51
|
Ono S. Dynamic regulation of sarcomeric actin filaments in striated muscle. Cytoskeleton (Hoboken) 2010; 67:677-92. [PMID: 20737540 PMCID: PMC2963174 DOI: 10.1002/cm.20476] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/21/2010] [Accepted: 07/29/2010] [Indexed: 01/08/2023]
Abstract
In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin subunits within sarcomeric actin filaments are dynamically exchanged without altering overall sarcomeric structures. A number of regulators for actin dynamics have been identified, and malfunction of these regulators often result in disorganization of myofibril structures or muscle diseases. Therefore, proper regulation of actin dynamics in striated muscle is critical for assembly and maintenance of functional myofibrils. Recent studies have suggested that both enhancers of actin dynamics and stabilizers of actin filaments are important for sarcomeric actin organization. Further investigation of the regulatory mechanism of actin dynamics in striated muscle should be a key to understanding how myofibrils develop and operate.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
52
|
Saxena AK. Tissue engineering and regenerative medicine research perspectives for pediatric surgery. Pediatr Surg Int 2010; 26:557-73. [PMID: 20333389 DOI: 10.1007/s00383-010-2591-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2010] [Indexed: 01/28/2023]
Abstract
Tissue engineering and regenerative medicine research is being aggressively pursued in attempts to develop biological substitutes to replace lost tissue or organs. Remarkable degrees of success have been achieved in the generation of a variety of tissues and organs as a result of concerted contributions by multidisciplinary groups in the field of biotechnology. Engineering of an organ is a complex process which is initiated by appropriate sourcing of cells and their controlled proliferation to achieve critical numbers for seeding on biodegradable scaffolds in order to create cell-scaffold constructs, which are thereafter maintained in bioreactors to generate tissues identical to those required for replacement. Extensive efforts in understanding the characteristics of cells and their interaction with specifically tailored scaffolds holds the key to their attachment, controlled proliferation and differentiation, intercommunication, and organization to form tissues. The demand for tissue-engineered organs is enormous and this technology holds the promise to supply customized organs to overcome the severe shortages that are currently faced by the pediatric patient, especially due to organ-size mismatch. The contemporary state of tissue-engineering technology presented in this review summarizes the advances in the various areas of regenerative medicine and addresses issues that are associated with its future implementation in the pediatric surgical patient.
Collapse
Affiliation(s)
- Amulya K Saxena
- Experimental Fetal Surgery and Tissue Engineering Unit, Department of Pediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz-34, 8036, Graz, Austria.
| |
Collapse
|
53
|
|
54
|
Burkholder TJ. Stretch-induced ERK2 phosphorylation requires PLA2 activity in skeletal myotubes. Biochem Biophys Res Commun 2009; 386:60-4. [PMID: 19524551 PMCID: PMC2744880 DOI: 10.1016/j.bbrc.2009.05.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 05/29/2009] [Indexed: 11/25/2022]
Abstract
Mechanical stretch rapidly activates multiple signaling cascades, including phospholipases and kinases, to stimulate protein synthesis and growth. The purpose of this study was to determine whether PLA2 activation contributes to stretch-induced phosphorylation of ERK2 in skeletal muscle myotubes. Myotubes derived from neonatal C57 mice were cultured on silicone membranes and subjected to brief cyclic stretch. Inhibition of PLA2 prevented ERK2 phosphorylation, while inhibition of prostaglandin or leukotriene synthesis did not. ERK2 phosphorylation was also blocked by genistein and PD98059, implicating the canonical raf-MEK-ERK cassette. It appears that PLA2, but not further metabolism of arachidonic acid, is required for stretch-induced activation of ERK2. Exposure to exogenous arachidonic acid had no effect on ERK2 phosphorylation, but exposure to lysophosphatidylcholine, the other metabolite of PLA2, caused a dose-dependent increase in ERK2 phosphorylation. These results suggest that stretch-induced activation of ERK2 may result from an interaction between PLA2 derived lysophosphatidylcholine and membrane receptors.
Collapse
Affiliation(s)
- Thomas J Burkholder
- School of Applied Physiology and Interdisciplinary Bioengineering Program, Georgia Institute of Technology, 281 Ferst Drive, Atlanta, GA 30332-0356, USA.
| |
Collapse
|
55
|
Localized electrical stimulation to C2C12 myotubes cultured on a porous membrane-based substrate. Biomed Microdevices 2009; 11:413-9. [PMID: 18975093 DOI: 10.1007/s10544-008-9247-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We report a porous membrane-based cell culture device that can conduct localized electrical stimulation of a cell monolayer. The device's cell culture substrate is a microporous alumina membrane with an underlying thin poly(dimethylsiloxane) (PDMS) film spotted with holes. When electric current is generated between the device's Pt ring electrodes--one of which is placed above the cells and the other below the PDMS layer--the current density condenses at the holes in the PDMS film, and cells located above the holes can be electrically stimulated. C2C12 cells were confluently cultured on the substrate and were differentiated to myotubes. To control the stimulated area in the substrate, we attempted to seal and reopen the holes of the PDMS film by using an air bubble. Since the current pulse could be effectively blocked at the sealed holes, fluorescent Ca2+ transients, indicative of cellular excitation, were observed from the myotubes located above holes in the open state.
