51
|
Barone S, Okaya T, Rudich S, Petrovic S, Tenrani K, Wang Z, Zahedi K, Casero RA, Lentsch AB, Soleimani M. Distinct and sequential upregulation of genes regulating cell growth and cell cycle progression during hepatic ischemia-reperfusion injury. Am J Physiol Cell Physiol 2005; 289:C826-35. [PMID: 15888550 DOI: 10.1152/ajpcell.00629.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemia-reperfusion injury (IRI) in liver and other organs is manifested as an injury phase followed by recovery and resolution. Control of cell growth and proliferation is essential for recovery from the injury. We examined the expression of three related regulators of cell cycle progression in liver IRI: spermidine/spermine N-acetyltransferase (SSAT), p21 (a cyclin-dependent kinase inhibitor), and stathmin. Mice were subjected to hepatic IRI, and liver tissues were harvested at timed intervals. The expression of SSAT, the rate-limiting enzyme in the polyamine catabolic pathway, had increased fivefold 6 h after IRI and correlated with increased putrescine levels in the liver, consistent with increased SSAT enzymatic activity in IRI. The expression of p21, which is transactivated by p53, was undetectable in sham-operated animals but was heavily induced at 12 and 24 h of reperfusion and declined to undetectable baseline levels at 72 h of reperfusion. The interaction of the polyamine pathway with the p53-p21 pathway was shown in vitro, where activation of SSAT with polyamine analog or the addition of putrescine to cultured hepatocytes induced the expression of p53 and p21 and decreased cell viability. The expression of stathmin, which is under negative transcriptional regulation by p21 and controls cell proliferation and progression through mitosis, remained undetectable at 6, 12, and 24 h of reperfusion and was progressively and heavily induced at 48 and 72 h of reperfusion. Double-immunofluorescence labeling with antibodies against stathmin and PCNA, a marker of cell proliferation, demonstrated colocalization of stathmin and PCNA at 48 and 72 h of reperfusion in hepatocytes, indicating the initiation of cell proliferation. The distinct and sequential upregulation of SSAT, p21, and stathmin, along with biochemical activation of the polyamine catabolic pathway in IRI in vivo and the demonstration of p53-p21 upregulation by SSAT and putrescine in vitro, points to the important role of regulators of cell growth and cell cycle progression in the pathophysiology and/or recovery in liver IRI. The data further suggest that SSAT may play a role in the initiation of injury, whereas p21 and stathmin may be involved in the resolution and recovery after liver IRI.
Collapse
Affiliation(s)
- Sharon Barone
- Department of Medicine, University of Cincinnati, 231 Albert Sabin Way, MSB 259G, Cincinnati, Ohio 45267-0585, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Wang JY. Polyamines regulate expression of E-cadherin and play an important role in control of intestinal epithelial barrier function. Inflammopharmacology 2005; 13:91-101. [PMID: 16259731 DOI: 10.1163/156856005774423890] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epithelial cells line the gastrointestinal mucosa and form an important barrier that protects the subepithelial tissue against a wide array of noxious substances, allergens, viruses and luminal microbial pathogens. Restoration of mucosal integrity following injury and various environmental stresses requires epithelial cell decisions that regulate signaling networks controlling gene expression, survival, migration and proliferation. Recently, it has been shown that polyamines play an important role in the regulation of cell-cell interactions and are critical for maintenance of intestinal epithelial integrity. Both the function of polyamines in expression of adherens junction proteins and their possible mechanisms, especially in implication of intracellular Ca2+ and c-Myc transcription factor, are the subject of this review article.
