51
|
Walsh J, Griffin BT, Clarke G, Hyland NP. Drug-gut microbiota interactions: implications for neuropharmacology. Br J Pharmacol 2018; 175:4415-4429. [PMID: 29782640 DOI: 10.1111/bph.14366] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/04/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022] Open
Abstract
The fate and activity of drugs are frequently dictated not only by the host per se but also by the microorganisms present in the gastrointestinal tract. The gut microbiome is known to, both directly and indirectly, affect drug metabolism. More evidence now hints at the effects that drugs can have on the function and composition of the gut microbiome. Both microbiota-mediated alterations in drug metabolism and drug-mediated alterations in the gut microbiome can have beneficial or detrimental effects on the host. Greater insights into the mechanisms driving these reciprocal drug-gut microbiota interactions are needed to guide the development of microbiome-targeted dietary or pharmacological interventions, which may have the potential to enhance drug efficacy or reduce drug side effects. In this review, we explore the relationship between drugs and the gut microbiome, with a specific focus on potential mechanisms underpinning the drug-mediated alterations on the gut microbiome and the potential implications for psychoactive drugs. LINKED ARTICLES: This article is part of a themed section on When Pharmacology Meets the Microbiome: New Targets for Therapeutics? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.24/issuetoc.
Collapse
Affiliation(s)
- Jacinta Walsh
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Brendan T Griffin
- School of Pharmacy, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Niall P Hyland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
52
|
Zhao L, Huang Y, Lu L, Yang W, Huang T, Lin Z, Lin C, Kwan H, Wong HLX, Chen Y, Sun S, Xie X, Fang X, Yang H, Wang J, Zhu L, Bian Z. Saturated long-chain fatty acid-producing bacteria contribute to enhanced colonic motility in rats. MICROBIOME 2018; 6:107. [PMID: 29903041 PMCID: PMC6003035 DOI: 10.1186/s40168-018-0492-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/01/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND The gut microbiota is closely associated with gastrointestinal (GI) motility disorder, but the mechanism(s) by which bacteria interact with and affect host GI motility remains unclear. In this study, through using metabolomic and metagenomic analyses, an animal model of neonatal maternal separation (NMS) characterized by accelerated colonic motility and gut dysbiosis was used to investigate the mechanism underlying microbiota-driven motility dysfunction. RESULTS An excess of intracolonic saturated long-chain fatty acids (SLCFAs) was associated with enhanced bowel motility in NMS rats. Heptadecanoic acid (C17:0) and stearic acid (C18:0), as the most abundant odd- and even-numbered carbon SLCFAs in the colon lumen, can promote rat colonic muscle contraction and increase stool frequency. Increase of SLCFAs was positively correlated with elevated abundances of Prevotella, Lactobacillus, and Alistipes. Functional annotation found that the level of bacterial LCFA biosynthesis was highly enriched in NMS group. Essential synthetic genes Fabs were largely identified from the genera Prevotella, Lactobacillus, and Alistipes. Pseudo germ-free (GF) rats receiving fecal microbiota from NMS donors exhibited increased defecation frequency and upregulated bacterial production of intracolonic SLCFAs. Modulation of gut dysbiosis by neomycin effectively attenuated GI motility and reduced bacterial SLCFA generation in the colon lumen of NMS rats. CONCLUSIONS These findings reveal a previously unknown relationship between gut bacteria, intracolonic SLCFAs, and host GI motility, suggesting the importance of SLCFA-producing bacteria in GI motility disorders. Further exploration of this relationship could lead to a precise medication targeting the gut microbiota for treating GI motility disorders.
Collapse
Affiliation(s)
- Ling Zhao
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | | | - Lin Lu
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Wei Yang
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Tao Huang
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zesi Lin
- Preparatory Office of Shenzhen-Melbourne Institute of Life Sciences and Bioengineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengyuan Lin
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, China
| | - Hiuyee Kwan
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Hoi Leong Xavier Wong
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yang Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Silong Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Xiaodong Fang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | | | - Lixin Zhu
- Digestive Diseases and Nutrition Center, Department of Pediatrics, The State University of New York at Buffalo, 3435 Main Street, 422BRB, Buffalo, NY, 14214, USA.
| | - Zhaoxiang Bian
- Chinese Medicine Clinical Study Center, Jockey Club School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
53
|
Rios-Arce ND, Collins FL, Schepper JD, Steury MD, Raehtz S, Mallin H, Schoenherr DT, Parameswaran N, McCabe LR. Epithelial Barrier Function in Gut-Bone Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1033:151-183. [PMID: 29101655 DOI: 10.1007/978-3-319-66653-2_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestinal epithelial barrier plays an essential role in maintaining host homeostasis. The barrier regulates nutrient absorption as well as prevents the invasion of pathogenic bacteria in the host. It is composed of epithelial cells, tight junctions, and a mucus layer. Several factors, such as cytokines, diet, and diseases, can affect this barrier. These factors have been shown to increase intestinal permeability, inflammation, and translocation of pathogenic bacteria. In addition, dysregulation of the epithelial barrier can result in inflammatory diseases such as inflammatory bowel disease. Our lab and others have also shown that barrier disruption can have systemic effects including bone loss. In this chapter, we will discuss the current literature to understand the link between intestinal barrier and bone. We will discuss how inflammation, aging, dysbiosis, and metabolic diseases can affect intestinal barrier-bone link. In addition, we will highlight the current suggested mechanism between intestinal barrier and bone.