Collapse
|
56
|
Bian W, Bursac N. Engineered skeletal muscle tissue networks with controllable architecture. Biomaterials 2009; 30:1401-12. [PMID: 19070360 PMCID: PMC2726993 DOI: 10.1016/j.biomaterials.2008.11.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 11/09/2008] [Indexed: 02/01/2023]
Abstract
The engineering of functional skeletal muscle tissue substitutes holds promise for the treatment of various muscular diseases and injuries. However, no tissue fabrication technology currently exists for the generation of a relatively large and thick bioartificial muscle made of densely packed, uniformly aligned, and differentiated myofibers. In this study, we describe a versatile cell/hydrogel micromolding approach where polydimethylsiloxane (PDMS) molds containing an array of elongated posts were used to fabricate relatively large neonatal rat skeletal muscle tissue networks with reproducible and controllable architecture. By combining cell-mediated fibrin gel compaction and precise microfabrication of mold dimensions including the length and height of the PDMS posts, we were able to simultaneously support high cell viability, guide cell alignment along the microfabricated tissue pores, and reproducibly control the overall tissue porosity, size, and thickness. The interconnected muscle bundles within the porous tissue networks were composed of densely packed, aligned, and highly differentiated myofibers. The formed myofibers expressed myogenin, developed abundant cross-striations, and generated spontaneous tissue contractions at the macroscopic spatial scale. The proliferation of non-muscle cells was significantly reduced compared to monolayer cultures. The more complex muscle tissue architectures were fabricated by controlling the spatial distribution and direction of the PDMS posts.
Collapse
Affiliation(s)
- Weining Bian
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
57
|
Sparrow JC, Schöck F. The initial steps of myofibril assembly: integrins pave the way. Nat Rev Mol Cell Biol 2009; 10:293-8. [PMID: 19190670 DOI: 10.1038/nrm2634] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myofibril assembly results in a regular array of identical sarcomeres in striated muscle. Sarcomere structure is conserved across the animal kingdom, which implies that the mechanisms of myofibril assembly are also likely to be conserved. Recent advances from model genetic systems and insights from stress fibre cell biology have shed light on the mechanisms that set sarcomere spacing and the initial assembly of sarcomere arrays. We propose a model of integrin-dependent cell-matrix adhesion as the starting point for myofibrillogenesis.
Collapse
Affiliation(s)
- John C Sparrow
- Department of Biology, University of York, York, YO10 5YW, UK.
| | | |
Collapse
|
58
|
Bian W, Bursac N. Tissue engineering of functional skeletal muscle: challenges and recent advances. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE : THE QUARTERLY MAGAZINE OF THE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY 2008; 27:109-13. [PMID: 18799400 PMCID: PMC2702132 DOI: 10.1109/memb.2008.928460] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
59
|
Park H, Bhalla R, Saigal R, Radisic M, Watson N, Langer R, Vunjak-Novakovic G. Effects of electrical stimulation in C2C12 muscle constructs. J Tissue Eng Regen Med 2008; 2:279-87. [PMID: 18512267 PMCID: PMC2782921 DOI: 10.1002/term.93] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Electrical stimulation affects the deposition of extracellular matrices and cellular differentiation. Type I collagen is one of the most abundant extracellular matrix proteins; however, not much is known about the effects of electrical stimulation on collagen type I deposition in C2C12 cells. Thus, we studied the effects of electrical voltage and stimulation frequency in 3D cultured C2C12 muscle cells in terms of metabolic activity, type I collagen deposition and cell morphology. Electrically excitable C2C12 muscle cells were seeded in collagen scaffolds and stimulated with rectangular signals of voltage (2, 5, 7 V) and frequency (1, 2 Hz), using parallel carbon electrodes spaced 1 cm apart. Metabolic activity was quantified by the glucose:lactate concentration ratio in the medium. Apoptotic activity was assessed by TUNEL staining and changes in collagen deposition were identified by immunohistology. The ultrastructure of the tissue was examined by TEM. Glucose and lactate analysis indicated that all groups had similar metabolic activity. TUNEL stain showed no significant difference in apoptotic damage induced by electrical stimulation compared to the control. Samples stimulated at 2 Hz exhibited reduced collagen deposition compared to the control and 1 Hz stimulated samples. Muscle-protein marker desmin was highly expressed in constructs stimulated with 1 Hz/5 V sample. TEM revealed that the stimulated samples developed highly organized sarcomeres, which coincided with improved contractile properties in the 1 Hz/5 V- and 2 Hz/5 V-stimulated groups. Our data implicate that a specific electrical frequency may modulate type I collagen accumulation and a specific voltage may affect the differentiation of muscle sarcomeres in excitable cells.
