC11132093 DOI: 10.1097/wad.0000000000000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/07/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Blood-brain barrier (BBB) dysfunction is emerging as an important pathophysiologic factor in Alzheimer disease (AD). Cerebrospinal fluid (CSF) platelet-derived growth factor receptor-β (PDGFRβ) is a biomarker of BBB pericyte injury and has been implicated in cognitive impairment and AD. METHODS We aimed to study CSF PDGFRβ protein levels, along with CSF biomarkers of brain amyloidosis and tau pathology in a well-characterized population of cognitively unimpaired individuals and correlated CSF findings with amyloid-PET positivity. We performed an institutional review board (IRB)-approved cross-sectional analysis of a prospectively enrolled cohort of 36 cognitively normal volunteers with available CSF, Pittsburgh compound B PET/CT, Mini-Mental State Exam score, Global Deterioration Scale, and known apolipoprotein E ( APOE ) ε4 status. RESULTS Thirty-six subjects were included. Mean age was 63.3 years; 31 of 36 were female, 6 of 36 were amyloid-PET-positive and 12 of 36 were APOE ε4 carriers. We found a moderate positive correlation between CSF PDGFRβ and both total Tau (r=0.45, P =0.006) and phosphorylated Tau 181 (r=0.51, P =0.002). CSF PDGFRβ levels were not associated with either the CSF Aβ42 or the amyloid-PET. CONCLUSIONS We demonstrated a moderate positive correlation between PDGFRβ and both total Tau and phosphorylated Tau 181 in cognitively normal individuals. Our data support the hypothesis that BBB dysfunction represents an important early pathophysiologic step in AD, warranting larger prospective studies. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT00094939.
Collapse
Affiliation(s)
| | | | | | - Yi Li
- Department of Radiology, Weill Cornell Medicine
| | | | - Tamara Crowder
- Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY
| | - Yuan-Shan Zhu
- Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY
| | | | - Kaj Blennow
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | | | | | | | | | | |
Collapse
|
65
|
Power L, Friedman A, Bardouille T. Atypical paroxysmal slow cortical activity in healthy adults: Relationship to age and cognitive performance. Neurobiol Aging 2024; 136:44-57. [PMID: 38309051 DOI: 10.1016/j.neurobiolaging.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
Paroxysmal patterns of slow cortical activity have been detected in EEG recordings from individuals with age-related neuropathology and have been shown to be correlated with cognitive dysfunction and blood-brain barrier disruption in these participants. The prevalence of these events in healthy participants, however, has not been studied. In this work, we inspect MEG recordings from 623 healthy participants from the Cam-CAN dataset for the presence of paroxysmal slow wave events (PSWEs). PSWEs were detected in approximately 20% of healthy participants in the dataset, and participants with PSWEs tended to be older and have lower cognitive performance than those without PSWEs. In addition, event features changed linearly with age and cognitive performance, resulting in longer and slower events in older adults, and more widespread events in those with low cognitive performance. These findings provide the first evidence of PSWEs in a subset of purportedly healthy adults. Going forward, these events may have utility as a diagnostic biomarker for atypical brain activity in older adults.
Collapse
Affiliation(s)
- Lindsey Power
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alon Friedman
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Timothy Bardouille
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
66
|
Joseph CR. Progressive Age-Associated Blood-Brain Barrier Leak/Dysfunction-Nexus of Neurodegenerative Disease Using MRI Markers to Identify Preclinical Disease and Potential New Targets for Future Treatments. Diagnostics (Basel) 2024; 14:726. [PMID: 38611639 PMCID: PMC11011559 DOI: 10.3390/diagnostics14070726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
This review article focuses on the upstream pertinent pathophysiology leading to neurodegenerative disease. Specifically, the nexus appears to be blood-brain barrier (BBB) leakiness resulting in a two-prong inflammatory disease spectrum damaging the microvasculature and corrupting protein synthesis and degradation with accumulating misfolded toxic proteins. The suboptimal results of removing misfolded proteins mean a new approach to disease in the preclinical state is required aimed at other targets. Validated noninvasive imaging and serologic biomarkers of early preclinical disease implemented in the high-risk patient cohort along with periodic surveillance once effective treatments are developed will be required. This review discusses the physiology and pathophysiology of the BBB, new MRI imaging techniques identifying the leak, and altered fluid dynamic effects in the preclinical state. The risk factors for disease development, preventative measures, and potential treatment targets are also discussed.
Collapse
Affiliation(s)
- Charles R Joseph
- Neurology and Internal Medicine, College of Osteopathic Medicine, Liberty University, Lynchburg, VA 24502, USA
| |
Collapse
|
67
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
68
|
Taghvaei M, Mechanic-Hamilton DJ, Sadaghiani S, Shakibajahromi B, Dolui S, Das S, Brown C, Tackett W, Khandelwal P, Cook P, Shinohara RT, Yushkevich P, Bassett DS, Wolk DA, Detre JA. Impact of white matter hyperintensities on structural connectivity and cognition in cognitively intact ADNI participants. Neurobiol Aging 2024; 135:79-90. [PMID: 38262221 PMCID: PMC10872454 DOI: 10.1016/j.neurobiolaging.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 01/25/2024]
Abstract
We used indirect brain mapping with virtual lesion tractography to test the hypothesis that the extent of white matter tract disconnection due to white matter hyperintensities (WMH) is associated with corresponding tract-specific cognitive performance decrements. To estimate tract disconnection, WMH masks were extracted from FLAIR MRI data of 481 cognitively intact participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and used as regions of avoidance for fiber tracking in diffusion MRI data from 50 healthy young participants from the Human Connectome Project. Estimated tract disconnection in the right inferior fronto-occipital fasciculus, right frontal aslant tract, and right superior longitudinal fasciculus mediated the effects of WMH volume on executive function. Estimated tract disconnection in the left uncinate fasciculus mediated the effects of WMH volume on memory and in the right frontal aslant tract on language. In a subset of ADNI control participants with amyloid data, positive status increased the probability of periventricular WMH and moderated the relationship between WMH burden and tract disconnection in executive function performance.
Collapse
Affiliation(s)
- Mohammad Taghvaei
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Sudipto Dolui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sandhitsu Das
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Brown
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - William Tackett
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Pulkit Khandelwal
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
69
|
Lee K, Yoo RE, Cho WS, Choi SH, Lee SH, Kim KM, Kang HS, Kim JE. Blood-brain barrier disruption imaging in postoperative cerebral hyperperfusion syndrome using DCE-MRI. J Cereb Blood Flow Metab 2024; 44:345-354. [PMID: 37910856 PMCID: PMC10870963 DOI: 10.1177/0271678x231212173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Little has been reported about the association between cerebral hyperperfusion syndrome (CHS) and blood-brain barrier (BBB) disruption in human. We aimed to investigate the changes in permeability after bypass surgery in cerebrovascular steno-occlusive diseases using dynamic contrast-enhanced MRI (DCE-MRI) and to demonstrate the association between CHS and BBB disruption. This retrospective study included 36 patients (21 hemispheres in 18 CHS patients and 20 hemispheres in 18 controls) who underwent combined bypass surgery for moyamoya and atherosclerotic steno-occlusive diseases. DCE-MRI and arterial spin labeling perfusion-weighted imaging (ASL-PWI) were obtained at the baseline, postoperative state, and discharge. Perfusion and permeability parameters were calculated at the MCA territory (CBF(territorial), Ktrans(territorial), Vp(territorial)) and focal perianastomotic area (CBF(focal), Ktrans(focal), Vp(focal)) of operated hemispheres. As compared with the baseline, both CBF(territorial) and CBF(focal) increased in the postoperative period and decreased at discharge, corresponding well to symptoms in the CHS group. Vp(focal) was lower in the postoperative period and at discharge, as compared with the baseline. In the control group, no parameters significantly differed among the three points. In conclusion, Vp at the focal perianastomotic area significantly decreased in patients with CHS during the postoperative period. BBB disruption may be implicated in the development of CHS after bypass surgery.
Collapse
Affiliation(s)
- Kanghwi Lee
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won-Sang Cho
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sung Ho Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kang Min Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Seung Kang
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
70
|
Dumitrascu OM, Doustar J, Fuchs DT, Koronyo Y, Sherman DS, Miller MS, Johnson KO, Carare RO, Verdooner SR, Lyden PD, Schneider JA, Black KL, Koronyo-Hamaoui M. Distinctive retinal peri-arteriolar versus peri-venular amyloid plaque distribution correlates with the cognitive performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.580733. [PMID: 38464292 PMCID: PMC10925252 DOI: 10.1101/2024.02.27.580733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Introduction The vascular contribution to Alzheimer's disease (AD) is tightly connected to cognitive performance across the AD continuum. We topographically describe retinal perivascular amyloid plaque (AP) burden in subjects with normal or impaired cognition. Methods Using scanning laser ophthalmoscopy, we quantified retinal peri-arteriolar and peri-venular curcumin-positive APs in the first, secondary and tertiary branches in twenty-eight subjects. Perivascular AP burden among cognitive states was correlated with neuroimaging and cognitive measures. Results Peri-arteriolar exceeded peri-venular AP count (p<0.0001). Secondary branch AP count was significantly higher in cognitively impaired (p<0.01). Secondary small and tertiary peri-venular AP count strongly correlated with clinical dementia rating, hippocampal volumes, and white matter hyperintensity count. Discussion Our topographic analysis indicates greater retinal amyloid accumulation in the retinal peri-arteriolar regions overall, and distal peri-venular regions in cognitively impaired individuals. Larger longitudinal studies are warranted to understand the temporal-spatial relationship between vascular dysfunction and perivascular amyloid deposition in AD. Highlights Retinal peri-arteriolar region exhibits more amyloid compared with peri-venular regions.Secondary retinal vascular branches have significantly higher perivascular amyloid burden in subjects with impaired cognition, consistent across sexes.Cognitively impaired individuals have significantly greater retinal peri-venular amyloid deposits in the distal small branches, that correlate with CDR and hippocampal volumes.