Collapse
Affiliation(s)
- Naiomy Deliz Rios-Arce
- Comparative Medicine and Integrative Biology Program, East Lansing, MI, USA.,Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Fraser L Collins
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Michael D Steury
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Sandi Raehtz
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Heather Mallin
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Danny T Schoenherr
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Narayanan Parameswaran
- Comparative Medicine and Integrative Biology Program, East Lansing, MI, USA. .,Department of Physiology, Michigan State University, East Lansing, MI, USA.
| | - Laura R McCabe
- Department of Physiology and Department of Radiology, Biomedical Imaging Research Centre, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
54
|
Agustí A, García-Pardo MP, López-Almela I, Campillo I, Maes M, Romaní-Pérez M, Sanz Y. Interplay Between the Gut-Brain Axis, Obesity and Cognitive Function. Front Neurosci 2018; 12:155. [PMID: 29615850 PMCID: PMC5864897 DOI: 10.3389/fnins.2018.00155] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity continues to be one of the major public health problems due to its high prevalence and co-morbidities. Common co-morbidities not only include cardiometabolic disorders but also mood and cognitive disorders. Obese subjects often show deficits in memory, learning and executive functions compared to normal weight subjects. Epidemiological studies also indicate that obesity is associated with a higher risk of developing depression and anxiety, and vice versa. These associations between pathologies that presumably have different etiologies suggest shared pathological mechanisms. Gut microbiota is a mediating factor between the environmental pressures (e.g., diet, lifestyle) and host physiology, and its alteration could partly explain the cross-link between those pathologies. Westernized dietary patterns are known to be a major cause of the obesity epidemic, which also promotes a dysbiotic drift in the gut microbiota; this, in turn, seems to contribute to obesity-related complications. Experimental studies in animal models and, to a lesser extent, in humans suggest that the obesity-associated microbiota may contribute to the endocrine, neurochemical and inflammatory alterations underlying obesity and its comorbidities. These include dysregulation of the HPA-axis with overproduction of glucocorticoids, alterations in levels of neuroactive metabolites (e.g., neurotransmitters, short-chain fatty acids) and activation of a pro-inflammatory milieu that can cause neuro-inflammation. This review updates current knowledge about the role and mode of action of the gut microbiota in the cross-link between energy metabolism, mood and cognitive function.
Collapse
Affiliation(s)
- Ana Agustí
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria P García-Pardo
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Inmaculada López-Almela
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Isabel Campillo
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Marina Romaní-Pérez
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
55
|
Sylvia KE, Demas GE. A gut feeling: Microbiome-brain-immune interactions modulate social and affective behaviors. Horm Behav 2018; 99:41-49. [PMID: 29427583 PMCID: PMC5880698 DOI: 10.1016/j.yhbeh.2018.02.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 02/07/2023]
Abstract
The expression of a wide range of social and affective behaviors, including aggression and investigation, as well as anxiety- and depressive-like behaviors, involves interactions among many different physiological systems, including the neuroendocrine and immune systems. Recent work suggests that the gut microbiome may also play a critical role in modulating behavior and likely functions as an important integrator across physiological systems. Microbes within the gut may communicate with the brain via both neural and humoral pathways, providing numerous avenues of research in the area of the gut-brain axis. We are now just beginning to understand the intricate relationships among the brain, microbiome, and immune system and how they work in concert to influence behavior. The effects of different forms of experience (e.g., changes in diet, immune challenge, and psychological stress) on the brain, gut microbiome, and the immune system have often been studied independently. Though because these systems do not work in isolation, it is essential to shift our focus to the connections among them as we move forward in our investigations of the gut-brain axis, the shaping of behavioral phenotypes, and the possible clinical implications of these interactions. This review summarizes the recent progress the field has made in understanding the important role the gut microbiome plays in the modulation of social and affective behaviors, as well as some of the intricate mechanisms by which the microbiome may be communicating with the brain and immune system.
Collapse
Affiliation(s)
- Kristyn E Sylvia
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Gregory E Demas
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
56
|
Malan-Muller S, Valles-Colomer M, Raes J, Lowry CA, Seedat S, Hemmings SM. The Gut Microbiome and Mental Health: Implications for Anxiety- and Trauma-Related Disorders. ACTA ACUST UNITED AC 2018; 22:90-107. [DOI: 10.1089/omi.2017.0077] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Stefanie Malan-Muller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Mireia Valles-Colomer
- Department of Microbiology and Immunology, Rega Institute, KU Leuven–University of Leuven, Leuven, Belgium
- VIB, Center for Microbiology, Leuven, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute, KU Leuven–University of Leuven, Leuven, Belgium
- VIB, Center for Microbiology, Leuven, Belgium
| | - Christopher A. Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-Core), Aurora, Colorado
- Department of Psychiatry, Neurology & Physical Medicine and Rehabilitation, Anschutz School of Medicine, University of Colorado, Aurora, Colorado
- VA Rocky Mountain Mental Illness Research, Education, and Clinical Center (MIRECC), Denver, Colorado
- Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Sian M.J. Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
57
|
Wang Q, Dong X, Wang Y, Liu M, Sun A, Li N, lin Y, Geng Z, Jin Y, Li X. Adolescent escitalopram prevents the effects of maternal separation on depression‐ and anxiety‐like behaviours and regulates the levels of inflammatory cytokines in adult male mice. Int J Dev Neurosci 2017; 62:37-45. [PMID: 28778811 DOI: 10.1016/j.ijdevneu.2017.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 01/26/2023] Open
Affiliation(s)
- Qi Wang
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Xiaomei Dong
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Yan Wang
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Mengxi Liu
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Anji Sun
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Nannan Li
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Yiwei lin
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Zhongli Geng
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Ye Jin
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Xiaobai Li
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| |
Collapse
|
58
|
Inhibition of corticotropin-releasing hormone receptor 1 and activation of receptor 2 protect against colonic injury and promote epithelium repair. Sci Rep 2017; 7:46616. [PMID: 28492284 PMCID: PMC5425914 DOI: 10.1038/srep46616] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/21/2017] [Indexed: 12/16/2022] Open
Abstract
Maternal separation (MS) in neonates can lead to intestinal injury. MS in neonatal mice disrupts mucosal morphology, induces colonic inflammation and increases trans-cellular permeability. Several studies indicate that intestinal epithelial stem cells are capable of initiating gut repair in a variety of injury models but have not been reported in MS. The pathophysiology of MS-induced gut injury and subsequent repair remains unclear, but communication between the brain and gut contribute to MS-induced colonic injury. Corticotropin-releasing hormone (CRH) is one of the mediators involved in the brain–gut axis response to MS-induced damage. We investigated the roles of the CRH receptors, CRHR1 and CRHR2, in MS-induced intestinal injury and subsequent repair. To distinguish their specific roles in mucosal injury, we selectively blocked CRHR1 and CRHR2 with pharmacological antagonists. Our results show that in response to MS, CRHR1 mediates gut injury by promoting intestinal inflammation, increasing gut permeability, altering intestinal morphology, and modulating the intestinal microbiota. In contrast, CRHR2 activates intestinal stem cells and is important for gut repair. Thus, selectively blocking CRHR1 and promoting CRHR2 activity could prevent the development of intestinal injuries and enhance repair in the neonatal period when there is increased risk of intestinal injury such as necrotizing enterocolitis.