Collapse
Affiliation(s)
- Hyoungshin Park
- Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rajat Bhalla
- Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rajiv Saigal
- Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Nicki Watson
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Robert Langer
- Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gordana Vunjak-Novakovic
- Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering, Columbia University, NY, USA
| |
Collapse
|
60
|
Wu X, Gao H, Xiao D, Luo S, Zhao Z. Effects of tensile stress on the α1 nicotinic acetylcholine receptor expression in maxillofacial skeletal myocytes. Mol Cell Biochem 2007; 311:51-6. [DOI: 10.1007/s11010-007-9693-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 12/17/2007] [Indexed: 01/15/2023]
|
61
|
Yamashiro S, Gimona M, Ono S. UNC-87, a calponin-related protein in C. elegans, antagonizes ADF/cofilin-mediated actin filament dynamics. J Cell Sci 2007; 120:3022-33. [PMID: 17684058 PMCID: PMC2365702 DOI: 10.1242/jcs.013516] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stabilization of actin filaments is critical for supporting actomyosin-based contractility and for maintaining stable cellular structures. Tropomyosin is a well-characterized ubiquitous actin stabilizer that inhibits ADF/cofilin-dependent actin depolymerization. Here, we show that UNC-87, a calponin-related Caenorhabditis elegans protein with seven calponin-like repeats, competes with ADF/cofilin for binding to actin filaments and inhibits ADF/cofilin-dependent filament severing and depolymerization in vitro. Mutations in the unc-87 gene suppress the disorganized actin phenotype in an ADF/cofilin mutant in the C. elegans body wall muscle, supporting their antagonistic roles in regulating actin stability in vivo. UNC-87 and tropomyosin exhibit synergistic effects in stabilizing actin filaments against ADF/cofilin, and direct comparison reveals that UNC-87 effectively stabilizes actin filaments at much lower concentrations than tropomyosin. However, the in vivo functions of UNC-87 and tropomyosin appear different, suggesting their distinct roles in the regulation of actomyosin assembly and cellular contractility. Our results demonstrate that actin binding via calponin-like repeats competes with ADF/cofilin-driven cytoskeletal turnover, and is critical for providing the spatiotemporal regulation of actin filament stability.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | - Mario Gimona
- Unit of Actin Cytoskeleton Regulation, Consorzio Mario Negri Sud, Department of Cell Biology and Oncology, Via Nazionale 8a, 66030 Santa Maria, Imbaro, Italy
| | - Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
62
|
Ferreira GNT, Teixeira-Salmela LF, Guimarães CQ. Gains in flexibility related to measures of muscular performance: impact of flexibility on muscular performance. Clin J Sport Med 2007; 17:276-81. [PMID: 17620781 DOI: 10.1097/jsm.0b013e3180f60b26] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Studies that investigated possible correlations between flexibility and muscular performance are scarce in the literature. Therefore, the purpose of this study was to investigate the impact of a program of static stretching on the flexibility of the hamstrings and on muscular performance of the knee flexors and extensors. DESIGN Pre-post experimental design. SETTING University laboratory. PARTICIPANTS Thirty subjects aged 22.8 +/- 4.9 years with bilaterally shortened hamstrings. INTERVENTION Using a protocol that has been previously described, the intervention consisted of 30 sessions of static stretching, performed bilaterally five times a week for 6 weeks. MAIN OUTCOME MEASUREMENTS Measures of knee range of motion and isokinetic muscular performance (peak torque, angle of peak torque, and work) of knee flexors and extensors at speeds of 60 and 300 degrees/s. RESULTS After intervention, significant gains in measures of flexibility (P < 0.0001) were observed, with an average gain of the knee-extension angle of 12.6 degrees, ranging from -1.2 to 30.7 degrees. In addition, we found significant increases in the following parameters of muscular performance: angle of peak torque of hamstrings at 60 and 300 degrees/s (P < 0.0001 and 0.018) and for work at 60 and 300 degrees/s for knee flexors (P = 0.012 and 0.005) and for knee extensors (P < 0.0001). CONCLUSIONS The intervention resulted in gains in measures of flexibility, and these gains had a positive impact on some parameters of muscular performance.
Collapse
|
63
|
Fujita H, Nedachi T, Kanzaki M. Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Exp Cell Res 2007; 313:1853-65. [PMID: 17425954 DOI: 10.1016/j.yexcr.2007.03.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 02/22/2007] [Accepted: 03/02/2007] [Indexed: 10/23/2022]
Abstract
The assembly of sarcomeres, the smallest contractile units in striated muscle, is a complex and highly coordinated process that relies on spatio-temporal organization of sarcomeric proteins, a process requiring spontaneous Ca(2+) transients. To investigate the relationship between Ca(2+) transients and sarcomere assembly in C2C12 myotubes, we employed electric pulse stimulation (EPS), which allows the frequency of Ca(2+) transients to be manipulated. We monitored contractile activity as a means of evaluating functional sarcomere establishment using the differential image subtraction (DIS) method. C2C12 myotubes initially displayed no contractility with EPS, due to a lack of sarcomere architecture. However, C2C12 myotubes showed remarkable contractile activity with EPS-induced repetitive Ca(2+) transients (1 Hz) within only 2 h. This activity was concurrent with the development of sarcomere structure. Importantly, the period required for the acquisition of contractile activity in response to excitation was dependent upon the frequency of Ca(2+) oscillations, but a sustained increase in intracellular Ca(2+) (not oscillatory) by high-frequency EPS (10 Hz) was incapable of conferring either contractility or sarcomere assembly on the myotubes. The EPS-facilitated de novo functional sarcomere assembly appeared to require calpain-mediated proteolysis. In addition, modulation of integrin signals, by adding collagen IV or RGD-peptide, significantly affected the EPS-induced development of contractility. Taken together, these observations indicate that the frequency of the Ca(2+) oscillation determines the time required to establish functionally active sarcomere assembly and also suggest that the Ca(2+) oscillatory signal may be decoded through reorganization of the integrin-cytoskeletal protein complex via calpain-mediated proteolysis.