Collapse
|
71
|
Voorter PHM, van Dinther M, Jansen WJ, Postma AA, Staals J, Jansen JFA, van Oostenbrugge RJ, van der Thiel MM, Backes WH. Blood-Brain Barrier Disruption and Perivascular Spaces in Small Vessel Disease and Neurodegenerative Diseases: A Review on MRI Methods and Insights. J Magn Reson Imaging 2024; 59:397-411. [PMID: 37658640 DOI: 10.1002/jmri.28989] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
Perivascular spaces (PVS) and blood-brain barrier (BBB) disruption are two key features of cerebral small vessel disease (cSVD) and neurodegenerative diseases that have been linked to cognitive impairment and are involved in the cerebral waste clearance system. Magnetic resonance imaging (MRI) offers the possibility to study these pathophysiological processes noninvasively in vivo. This educational review provides an overview of the MRI techniques used to assess PVS functionality and BBB disruption. MRI-visible PVS can be scored on structural images by either (subjectively) counting or (automatically) delineating the PVS. We highlight emerging (diffusion) techniques to measure proxies of perivascular fluid and its movement, which may provide a more comprehensive understanding of the role of PVS in diseases. For the measurement of BBB disruption, we explain the most commonly used MRI technique, dynamic contrast-enhanced (DCE) MRI, as well as a more recently developed technique based on arterial spin labeling (ASL). DCE MRI and ASL are thought to measure complementary characteristics of the BBB. Furthermore, we describe clinical studies that have utilized these MRI techniques in cSVD and neurodegenerative diseases, particularly Alzheimer's disease (AD). These studies demonstrate the role of PVS and BBB dysfunction in these diseases and provide insight into the large overlap, but also into the differences between cSVD and AD. Overall, MRI techniques may provide valuable insights into the pathophysiological mechanisms underlying these diseases and have the potential to be used as markers for disease progression and treatment response. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Paulien H M Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Maud van Dinther
- School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Willemijn J Jansen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Julie Staals
- School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Robert J van Oostenbrugge
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Merel M van der Thiel
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
72
|
Wen L, Bi D, Shen Y. Complement-mediated synapse loss in Alzheimer's disease: mechanisms and involvement of risk factors. Trends Neurosci 2024; 47:135-149. [PMID: 38129195 DOI: 10.1016/j.tins.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The complement system is increasingly recognized as a key player in the synapse loss and cognitive impairments observed in Alzheimer's disease (AD). In particular, the process of complement-dependent synaptic pruning through phagocytosis is over-activated in AD brains, driving detrimental excessive synapse elimination and contributing to synapse loss, which is the strongest neurobiological correlate of cognitive impairments in AD. Herein we review recent advances in characterizing complement-mediated synapse loss in AD, summarize the underlying mechanisms, and discuss the possible involvement of AD risk factors such as aging and various risk genes. We conclude with an overview of key questions that remain to be addressed.
Collapse
Affiliation(s)
- Lang Wen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Danlei Bi
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yong Shen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
73
|
Asghari K, Niknam Z, Mohammadpour-Asl S, Chodari L. Cellular junction dynamics and Alzheimer's disease: a comprehensive review. Mol Biol Rep 2024; 51:273. [PMID: 38302794 DOI: 10.1007/s11033-024-09242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by progressive neuronal damage and cognitive decline. Recent studies have shed light on the involvement of not only the blood-brain barrier (BBB) dysfunction but also significant alterations in cellular junctions in AD pathogenesis. In this review article, we explore the role of the BBB and cellular junctions in AD pathology, with a specific focus on the hippocampus. The BBB acts as a crucial protective barrier between the bloodstream and the brain, maintaining brain homeostasis and regulating molecular transport. Preservation of BBB integrity relies on various junctions, including gap junctions formed by connexins, tight junctions composed of proteins such as claudins, occludin, and ZO-1, as well as adherence junctions involving molecules like vascular endothelial (VE) cadherin, Nectins, and Nectin-like molecules (Necls). Abnormalities in these junctions and junctional components contribute to impaired neuronal signaling and increased cerebrovascular permeability, which are closely associated with AD advancement. By elucidating the underlying molecular mechanisms governing BBB and cellular junction dysfunctions within the context of AD, this review offers valuable insights into the pathogenesis of AD and identifies potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Keyvan Asghari
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Mohammadpour-Asl
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
74
|
Tachibana K, Hirayama R, Sato N, Hattori K, Kato T, Takeda H, Kondoh M. Association of Plasma Claudin-5 with Age and Alzheimer Disease. Int J Mol Sci 2024; 25:1419. [PMID: 38338697 PMCID: PMC10855409 DOI: 10.3390/ijms25031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The blood-brain barrier (BBB) plays pivotal roles in synaptic and neuronal functioning by sealing the space between adjacent microvascular endothelial cells. BBB breakdown is present in patients with mild cognitive impairment (MCI) or Alzheimer disease (AD). Claudin-5 (CLDN-5) is a tetra-spanning protein essential for sealing the intercellular space between adjacent endothelial cells in the BBB. In this study, we developed a blood-based assay for CLDN-5 and investigated its diagnostic utility using 100 cognitively normal (control) subjects, 100 patients with MCI, and 100 patients with AD. Plasma CLDN-5 levels were increased in patients with AD (3.08 ng/mL) compared with controls (2.77 ng/mL). Plasma levels of phosphorylated tau (pTau181), a biomarker of pathological tau, were elevated in patients with MCI or AD (2.86 and 4.20 pg/mL, respectively) compared with control subjects (1.81 pg/mL). In patients with MCI or AD, plasma levels of CLDN-5-but not pTau181-decreased with age, suggesting some age-dependent BBB changes in MCI and AD. These findings suggest that plasma CLDN-5 may a potential biochemical marker for the diagnosis of AD.
Collapse
Affiliation(s)
- Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Ryuichi Hirayama
- Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan; (R.H.); (N.S.)
| | - Naoyuki Sato
- Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan; (R.H.); (N.S.)
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu 474-8511, Aichi, Japan
| | - Kotaro Hattori
- Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan;
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu 474-8511, Aichi, Japan;
| | - Hiroyuki Takeda
- Proteo-Science Center, Ehime University, Matsuyama 790-8577, Ehime, Japan;
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Osaka, Japan;
| |
Collapse
|
75
|
Okar SV, Fagiani F, Absinta M, Reich DS. Imaging of brain barrier inflammation and brain fluid drainage in human neurological diseases. Cell Mol Life Sci 2024; 81:31. [PMID: 38212566 PMCID: PMC10838199 DOI: 10.1007/s00018-023-05073-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The intricate relationship between the central nervous system (CNS) and the immune system plays a crucial role in the pathogenesis of various neurological diseases. Understanding the interactions among the immunopathological processes at the brain borders is essential for advancing our knowledge of disease mechanisms and developing novel diagnostic and therapeutic approaches. In this review, we explore the emerging role of neuroimaging in providing valuable insights into brain barrier inflammation and brain fluid drainage in human neurological diseases. Neuroimaging techniques have enabled us not only to visualize and assess brain structures, but also to study the dynamics of the CNS in health and disease in vivo. By analyzing imaging findings, we can gain a deeper understanding of the immunopathology observed at the brain-immune interface barriers, which serve as critical gatekeepers that regulate immune cell trafficking, cytokine release, and clearance of waste products from the brain. This review explores the integration of neuroimaging data with immunopathological findings, providing valuable insights into brain barrier integrity and immune responses in neurological diseases. Such integration may lead to the development of novel diagnostic markers and targeted therapeutic approaches that can benefit patients with neurological disorders.
Collapse
Affiliation(s)
- Serhat V Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Francesca Fagiani
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Division of Neuroscience, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
76
|
Hamdi A, Baroudi S, Gharbi A, Babay W, Laaribi AB, Kacem I, Mrabet S, Zidi I, Klibi N, Gouider R, Ouzari HI. Dysregulation of Porphyromonas gingivalis Agmatine Deiminase Expression in Alzheimer's Disease. Curr Alzheimer Res 2024; 21:232-241. [PMID: 39143870 DOI: 10.2174/0115672050327009240808103542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, with a significant burden on global health. AD is characterized by a progressive cognitive decline and memory loss. Emerging research suggests a potential link between periodontitis, specifically the presence of oral bacteria such as Porphyromonas gingivalis (P. gingivalis), and AD progression. P. gingivalis produces an enzyme, Agmatine deiminase (AgD), which converts agmatine to N-carbamoyl putrescine (NCP), serving as a precursor to essential polyamines. Recent studies have confirmed the correlation between disruptions in polyamine metabolism and cognitive impairment. OBJECTIVE This study aims to investigate the dysregulation of P. gingivalis Agmatine deiminase (PgAgD) in the context of AD. METHODS Saliva samples were collected from a total of 54 individuals, including 27 AD patients and 27 healthy controls. The expression of the PgAgD gene was analyzed using quantitative Real-- Time PCR. RESULTS The results showed a significant decrease in PgAgD gene expression in the saliva samples of AD patients compared to healthy controls. This downregulation was found in AD patients with advanced stages of periodontitis. Additionally, a correlation was observed between the decrease in PgAgD expression and the 30-item Mini-Mental State Examination (MMSE) score. CONCLUSION These findings suggest that measuring PgAgD expression in saliva could be a noninvasive tool for monitoring AD progression and aid in the early diagnosis of patients with periodontitis. Further research is needed to validate our results and explore the underlying mechanisms linking periodontitis, PgAgD expression, and AD pathophysiology.