Collapse
|
59
|
Xu Y, Zhou H, Zhu Q. The Impact of Microbiota-Gut-Brain Axis on Diabetic Cognition Impairment. Front Aging Neurosci 2017; 9:106. [PMID: 28496408 PMCID: PMC5406474 DOI: 10.3389/fnagi.2017.00106] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/31/2017] [Indexed: 12/11/2022] Open
Abstract
Progressive cognitive dysfunction is a central characteristic of diabetic encephalopathy (DE). With an aging population, the incidence of DE is rising and it has become a major threat that seriously affects public health. Studies within this decade have indicated the important role of risk factors such as oxidative stress and inflammation on the development of cognitive impairment. With the recognition of the two-way communication between gut and brain, recent investigation suggests that “microbiota-gut-brain axis” also plays a pivotal role in modulating both cognition function and endocrine stability. This review aims to systemically elucidate the underlying impact of diabetes on cognitive impairment.
Collapse
Affiliation(s)
- Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and TechnologyTaipa, Macau.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology)Taipa, Macau
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and TechnologyTaipa, Macau.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology)Taipa, Macau.,Laboratory for Bioassay and Molecular Pharmacology of Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthTaipa, Macau
| | - Quan Zhu
- Faculty of Chinese Medicine, Macau University of Science and TechnologyTaipa, Macau.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology)Taipa, Macau.,Laboratory for Bioassay and Molecular Pharmacology of Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthTaipa, Macau.,Guangdong Consun Pharmaceutical Group, Institute of Consun Co. for Chinese Medicine in Kidney DiseasesGuangzhou, China
| |
Collapse
|
60
|
Li B, Lee C, Martin Z, Li X, Koike Y, Hock A, Zani-Ruttenstock E, Zani A, Pierro A. Intestinal epithelial injury induced by maternal separation is protected by hydrogen sulfide. J Pediatr Surg 2017; 52:40-44. [PMID: 27836362 DOI: 10.1016/j.jpedsurg.2016.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE Oxidative stress has been implicated in the pathogenesis of various neonatal diseases involving the intestine. Hydrogen sulfide (H2S) has been shown to protect against oxidative stress. We hypothesized that administration of sodium hydrosulfide (NaHS), an H2S donor, to neonatal mice can decrease the intestinal epithelial injury associated with maternal separation (MS). METHODS C57BL/6 mice received either intraperitoneal phosphate buffered saline (PBS; n=10) or NaHS (1mg/kg/day; n=10), followed by MS for 3h daily between postnatal day P5 and P9. Control neonatal mice were untreated and were not exposed to MS (n=10). Proximal colon was harvested and analyzed for crypt length, goblet cell number per crypt, oxidative stress and inflammation. Groups were compared using one-way ANOVA with Bonferroni post-test. RESULTS Compared to controls, MS+PBS mice had shorter crypt lengths, fewer goblet cells per crypt, reduced glutathione peroxidase activity, increased expression of thiobarbituric acid reactive substances and inducible nitric oxide synthase mRNA, as well as increased IL-6, TNFα and myeloperoxidase. Administration of NaHS significantly counteracted these negative effects of MS. CONCLUSIONS H2S protects the colon from the epithelial damage, oxidative stress and inflammation caused by maternal separation. This study provides insights on the pathogenesis of neonatal bowel diseases and indicates the potential for a pharmacological intervention to rescue the colonic epithelium. LEVEL OF EVIDENCE n/a - animal and laboratory study.
Collapse
Affiliation(s)
- Bo Li
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carol Lee
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Zechariah Martin
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xinpei Li
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yuhki Koike
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alison Hock
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elke Zani-Ruttenstock
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Augusto Zani
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
61
|
Harrell CS, Gillespie CF, Neigh GN. Energetic stress: The reciprocal relationship between energy availability and the stress response. Physiol Behav 2016; 166:43-55. [PMID: 26454211 PMCID: PMC4826641 DOI: 10.1016/j.physbeh.2015.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/17/2015] [Accepted: 10/06/2015] [Indexed: 12/14/2022]
Abstract
The worldwide epidemic of metabolic syndromes and the recognized burden of mental health disorders have driven increased research into the relationship between the two. A maladaptive stress response is implicated in both mental health disorders and metabolic disorders, implicating the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of this relationship. This review explores how an altered energetic state, such as hyper- or hypoglycemia, as may be manifested in obesity or diabetes, affects the stress response and the HPA axis in particular. We propose that changes in energetic state or energetic demands can result in "energetic stress" that can, if prolonged, lead to a dysfunctional stress response. In this review, we summarize the role of the hypothalamus in modulating energy homeostasis and then briefly discuss the relationship between metabolism and stress-induced activation of the HPA axis. Next, we examine seven mechanisms whereby energetic stress interacts with neuroendocrine stress response systems, including by glucocorticoid signaling both within and beyond the HPA axis; by nutrient-induced changes in glucocorticoid signaling; by impacting the sympathetic nervous system; through changes in other neuroendocrine factors; by inducing inflammatory changes; and by altering the gut-brain axis. Recognizing these effects of energetic stress can drive novel therapies and prevention strategies for mental health disorders, including dietary intervention, probiotics, and even fecal transplant.