Collapse
Affiliation(s)
- Hideaki Fujita
- TUBERO/Tohoku University Biomedical Engineering Research Organization, School of Medicine Bldg #1, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | | | | |
Collapse
|
64
|
Abstract
Recruitment determines the profile of fibre-type-specific genes expressed across the range of muscle fibres associated with slow, fast fatigue-resistant and fast fatiguable motor units. Downstream signalling pathways activated by neural signalling and mechanical load have been the focus of intensive research in past years. It is now known that Ca2+-dependent calcineurin–nuclear factor of activated T cells and insulin-like growth factor 1 pathways and their downstream mediators contribute to these adaptive responses. These pathways regulate gene expression through muscle-specific (myocyte-enhancing factor 2, myoblast determination protein) and non-specific (nuclear factor of activated T cell 2, GATA-2) transcription factors. Transcriptional signals activated with increased contractile activity result in altered expression of fibre-type specific genes, including the myosin heavy chain isoforms and oxidative and glycolytic enzymes and a net change in muscle fibre-type composition. In contrast, transcriptional signals activated by increased load bearing result in hypertrophy or a growth response, a component of which involves satellite cell recruitment and fusion with existing adult myofibres. Calcineurin has been identified as a key mediator in the hypertrophic response, and the current challenge has been to determine the downstream target genes of this pathway. Exciting new data have emerged, showing that myostatin, a negative regulator of muscle growth, and utrophin, a cytoskeletal protein important in maintaining membrane integrity, are downstream targets of calcineurin signalling. Increased understanding of these mediators of muscle growth may provide strategies for the development of effective therapeutics to counter muscle weakness and muscular dystrophy.
Collapse
Affiliation(s)
- Robin N Michel
- Neuromuscular Research Laboratory, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada.
| | | | | |
Collapse
|
65
|
Suchyna TM, Sachs F. Mechanosensitive channel properties and membrane mechanics in mouse dystrophic myotubes. J Physiol 2007; 581:369-87. [PMID: 17255168 PMCID: PMC2075208 DOI: 10.1113/jphysiol.2006.125021] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Muscular dystrophy is associated with increased activity of mechanosensitive channels (MSCs) and increased cell calcium levels. MSCs in patches from mdx mouse myotubes have higher levels of resting activity, compared to patches from wild-type mice, and a pronounced latency of activation and deactivation. Measurements of patch capacitance and geometry reveal that the differences are linked to cortical membrane mechanics rather than to differences in channel gating. We found unexpectedly that patches from mdx mice are strongly curved towards the pipette tip by actin pulling normal to the membrane. This force produces a substantial tension (approximately 5 mN m(-1)) that can activate MSCs in the absence of overt stimulation. The inward curvature of patches from mdx mice is eliminated by actin inhibitors. Applying moderate suction to the pipette flattens the membrane, reducing tension, and making the response appear to be stretch inactivated. The pronounced latency to activation in patches from mdx mice is caused by the mechanical relaxation time required to reorganize the cortex from inward to outward curvature. The increased latency is equivalent to a three-fold increase in cortical viscosity. Disruption of the cytoskeleton by chemical or mechanical means eliminates the differences in kinetics and curvature between patches from wild-type and mdx mice. The stretch-induced increase in specific capacitance of the patch, approximately 80 fF microm(-2), far exceeds the specific capacitance of bilayers, suggesting the presence of stress-sensitive access to large pools of membrane, possibly caveoli, T-tubules or portions of the gigaseal. In mdx mouse cells the intrinsic gating property of fast voltage-sensitive inactivation is lost. It is robust in wild-type mouse cells (observed in 50% of outside-out patches), but never observed in mdx cells. This link between dystrophin and inactivation may lead to increased background cation currents and Ca2+ influx. Spontaneous Ca2+ transients in mdx mouse cells are sensitive to depolarization and are inhibited by the specific MSC inhibitor GsMTx4, in both the D and L forms.
Collapse
Affiliation(s)
- Thomas M Suchyna
- Department of Physiology and Biophysics, Center for Single Molecule Biophysics, State University New York (SUNY) at Buffalo, Buffalo, NY 14214, USA.
| | | |
Collapse
|
66
|
Yu R, Ono S. Dual roles of tropomyosin as an F-actin stabilizer and a regulator of muscle contraction in Caenorhabditis elegans body wall muscle. ACTA ACUST UNITED AC 2006; 63:659-72. [PMID: 16937397 PMCID: PMC1705952 DOI: 10.1002/cm.20152] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tropomyosin is a well-characterized regulator of muscle contraction. It also stabilizes actin filaments in a variety of muscle and non-muscle cells. Although these two functions of tropomyosin could have different impacts on actin cytoskeletal organization, their functional relationship has not been studied in the same experimental system. Here, we investigated how tropomyosin stabilizes actin filaments and how this function is influenced by muscle contraction in Caenorhabditis elegans body wall muscle. We confirmed the antagonistic role of tropomyosin against UNC-60B, a muscle-specific ADF/cofilin isoform, in actin filament organization using multiple UNC-60B mutant alleles. Tropomyosin was also antagonistic to UNC-78 (AIP1) in vivo and protected actin filaments from disassembly by UNC-60B and UNC-78 in vitro, suggesting that tropomyosin protects actin filaments from the ADF/cofilin-AIP1 actin disassembly system in muscle cells. A mutation in the myosin heavy chain caused greater reduction in contractility than tropomyosin depletion. However, the myosin mutation showed much weaker suppression of the phenotypes of ADF/cofilin or AIP1 mutants than tropomyosin depletion. These results suggest that muscle contraction has only minor influence on the tropomyosin's protective role against ADF/cofilin and AIP1, and that the two functions of tropomyosin in actin stability and muscle contraction are independent of each other.