Collapse
Affiliation(s)
- Asma Hamdi
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire 2092, Tunis, Tunisia
| | - Sana Baroudi
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire 2092, Tunis, Tunisia
| | - Alya Gharbi
- Neurology Department, Razi University Hospital, Manouba, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta, Tunis, Tunisia
- Clinical Investigation Center (CIC), Razi University Hospital, Manouba, Tunisia
| | - Wafa Babay
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire 2092, Tunis, Tunisia
| | - Ahmed Baligh Laaribi
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire 2092, Tunis, Tunisia
| | - Imene Kacem
- Neurology Department, Razi University Hospital, Manouba, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta, Tunis, Tunisia
- Clinical Investigation Center (CIC), Razi University Hospital, Manouba, Tunisia
| | - Saloua Mrabet
- Neurology Department, Razi University Hospital, Manouba, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta, Tunis, Tunisia
- Clinical Investigation Center (CIC), Razi University Hospital, Manouba, Tunisia
| | - Ines Zidi
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire 2092, Tunis, Tunisia
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire 2092, Tunis, Tunisia
| | - Riadh Gouider
- Neurology Department, Razi University Hospital, Manouba, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta, Tunis, Tunisia
- Clinical Investigation Center (CIC), Razi University Hospital, Manouba, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire 2092, Tunis, Tunisia
| |
Collapse
|
77
|
Wheeler KV, Irimia A, Braskie MN. Using Neuroimaging to Study Cerebral Amyloid Angiopathy and Its Relationship to Alzheimer's Disease. J Alzheimers Dis 2024; 97:1479-1502. [PMID: 38306032 DOI: 10.3233/jad-230553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by amyloid-β aggregation in the media and adventitia of the leptomeningeal and cortical blood vessels. CAA is one of the strongest vascular contributors to Alzheimer's disease (AD). It frequently co-occurs in AD patients, but the relationship between CAA and AD is incompletely understood. CAA may drive AD risk through damage to the neurovascular unit and accelerate parenchymal amyloid and tau deposition. Conversely, early AD may also drive CAA through cerebrovascular remodeling that impairs blood vessels from clearing amyloid-β. Sole reliance on autopsy examination to study CAA limits researchers' ability to investigate CAA's natural disease course and the effect of CAA on cognitive decline. Neuroimaging allows for in vivo assessment of brain function and structure and can be leveraged to investigate CAA staging and explore its associations with AD. In this review, we will discuss neuroimaging modalities that can be used to investigate markers associated with CAA that may impact AD vulnerability including hemorrhages and microbleeds, blood-brain barrier permeability disruption, reduced cerebral blood flow, amyloid and tau accumulation, white matter tract disruption, reduced cerebrovascular reactivity, and lowered brain glucose metabolism. We present possible areas for research inquiry to advance biomarker discovery and improve diagnostics.
Collapse
Affiliation(s)
- Koral V Wheeler
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Corwin D. Denney Research Center, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| |
Collapse
|
78
|
Acharya NK, Grossman HC, Clifford PM, Levin EC, Light KR, Choi H, Swanson II RL, Kosciuk MC, Venkataraman V, Libon DJ, Matzel LD, Nagele RG. A Chronic Increase in Blood-Brain Barrier Permeability Facilitates Intraneuronal Deposition of Exogenous Bloodborne Amyloid-Beta1-42 Peptide in the Brain and Leads to Alzheimer's Disease-Relevant Cognitive Changes in a Mouse Model. J Alzheimers Dis 2024; 98:163-186. [PMID: 38393907 PMCID: PMC10977376 DOI: 10.3233/jad-231028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 02/25/2024]
Abstract
Background Increased blood-brain barrier (BBB) permeability and amyloid-β (Aβ) peptides (especially Aβ1-42) (Aβ42) have been linked to Alzheimer's disease (AD) pathogenesis, but the nature of their involvement in AD-related neuropathological changes leading to cognitive changes remains poorly understood. Objective To test the hypothesis that chronic extravasation of bloodborne Aβ42 peptide and brain-reactive autoantibodies and their entry into the brain parenchyma via a permeable BBB contribute to AD-related pathological changes and cognitive changes in a mouse model. Methods The BBB was rendered chronically permeable through repeated injections of Pertussis toxin (PT), and soluble monomeric, fluorescein isothiocyanate (FITC)-labeled or unlabeled Aβ42 was injected into the tail-vein of 10-month-old male CD1 mice at designated intervals spanning ∼3 months. Acquisition of learned behaviors and long-term retention were assessed via a battery of cognitive and behavioral tests and linked to neuropathological changes. Results Mice injected with both PT and Aβ42 demonstrated a preferential deficit in the capacity for long-term retention and an increased susceptibility to interference in selective attention compared to mice exposed to PT or saline only. Immunohistochemical analyses revealed increased BBB permeability and entry of bloodborne Aβ42 and immunoglobulin G (IgG) into the brain parenchyma, selective neuronal binding of IgG and neuronal accumulation of Aβ42 in animals injected with both PT and Aβ42 compared to controls. Conclusion Results highlight the potential synergistic role of BBB compromise and the influx of bloodborne Aβ42 into the brain in both the initiation and progression of neuropathologic and cognitive changes associated with AD.
Collapse
Affiliation(s)
- Nimish K. Acharya
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Biomarker Discovery Center, New Jersey Institute for Successful Aging (NJISA), Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, USA
- Rowan-Virtua Graduate School of Biomedical Sciences, Stratford, NJ, USA
- Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan University, Glassboro, NJ, USA
| | | | - Peter M. Clifford
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
- HNL Lab Medicine, Allentown, PA, USA
| | - Eli C. Levin
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
- Department of Graduate Medical Education, Bayhealth Medical Center, Dover, DE, USA
| | - Kenneth R. Light
- Department of Psychology, Barnard College of Columbia University, New York, NY, USA
| | - Hana Choi
- Rowan-Virtua Graduate School of Biomedical Sciences, Stratford, NJ, USA
| | - Randel L. Swanson II
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Rehab Medicine Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mary C. Kosciuk
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
| | - Venkat Venkataraman
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
- Department of Academic and Student Affairs, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, USA
| | - David J. Libon
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
- Department of Psychology, Rowan University, Glassboro, NJ, USA
| | - Louis D. Matzel
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - Robert G. Nagele
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
- Biomarker Discovery Center, New Jersey Institute for Successful Aging (NJISA), Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, USA
- Rowan-Virtua Graduate School of Biomedical Sciences, Stratford, NJ, USA
- Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan University, Glassboro, NJ, USA
| |
Collapse
|
79
|
Bjørklund G, Tippairote T, Hangan T, Chirumbolo S, Peana M. Early-Life Lead Exposure: Risks and Neurotoxic Consequences. Curr Med Chem 2024; 31:1620-1633. [PMID: 37031386 DOI: 10.2174/0929867330666230409135310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND Lead (Pb) does not have any biological function in a human, and it is likely no safe level of Pb in the human body. The Pb exposure impacts are a global concern for their potential neurotoxic consequences. Despite decreasing both the environmental Pb levels and the average blood Pb levels in the survey populations, the lifetime redistribution from the tissues-stored Pb still poses neurotoxic risks from the low-level exposure in later life. The growing fetus and children hold their innate high-susceptible to these Pb-induced neurodevelopmental and neurobehavioral effects. OBJECTIVE This article aims to evaluate cumulative studies and insights on the topic of Pb neurotoxicology while assessing the emerging trends in the field. RESULTS The Pb-induced neurochemical and neuro-immunological mechanisms are likely responsible for the high-level Pb exposure with the neurodevelopmental and neurobehavioral impacts at the initial stages. Early-life Pb exposure can still produce neurodegenerative consequences in later life due to the altered epigenetic imprints and the ongoing endogenous Pb exposure. Several mechanisms contribute to the Pb-induced neurotoxic impacts, including the direct neurochemical effects, the induction of oxidative stress and inflammation through immunologic activations, and epigenetic alterations. Furthermore, the individual nutritional status, such as macro-, micro-, or antioxidant nutrients, can significantly influence the neurotoxic impacts even at low-level exposure to Pb. CONCLUSION The prevention of early-life Pb exposure is, therefore, the critical determinant for alleviating various Pb-induced neurotoxic impacts across the different age groups.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, Mo i Rana, 8610, Norway
| | - Torsak Tippairote
- Department of Nutritional and Environmental Medicine, HP Medical Center, Bangkok 10540, Thailand
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, 900470, Romania
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134, Verona, Italy
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, Sassari, 07100, Italy
| |
Collapse
|
80
|
Taoka T, Ito R, Nakamichi R, Nakane T, Kawai H, Naganawa S. Interstitial Fluidopathy of the Central Nervous System: An Umbrella Term for Disorders with Impaired Neurofluid Dynamics. Magn Reson Med Sci 2024; 23:1-13. [PMID: 36436975 PMCID: PMC10838724 DOI: 10.2463/mrms.rev.2022-0012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2024] Open
Abstract