Collapse
Affiliation(s)
- C S Harrell
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
| | - C F Gillespie
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30322, USA
| | - G N Neigh
- Department of Physiology, Emory University, Atlanta, GA 30322, USA;; Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
62
|
Medland JE, Pohl CS, Edwards LL, Frandsen S, Bagley K, Li Y, Moeser AJ. Early life adversity in piglets induces long-term upregulation of the enteric cholinergic nervous system and heightened, sex-specific secretomotor neuron responses. Neurogastroenterol Motil 2016; 28:1317-29. [PMID: 27134125 PMCID: PMC5002263 DOI: 10.1111/nmo.12828] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/04/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Early life adversity (ELA) is a risk factor for the later-life onset of gastrointestinal (GI) diseases such as irritable bowel syndrome (IBS); however, the mechanisms are poorly understood. Here, we utilized a porcine model of ELA, early weaning stress (EWS), to investigate the influence of ELA on the development and function of the enteric nervous system (ENS). METHODS Female and castrated male (Male-C) piglets were weaned from their sow either at 15 days of age (EWS) or 28 days of age (late weaning control, LWC). At 60 and 170 days of age, ileal mucosa-submucosa preparations were mounted in Ussing chambers and veratridine- and corticotropin releasing factor (CRF)-releasing factor-evoked short circuit current (Isc ) responses were recorded as indices of secretomotor neuron function. Enteric neuron numbers and the expression of select neurotransmitters and their receptors were also measured. KEY RESULTS Compared with LWC pigs, female, but not Male-C EWS, pigs exhibited heightened veratridine-induced Isc responses at 60 and 170 days of age that were inhibited with tetrodotoxin and atropine. Ileum from EWS pigs had higher numbers of enteric neurons that were choline acetyltransferase positive. Markers of increased cholinergic signaling (increased acetylcholinesterase) and downregulated mucosal muscarinic receptor 3 gene expression were also observed in EWS pigs. CONCLUSIONS & INFERENCES This study demonstrated that EWS in pigs induces lasting and sex-specific hypersensitivity of secretomotor neuron function and upregulation of the cholinergic ENS. These findings may represent a mechanistic link between ELA and lifelong susceptibility to GI diseases such as IBS.
Collapse
Affiliation(s)
- Julia E. Medland
- Comparative Biomedical Sciences Program, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Calvin S. Pohl
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Laura L. Edwards
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Shellsea Frandsen
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Kristen Bagley
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Yihang Li
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Adam J. Moeser
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA,Neuroscience Program, Michigan State University
| |
Collapse
|
63
|
Vindigni SM, Zisman TL, Suskind DL, Damman CJ. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions. Therap Adv Gastroenterol 2016; 9:606-25. [PMID: 27366227 PMCID: PMC4913337 DOI: 10.1177/1756283x16644242] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We discuss the tripartite pathophysiological circuit of inflammatory bowel disease (IBD), involving the intestinal microbiota, barrier function, and immune system. Dysfunction in each of these physiological components (dysbiosis, leaky gut, and inflammation) contributes in a mutually interdependent manner to IBD onset and exacerbation. Genetic and environmental risk factors lead to disruption of gut homeostasis: genetic risks predominantly affect the immune system, environmental risks predominantly affect the microbiota, and both affect barrier function. Multiple genetic and environmental 'hits' are likely necessary to establish and exacerbate disease. Most conventional IBD therapies currently target only one component of the pathophysiological circuit, inflammation; however, many patients with IBD do not respond to immune-modulating therapies. Hope lies in new classes of therapies that target the microbiota and barrier function.
Collapse
Affiliation(s)
- Stephen M. Vindigni
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Timothy L. Zisman
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - David L. Suskind
- Department of Pediatrics, Seattle Children’s Hospital and University of Washington, Seattle, WA, USA
| | | |
Collapse
|
64
|
Effect of TongXie-YaoFang on Cl(-) and HCO3 (-) Transport in Diarrhea-Predominant Irritable Bowel Syndrome Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7954982. [PMID: 27403199 PMCID: PMC4923577 DOI: 10.1155/2016/7954982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 12/18/2022]
Abstract
TongXie-YaoFang (TXYF) can effectively alleviate the symptoms of diarrhea-predominant irritable bowel syndrome (D-IBS) patients. However, the curative mechanism has not been fully clarified. The study was designed to investigate the effect of TXYF on the colonic ion transport induced by serotonin (5-HT) in D-IBS rats. A method of multiple stress (neonatal maternal separation (NMS) combined with restraint stress (RS)) was used to induce the D-IBS model. The model rats were randomly divided into two groups: NMS + RS group and TXYF-formula group, and the normal control (no handling) rats were classified as NH group. In the NMS + RS group, the change of short-circuit current (ΔI sc) induced by 5-HT was lower than that in the NH and TXYF-formula groups. After removing of the extracellular Cl(-) or HCO3 (-) or basolateral Na(+) or blocking the cystic fibrosis transmembrane conductance regulator (CFTR), Na(+)-K(+)-2Cl(-) cotransporter (NKCC), Na(+)-HCO3 (-) cotransporter, Cl(-)/HCO3 (-) exchanger, K(+) channel, or Na(+)/K(+)-ATPase, respectively, there was no difference in 5-HT-induced ΔI sc among the three groups. These data suggest that TXYF can regulate 5-HT-induced Cl(-) and HCO3 (-) secretion, possibly mediated by the combined action of CFTR, NKCC, Na(+)-HCO3 (-) cotransporter, Cl(-)/HCO3 (-) exchanger, K(+) channel, and Na(+)/K(+)-ATPase.
Collapse
|
65
|
Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry 2016; 21:738-48. [PMID: 27090305 PMCID: PMC4879184 DOI: 10.1038/mp.2016.50] [Citation(s) in RCA: 657] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023]
Abstract
The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.