Collapse
Affiliation(s)
- Robinson Yu
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
67
|
Russ DW, Lovering RM. Influence of activation frequency on cellular signalling pathways during fatiguing contractions in rat skeletal muscle. Exp Physiol 2006; 91:957-66. [PMID: 16857718 DOI: 10.1113/expphysiol.2006.034249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activation frequency as a regulator of physiological responses in skeletal muscle, independent of contractile force, has received little attention. Here, the length-tension and force-frequency relationships were employed to keep active contractile force equal, despite a twofold difference in stimulation frequency (15 versus 30 Hz). Rat tibialis anterior muscles were tested in situ using 15 Hz stimulation at optimal length (15 Hz) and 30 Hz stimulation at shortened and lengthened positions (30 Hz(sub) and 30 Hz(supra)). Muscles were subjected to 1, 15, 30 and 80 Hz stimulation trains before and after 2 min of fatiguing stimulation. The principal findings were that the two 30 Hz protocols produced greater 38 kDa MAPK (p38) phosphorylation than the 15 Hz protocol (1.4- to 1.5-fold versus 1.1-fold), as well as greater fatigue (65-78 versus 43% decline in contraction force). In contrast, c-jun amino terminal kinase (JNK) phosphorylation appeared most responsive to total (active plus passive) tension such that the changes followed the pattern: 30 Hz(supra) > 15 Hz > 30 Hz(sub), while 44 and 42 kDa extracellular regulated kinase (ERK1/2) phosphorylation was not significantly increased in response to any of the protocols studied. Neither glycogen depletion nor myofibre damage accounted for any of the findings, but a decline in muscle excitation (m-wave) may have contributed to the greater fatigue seen at higher frequencies. These data suggest that neuromuscular activation frequency can influence certain signalling pathways in skeletal muscle, independent of force production.
Collapse
Affiliation(s)
- David W Russ
- Department of Physical Therapy and Rehabilitation Science, University of Maryland-Baltimore, School of Medicine, 100 Penn Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
68
|
Ohtsuka Y, Okamura Y. Voltage-dependent calcium influx mediates maturation of myofibril arrangement in ascidian larval muscle. Dev Biol 2006; 301:361-73. [PMID: 16962575 DOI: 10.1016/j.ydbio.2006.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/28/2006] [Accepted: 08/04/2006] [Indexed: 11/18/2022]
Abstract
Calcium signaling is important for multiple events during embryonic development. However, roles of calcium influx during embryogenesis have not been fully understood since routes of calcium influx are often redundant. To define roles of voltage-gated calcium channel (Cav) during embryogenesis, we have isolated an ascidian Cav beta subunit gene (TuCavbeta) and performed gene knockdown using the morpholino antisense oligonucleotide (MO). The suppression of Cav activity by TuCavbetaMO remarkably perturbed gastrulation and tail elongation. Further, larvae with normal morphology also failed to exhibit motility. Phalloidin-staining showed that arrangement of myofibrils was uncoordinated in muscle cells of TuCavbetaMO-injected larvae with normal tail. To further understand the roles of Cav activity in myofibrillogenesis, we tested pharmacological inhibitions with ryanodine, curare, and N-benzyl-p-toluensulphonamide (BTS). The treatment with ryanodine, an intracellular calcium release blocker, did not significantly affect the motility and establishment of the myofibril orientation. However, treatment with curare, an acetylcholine receptor blocker, and BTS, an actomyosin ATPase specific inhibitor, led to abnormal motility and irregular orientation of myofibrils that was similar to those of TuCavbetaMO-injected larvae. Our results suggest that contractile activation regulated by voltage-dependent calcium influx but not by intracellular calcium release is required for proper arrangement of myofibrils.
Collapse
Affiliation(s)
- Yukio Ohtsuka
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan.
| | | |
Collapse
|
69
|
Choi YH, Stamm C, Hammer PE, Kwaku KF, Marler JJ, Friehs I, Jones M, Rader CM, Roy N, Eddy MT, Triedman JK, Walsh EP, McGowan FX, del Nido PJ, Cowan DB. Cardiac conduction through engineered tissue. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:72-85. [PMID: 16816362 PMCID: PMC1534117 DOI: 10.2353/ajpath.2006.051163] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 04/10/2006] [Indexed: 11/20/2022]
Abstract
In children, interruption of cardiac atrioventricular (AV) electrical conduction can result from congenital defects, surgical interventions, and maternal autoimmune diseases during pregnancy. Complete AV conduction block is typically treated by implanting an electronic pacemaker device, although long-term pacing therapy in pediatric patients has significant complications. As a first step toward developing a substitute treatment, we implanted engineered tissue constructs in rat hearts to create an alternative AV conduction pathway. We found that skeletal muscle-derived cells in the constructs exhibited sustained electrical coupling through persistent expression and function of gap junction proteins. Using fluorescence in situ hybridization and polymerase chain reaction analyses, myogenic cells in the constructs were shown to survive in the AV groove of implanted hearts for the duration of the animal's natural life. Perfusion of hearts with fluorescently labeled lec-tin demonstrated that implanted tissues became vascularized and immunostaining verified the presence of proteins important in electromechanical integration of myogenic cells with surrounding re-cipient rat cardiomyocytes. Finally, using optical mapping and electrophysiological analyses, we provide evidence of permanent AV conduction through the implant in one-third of recipient animals. Our experiments provide a proof-of-principle that engineered tissue constructs can function as an electrical conduit and, ultimately, may offer a substitute treatment to conventional pacing therapy.