Collapse
Affiliation(s)
- Jian-Ying Wang
- Surgical Service, Baltimore Veterans Affairs Medical Center, 10 North Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
53
|
Guo X, Rao JN, Liu L, Zou T, Keledjian KM, Boneva D, Marasa BS, Wang JY. Polyamines are necessary for synthesis and stability of occludin protein in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1159-69. [PMID: 15691870 DOI: 10.1152/ajpgi.00407.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Occludin is an integral membrane protein that forms the sealing element of tight junctions and is critical for epithelial barrier function. Polyamines are implicated in multiple signaling pathways driving different biological functions of intestinal epithelial cells (IEC). The present study determined whether polyamines are involved in expression of occludin and play a role in intestinal epithelial barrier function. Studies were conducted in stable Cdx2-transfected IEC-6 cells (IEC-Cdx2L1) associated with a highly differentiated phenotype. Polyamine depletion by alpha-difluoromethylornithine (DFMO) decreased levels of occludin protein but failed to affect expression of its mRNA. Other tight junction proteins, zonula occludens (ZO)-1, ZO-2, claudin-2, and claudin-3, were also decreased in polyamine-deficient cells. Decreased levels of tight junction proteins in DFMO-treated cells were associated with dysfunction of the epithelial barrier, which was overcome by exogenous polyamine spermidine. Decreased levels of occludin in polyamine-deficient cells was not due to the reduction of intracellular-free Ca(2+) concentration ([Ca(2+)](cyt)), because either increased or decreased [Ca(2+)](cyt) did not alter levels of occludin in the presence or absence of polyamines. The level of newly synthesized occludin protein was decreased by approximately 70% following polyamine depletion, whereas its protein half-life was reduced from approximately 120 min in control cells to approximately 75 min in polyamine-deficient cells. These findings indicate that polyamines are necessary for the synthesis and stability of occludin protein and that polyamine depletion disrupts the epithelial barrier function, at least partially, by decreasing occludin.
Collapse
Affiliation(s)
- Xin Guo
- Dept. of Surgery, Baltimore Veterans Affairs Medical Center, 10 North Greene St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Zou T, Rao JN, Liu L, Marasa BS, Keledjian KM, Zhang AH, Xiao L, Bass BL, Wang JY. Polyamine depletion induces nucleophosmin modulating stability and transcriptional activity of p53 in intestinal epithelial cells. Am J Physiol Cell Physiol 2005; 289:C686-96. [PMID: 15872011 DOI: 10.1152/ajpcell.00085.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous studies have shown that polyamines are required for normal intestinal mucosal growth and that decreased levels of polyamines inhibit intestinal epithelial cell (IEC) proliferation by stabilizing p53 and other growth-inhibiting proteins. Nucleophosmin (NPM) is a multifunctional protein that recently has been shown to regulate p53 activity. In the present study, we sought to determine whether polyamine depletion increases NPM modulating the stability and transcriptional activity of p53 in a normal IEC-6 intestinal epithelial cell line. Depletion of cellular polyamines by alpha-difluoromethylornithine, the specific inhibitor of polyamine biosynthesis, stimulated expression of the NPM gene and induced nuclear translocation of NPM protein. Polyamine depletion stimulated NPM expression primarily by increasing NPM gene transcription and its mRNA stability, and it induced NPM nuclear translocation through activation of phosphorylation of mitogen-activated protein kinase kinase. Increased NPM interacted with p53 and formed a NPM/p53 complex in polyamine-deficient cells. Inhibition of NPM expression by small interfering RNA targeting NPM (siNPM) not only destabilized p53 as indicated by a decrease in its protein half-life but also prevented the increased p53-dependent transactivation as shown by suppression of the p21 promoter activity. Decreased expression of NPM by siNPM also promoted cell growth in polyamine-deficient cells. These results indicate that 1) polyamine depletion increases expression of the NPM gene and enhances NPM nuclear translocation and 2) increased NPM interacts with and stabilizes p53, leading to inhibition of IEC-6 cell proliferation.