Collapse
Affiliation(s)
- G B Rogers
- South Australian Health and Medical Research Institute, Infection and Immunity Theme, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - D J Keating
- South Australian Health and Medical Research Institute, Centre for Neuroscience and Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - R L Young
- South Australian Health and Medical Research Institute, Department of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - M-L Wong
- South Australian Health and Medical Research Institute, Mind and Brain Theme, and Flinders University, Adelaide, SA, Australia
| | - J Licinio
- South Australian Health and Medical Research Institute, Mind and Brain Theme, and Flinders University, Adelaide, SA, Australia
| | - S Wesselingh
- South Australian Health and Medical Research Institute, Infection and Immunity Theme, School of Medicine, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
66
|
Fish oil enhances intestinal barrier function and inhibits corticotropin-releasing hormone/corticotropin-releasing hormone receptor 1 signalling pathway in weaned pigs after lipopolysaccharide challenge. Br J Nutr 2016; 115:1947-57. [PMID: 27080003 DOI: 10.1017/s0007114516001100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Stress induces injury in intestinal barrier function in piglets. Long-chain n-3 PUFA have been shown to exhibit potential immunomodulatory and barrier protective effects in animal models and clinical trials. In addition, corticotropin-releasing hormone (CRH)/CRH receptor (CRHR) signalling pathways play an important role in stress-induced alterations of intestinal barrier function. We hypothesised that fish oil could affect intestinal barrier function and CRH/CRHR signalling pathways. In total, thirty-two weaned pigs were allocated to one of four treatments. The experiment consisted of a 2×2 factorial design, and the main factors included immunological challenge (saline or lipopolysaccharide (LPS)) and diet (5 % maize oil or 5 % fish oil). On d 19 of the trial, piglets were treated with saline or LPS. At 4 h after injection, all pigs were killed, and the mesenteric lymph nodes (MLN), liver, spleen and intestinal samples were collected. Fish oil decreased bacterial translocation incidence and the number of translocated micro-organisms in the MLN. Fish oil increased intestinal claudin-1 protein relative concentration and villus height, as well as improved the intestinal morphology. In addition, fish oil supplementation increased intestinal intraepithelial lymphocyte number and prevented elevations in intestinal mast cell and neutrophil numbers induced by LPS challenge. Moreover, fish oil tended to decrease the mRNA expression of intestinal CRHR1, CRH and glucocorticoid receptors. These results suggest that fish oil supplementation improves intestinal barrier function and inhibits CRH/CRHR1 signalling pathway and mast cell tissue density.
Collapse
|
67
|
Woloszynek S, Pastor S, Mell JC, Nandi N, Sokhansanj B, Rosen GL. Engineering Human Microbiota: Influencing Cellular and Community Dynamics for Therapeutic Applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 324:67-124. [PMID: 27017007 DOI: 10.1016/bs.ircmb.2016.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The complex relationship between microbiota, human physiology, and environmental perturbations has become a major research focus, particularly with the arrival of culture-free and high-throughput approaches for studying the microbiome. Early enthusiasm has come from results that are largely correlative, but the correlative phase of microbiome research has assisted in defining the key questions of how these microbiota interact with their host. An emerging repertoire for engineering the microbiome places current research on a more experimentally grounded footing. We present a detailed look at the interplay between microbiota and host and how these interactions can be exploited. A particular emphasis is placed on unstable microbial communities, or dysbiosis, and strategies to reestablish stability in these microbial ecosystems. These include manipulation of intermicrobial communication, development of designer probiotics, fecal microbiota transplantation, and synthetic biology.
Collapse
Affiliation(s)
- S Woloszynek
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, United States of America
| | - S Pastor
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America
| | - J C Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - N Nandi
- Division of Gastroenterology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - B Sokhansanj
- McKool Smith Hennigan, P. C., Redwood Shores, CA, United States of America
| | - G L Rosen
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, United States of America.
| |
Collapse
|
68
|
Tominaga K, Fujikawa Y, Tanaka F, Kamata N, Yamagami H, Tanigawa T, Watanabe T, Fujiwara Y, Arakawa T. Structural changes in gastric glial cells and delayed gastric emptying as responses to early life stress and acute adulthood stress in rats. Life Sci 2016; 148:254-9. [DOI: 10.1016/j.lfs.2016.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/27/2016] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
|
69
|
Lauffer A, Vanuytsel T, Vanormelingen C, Vanheel H, Salim Rasoel S, Tóth J, Tack J, Fornari F, Farré R. Subacute stress and chronic stress interact to decrease intestinal barrier function in rats. Stress 2016; 19:225-34. [PMID: 26947111 DOI: 10.3109/10253890.2016.1154527] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Psychological stress increases intestinal permeability, potentially leading to low-grade inflammation and symptoms in functional gastrointestinal disorders. We assessed the effect of subacute, chronic and combined stress on intestinal barrier function and mast cell density. Male Wistar rats were allocated to four experimental groups (n = 8/group): 1/sham; 2/subacute stress (isolation and limited movement for 24 h); 3/chronic crowding stress for 14 days and 4/combined subacute and chronic stress. Jejunum and colon were collected to measure: transepithelial electrical resistance (TEER; a measure of epithelial barrier function); gene expression of tight junction molecules; mast cell density. Plasma corticosterone concentration was increased in all three stress conditions versus sham, with highest concentrations in the combined stress condition. TEER in the jejunum was decreased in all stress conditions, but was significantly lower in the combined stress condition than in the other groups. TEER in the jejunum correlated negatively with corticosterone concentration. Increased expression of claudin 1, 5 and 8, occludin and zonula occludens 1 mRNAs was detected after subacute stress in the jejunum. In contrast, colonic TEER was decreased only after combined stress, and the expression of tight junction molecules was unaltered. Increased mast cell density was observed in the chronic and combined stress condition in the colon only. In conclusion, our data show that chronic stress sensitizes the gastrointestinal tract to the effects of subacute stress on intestinal barrier function; different underlying cellular and molecular alterations are indicated in the small intestine versus the colon.