Collapse
Affiliation(s)
- Yeong-Hoon Choi
- Department of Cardiac Surgery, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Cohen TV, Randall WR. The regulation of acetylcholinesterase by cis-elements within intron I in cultured contracting myotubes. J Neurochem 2006; 98:723-34. [PMID: 16787423 DOI: 10.1111/j.1471-4159.2006.03897.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The onset of spontaneous contraction in rat primary muscle cultures coincides with an increase in acetylcholinesterase (AChE) activity. In order to establish whether contractile activity modulates the rate of AChE transcript synthesis, and what elements of the gene are determinant, we examined the promoter and intron I in contracting muscle cultures. Ache genomic fragments attached to a luciferase reporter were transfected into muscle cultures that were either electrically stimulated or paralyzed with tetrodotoxin to enhance or inhibit contractions, respectively. Cultures transfected with intron I-containing constructs showed a 2-fold increase in luciferase activity following electrical stimulation, compared to tetrodotoxin treatment, suggesting that this region contains elements responding to contractile activity. Deleting a 780 bp distal region within intron I, containing an N-box element at +890 bp, or introducing a 2-bp mutation within its core sequence, eliminated the contraction-induced response. In contrast, mutating an N-box element at +822 bp had no effect on the response. Furthermore, co-transfecting a dominant negative GA-binding protein (GABP), a transcription factor known to selectively bind N-box elements, reduced the stimulation-mediated increase. Our results suggest that the N-box within intron I at +890 bp is a regulatory element important in the transcriptional response of Ache to contractile activity in muscle.
Collapse
Affiliation(s)
- Tatiana V Cohen
- Department of Pharmacology and Experimental Therapeutics, School of Medicine University of Maryland, Baltimore, MD 21201-1559, USA
| | | |
Collapse
|
71
|
Quach NL, Rando TA. Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Dev Biol 2006; 293:38-52. [PMID: 16533505 DOI: 10.1016/j.ydbio.2005.12.040] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 12/12/2005] [Accepted: 12/14/2005] [Indexed: 02/03/2023]
Abstract
A central question in muscle biology is how costameres are formed and become aligned with underlying myofibrils in mature tissues. Costameres are composed of focal adhesion proteins, including vinculin and paxillin, and anchor myofibril Z-bands to the sarcolemma. In the present study, we investigated the process of costamere formation ("costamerogenesis") in differentiating primary mouse myoblasts. Using vinculin and paxillin as costameric markers, we found that two additional focal adhesion components, alpha5beta1 integrin and focal adhesion kinase (FAK), are associated with costameres. We have characterized costamerogenesis as occurring in three distinct stages based on the organizational pattern of these costameric proteins. We show that both costamerogenesis and myofibrillogenesis are initiated at sites of membrane contacts with the extracellular matrix and that their maturation is tightly coupled. To test the importance of FAK signaling in these processes, we analyzed cells expressing a dominant negative form of FAK (dnFAK). When cells expressing dnFAK were induced to differentiate, both costamerogenesis and myofibrillogenesis were disrupted although the expression of constituent proteins was not inhibited. Likewise, inhibiting FAK activity by reducing FAK levels using an siRNA approach also resulted in an inhibition of costamerogenesis and myofibrillogenesis. The relationship between costamere and myofibril formation was tested further by treating myotube cultures with potassium or tetrodotoxin to block contraction and disrupt myofibril organization. This also resulted in inhibition of costamere maturation. We present a model of costamerogenesis whereby signaling through FAK is essential for both normal costamerogenesis and normal myofibrillogenesis which are tightly coupled during skeletal myogenesis.
Collapse
Affiliation(s)
- Navaline L Quach
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
72
|
Brennan C, Mangoli M, Dyer CEF, Ashworth R. Acetylcholine and calcium signalling regulates muscle fibre formation in the zebrafish embryo. J Cell Sci 2005; 118:5181-90. [PMID: 16249237 DOI: 10.1242/jcs.02625] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nerve activity is known to be an important regulator of muscle phenotype in the adult, but its contribution to muscle development during embryogenesis remains unresolved. We used the zebrafish embryo and in vivo imaging approaches to address the role of activity-generated signals, acetylcholine and intracellular calcium, in vertebrate slow muscle development. We show that acetylcholine drives initial muscle contraction and embryonic movement via release of intracellular calcium from ryanodine receptors. Inhibition of this activity-dependent pathway at the level of the acetylcholine receptor or ryanodine receptor did not disrupt slow fibre number, elongation or migration but affected myofibril organisation. In mutants lacking functional acetylcholine receptors myofibre length increased and sarcomere length decreased significantly. We propose that calcium is acting via the cytoskeleton to regulate myofibril organisation. Within a myofibre, sarcomere length and number are the key parameters regulating force generation; hence our findings imply a critical role for nerve-mediated calcium signals in the formation of physiologically functional muscle units during development.