Collapse
Affiliation(s)
- Tongtong Zou
- Dept. of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Gobert AP, Cheng Y, Akhtar M, Mersey BD, Blumberg DR, Cross RK, Chaturvedi R, Drachenberg CB, Boucher JL, Hacker A, Casero RA, Wilson KT. Protective role of arginase in a mouse model of colitis. THE JOURNAL OF IMMUNOLOGY 2004; 173:2109-17. [PMID: 15265947 DOI: 10.4049/jimmunol.173.3.2109] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Arginase is the endogenous inhibitor of inducible NO synthase (iNOS), because both enzymes use the same substrate, l-arginine (Arg). Importantly, arginase synthesizes ornithine, which is metabolized by the enzyme ornithine decarboxylase (ODC) to produce polyamines. We investigated the role of these enzymes in the Citrobacter rodentium model of colitis. Arginase I, iNOS, and ODC were induced in the colon during the infection, while arginase II was not up-regulated. l-Arg supplementation of wild-type mice or iNOS deletion significantly improved colitis, and l-Arg treatment of iNOS(-/-) mice led to an additive improvement. There was a significant induction of IFN-gamma, IL-1, and TNF-alpha mRNA expression in colitis tissues that was markedly attenuated with l-Arg treatment or iNOS deletion. Treatment with the arginase inhibitor S-(2-boronoethyl)-l-cysteine worsened colitis in both wild-type and iNOS(-/-) mice. Polyamine levels were increased in colitis tissues, and were further increased by l-Arg. In addition, in vivo inhibition of ODC with alpha-difluoromethylornithine also exacerbated the colitis. Taken together, these data indicate that arginase is protective in C. rodentium colitis by enhancing the generation of polyamines in addition to competitive inhibition of iNOS. Modulation of the balance of iNOS and arginase, and of the arginase-ODC metabolic pathway may represent a new strategy for regulating intestinal inflammation.
Collapse
Affiliation(s)
- Alain P Gobert
- Department of Medicine, Division of Gastroenterology, School of Medicine, University of Maryland, and Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
King NE, Rothenberg ME, Zimmermann N. Arginine in asthma and lung inflammation. J Nutr 2004; 134:2830S-2836S; discussion 2853S. [PMID: 15465795 DOI: 10.1093/jn/134.10.2830s] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Asthma, a complex chronic inflammatory pulmonary disorder, is on the rise despite intense ongoing research underscoring the need for new scientific inquiry. Using global microarray analysis, we recently discovered that asthmatic responses involve metabolism of arginine by arginase. We found that the cationic amino acid transporter (CAT)2, arginase I, and arginase II were particularly prominent among the allergen-induced gene transcripts. These genes are key regulators of critical processes associated with asthma, including airway tone, cell hyperplasia, and collagen deposition, respectively. Recent data suggest that arginase induction is not just a marker of allergic airway responses, but that arginase is involved in the pathogenesis of multiple aspects of disease. This review focuses on the current body of knowledge on L-arginine metabolism in asthma.
Collapse
Affiliation(s)
- Nina E King
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
57
|
Liu L, Li L, Rao JN, Zou T, Zhang HM, Boneva D, Bernard MS, Wang JY. Polyamine-modulated expression of c-myc plays a critical role in stimulation of normal intestinal epithelial cell proliferation. Am J Physiol Cell Physiol 2004; 288:C89-99. [PMID: 15355849 DOI: 10.1152/ajpcell.00326.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The nuclear protein c-Myc is a transcription factor involved in the control of cell cycle. Our previous studies indicated that cellular polyamines are absolutely required for cell proliferation in crypts of small intestinal mucosa and that polyamines have the ability to stimulate expression of the c-myc gene. The current study went further to determine whether induced nuclear c-Myc plays a role in stimulation of cell proliferation by polyamines in intestinal crypt cells (IEC-6 line). Exposure of normal quiescent cells after 24-h serum deprivation to 5% dialyzed fetal bovine serum (dFBS) increased both cellular polyamines and expression of the c-myc gene. Increased c-Myc protein formed heterodimers with its binding partner, Max, and specifically bound to the Myc/Max binding site, which was associated with an increase in DNA synthesis. Depletion of cellular polyamines by pretreatment with alpha-difluoromethylornithine (DFMO) prevented increases in c-myc expression and DNA synthesis induced by 5% dFBS. c-Myc gene transcription and cell proliferation decreased in polyamine-deficient cells, whereas the natural polyamine spermidine given together with DFMO maintained c-myc gene expression and cell growth at normal levels. Disruption of c-myc expression using specific c-myc antisense oligomers not only inhibited normal cell growth (without DFMO) but also prevented the restoration of cell proliferation by spermidine in polyamine-deficient cells. Ectopic expression of wild-type c-myc by recombinant adenoviral vector containing c-myc cDNA increased cell growth. These results indicate that polyamine-induced nuclear c-Myc interacts with Max, binds to the specific DNA sequence, and plays an important role in stimulation of normal intestinal epithelial cell proliferation.