Interest in interstitial fluid dynamics has increased since the proposal of the glymphatic system hypothesis. Abnormal dynamics of the interstitial fluid have been pointed out to be an important factor in various pathological statuses. In this article, we propose the concept of central nervous system interstitial fluidopathy as a disease or condition in which abnormal interstitial fluid dynamics is one of the important factors for the development of a pathological condition. We discuss the aspects of interstitial fluidopathy in various diseases, including Alzheimer's disease, Parkinson's disease, normal pressure hydrocephalus, and cerebral small vessel disease. We also discuss a method called "diffusion tensor image analysis along the perivascular space" using MR diffusion images, which is used to evaluate the degree of interstitial fluidopathy or the activity of the glymphatic system.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
81
|
Naganawa S, Ito R, Kawamura M, Taoka T, Yoshida T, Sone M. Association between the Putative Meningeal Lymphatics at the Posterior Wall of the Sigmoid Sinus and Delayed Contrast-agent Elimination from the Cerebrospinal Fluid. Magn Reson Med Sci 2024; 23:80-91. [PMID: 36653154 PMCID: PMC10838717 DOI: 10.2463/mrms.mp.2022-0110] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/24/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To investigate the characteristics of the putative meningeal lymphatics located at the posterior wall of the sigmoid sinus (PML-PSS) in human subjects imaged before and after intravenous administration (IV) of a gadolinium-based contrast agent (GBCA). The appearance of the PML-PSS and the enhancement of the perivascular space of the basal ganglia (PVS-BG) were analyzed for an association with gender, age, and clearance of the GBCA from the cerebrospinal fluid (CSF). METHODS Forty-two patients with suspected endolymphatic hydrops were included. Heavily T2-weighted 3D-fluid attenuated inversion recovery (hT2w-3D-FLAIR) and 3D-real inversion recovery (IR) images were obtained at pre-administration, immediately post-administration, and at 4 and 24 hours after IV-GBCA. The appearance of the PML-PSS and the presence of enhancement in the PVS-BG were analyzed for a relationship with age, gender, contrast enhancement of the CSF at 4 hours after IV-GBCA, and the washout ratio of the GBCA in the CSF from 4 to 24 hours after IV-GBCA. RESULTS The PML-PSS and PVS-BG were seen in 23 of 42 and 21 of 42 cases, respectively, at 4 hours after IV-GBCA. In all PML-PSS positive cases, hT2w-3D-FLAIR signal enhancement was highest at 4 hours after IV-GBCA. A multivariate analysis between gender, age, CSF signal elevation at 4 hours, and washout ratio indicated that only the washout ratio was independently associated with the enhancement of the PML-PSS or PVS-BG. The odds ratios (95% CIs; P value) were 4.09 × 10-5 (2.39 × 10-8 - 0.07; 0.0078) for the PML-PSS and 1.7 × 10-4 (1.66 × 10-7 - 0.174; 0.014) for the PVS-BG. CONCLUSION The PML-PSS had the highest signal enhancement at 4 hours after IV-GBCA. When the PML-PSS was seen, there was also often enhancement of the PVS-BG at 4 hours after IV-GBCA. Both observed enhancements were associated with delayed GBCA excretion from the CSF.
Collapse
Affiliation(s)
- Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tadao Yoshida
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Michihiko Sone
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
82
|
Yeapuri P, Machhi J, Lu Y, Abdelmoaty MM, Kadry R, Patel M, Bhattarai S, Lu E, Namminga KL, Olson KE, Foster EG, Mosley RL, Gendelman HE. Amyloid-β specific regulatory T cells attenuate Alzheimer's disease pathobiology in APP/PS1 mice. Mol Neurodegener 2023; 18:97. [PMID: 38111016 PMCID: PMC10729469 DOI: 10.1186/s13024-023-00692-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) maintain immune tolerance. While Treg-mediated neuroprotective activities are now well-accepted, the lack of defined antigen specificity limits their therapeutic potential. This is notable for neurodegenerative diseases where cell access to injured brain regions is required for disease-specific therapeutic targeting and improved outcomes. To address this need, amyloid-beta (Aβ) antigen specificity was conferred to Treg responses by engineering the T cell receptor (TCR) specific for Aβ (TCRAβ). The TCRAb were developed from disease-specific T cell effector (Teff) clones. The ability of Tregs expressing a transgenic TCRAβ (TCRAβ -Tregs) to reduce Aβ burden, transform effector to regulatory cells, and reverse disease-associated neurotoxicity proved beneficial in an animal model of Alzheimer's disease. METHODS TCRAβ -Tregs were generated by CRISPR-Cas9 knockout of endogenous TCR and consequent incorporation of the transgenic TCRAb identified from Aβ reactive Teff monoclones. Antigen specificity was confirmed by MHC-Aβ-tetramer staining. Adoptive transfer of TCRAβ-Tregs to mice expressing a chimeric mouse-human amyloid precursor protein and a mutant human presenilin-1 followed measured behavior, immune, and immunohistochemical outcomes. RESULTS TCRAβ-Tregs expressed an Aβ-specific TCR. Adoptive transfer of TCRAβ-Tregs led to sustained immune suppression, reduced microglial reaction, and amyloid loads. 18F-fluorodeoxyglucose radiolabeled TCRAβ-Treg homed to the brain facilitating antigen specificity. Reduction in amyloid load was associated with improved cognitive functions. CONCLUSIONS TCRAβ-Tregs reduced amyloid burden, restored brain homeostasis, and improved learning and memory, supporting the increased therapeutic benefit of antigen specific Treg immunotherapy for AD.
Collapse
Affiliation(s)
- Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mai Mohamed Abdelmoaty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rana Kadry
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Shaurav Bhattarai
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Eugene Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Emma G Foster
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
83
|
Estudillo E, López-Ornelas A, Rodríguez-Oviedo A, Gutiérrez de la Cruz N, Vargas-Hernández MA, Jiménez A. Thinking outside the black box: are the brain endothelial cells the new main target in Alzheimer's disease? Neural Regen Res 2023; 18:2592-2598. [PMID: 37449594 DOI: 10.4103/1673-5374.373672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The blood-brain barrier is the interface through which the brain interacts with the milieu and consists mainly of a sophisticated network of brain endothelial cells that forms blood vessels and selectively moves molecules inside and outside the brain through multiple mechanisms of transport. Although brain endothelial cell function is crucial for brain homeostasis, their role in neurodegenerative diseases has historically not been considered with the same importance as other brain cells such as microglia, astroglia, neurons, or even molecules such as amyloid beta, Tau, or alpha-synuclein. Alzheimer's disease is the most common neurodegenerative disease, and brain endothelial cell dysfunction has been reported by several groups. However, its impairment has barely been considered as a potential therapeutic target. Here we review the most recent advances in the relationship between Alzheimer's disease and brain endothelial cells commitment and analyze the possible mechanisms through which their alterations contribute to this neurodegenerative disease, highlighting their inflammatory phenotype and the possibility of an impaired secretory pattern of brain endothelial cells that could contribute to the progression of this ailment. Finally, we discuss why shall brain endothelial cells be appreciated as a therapeutic target instead of solely an obstacle for delivering treatments to the injured brain in Alzheimer's disease.
Collapse
Affiliation(s)
- Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México; Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City, Mexico
| | | | - Neptali Gutiérrez de la Cruz
- Laboratorio de Morfología; Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya, Lomas de Sotelo, Miguel Hidalgo, Mexico City, Mexico
| | - Marco Antonio Vargas-Hernández
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya, Lomas de Sotelo, Miguel Hidalgo, Mexico City, Mexico
| | - Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Mexico City, Mexico
| |
Collapse
|
84
|
Ting KK, Coleman P, Kim HJ, Zhao Y, Mulangala J, Cheng NC, Li W, Gunatilake D, Johnstone DM, Loo L, Neely GG, Yang P, Götz J, Vadas MA, Gamble JR. Vascular senescence and leak are features of the early breakdown of the blood-brain barrier in Alzheimer's disease models. GeroScience 2023; 45:3307-3331. [PMID: 37782439 PMCID: PMC10643714 DOI: 10.1007/s11357-023-00927-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/27/2023] [Indexed: 10/03/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related disease, with loss of integrity of the blood-brain barrier (BBB) being an early feature. Cellular senescence is one of the reported nine hallmarks of aging. Here, we show for the first time the presence of senescent cells in the vasculature in AD patients and mouse models of AD. Senescent endothelial cells and pericytes are present in APP/PS1 transgenic mice but not in wild-type littermates at the time of amyloid deposition. In vitro, senescent endothelial cells display altered VE-cadherin expression and loss of cell junction formation and increased permeability. Consistent with this, senescent endothelial cells in APP/PS1 mice are present at areas of vascular leak that have decreased claudin-5 and VE-cadherin expression confirming BBB breakdown. Furthermore, single cell sequencing of endothelial cells from APP/PS1 transgenic mice confirms that adhesion molecule pathways are among the most highly altered pathways in these cells. At the pre-plaque stage, the vasculature shows significant signs of breakdown, with a general loss of VE-cadherin, leakage within the microcirculation, and obvious pericyte perturbation. Although senescent vascular cells were not directly observed at sites of vascular leak, senescent cells were close to the leak area. Thus, we would suggest in AD that there is a progressive induction of senescence in constituents of the neurovascular unit contributing to an increasing loss of vascular integrity. Targeting the vasculature early in AD, either with senolytics or with drugs that improve the integrity of the BBB may be valid therapeutic strategies.