Collapse
Affiliation(s)
- Caroline Brennan
- School of Biological Sciences, Queen Mary, University of London, London, E1 4NS, UK
| | | | | | | |
Collapse
|
73
|
Butterfield TA, Leonard TR, Herzog W. Differential serial sarcomere number adaptations in knee extensor muscles of rats is contraction type dependent. J Appl Physiol (1985) 2005; 99:1352-8. [PMID: 15947030 DOI: 10.1152/japplphysiol.00481.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sarcomerogenesis, or the addition of sarcomeres in series within a fiber, has a profound impact on the performance of a muscle by increasing its contractile velocity and power. Sarcomerogenesis may provide a beneficial adaptation to prevent injury when a muscle consistently works at long lengths, accounting for the repeated-bout effect. The association between eccentric exercise, sarcomerogenesis and the repeated-bout effect has been proposed to depend on damage, where regeneration allows sarcomeres to work at shorter lengths for a given muscle-tendon unit length. To gain additional insight into this phenomenon, we measured fiber dynamics directly in the vastus lateralis (VL) muscle of rats during uphill and downhill walking, and we measured serial sarcomere number in the VL and vastus intermedius (VI) after chronic training on either a decline or incline grade. We found that the knee extensor muscles of uphill walking rats undergo repeated active concentric contractions, and therefore they suffer no contraction-induced injury. Conversely, the knee extensor muscles during downhill walking undergo repeated active eccentric contractions. Serial sarcomere numbers change differently for the uphill and downhill exercise groups, and for the VL and VI muscles. Short muscle lengths for uphill concentric-biased contractions result in a loss of serial sarcomeres, and long muscle lengths for downhill eccentric-biased contractions result in a gain of serial sarcomeres.
Collapse
|
74
|
Edelman PD, McFarland DC, Mironov VA, Matheny JG. Commentary:In Vitro-Cultured Meat Production. ACTA ACUST UNITED AC 2005; 11:659-62. [PMID: 15998207 DOI: 10.1089/ten.2005.11.659] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- P D Edelman
- Department of Animal and Range Sciences, South Dakota State University, Brookings, USA
| | | | | | | |
Collapse
|
75
|
Rauch C, Loughna PT. Static stretch promotes MEF2A nuclear translocation and expression of neonatal myosin heavy chain in C2C12myocytes in a calcineurin- and p38-dependent manner. Am J Physiol Cell Physiol 2005; 288:C593-605. [PMID: 15483225 DOI: 10.1152/ajpcell.00346.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the effects of mechanical stimuli have been studied extensively in fully differentiated skeletal muscle and have been shown to promote changes in phenotype, including altered myosin heavy chain isoform expression, the effects of a change in mechanical environment have been poorly studied at earlier stages of skeletal muscle differentiation. In particular, the early events elicited by mechanical stimuli upon differentiating myocytes have not been investigated. In the present study, the effect of static stretch on the activation of transcriptional factors MEF2A and NFATc1, which have been shown to be involved in the differentiation and phenotype regulation of skeletal muscle, have been examined. Furthermore, putative second messenger signaling pathways that could be involved in the dephosphorylation and hence activation of these factors were also examined. We have demonstrated that static stretch application produces a robust increase in p38 phosphorylation preceding MEF2A, but not NFATc1, nuclear translocation as well as deactivation of GSK-3β via its phosphorylation. Using SB-203580 and cyclosporine A drugs to inhibit both p38- or/and calcineurin-dependent signals, respectively, we have shown that MEF2A phosphorylation and subsequent nuclear translocation are regulated by p38 and calcineurin in a biphasic, time-dependent manner. Moreover, we also present evidence for another kinase that is involved in the stretch-related signal triggering MEF2A hyperphosphorylation, impairing its nuclear translocation, and that is related to p38. Finally, we have shown that static stretch application overnight promotes neonatal myosin heavy chain expression, which is inhibited by an inactivation of both p38 and calcineurin.
Collapse
Affiliation(s)
- Cyril Rauch
- Muscle and Molecular Biology Unit, Department of Veterinary Basic Sciences, Royal Veterinary College, University of London, Royal College St., London NW1 0TU, United Kingdom
| | | |
Collapse
|
76
|
Rauch C, Loughna PT. Cyclosporin-A inhibits stretch-induced changes in myosin heavy chain expression in C2C12 skeletal muscle cells. Cell Biochem Funct 2005; 24:55-61. [PMID: 15584088 DOI: 10.1002/cbf.1187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Studies in vivo, have shown that passive stretch of skeletal muscle induces changes in contractile protein expression. In the present study the effects of passive stretch upon myosin heavy chain (MyHC) expression were examined in C2C12 cell myotubes. Passive stretch induced an upregulation of adult fast and slow MyHCs, which was prevented by cyclosporin A (CsA), an inhibitor of calcineurin. Calcineurin has been shown to act via the dephosphorylation of NFAT and MEF2 transcriptional factors. In this study no significant change in the phosphorylation state of these factors was observed. In contrast stretch induced an alteration in the levels of the myogenic regulatory factors (MRFs) MyoD, myogenin and myf5. The modulation in the level of these MRFs was also inhibited by CsA. These data indicate that changes in muscle phenotype in C2C12 can be modulated by passive stretch and some of these changes are calcineurin dependent.