Collapse
Affiliation(s)
- Lan Liu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Linsalata M, Notarnicola M, Caruso MG, Di Leo A, Guerra V, Russo F. Polyamine biosynthesis in relation to K-ras and p-53 mutations in colorectal carcinoma. Scand J Gastroenterol 2004; 39:470-7. [PMID: 15180186 DOI: 10.1080/0036552031008755] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Polyamines are important polycations found in high concentrations in gastrointestinal neoplasms, and ornithine decarboxylase is the key enzyme in their biosynthesis. Also genes with oncogenic potential (e.g. K-ras and p53) contribute to neoplastic transformation by modifying normal cellular proliferation and differentiation. Our aim was to evaluate the ornithine decarboxylase activity and polyamine levels in samples of colorectal carcinoma and uninvolved surrounding mucosa from 86 patients (52 men and 34 women) showing different patterns of K-ras/p53 mutations. METHODS Polyamines were evaluated by high performance liquid chromatography. Ornithine decarboxylase activity was determined using the radiometric method. K-ras and p53 mutations were investigated by PCR followed by restriction fragment length polymorphism (PCR-RFLP) and single strand conformational polymorphism (PCR-SSCP), respectively. Multiple linear regression analysis was used to analyse relationships among polyamine biosynthesis, clinical-pathological variables and K-ras/p53 mutations. RESULTS ODC activity and polyamine levels were significantly higher in neoplastic samples than in normal surrounding mucosa. K-ras codon 12 mutation was found in 25/86 patients (29.1%) and p53 gene mutation in 41/86 (47.7%). Polyamine biosynthesis was significantly higher in cancers showing K-ras mutation, either with or without p53 mutation [K-ras(+)/p53(-) and K-ras(+)/p53(+)], compared to samples with K-ras wild type [K-ras(-)/p53(-) and K-ras(-)/p53(+)]. Multiple linear regression analysis confirmed this finding. CONCLUSIONS The present study provides evidence of a close relationship between K-ras mutation and polyamine biosynthesis in human colorectal carcinoma in a way that is largely p53 independent. In addition, our data support the hypothesis of different pathways in colorectal tumorigenesis reflecting different combinations of biochemical parameters and genetic alterations.
Collapse
Affiliation(s)
- M Linsalata
- Laboratory of Biochemistry, Scientific Institute for Digestive Diseases, IRCCS 'Saverio de Bellis', Castellana G. (BA), Italy.
| | | | | | | | | | | |
Collapse
|
59
|
Guo X, Rao JN, Liu L, Zou TT, Turner DJ, Bass BL, Wang JY. Regulation of adherens junctions and epithelial paracellular permeability: a novel function for polyamines. Am J Physiol Cell Physiol 2003; 285:C1174-87. [PMID: 12853285 DOI: 10.1152/ajpcell.00015.2003] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Maintenance of intestinal mucosal epithelial integrity requires polyamines that are involved in the multiple signaling pathways controlling gene expression and different epithelial cell functions. Integrity of the intestinal epithelial barrier depends on a complex of proteins composing different intercellular junctions, including tight junctions, adherens junctions, and desmosomes. E-cadherin is primarily found at the adherens junctions and plays a critical role in cell-cell adhesions that are fundamental to formation of the intestinal epithelial barrier. The current study determined whether polyamines regulate intestinal epithelial barrier function by altering E-cadherin expression. Depletion of cellular polyamines by alpha-difluoromethylornithine (DFMO) reduced intracellular free Ca2+ concentration ([Ca2+]cyt), decreased E-cadherin expression, and increased paracellular permeability in normal intestinal epithelial cells (IEC-6 line). Polyamine depletion did not alter expression of tight junction proteins such as zona occludens (ZO)-1, ZO-2, and junctional adhesion molecule (JAM)-1. Addition of exogenous polyamine spermidine reversed the effects of DFMO on [Ca2+]cyt and E-cadherin expression and restored paracellular permeability to near normal. Elevation of [Ca2+]cyt by the Ca2+ ionophore ionomycin increased E-cadherin expression in polyamine-deficient cells. In contrast, reduction of [Ca2+]cyt by polyamine depletion or removal of extracellular Ca2+ not only inhibited expression of E-cadherin mRNA but also decreased the half-life of E-cadherin protein. These results indicate that polyamines regulate intestinal epithelial paracellular barrier function by altering E-cadherin expression and that polyamines are essential for E-cadherin expression at least partially through [Ca2+]cyt.