Collapse
Affiliation(s)
- Ka Ka Ting
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia.
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| | - Paul Coleman
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Hani Jieun Kim
- Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Yang Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jocelyne Mulangala
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
| | - Ngan Ching Cheng
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
| | - Wan Li
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Dilini Gunatilake
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
| | - Daniel M Johnstone
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Lipin Loo
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, & School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - G Gregory Neely
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, & School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Mathew A Vadas
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
- Heart Research Institute, Sydney, NSW, Australia
| | - Jennifer R Gamble
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia.
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
85
|
Shi Y, Katdare KA, Kim H, Rosch JC, Neal EH, Vafaie-Partin S, Bauer JA, Lippmann ES. An arrayed CRISPR knockout screen identifies genetic regulators of GLUT1 expression. Sci Rep 2023; 13:21038. [PMID: 38030680 PMCID: PMC10687026 DOI: 10.1038/s41598-023-48361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023] Open
Abstract
Glucose, a primary fuel source under homeostatic conditions, is transported into cells by membrane transporters such as glucose transporter 1 (GLUT1). Due to its essential role in maintaining energy homeostasis, dysregulation of GLUT1 expression and function can adversely affect many physiological processes in the body. This has implications in a wide range of disorders such as Alzheimer's disease (AD) and several types of cancers. However, the regulatory pathways that govern GLUT1 expression, which may be altered in these diseases, are poorly characterized. To gain insight into GLUT1 regulation, we performed an arrayed CRISPR knockout screen using Caco-2 cells as a model cell line. Using an automated high content immunostaining approach to quantify GLUT1 expression, we identified more than 300 genes whose removal led to GLUT1 downregulation. Many of these genes were enriched along signaling pathways associated with G-protein coupled receptors, particularly the rhodopsin-like family. Secondary hit validation confirmed that removal of select genes, or modulation of the activity of a corresponding protein, yielded changes in GLUT1 expression. Overall, this work provides a resource and framework for understanding GLUT1 regulation in health and disease.
Collapse
Affiliation(s)
- Yajuan Shi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ketaki A Katdare
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jonah C Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Emma H Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Sidney Vafaie-Partin
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joshua A Bauer
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA.
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
86
|
Akyol O, Akyol S, Chou MC, Chen S, Liu CK, Selek S, Soares JC, Chen CH. Lipids and lipoproteins may play a role in the neuropathology of Alzheimer's disease. Front Neurosci 2023; 17:1275932. [PMID: 38033552 PMCID: PMC10687420 DOI: 10.3389/fnins.2023.1275932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Alzheimer's disease (AD) and other classes of dementia are important public health problems with overwhelming social, physical, and financial effects for patients, society, and their families and caregivers. The pathophysiology of AD is poorly understood despite the extensive number of clinical and experimental studies. The brain's lipid-rich composition is linked to disturbances in lipid homeostasis, often associated with glucose and lipid abnormalities in various neurodegenerative diseases, including AD. Moreover, elevated low-density lipoprotein (LDL) cholesterol levels may be related to a higher probability of AD. Here, we hypothesize that lipids, and electronegative LDL (L5) in particular, may be involved in the pathophysiology of AD. Although changes in cholesterol, triglyceride, LDL, and glucose levels are seen in AD, the cause remains unknown. We believe that L5-the most electronegative subfraction of LDL-may be a crucial factor in understanding the involvement of lipids in AD pathology. LDL and L5 are internalized by cells through different receptors and mechanisms that trigger separate intracellular pathways. One of the receptors involved in L5 internalization, LOX-1, triggers apoptotic pathways. Aging is associated with dysregulation of lipid homeostasis, and it is believed that alterations in lipid metabolism contribute to the pathogenesis of AD. Proposed mechanisms of lipid dysregulation in AD include mitochondrial dysfunction, blood-brain barrier disease, neuronal signaling, inflammation, and oxidative stress, all of which lead ultimately to memory loss through deficiency of synaptic integration. Several lipid species and their receptors have essential functions in AD pathogenesis and may be potential biomarkers.
Collapse
Affiliation(s)
- Omer Akyol
- Molecular Cardiology, Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, United States
| | | | - Mei-Chuan Chou
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shioulan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Kuan Liu
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Salih Selek
- Department of Psychiatry and Behavioral Sciences, UTHealth Houston McGovern Medical School, Houston, TX, United States
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, UTHealth Houston McGovern Medical School, Houston, TX, United States
| | - Chu-Huang Chen
- Molecular Cardiology, Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, United States
| |
Collapse
|
87
|
Chen Y, He Y, Han J, Wei W, Chen F. Blood-brain barrier dysfunction and Alzheimer's disease: associations, pathogenic mechanisms, and therapeutic potential. Front Aging Neurosci 2023; 15:1258640. [PMID: 38020775 PMCID: PMC10679748 DOI: 10.3389/fnagi.2023.1258640] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by the accumulation of amyloid-beta (Aβ), hyperphosphorylation of tau, and neuroinflammation in the brain. The blood-brain barrier (BBB) limits solutes from circulating blood from entering the brain, which is essential for neuronal functioning. Focusing on BBB function is important for the early detection of AD and in-depth study of AD pathogenic mechanisms. However, the mechanism of BBB alteration in AD is still unclear, which hinders further research on therapeutics that target the BBB to delay the progression of AD. The exact timing of the vascular abnormalities in AD and the complex cause-and-effect relationships remain uncertain. Thus, it is necessary to summarize and emphasize this process. First, in this review, the current evidence for BBB dysfunction in AD is summarized. Then, the interrelationships and pathogenic mechanisms between BBB dysfunction and the risk factors for AD, such as Aβ, tau, neuroinflammation, apolipoprotein E (ApoE) genotype and aging, were analyzed. Finally, we discuss the current status and future directions of therapeutic AD strategies targeting the BBB. We hope that these summaries or reviews will allow readers to better understand the relationship between the BBB and AD.
Collapse
Affiliation(s)
- Yanting Chen
- Department of Neurology, Shenzhen Sixth People’s Hospital, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yanfang He
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinling Han
- Department of Neurology, Shenzhen Sixth People’s Hospital, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feng Chen
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Department of Intensive Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
88
|
Kang SH, Yoo H, Cheon BK, Park YH, Kim SJ, Ham H, Jang H, Kim HJ, Oh K, Koh SB, Na DL, Kim JP, Seo SW. Distinct effects of cholesterol profile components on amyloid and vascular burdens. Alzheimers Res Ther 2023; 15:197. [PMID: 37950256 PMCID: PMC10636929 DOI: 10.1186/s13195-023-01342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Cholesterol plays important roles in β-amyloid (Aβ) metabolism and atherosclerosis. However, the relationships of plasma cholesterol levels with Aβ and cerebral small vessel disease (CSVD) burdens are not fully understood in Asians. Herein, we investigated the relationships between plasma cholesterol profile components and Aβ and CSVD burdens in a large, non-demented Korean cohort. METHODS We enrolled 1,175 non-demented participants (456 with unimpaired cognition [CU] and 719 with mild cognitive impairment [MCI]) aged ≥ 45 years who underwent Aβ PET at the Samsung Medical Center in Korea. We performed linear regression analyses with each cholesterol (low-density lipoprotein cholesterol [LDL-c], high-density lipoprotein cholesterol [HDL-c], and triglyceride) level as a predictor and each image marker (Aβ uptake on PET, white matter hyperintensity [WMH] volume, and hippocampal volume) as an outcome after controlling for potential confounders. RESULTS Increased LDL-c levels (β = 0.014 to 0.115, p = 0.013) were associated with greater Aβ uptake, independent of the APOE e4 allele genotype and lipid-lowering medication. Decreased HDL-c levels (β = - 0.133 to - 0.006, p = 0.032) were predictive of higher WMH volumes. Increased LDL-c levels were also associated with decreased hippocampal volume (direct effect β = - 0.053, p = 0.040), which was partially mediated by Aβ uptake (indirect effect β = - 0.018, p = 0.006). CONCLUSIONS Our findings highlight that increased LDL-c and decreased HDL-c levels are important risk factors for Aβ and CSVD burdens, respectively. Furthermore, considering that plasma cholesterol profile components are potentially modified by diet, exercise, and pharmacological agents, our results provide evidence that regulating LDL-c and HDL-c levels is a potential strategy to prevent dementia.