Collapse
Affiliation(s)
- Adriana Lauffer
- a Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
- b Programa De Pós-Graduação: Ciências Em Gastroenterologia E Hepatologia, Faculdade De Medicina, UFRGS , Porto Alegre , Brazil , and
| | - Tim Vanuytsel
- a Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Christophe Vanormelingen
- a Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Hanne Vanheel
- a Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Shadea Salim Rasoel
- a Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Joran Tóth
- a Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Jan Tack
- a Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Fernando Fornari
- b Programa De Pós-Graduação: Ciências Em Gastroenterologia E Hepatologia, Faculdade De Medicina, UFRGS , Porto Alegre , Brazil , and
| | - Ricard Farré
- a Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
- c Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas (CIBERehd), Instituto De Salud Carlos II , Barcelona , Spain
| |
Collapse
|
70
|
GILANI A, KERMANSHAHI H, GOLIAN A, SEIFI S. Appraisal of the impact of aluminosilicate use on the health and performance of poultry. TURKISH JOURNAL OF VETERINARY AND ANIMAL SCIENCES 2016. [DOI: 10.3906/vet-1501-103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
71
|
|
72
|
Zani A, Zani-Ruttenstock E, Peyvandi F, Lee C, Li B, Pierro A. A spectrum of intestinal injury models in neonatal mice. Pediatr Surg Int 2016; 32:65-70. [PMID: 26552653 DOI: 10.1007/s00383-015-3813-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2015] [Indexed: 11/30/2022]
Abstract
PURPOSE To compare the degree of necrotizing enterocolitis (NEC)-like damage under different stress conditions in neonatal mice. METHODS 5-day-old C57BL/6 mice were assigned to: (A) breastfed and no stress factors; (B) breastfed+maternal separation (3 h daily); (C) breastfed+hypoxia+lipopolysaccharide (LPS-4 mg/kg/day); (D) hyperosmolar formula+hypoxia+LPS. Mice were killed at 9 days of life. Ileum and colon were stained for hematoxylin/eosin and blindly assessed. A scoring ≥2 was considered NEC. Data were compared using one-way ANOVA and reported as median (range). RESULTS Ileum-Mucosal injury was mild in group B (0.0-1). Hypoxia+LPS induced greater injury in group C (1.6, 1-2.5; p < 0.0001 to B) and D (2, 0.5-3.5; p < 0.0001 to B). There were no differences between group C and D (p = n.s.). There were no cases of NEC in group A or B, whereas NEC was present in 36 % group C and 68 % group D mice. Colon-a similar degree of mucosal injury was observed among group B (2, 1-3), C (1.7, 0-3) and D (1.5, 1-3; p = n.s.). NEC was present in 75 % of group B, 50 % of group C and 86 % of group D. CONCLUSION These models establish a spectrum of intestinal injury and are useful to investigate the variability of neonatal intestinal diseases, such as NEC.
Collapse
Affiliation(s)
- Augusto Zani
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Elke Zani-Ruttenstock
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Forouhideh Peyvandi
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Carol Lee
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, Physiology and Experimental Medicine Program, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada. .,University of Toronto, Toronto, Canada.
| |
Collapse
|
73
|
Pohl CS, Medland JE, Moeser AJ. Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications. Am J Physiol Gastrointest Liver Physiol 2015; 309:G927-41. [PMID: 26451004 PMCID: PMC4683303 DOI: 10.1152/ajpgi.00206.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/01/2015] [Indexed: 01/31/2023]
Abstract
Early-life stress and adversity are major risk factors in the onset and severity of gastrointestinal (GI) disease in humans later in life. The mechanisms by which early-life stress leads to increased GI disease susceptibility in adult life remain poorly understood. Animal models of early-life stress have provided a foundation from which to gain a more fundamental understanding of this important GI disease paradigm. This review focuses on animal models of early-life stress-induced GI disease, with a specific emphasis on translational aspects of each model to specific human GI disease states. Early postnatal development of major GI systems and the consequences of stress on their development are discussed in detail. Relevant translational differences between species and models are highlighted.
Collapse
Affiliation(s)
- Calvin S. Pohl
- 1Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; ,2Gastrointestinal Stress Biology Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan; and
| | - Julia E. Medland
- 3Comparative Biomedical Sciences Program, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Adam J. Moeser
- 1Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; ,2Gastrointestinal Stress Biology Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan; and
| |
Collapse
|
74
|
Abstract
Within the last decade, research regarding the human gut microbiome has exploded. While the gastrointestinal tract was once regarded simply as a digestive organ, new technologies have led the science world to wonder about the impact that the gut microbiota may have on human health and disease. The gut microbiome is now becoming known for its role in metabolism, immune defense, and behavior. From in utero variations to those that rapidly occur post partum, our gut microbiome changes with age, environment, stress, diet, and health status as well as medication exposure. This article reviews what is currently known regarding various influences on the gut microbiome and is meant to encourage the reader to further explore the unknown.
Collapse
Affiliation(s)
- Gail A Cresci
- Department of Gastroenterology/Hepatology, Cleveland Clinic, Cleveland, Ohio
| | - Emmy Bawden
- Center for Human Nutrition, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
75
|
Mereu A, Tedó G, Moeser AJ, Rimbach G, Ipharraguerre IR. Cromolyn-mediated improvement of intestinal barrier function is associated with enhanced piglet performance after weaning. BMC Vet Res 2015; 11:274. [PMID: 26510713 PMCID: PMC4624645 DOI: 10.1186/s12917-015-0588-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 10/20/2015] [Indexed: 12/15/2022] Open
Abstract
Background Previous work showed that weaning stress causes gut barrier dysfunction partly by triggering the release of corticotropin releasing factor (CRF) and thereby inducing the degranulation of intestinal mast cell (MC). This study investigated the hypothesis that attenuating the weaning-induced activation of the CRF-MC axis via administration of a MC stabilizing agent (cromolyn) may improve gut permeability and piglet performance after weaning. Results To test the hypothesis twenty piglets were weaned (20 ± 1.0 d of age; 6.4 ± 0.4 kg of BW) and injected intraperitoneally with saline (control, n = 10) or 20 mg/kg BW of sodium cromolyn (cromolyn, n = 10) at – 0.5, 8 and 16 h relative to weaning. Piglets were housed individually and fed ad libitum a pre-starter diet from one to 15 d post-weaning followed by a starter diet until the end of the study on d 36. Cromolyn improved intestinal permeability as indicated by the reduced recovery of cobalt and mannitol in plasma samples. Cromolyn treated pigs consumed more feed (369 vs. 313 g/d; P < 0.009), gained more BW (283 vs. 238 g/d; P < 0.006), and grew more efficiently (0.60 vs. 0.40; P < 0.042) than their control counterparts. As a result, cromolyn treated pigs were 1.4 kg heavier than those in the control group by d 36 after weaning (16.5 vs. 17.9 kg; P < 0.002). Conclusions In agreement with our hypothesis, present data indicate that the cromolyn-mediated improvement of intestinal permeability is associated with enhanced pig performance after weaning.
Collapse
Affiliation(s)
- Alessandro Mereu
- Lucta S.A., Can Parellada 28, 08170, Montornés del Vallés, Barcelona, Spain.
| | - Gemma Tedó
- Lucta S.A., Can Parellada 28, 08170, Montornés del Vallés, Barcelona, Spain.
| | - Adam J Moeser
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, 48824, MI, USA.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Straße 6-8, D-24118, Kiel, Germany.
| | - Ignacio R Ipharraguerre
- Lucta S.A., Can Parellada 28, 08170, Montornés del Vallés, Barcelona, Spain. .,Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Straße 6-8, D-24118, Kiel, Germany.
| |
Collapse
|
76
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015; 9:392. [PMID: 26528128 PMCID: PMC4604320 DOI: 10.3389/fncel.2015.00392] [Citation(s) in RCA: 700] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022] Open
Abstract
The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a "leaky gut" may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function.