Collapse
Affiliation(s)
- Xin Guo
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Liu L, Santora R, Rao JN, Guo X, Zou T, Zhang HM, Turner DJ, Wang JY. Activation of TGF-beta-Smad signaling pathway following polyamine depletion in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2003; 285:G1056-67. [PMID: 12855402 DOI: 10.1152/ajpgi.00151.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Smad proteins are transcription activators that are critical for transmitting transforming growth factor-beta (TGF-beta) superfamily signals from the cell surface receptors to the nucleus. Our previous studies have shown that cellular polyamines are essential for normal intestinal mucosal growth and that a decreased level of polyamines inhibits intestinal epithelial cell proliferation, at least partially, by increasing expression of TGF-beta/TGF-beta receptors. The current study went further to determine the possibility that Smads are the downstream intracellular effectors of activated TGF-beta/TGF-beta receptor signaling following polyamine depletion. Studies were conducted in IEC-6 cells derived from rat small intestinal crypts. Depletion of cellular polyamines by alpha-difluoromethylornithine (DFMO) increased basal levels of Smad3 and Smad4 proteins, induced their nuclear translocation, and stimulated Smad sequence-specific DNA-binding activity. Polyamine depletion-induced Smads were also associated with a significant increase in transcription activation as measured by luciferase reporter gene activity of Smad-dependent promoters. Inhibition of Smads by a dominant-negative mutant Smad4 in the DFMO-treated cells prevented the increased Smad transcription activation. Polyamine-deficient cells highly expressed TGF-beta and were growth-arrested at the G1 phase. Inhibition of TGF-beta by treatment with either immunoneutralizing anti-TGF-beta antibody or TGF-beta antisense oligodeoxyribonucleotides not only blocked the induction of Smad activity but also decreased the Smad-mediated transcriptional activation in polyamine-depleted cells. These findings suggest that Smads are involved in the downstream cellular processes mediated by cellular polyamines and that increased TGF-beta/TGF-beta receptor signaling following polyamine depletion activates Smads, thus resulting in the stimulation of Smad target gene expression.