Collapse
Grants
- 2022R1I1A1A01056956 Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education
- HI19C1132 a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea
- grant number: HU20C0111, HU22C0170 a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare and Ministry of science and ICT, Republic of Korea
- NRF-2019R1A5A2027340, NRF-2022R1F1A1063966 the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)
- 2021-ER1006-01 the "National Institute of Health" research project
- a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea
- a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare and Ministry of science and ICT, Republic of Korea
Collapse
Affiliation(s)
- Sung Hoon Kang
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Heejin Yoo
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea
| | - Bo Kyoung Cheon
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
| | - Yu Hyun Park
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Soo-Jong Kim
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Hongki Ham
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
| | - Hyemin Jang
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Hee Jin Kim
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Kyungmi Oh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Seong-Beom Koh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Jun Pyo Kim
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea.
| | - Sang Won Seo
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea.
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
89
|
Moon Y, Jeon HJ, Han SH, Min-Young N, Kim HJ, Kwon KJ, Moon WJ, Kim SH. Blood-brain barrier breakdown is linked to tau pathology and neuronal injury in a differential manner according to amyloid deposition. J Cereb Blood Flow Metab 2023; 43:1813-1825. [PMID: 37283062 PMCID: PMC10676138 DOI: 10.1177/0271678x231180035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 06/08/2023]
Abstract
The blood-brain barrier (BBB) breakdown has been suggested as an early marker for Alzheimer's disease (AD); yet the relationship between BBB breakdown and AD-specific biomarkers based on the amyloid/tau/neurodegeneration framework is not clear. This study investigated the relationship between BBB permeability, AD-specific biomarkers, and cognition in patients with cognitive impairment. In this prospective study, we enrolled 62 participants with mild cognitive impairment or dementia between January 2019 and October 2020. All participants were assessed through cognitive tests, amyloid positron emission tomography (PET), dynamic contrast-enhanced magnetic resonance imaging (MRI) for BBB permeability (Ktrans), cerebrospinal fluid studies for Aβ42/40 ratio, phosphorylated-tau Thr181 protein (p-tau), total tau protein (t-tau), and structural MRI for neurodegeneration. In amyloid PET (+) group, higher cortical Ktrans was associated with lower Aβ40 (r = -0.529 p = 0.003), higher Aβ42/40 ratio (r = 0.533, p = 0.003), lower p-tau (r = -0.452, p = 0.014) and lower hippocampal volume (r = -0.438, p = 0.017). In contrast, cortical Ktrans was positively related to t-tau level. (r = 0.489, p = 0.004) in amyloid PET (-) group. Our results suggest that BBB permeability is related to AD-specific biomarkers, but the relationship can vary by the presence of Aβ plaque accumulation.
Collapse
Affiliation(s)
- Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
| | - Hong Jun Jeon
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Seol-Heui Han
- Department of Neurology, Konkuk University Medical Center, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
| | - Noh Min-Young
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Kyoung Ja Kwon
- Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Won-Jin Moon
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
90
|
Powell E, Dickie BR, Ohene Y, Maskery M, Parker GJM, Parkes LM. Blood-brain barrier water exchange measurements using contrast-enhanced ASL. NMR IN BIOMEDICINE 2023; 36:e5009. [PMID: 37666494 PMCID: PMC10909569 DOI: 10.1002/nbm.5009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 09/06/2023]
Abstract
A technique for quantifying regional blood-brain barrier (BBB) water exchange rates using contrast-enhanced arterial spin labelling (CE-ASL) is presented and evaluated in simulations and in vivo. The two-compartment ASL model describes the water exchange rate from blood to tissue,k b , but to estimatek b in practice it is necessary to separate the intra- and extravascular signals. This is challenging in standard ASL data owing to the small difference inT 1 values. Here, a gadolinium-based contrast agent is used to increase thisT 1 difference and enable the signal components to be disentangled. The optimal post-contrast bloodT 1 (T 1 , b post ) at 3 T was determined in a sensitivity analysis, and the accuracy and precision of the method quantified using Monte Carlo simulations. Proof-of-concept data were acquired in six healthy volunteers (five female, age range 24-46 years). The sensitivity analysis identified the optimalT 1 , b post at 3 T as 0.8 s. Simulations showed thatk b could be estimated in individual cortical regions with a relative error ϵ < 1 % and coefficient of variation CoV = 30 %; however, a high dependence on bloodT 1 was also observed. In volunteer data, mean parameter values in grey matter were: arterial transit timet A = 1 . 15 ± 0 . 49 s, cerebral blood flow f = 58 . 0 ± 14 . 3 mL blood/min/100 mL tissue and water exchange ratek b = 2 . 32 ± 2 . 49 s-1 . CE-ASL can provide regional BBB water exchange rate estimates; however, the clinical utility of the technique is dependent on the achievable accuracy of measuredT 1 values.
Collapse
Affiliation(s)
- Elizabeth Powell
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Ben R. Dickie
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Yolanda Ohene
- Geoffrey Jefferson Brain Research CentreUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Mark Maskery
- Department of NeurologyLancashire Teaching Hospitals NHS Foundation TrustPrestonUK
| | - Geoff J. M. Parker
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Queen Square MS Centre, Institute of NeurologyUniversity College LondonLondonUK
- Bioxydyn LimitedManchesterUnited Kingdom
| | - Laura M. Parkes
- Geoffrey Jefferson Brain Research CentreUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
91
|
Ramesh S, Almeida SD, Hammigi S, Radhakrishna GK, Sireesha G, Panneerselvam T, Vellingiri S, Kunjiappan S, Ammunje DN, Pavadai P. A Review of PARP-1 Inhibitors: Assessing Emerging Prospects and Tailoring Therapeutic Strategies. Drug Res (Stuttg) 2023; 73:491-505. [PMID: 37890514 DOI: 10.1055/a-2181-0813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Eukaryotic organisms contain an enzyme family called poly (ADP-ribose) polymerases (PARPs), which is responsible for the poly (ADP-ribosylation) of DNA-binding proteins. PARPs are members of the cell signaling enzyme class. PARP-1, the most common isoform of the PARP family, is responsible for more than 90% of the tasks carried out by the PARP family as a whole. A superfamily consisting of 18 PARPs has been found. In order to synthesize polymers of ADP-ribose (PAR) and nicotinamide, the DNA damage nick monitor PARP-1 requires NAD+ as a substrate. The capability of PARP-1 activation to boost the transcription of proinflammatory genes, its ability to deplete cellular energy pools, which leads to cell malfunction and necrosis, and its involvement as a component in the process of DNA repair are the three consequences of PARP-1 activation that are of particular significance in the process of developing new drugs. As a result, the pharmacological reduction of PARP-1 may result in an increase in the cytotoxicity toward cancer cells.
Collapse
Affiliation(s)
- Soundarya Ramesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Shannon D Almeida
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Sameerana Hammigi
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Govardan Katta Radhakrishna
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Golla Sireesha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Theivendren Panneerselvam
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Elayampalayam, Tamil Nadu, India
| | - Shangavi Vellingiri
- Department of Pharmacy Practice, Swamy Vivekananda College of Pharmacy, Elayampalayam, Tamil Nadu, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - Damodar Nayak Ammunje
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| |
Collapse
|
92
|
Iyaswamy A, Thakur A, Guan XJ, Krishnamoorthi S, Fung TY, Lu K, Gaurav I, Yang Z, Su CF, Lau KF, Zhang K, Ng RCL, Lian Q, Cheung KH, Ye K, Chen HJ, Li M. Fe65-engineered neuronal exosomes encapsulating corynoxine-B ameliorate cognition and pathology of Alzheimer's disease. Signal Transduct Target Ther 2023; 8:404. [PMID: 37867176 PMCID: PMC10590775 DOI: 10.1038/s41392-023-01657-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/31/2023] [Accepted: 09/16/2023] [Indexed: 10/24/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the predominant impairment of neurons in the hippocampus and the formation of amyloid plaques, hyperphosphorylated tau protein, and neurofibrillary tangles in the brain. The overexpression of amyloid-β precursor protein (APP) in an AD brain results in the binding of APP intracellular domain (AICD) to Fe65 protein via the C-terminal Fe65-PTB2 interaction, which then triggers the secretion of amyloid-β and the consequent pathogenesis of AD. Apparently, targeting the interaction between APP and Fe65 can offer a promising therapeutic approach for AD. Recently, exosome, a type of extracellular vesicle with diameter around 30-200 nm, has gained much attention as a potential delivery tool for brain diseases, including AD, due to their ability to cross the blood-brain barrier, their efficient uptake by autologous cells, and their ability to be surface-modified with target-specific receptor ligands. Here, the engineering of hippocampus neuron cell-derived exosomes to overexpress Fe65, enabled the development of a novel exosome-based targeted drug delivery system, which carried Corynoxine-B (Cory-B, an autophagy inducer) to the APP overexpressed-neuron cells in the brain of AD mice. The Fe65-engineered HT22 hippocampus neuron cell-derived exosomes (Fe65-EXO) loaded with Cory-B (Fe65-EXO-Cory-B) hijacked the signaling and blocked the natural interaction between Fe65 and APP, enabling APP-targeted delivery of Cory-B. Notably, Fe65-EXO-Cory-B induced autophagy in APP-expressing neuronal cells, leading to amelioration of the cognitive decline and pathogenesis in AD mice, demonstrating the potential of Fe65-EXO-Cory-B as an effective therapeutic intervention for AD.