Collapse
Affiliation(s)
- John R Kelly
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Psychiatry and Neurobehavioural Science, University College Cork Cork, Ireland
| | - Paul J Kennedy
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Anatomy and Neuroscience, University College Cork Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Psychiatry and Neurobehavioural Science, University College Cork Cork, Ireland
| | - Gerard Clarke
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Psychiatry and Neurobehavioural Science, University College Cork Cork, Ireland
| | - Niall P Hyland
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Pharmacology and Therapeutics, University College Cork Cork, Ireland
| |
Collapse
|
77
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
78
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
79
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
80
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
81
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
82
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
83
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
84
|
Golubeva AV, Crampton S, Desbonnet L, Edge D, O'Sullivan O, Lomasney KW, Zhdanov AV, Crispie F, Moloney RD, Borre YE, Cotter PD, Hyland NP, O'Halloran KD, Dinan TG, O'Keeffe GW, Cryan JF. Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology 2015; 60:58-74. [PMID: 26135201 DOI: 10.1016/j.psyneuen.2015.06.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/12/2015] [Accepted: 06/08/2015] [Indexed: 12/26/2022]
Abstract
Early-life adverse experiences, including prenatal stress (PNS), are associated with a higher prevalence of neurodevelopmental, cardiovascular and metabolic disorders in affected offspring. Here, in a rat model of chronic PNS, we investigate the impact of late gestational stress on physiological outcomes in adulthood. Sprague-Dawley pregnant dams were subjected to repeated restraint stress from embryonic day 14 to day 20, and their male offspring were assessed at 4 months of age. PNS induced an exaggeration of the hypothalamic-pituitary-adrenal (HPA) axis response to stress, as well as an elevation of blood pressure and impairment of cognitive function. Altered respiratory control was also observed, as demonstrated by increased variability in basal respiratory frequency and abnormal frequency responses to both hypoxic and hypercapnic challenges. PNS also affected gastrointestinal neurodevelopment and function, as measured by a decrease in the innervation density of distal colon and an increase in the colonic secretory response to catecholaminergic stimulation. Finally, PNS induced long lasting alterations in the intestinal microbiota composition. 16S rRNA gene 454 pyrosequencing revealed a strong trend towards decreased numbers of bacteria in the Lactobacillus genus, accompanied by elevated abundance of the Oscillibacter, Anaerotruncus and Peptococcus genera in PNS animals. Strikingly, relative abundance of distinct bacteria genera significantly correlated with certain respiratory parameters and the responsiveness of the HPA axis to stress. Together, these findings provide novel evidence that PNS induces long-term maladaptive alterations in the gastrointestinal and respiratory systems, accompanied by hyper-responsiveness to stress and alterations in the gut microbiota.
Collapse
Affiliation(s)
- Anna V Golubeva
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Sean Crampton
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Lieve Desbonnet
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Deirdre Edge
- Department of Physiology, University College Cork, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark Fermoy, County Cork, Ireland
| | - Kevin W Lomasney
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Pharmacology & Therapeutics, University College Cork, Cork, Ireland
| | - Alexander V Zhdanov
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| | - Fiona Crispie
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark Fermoy, County Cork, Ireland
| | - Rachel D Moloney
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Yuliya E Borre
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark Fermoy, County Cork, Ireland
| | - Niall P Hyland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Pharmacology & Therapeutics, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland; Irish Centre for Foetal and Neonatal Translational Research (INFANT), CUMH, Cork, Ireland.
| | - John F Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
85
|
De Palma G, Blennerhassett P, Lu J, Deng Y, Park AJ, Green W, Denou E, Silva MA, Santacruz A, Sanz Y, Surette MG, Verdu EF, Collins SM, Bercik P. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun 2015. [DOI: 10.1038/ncomms8735] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
86
|
Barouei J, Moussavi M, Hodgson DM. Perinatal maternal probiotic intervention impacts immune responses and ileal mucin gene expression in a rat model of irritable bowel syndrome. Benef Microbes 2015; 6:83-95. [PMID: 25245571 DOI: 10.3920/bm2013.0011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alterations in immune responses and intestinal secretory state are among features commonly observed in the maternal separation (MS) rat model of Irritable Bowel Syndrome. This study examined whether perinatal maternal introduction of probiotics influences plasma immune markers and ileal mucin-2 (MUC2) gene expression in rat offspring exposed to neonatal maternal separation (MS, 3 h/day, postnatal days (PND) 2-14) and/or subsequently to acute restraint stress in adulthood (AS, 30 min/day, PND 83-85). Data analysis indicated that stress protocols did not affect plasma tumour necrosis factor alpha (TNF-α), interferon gamma (IFN-γ) and interleukin (IL)-6 levels in young offspring (PND 24) born to the vehicle-treated dams. Maternal probiotic intervention was associated with significantly decreased IFN-γ levels in young offspring compared with non-probiotic offspring (P≤0.05). It also induced a significant increase in IL-6 levels in MS pups (P≤0.05). Exposure of both non-MS and MS offspring to AS induced a significant increase in haptoglobin levels compared to controls (P≤0.05), whereas all offspring born to the probiotic-treated dams, irrespective of stress treatment conditions, exhibited significantly decreased haptoglobin levels to well below the control levels (P≤0.05). MS and/or AS did not affect ileal expression of MUC2 in offspring born to the non-probiotic treated dams. While maternal probiotic intake significantly downregulated ileal gene expression of MUC2 in MS male young offspring, it was associated with significantly upregulated MUC2 mRNA expression in MS or AS adult male offspring. These findings suggest that maternal probiotic intervention may exert long-lasting anti-inflammatory effects and impact gut outcomes in offspring at increased risk of dysfunctional gut.