Collapse
Affiliation(s)
- Lan Liu
- Dept. of Surgery, Baltimore Veterans Affairs Medical Center, 10 North Greene St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Li L, Liu L, Rao JN, Esmaili A, Strauch ED, Bass BL, Wang JY. JunD stabilization results in inhibition of normal intestinal epithelial cell growth through P21 after polyamine depletion. Gastroenterology 2002; 123:764-79. [PMID: 12198703 DOI: 10.1053/gast.2002.35386] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Normal intestinal mucosal growth requires cellular polyamines that regulate expression of various genes involved in cell proliferation, growth arrest, and apoptosis. We have recently shown that growth inhibition after polyamine depletion is associated with an increase in JunD/AP-1 activity in normal intestinal epithelial cells (IEC-6 line). The current study tests the hypothesis that polyamine depletion-induced JunD/activator protein 1 (AP-1) activity results from the activation of junD gene expression and plays a critical role in regulation of intestinal epithelial cell growth. METHODS The junD gene transcription was examined by nuclear run-on assays, and messenger RNA (mRNA) stability was measured by determination of JunD mRNA half-life. Functions of JunD were investigated by using JunD antisense oligodeoxyribonucleotides and transient transfection with the junD-expressing vector. RESULTS Depletion of cellular polyamines by DL-alpha-difluoromethylornithine (DFMO) induced levels of JunD mRNA and protein, which was associated with an increase in G(1) phase growth arrest. Polyamine depletion did not increase the rate of junD gene transcription but significantly increased the stability of JunD mRNA. Decreasing JunD protein by using JunD antisense oligomers promoted cell growth in polyamine-deficient cells. Growth arrest following polyamine depletion also was accompanied by increases in both p21 expression and its promoter activity. Treatment with JunD antisense oligomers inhibited the p21 promoter and prevented the increase in p21 expression in the presence of DFMO. Ectopic expression of the wild-type junD increased p21-promoter activity and inhibited epithelial cell growth. CONCLUSIONS Polyamines negatively regulate junD gene expression posttranscriptionally, and increased JunD/AP-1 inhibits intestinal epithelial cell proliferation at least partially through the activation of p21 promoter.
Collapse
Affiliation(s)
- Li Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Guo X, Rao JN, Liu L, Rizvi M, Turner DJ, Wang JY. Polyamines regulate beta-catenin tyrosine phosphorylation via Ca(2+) during intestinal epithelial cell migration. Am J Physiol Cell Physiol 2002; 283:C722-34. [PMID: 12176729 DOI: 10.1152/ajpcell.00054.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polyamines are essential for early mucosal restitution that occurs by epithelial cell migration to reseal superficial wounds after injury. Normal intestinal epithelial cells are tightly bound in sheets, but they need to be rapidly disassembled during restitution. beta-Catenin is involved in cell-cell adhesion, and its tyrosine phosphorylation causes disassembly of adhesion junctions, enhancing the spreading of cells. The current study determined whether polyamines are required for the stimulation of epithelial cell migration by altering beta-catenin tyrosine phosphorylation. Migration of intestinal epithelial cells (IEC-6 line) after wounding was associated with an increase in beta-catenin tyrosine phosphorylation, which decreased the binding activity of beta-catenin to alpha-catenin. Polyamine depletion by alpha-difluoromethylornithine reduced cytoplasmic free Ca(2+) concentration ([Ca(2+)](cyt)), prevented induction of beta-catenin phosphorylation, and decreased cell migration. Elevation of [Ca(2+)](cyt) induced by the Ca(2+) ionophore ionomycin restored beta-catenin phosphorylation and promoted migration in polyamine-deficient cells. Decreased beta-catenin phosphorylation through the tyrosine kinase inhibitor herbimycin-A or genistein blocked cell migration, which was accompanied by reorganization of cytoskeletal proteins. These results indicate that beta-catenin tyrosine phosphorylation plays a critical role in polyamine-dependent cell migration and that polyamines induce beta-catenin tyrosine phosphorylation at least partially through [Ca(2+)](cyt).