Collapse
Affiliation(s)
- Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.
| | - Xin-Jie Guan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Senthilkumar Krishnamoorthi
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Tsz Yan Fung
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Kejia Lu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Cheng-Fu Su
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kui Zhang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Roy Chun-Laam Ng
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Qizhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - King-Ho Cheung
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huanhuan Joyce Chen
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
93
|
Zailani H, Satyanarayanan SK, Liao WC, Hsu YT, Huang SY, Gałecki P, Su KP, Chang JPC. Roles of Omega-3 Polyunsaturated Fatty Acids in Managing Cognitive Impairment in Chronic Obstructive Pulmonary Disease: A Review. Nutrients 2023; 15:4363. [PMID: 37892438 PMCID: PMC10609799 DOI: 10.3390/nu15204363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) contributes significantly to the death of people worldwide, especially the elderly. An essential feature of COPD is pulmonary inflammation, which results from long-term exposure to noxious substances from cigarette smoking and other environmental pollutants. Pulmonary inflammatory mediators spill over to the blood, leading to systemic inflammation, which is believed to play a significant role in the onset of a host of comorbidities associated with COPD. A substantial comorbidity of concern in COPD patients that is often overlooked in COPD management is cognitive impairment. The exact pathophysiology of cognitive impairment in COPD patients remains a mystery; however, hypoxia, oxidative stress, systemic inflammation, and cerebral manifestations of these conditions are believed to play crucial roles. Furthermore, the use of medications to treat cognitive impairment symptomatology in COPD patients has been reported to be associated with life-threatening adverse effects, hence the need for alternative medications with reduced side effects. In this Review, we aim to discuss the impact of cognitive impairment in COPD management and the potential mechanisms associated with increased risk of cognitive impairment in COPD patients. The promising roles of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in improving cognitive deficits in COPD patients are also discussed. Interestingly, ω-3 PUFAs can potentially enhance the cognitive impairment symptomatology associated with COPD because they can modulate inflammatory processes, activate the antioxidant defence system, and promote amyloid-beta clearance from the brain. Thus, clinical studies are crucial to assess the efficacy of ω-3 PUFAs in managing cognitive impairment in COPD patients.
Collapse
Grants
- MOST 109-2320-B-038-057-MY3, 109-2320-B-039-066, 110-2321-B-006-004, 111-2321-B-006-008, 110-2811-B-039-507, 110-2320-B-039-048-MY2, and 110-2320-B-039-047-MY3, 110-2813-C-039-327-B, 110-2314-B-039-029-MY3, 111-2314-B-039-041-MY3 Ministry of Science and Technology, Taiwan
- ANHRF 109-31, 109-40, 110-13, 110-26, 110-44, 110-45, 111-27, and 111-28 An-Nan Hospital, China Medical University, Tainan, Taiwan
- CMRC-CMA-2 Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan
- CMU 110-AWARD-02, CMU108-SR-106, CMU110-N-17, CMU110-SR-73 China Medical University, Taichung, Taiwan
- CRS-108-048, DMR-105-053, DMR-109-102, DMR-109-244, DMR-HHC-109-11, DMR-HHC-109-12, DMR-HHC-110-10, DMR-110-124, DMR-111-245 and DMR-HHC-111-8 China Medical University Hospital, Taichung, Taiwan
Collapse
Affiliation(s)
- Halliru Zailani
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- Graduate Institute of Nutrition, China Medical University, Taichung 404, Taiwan
- Department of Biochemistry, Ahmadu Bello University, Zaria 810106, Nigeria
| | - Senthil Kumaran Satyanarayanan
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
| | - Wei-Chih Liao
- Division of Pulmonary and Critical Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404327, Taiwan
| | - Yi-Ting Hsu
- Department of Neurology, China Medical University Hospital, Taichung 404327, Taiwan;
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Centre, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland;
| | - Kuan-Pin Su
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 717, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
94
|
Oue H, Hatakeyama R, Ishida E, Yokoi M, Tsuga K. Experimental tooth loss affects spatial learning function and blood-brain barrier of mice. Oral Dis 2023; 29:2907-2916. [PMID: 36114741 DOI: 10.1111/odi.14379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study aims to investigate how experimental tooth loss affected learning, memory function, and brain pathophysiology in mice. MATERIALS AND METHODS The mice (C57BL/6 J, 2-month-old, male) were divided into tooth loss and control groups. The behavioral test battery was performed at 6 and 12 months after tooth extraction. The protein levels of the tight junctions in the brains of the mice were analyzed. Hippocampal astrocyte was measured using immunohistochemical staining. RESULTS The results of behavioral tests and biochemical analysis performed during the 6 months observation period did not show significant differences between the groups. However, the escape latency in the tooth loss group was significantly longer than that in the control group at the 12 months after tooth extraction. The level of claudin-5 decreased in the tooth loss group. Additionally, hippocampal astrogliosis was found in the tooth loss group. CONCLUSIONS Experimental tooth loss reduced the level of claudin-5 and caused astrogliosis in the brains of mice, which was accompanied by deterioration of learning functions. This study may provide a new insight about the association between tooth loss and cognitive dysfunction.
Collapse
Affiliation(s)
- Hiroshi Oue
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Rie Hatakeyama
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eri Ishida
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miyuki Yokoi
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Tsuga
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
95
|
Meng F, Fu J, Zhang L, Guo M, Zhuang P, Yin Q, Zhang Y. Function and therapeutic value of astrocytes in diabetic cognitive impairment. Neurochem Int 2023; 169:105591. [PMID: 37543309 DOI: 10.1016/j.neuint.2023.105591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Diabetic cognitive impairment (DCI) is a complex complication of diabetes in the central nervous system, and its pathological mechanism is still being explored. Astrocytes are abundant glial cells in central nervous system that perform diverse functions in health and disease. Accumulating excellent research has identified astrocyte dysfunction in many neurodegenerative diseases (such as Alzheimer's disease, aging and Parkinson's disease), and summarized and discussed its pathological mechanisms and potential therapeutic value. However, the contribution of astrocytes to DCI has been largely overlooked. In this review, we first systematically summarized the effects and mechanisms of diabetes on brain astrocytes, and found that the diabetic environment (such as hyperglycemia, advanced glycation end products and cerebral insulin resistance) mediated brain reactive astrogliosis, which was specifically reflected in the changes of cell morphology and the remodeling of signature molecules. Secondly, we emphasized the contribution and potential targets of reactive astrogliosis to DCI, and found that reactive astrogliosis-induced increased blood-brain barrier permeability, glymphatic system dysfunction, neuroinflammation, abnormal cell communication and cholesterol metabolism dysregulation worsened cognitive function. In addition, we summarized effective strategies for treating DCI by targeting astrocytes. Finally, we discuss the application of new techniques in astrocytes, including single-cell transcriptome, in situ sequencing, and prospected new functions, new subsets and new targets of astrocytes in DCI.
Collapse
Affiliation(s)
- Fanyu Meng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mengqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pengwei Zhuang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qingsheng Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
96
|
Thakkar RN, Kioutchoukova IP, Griffin I, Foster DT, Sharma P, Valero EM, Lucke-Wold B. Mapping the Glymphatic Pathway Using Imaging Advances. J 2023; 6:477-491. [PMID: 37601813 PMCID: PMC10439810 DOI: 10.3390/j6030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
The glymphatic system is a newly discovered waste-clearing system that is analogous to the lymphatic system in our central nervous system. Furthermore, disruption in the glymphatic system has also been associated with many neurodegenerative disorders (e.g., Alzheimer's disease), traumatic brain injury, and subarachnoid hemorrhage. Thus, understanding the function and structure of this system can play a key role in researching the progression and prognoses of these diseases. In this review article, we discuss the current ways to map the glymphatic system and address the advances being made in preclinical mapping. As mentioned, the concept of the glymphatic system is relatively new, and thus, more research needs to be conducted in order to therapeutically intervene via this system.
Collapse
Affiliation(s)
- Rajvi N. Thakkar
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Ian Griffin
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Devon T. Foster
- College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, 1600 SW Archer Rd., Gainesville, FL 32610, USA
| |
Collapse
|
97
|
Bae J, Li C, Masurkar A, Ge Y, Kim SG. Improving measurement of blood-brain barrier permeability with reduced scan time using deep-learning-derived capillary input function. Neuroimage 2023; 278:120284. [PMID: 37507078 PMCID: PMC10475161 DOI: 10.1016/j.neuroimage.2023.120284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE In Dynamic contrast-enhanced MRI (DCE-MRI), Arterial Input Function (AIF) has been shown to be a significant contributor to uncertainty in the estimation of kinetic parameters. This study is to assess the feasibility of using a deep learning network to estimate local Capillary Input Function (CIF) to estimate blood-brain barrier (BBB) permeability, while reducing the required scan time. MATERIALS AND METHOD A total of 13 healthy subjects (younger (<40 y/o): 8, older (> 67 y/o): 5) were recruited and underwent 25-min DCE-MRI scans. The 25 min data were retrospectively truncated to 10 min to simulate a reduced scan time of 10 min. A deep learning network was trained to predict the CIF using simulated tissue contrast dynamics with two vascular transport models. The BBB permeability (PS) was measured using 3 methods: (i) Ca-25min, using DCE-MRI data of 25 min with individually sampled AIF (Ca); (ii) Ca-10min, using truncated 10min data with AIF (Ca); and (iii) Cp-10min, using truncated 10 min data with CIF (Cp). The PS estimates from the Ca-25min method were used as reference standard values to assess the accuracy of the Ca-10min and Cp-10min methods in estimating the PS values. RESULTS When compared to the reference method(Ca-25min), the Ca-10min and Cp-10min methods resulted in an overestimation of PS by 217 ± 241 % and 48.0 ± 30.2 %, respectively. The Bland Altman analysis showed that the mean difference from the reference was 8.85 ± 1.78 (x10-4 min-1) with the Ca-10min, while it was reduced to 1.63 ± 2.25 (x10-4 min-1) with the Cp-10min, resulting in an average reduction of 81%. The limits of agreement also reduced by up to 39.2% with the Cp-10min. We found a 75% increase of BBB permeability in the gray matter and a 35% increase in the white matter, when comparing the older group to the younger group. CONCLUSIONS We demonstrated the feasibility of estimating the capillary-level input functions using a deep learning network. We also showed that this method can be used to estimate subtle age-related changes in BBB permeability with reduced scan time, without compromising accuracy. Moreover, the trained deep learning network can automatically select CIF, reducing the potential uncertainty resulting from manual user-intervention.