Collapse
Affiliation(s)
- C Rauch
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, UK
| | | |
Collapse
|
77
|
Chun LG, Ward CW, Schneider MF. Ca2+ sparks are initiated by Ca2+ entry in embryonic mouse skeletal muscle and decrease in frequency postnatally. Am J Physiol Cell Physiol 2003; 285:C686-97. [PMID: 12724135 DOI: 10.1152/ajpcell.00072.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
"Spontaneous" Ca2+ sparks and ryanodine receptor type 3 (RyR3) expression are readily detected in embryonic mammalian skeletal muscle but not in adult mammalian muscle, which rarely exhibits Ca2+ sparks and expresses predominantly RyR1. We have used confocal fluorescence imaging and systematic sampling of enzymatically dissociated single striated muscle fibers containing the Ca2+ indicator dye fluo 4 to show that the frequency of spontaneous Ca2+ sparks decreases dramatically from embryonic day 18 (E18) to postnatal day 14 (P14) in mouse diaphragm and from P1 to P14 in mouse extensor digitorum longus fibers. In contrast, the relative levels of RyR3 to RyR1 protein remained constant in diaphragm muscles from E18 to P14, indicating that changes in relative levels of RyR isoform expression did not cause the decline in Ca2+ spark frequency. E18 diaphragm fibers were used to investigate possible mechanisms underlying spark initiation in embryonic fibers. Spark frequency increased or decreased, respectively, when E18 diaphragm fibers were exposed to 8 or 0 mM Ca2+ in the extracellular Ringer solution, with no change in either the average resting fiber fluo 4 fluorescence or the average properties of the sparks. Either CoCl2 (5 mM) or nifedipine (30 microM) markedly decreased spark frequency in E18 diaphragm fibers. These results indicate that Ca2+ sparks may be triggered by locally elevated [Ca2+] due to Ca2+ influx via dihydropyridine receptor L-type Ca2+ channels in embryonic mammalian skeletal muscle.
Collapse
Affiliation(s)
- Lois G Chun
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
78
|
Abstract
Consider a hypothetical design specification for an integrated communication-control system within an embryo. It would require short-range (subcellular) and long-range (pan-embryonic) abilities, it would have to be flexible and, at the same time, robust enough to operate in a dynamically changing environment without information being lost or misinterpreted. Although many signalling elements appear, disappear and sometimes reappear during development, it is becoming clear that embryos also depend on a ubiquitous, persistent and highly versatile signalling system that is based around a single messenger, Ca2+.
Collapse
Affiliation(s)
- Sarah E Webb
- Department of Biology, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PRC
| | | |
Collapse
|
79
|
Ono K, Parast M, Alberico C, Benian GM, Ono S. Specific requirement for two ADF/cofilin isoforms in distinct actin-dependent processes in Caenorhabditis elegans. J Cell Sci 2003; 116:2073-85. [PMID: 12679387 DOI: 10.1242/jcs.00421] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin depolymerizing factor (ADF)/cofilin is an essential enhancer of actin turnover. Multicellular organisms express multiple ADF/cofilin isoforms in different patterns of tissue distribution. However, the functional significance of different ADF/cofilin isoforms is not understood. The Caenorhabditis elegans unc-60 gene generates two ADF/cofilins, UNC-60A and UNC-60B, by alternative splicing. These two ADF/cofilin proteins have different effects on actin dynamics in vitro, but their functional difference in vivo remains unclear. Here, we demonstrate that the two isoforms are expressed in different tissues and are required for distinct morphogenetic processes. UNC-60A was ubiquitously expressed in most embryonic cells and enriched in adult gonads, intestine and oocytes. In contrast, UNC-60B was specifically expressed in the body wall muscle, vulva and spermatheca. RNA interference of UNC-60A caused embryonic lethality with variable defects in cytokinesis and developmental patterning. In severely affected embryos, a cleavage furrow was formed and progressed but reversed before completion of the cleavage. Also, in some affected embryos, positioning of the blastomeres became abnormal, which resulted in embryonic arrest. In contrast, an unc-60B-null mutant was homozygous viable, underwent normal early embryogenesis and caused disorganization of actin filaments specifically in body wall muscle. These results suggest that the ADF/cofilin isoforms play distinct roles in specific aspects of actin reorganization in vivo.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology, Emory University, Whitehead IO5N, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
80
|
Abstract
Chronic lengthening of immobilized, neurally intact muscle leads to the addition of sarcomeres in series. Confirmation of a similar adaptation during distraction osteogenesis is crucial for providing a rationale for a successful outcome of the intervention. When distraction osteogenesis (at < or = 1.4 mm/day) is done in skeletally immature animals, muscle adapts by creating a longer and functionally intact muscle. This is achieved through muscle growth, the proliferation of myogenic cells ultimately leading to serial addition of sarcomeres. When distraction osteogenesis is done in skeletally mature animals, however, the same distraction regimen leads to a lengthened muscle that has significant fibrosis and weakness, the latter possibly a result of partial denervation. Despite a modest but significant elevation of local insulinlike growth factor-1 in the lengthened muscles from adult animals, muscle growth is not adequate and leads to a loss of function. In adult animals, the distraction osteogenesis-induced increase in insulinlike growth factor-1 is insufficient to facilitate muscle growth during lengthening. Muscle can be targeted for future therapeutic use of insulinlike growth factor-1; however, such a therapy also may lead to increased fibrosis.
Collapse
Affiliation(s)
- Patrick G De Deyne
- Department of Physical Therapy, MSTF Room 434D, School of Medicine, University of Maryland, 10 South Pine Street, Baltimore, MD 21201, USA
| |
Collapse
|