Collapse
Affiliation(s)
- Xin Guo
- Department of Surgery, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | | | | | |
Collapse
|
63
|
Turini ME, DuBois RN. Primary prevention: phytoprevention and chemoprevention of colorectal cancer. Hematol Oncol Clin North Am 2002; 16:811-40. [PMID: 12418050 DOI: 10.1016/s0889-8588(02)00030-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Considering the various stages of carcinogenesis and the numerous tumor types and available chemoprevention agents, knowledge of the etiology and the type of cancer to be treated, or possibly prevented, and understanding of the mechanisms by which agents exert their chemoprevention benefits may provide for improved strategy in designing therapeutic regimens. Because cancer usually develops over a 10- to 20-year period, it may be necessary for some agents to be provided before or early in the initiation steps of carcinogenesis to have beneficial effects. On the other hand, some agents may be more suitable for CRC prevention if provided at a later stage of carcinogenesis. Gene array, genomics, and proteomics are useful tools in advancing our understanding of the molecular events involved in carcinogenesis and in identifying markers of risk and surrogate end-points for colorectal cancer progression. These techniques may also serve for screening, identifying, and providing treatment targets for high-risk patients populations. Treatment could be developed depending on a patient's individual needs and genomic tumor profile. Clinical markers and surrogate end-points should be considered, together with molecular measurements, to more accurately assess risk. NSAIDs and COXIBs are clinically recognized as chemoprevention agents, and clinical trials evaluating their efficacy are ongoing. Treatment protocols, including dose and timing, remain to be determined, however. DFMO may best be used in combination with other chemoprevention agents. Dietary fiber and calcium supplements, as part of an overall low-fat diet, may decrease CRC risk. Long-term compliance with this regimen may be necessary to effect a beneficial outcome. Folate holds promise but needs further investigation, especially because its beneficial effects may depend on cancer type. Phytochemicals have been identified as strong candidates for use as agents to prevent colorectal cancer in cell culture and in rodent models of carcinogenesis. Their potential as chemoprevention agents must be demonstrated in clinical trials. In vitro and animal studies indicated that combination therapy may be a promising strategy over the monotherapy approach; clinical trials addressing the safety and efficacy of some combinations (DFMO/sulindac, fiber/calcium) are underway. The gastrointestinal tract and other organs are constantly exposed to a mixture of potentially toxic compounds and molecules considered favorable to health. Homeostasis between stress-mediated by toxic compounds and defensive mechanisms, is key for the maintenance of health and the prevention of disease. Whereas aggressive pharmacologic treatment may be necessary for patients at high risk for cancer, dietary supplements may be useful for populations at normal risk. The message for cancer prevention in the general population may well remain: keep a balanced healthy diet, eating a variety from all food groups, as part of a healthy lifestyle that includes moderate exercise.
Collapse
Affiliation(s)
- Marco E Turini
- Department of Nutrition, Nestlé Research Center, Post Offic Box 44, CH-1000 Lausanne 26, Switzerland
| | | |
Collapse
|
64
|
Gobert AP, Cheng Y, Wang JY, Boucher JL, Iyer RK, Cederbaum SD, Casero RA, Newton JC, Wilson KT. Helicobacter pylori induces macrophage apoptosis by activation of arginase II. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4692-700. [PMID: 11971019 DOI: 10.4049/jimmunol.168.9.4692] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori infection induces innate immune responses in macrophages, contributing to mucosal inflammation and damage. Macrophage apoptosis is important in the pathogenesis of mucosal infections but has not been studied with H. pylori. NO derived from inducible NO synthase (iNOS) can activate macrophage apoptosis. Arginase competes with iNOS by converting L-arginine to L-ornithine. Since we reported that H. pylori induces iNOS in macrophages, we now determined whether this bacterium induces arginase and the effect of this activation on apoptosis. NF-kappa B-dependent induction of arginase II, but not arginase I, was observed in RAW 264.7 macrophages cocultured with H. pylori. The time course of apoptosis matched those of both arginase and iNOS activities. Surprisingly, apoptosis was blocked by the arginase inhibitors N(omega)-hydroxy-L-arginine or N(omega)-hydroxy-nor-L-arginine, but not by the iNOS inhibitor N-iminoethyl-L-lysine. These findings were confirmed in peritoneal macrophages from iNOS-deficient mice and were not dependent on bacterial-macrophage contact. Ornithine decarboxylase (ODC), which metabolizes L-ornithine to polyamines, was also induced in H. pylori-stimulated macrophages. Apoptosis was abolished by inhibition of ODC and was restored by the polyamines spermidine and spermine. We also demonstrate that arginase II expression is up-regulated in both murine and human H. pylori gastritis tissues, indicating the likely in vivo relevance of our findings. Therefore, we describe arginase- and ODC-dependent macrophage apoptosis, which implicates polyamines in the pathophysiology of H. pylori infection.
Collapse
Affiliation(s)
- Alain P Gobert
- Department of Medicine, Division of Gastroenterology, University of Maryland School of Medicine, and Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|