Collapse
Affiliation(s)
- Jonghyun Bae
- Vilcek Institute of Graduate Biomedical Science, New York University School of Medicine; Center for Biomedical Imaging, Radiology, New York University School of Medicine; Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine; Department of Radiology, Weill Cornell Medical College.
| | - Chenyang Li
- Vilcek Institute of Graduate Biomedical Science, New York University School of Medicine; Center for Biomedical Imaging, Radiology, New York University School of Medicine; Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine.
| | - Arjun Masurkar
- Center for Cognitive Neurology, Department of Neurology, New York University School of Medicine; Department of Neuroscience & Physiology, New York University School of Medicine; Neuroscience Institute, New York University School of Medicine.
| | - Yulin Ge
- Center for Biomedical Imaging, Radiology, New York University School of Medicine; Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine.
| | | |
Collapse
|
98
|
Ringstad G, Valnes LM, Vatnehol SAS, Pripp AH, Eide PK. Prospective T1 mapping to assess gadolinium retention in brain after intrathecal gadobutrol. Neuroradiology 2023; 65:1321-1331. [PMID: 37479768 PMCID: PMC10425514 DOI: 10.1007/s00234-023-03198-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
PURPOSE A possible pathway behind gadolinium retention in brain is leakage of contrast agents from blood to cerebrospinal fluid and entry into brain along perivascular (glymphatic) pathways. The object of this study was to assess for signs of gadolinium retention in brain 4 weeks after intrathecal contrast enhanced MRI. METHODS We prospectively applied standardized T1 mapping of the brain before and 4 weeks after intrathecal administration of 0.5 mmol gadobutrol in patients under work-up of cerebrospinal fluid circulation disorders. Due to methodological limitations, a safety margin for percentage change in T1 time was set to 3%. Region-wise differences were assessed by pairwise comparison using t-tests and forest plots, and statistical significance was accepted at .05 level (two-tailed). RESULTS In a cohort of 76 participants (mean age 47.2 years ± 17.9 [standard deviation], 47 women), T1 relaxation times remained unchanged in cerebral cortex and basal ganglia 4 weeks after intrathecal gadobutrol. T1 was reduced from 1082 ± 46.7 ms to 1070.6 ± 36.5 ms (0.98 ±2.9%) (mean [standard deviation]) (p=0.001) in white matter, thus within the pre-defined 3% safety margin. The brain stem and cerebellum could not be assessed due to poor alignment of posterior fossa structures at scans from different time points. CONCLUSION Gadolinium retention was not detected in the cerebral hemispheres 4 weeks after an intrathecal dose of 0.5 mmol gadobutrol, implying that presence of contrast agents in cerebrospinal fluid is of minor importance for gadolinium retention in brain.
Collapse
Affiliation(s)
- Geir Ringstad
- Department of Radiology, Oslo University Hospital- Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway
| | - Lars Magnus Valnes
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Postboks 4950 Nydalen, 0424, Oslo, Norway
| | - Svein Are Sirirud Vatnehol
- The Interventional Centre, Oslo University Hospital - Rikshospitalet, Oslo, Norway
- Institute of Optometry Radiography and Lighting Design, Faculty of Health and Social Sciences, University of South Eastern Norway, Drammen, Norway
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Postboks 4950 Nydalen, 0424, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
99
|
Vinje V, Zapf B, Ringstad G, Eide PK, Rognes ME, Mardal KA. Human brain solute transport quantified by glymphatic MRI-informed biophysics during sleep and sleep deprivation. Fluids Barriers CNS 2023; 20:62. [PMID: 37596635 PMCID: PMC10439559 DOI: 10.1186/s12987-023-00459-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023] Open
Abstract
Whether you are reading, running or sleeping, your brain and its fluid environment continuously interacts to distribute nutrients and clear metabolic waste. Yet, the precise mechanisms for solute transport within the human brain have remained hard to quantify using imaging techniques alone. From multi-modal human brain MRI data sets in sleeping and sleep-deprived subjects, we identify and quantify CSF tracer transport parameters using forward and inverse subject-specific computational modelling. Our findings support the notion that extracellular diffusion alone is not sufficient as a brain-wide tracer transport mechanism. Instead, we show that human MRI observations align well with transport by either by an effective diffusion coefficent 3.5[Formula: see text] that of extracellular diffusion in combination with local clearance rates corresponding to a tracer half-life of up to 5 h, or by extracellular diffusion augmented by advection with brain-wide average flow speeds on the order of 1-9 [Formula: see text]m/min. Reduced advection fully explains reduced tracer clearance after sleep-deprivation, supporting the role of sleep and sleep deprivation on human brain clearance.
Collapse
Affiliation(s)
- Vegard Vinje
- Simula Research Laboratory, Kristian Augusts gate 23, 0164, Oslo, Norway
- Expert Analytics AS, Møllergata 8, 0179, Oslo, Norway
| | - Bastian Zapf
- Department of Mathematics, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sørlandet Hospital, Arendal, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Marie E Rognes
- Simula Research Laboratory, Kristian Augusts gate 23, 0164, Oslo, Norway
| | - Kent-Andre Mardal
- Simula Research Laboratory, Kristian Augusts gate 23, 0164, Oslo, Norway.
- Department of Mathematics, University of Oslo, Oslo, Norway.
| |
Collapse
|
100
|
Aquilani R, Cotta Ramusino M, Maestri R, Iadarola P, Boselli M, Perini G, Boschi F, Dossena M, Bellini A, Buonocore D, Doria E, Costa A, Verri M. Several dementia subtypes and mild cognitive impairment share brain reduction of neurotransmitter precursor amino acids, impaired energy metabolism, and lipid hyperoxidation. Front Aging Neurosci 2023; 15:1237469. [PMID: 37655338 PMCID: PMC10466813 DOI: 10.3389/fnagi.2023.1237469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Objective Dementias and mild cognitive impairment (MCI) are associated with variously combined changes in the neurotransmitter system and signaling, from neurotransmitter synthesis to synaptic binding. The study tested the hypothesis that different dementia subtypes and MCI may share similar reductions of brain availability in amino acid precursors (AAPs) of neurotransmitter synthesis and concomitant similar impairment in energy production and increase of oxidative stress, i.e., two important metabolic alterations that impact neurotransmission. Materials and methods Sixty-five demented patients (Alzheimer's disease, AD, n = 44; frontotemporal disease, FTD, n = 13; vascular disease, VaD, n = 8), 10 subjects with MCI and 15 control subjects (CTRL) were recruited for this study. Cerebrospinal fluid (CSF) and plasma levels of AAPs, energy substrates (lactate, pyruvate), and an oxidative stress marker (malondialdehyde, MDA) were measured in all participants. Results Demented patients and subjects with MCI were similar for age, anthropometric parameters, biohumoral variables, insulin resistance (HOMA index model), and CSF neuropathology markers. Compared to age-matched CTRL, both demented patients and MCI subjects showed low CSF AAP tyrosine (precursor of dopamine and catecholamines), tryptophan (precursor of serotonin), methionine (precursor of acetylcholine) limited to AD and FTD, and phenylalanine (an essential amino acid largely used for protein synthesis) (p = 0.03 to <0.0001). No significant differences were found among dementia subtypes or between each dementia subtype and MCI subjects. In addition, demented patients and MCI subjects, compared to CTRL, had similar increases in CSF and plasma levels of pyruvate (CSF: p = 0.023 to <0.0001; plasma: p < 0.002 to <0.0001) and MDA (CSF: p < 0.035 to 0.002; plasma: p < 0.0001). Only in AD patients was the CSF level of lactate higher than in CTRL (p = 0.003). Lactate/pyruvate ratios were lower in all experimental groups than in CTRL. Conclusion AD, FTD, and VaD dementia patients and MCI subjects may share similar deficits in AAPs, partly in energy substrates, and similar increases in oxidative stress. These metabolic alterations may be due to AAP overconsumption following high brain protein turnover (leading to phenylalanine reductions), altered mitochondrial structure and function, and an excess of free radical production. All these metabolic alterations may have a negative impact on synaptic plasticity and activity.
Collapse
Affiliation(s)
- Roberto Aquilani
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Matteo Cotta Ramusino
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Maestri
- Department of Biomedical Engineering of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Mirella Boselli
- Neurorehabilitation Unit of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Giulia Perini
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Boschi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Anna Bellini
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Daniela Buonocore
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Enrico Doria
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Alfredo Costa
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Manuela Verri
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| |
Collapse
|