Collapse
Affiliation(s)
- J Barouei
- Laboratory of Microbiology, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia Laboratory of Neuroimmunology, School of Psychology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - M Moussavi
- Laboratory of Microbiology, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia Laboratory of Neuroimmunology, School of Psychology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - D M Hodgson
- Laboratory of Neuroimmunology, School of Psychology, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
87
|
Fujikawa Y, Tominaga K, Tanaka F, Tanigawa T, Watanabe T, Fujiwara Y, Arakawa T. Enteric glial cells are associated with stress-induced colonic hyper-contraction in maternally separated rats. Neurogastroenterol Motil 2015; 27:1010-23. [PMID: 25960044 DOI: 10.1111/nmo.12577] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/05/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Enteric glial cells (EGCs) play important roles in enteric integrity and regulation of gastrointestinal function. However, whether EGCs undergo pathophysiological changes in stress-associated gastrointestinal disorders is unknown. We investigated structural and functional alterations in colonic EGCs and their roles in colonic contraction in an irritable bowel syndrome (IBS) model. METHODS As a chronic stress, male Wistar rats underwent 3-h maternal separation during postnatal days 2-14. As an acute stress, we used water-immersion stress (4 h) in adulthood (at 8 weeks). We quantitatively and morphologically evaluated enteric neurons and EGCs using whole-mount longitudinal muscle-myenteric plexus preparations. Colonic contraction was analyzed with electrical field stimulation (EFS). KEY RESULTS Glial fibrillary acidic protein (GFAP) expression and the number of total, cholinergic, and nitrergic neurons were unchanged in maternally separated rats with acute stress (combined stress: an IBS model) compared with controls. However, the density of GFAP-positive EGC processes that apparently overlapped with the neurons and the extent of bulbous swelling of terminals increased according to the stress intensity: control, acute stress, maternal separation, and combined stress. EFS-induced colonic contractions were significantly greater in the combined stress rats than in controls. Higher dose of fluorocitrate, a selective inhibitor of EGC metabolism, was required to inhibit both EFS-induced contraction and EGCs activation in the combined stress rats than in controls. CONCLUSIONS & INFERENCES Colonic EGCs exhibited structural alterations according to the stress intensity. EGCs were associated with stress-induced colonic hyper-contraction in the combined stress rats, which may underlie the pathogenesis of IBS.
Collapse
Affiliation(s)
- Y Fujikawa
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - K Tominaga
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - F Tanaka
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - T Tanigawa
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - T Watanabe
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Y Fujiwara
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - T Arakawa
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
88
|
Abstract
Tremendous progress has been made in characterizing the bidirectional interactions between the central nervous system, the enteric nervous system, and the gastrointestinal tract. A series of provocative preclinical studies have suggested a prominent role for the gut microbiota in these gut-brain interactions. Based on studies using rodents raised in a germ-free environment, the gut microbiota appears to influence the development of emotional behavior, stress- and pain-modulation systems, and brain neurotransmitter systems. Additionally, microbiota perturbations by probiotics and antibiotics exert modulatory effects on some of these measures in adult animals. Current evidence suggests that multiple mechanisms, including endocrine and neurocrine pathways, may be involved in gut microbiota-to-brain signaling and that the brain can in turn alter microbial composition and behavior via the autonomic nervous system. Limited information is available on how these findings may translate to healthy humans or to disease states involving the brain or the gut/brain axis. Future research needs to focus on confirming that the rodent findings are translatable to human physiology and to diseases such as irritable bowel syndrome, autism, anxiety, depression, and Parkinson's disease.
Collapse
|
89
|
Rodiño-Janeiro BK, Alonso-Cotoner C, Pigrau M, Lobo B, Vicario M, Santos J. Role of Corticotropin-releasing Factor in Gastrointestinal Permeability. J Neurogastroenterol Motil 2015; 21:33-50. [PMID: 25537677 PMCID: PMC4288093 DOI: 10.5056/jnm14084] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022] Open
Abstract
The interface between the intestinal lumen and the mucosa is the location where the majority of ingested immunogenic particles face the scrutiny of the vast gastrointestinal immune system. Upon regular physiological conditions, the intestinal micro-flora and the epithelial barrier are well prepared to process daily a huge amount of food-derived antigens and non-immunogenic particles. Similarly, they are ready to prevent environmental toxins and microbial antigens to penetrate further and interact with the mucosal-associated immune system. These functions promote the development of proper immune responses and oral tolerance and prevent disease and inflammation. Brain-gut axis structures participate in the processing and execution of response signals to external and internal stimuli. The brain-gut axis integrates local and distant regulatory networks and super-systems that serve key housekeeping physiological functions including the balanced functioning of the intestinal barrier. Disturbance of the brain-gut axis may induce intestinal barrier dysfunction, increasing the risk of uncontrolled immunological reactions, which may indeed trigger transient mucosal inflammation and gut disease. There is a large body of evidence indicating that stress, through the brain-gut axis, may cause intestinal barrier dysfunction, mainly via the systemic and peripheral release of corticotropin-releasing factor. In this review, we describe the role of stress and corticotropin-releasing factor in the regulation of gastrointestinal permeability, and discuss the link to both health and pathological conditions.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Carmen Alonso-Cotoner
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Marc Pigrau
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Beatriz Lobo
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - María Vicario
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Javier Santos
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| |
Collapse
|
90
|
Wang H, Zhang C, Wu G, Sun Y, Wang B, He B, Dai Z, Wu Z. Glutamine enhances tight junction protein expression and modulates corticotropin-releasing factor signaling in the jejunum of weanling piglets. J Nutr 2015; 145:25-31. [PMID: 25527658 DOI: 10.3945/jn.114.202515] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Dysfunction of tight junction integrity is associated with decreased nutrient absorption and numerous gastrointestinal diseases in humans and piglets. Although l-glutamine has been reported to enhance intestinal-mucosal mass and barrier function under stressful conditions, in vivo data to support a functional role for l-glutamine on intestinal tight junction protein (TJP) expression in weanling mammals are limited. OBJECTIVE This study tested the hypothesis that glutamine regulates expression of TJPs and stress-related corticotropin-releasing factor (CRF) signaling in the jejunum of weanling piglets. METHODS Piglets were reared by sows or weaned at 21 d of age to a corn and soybean meal-based diet that was or was not supplemented with 1% l-glutamine for 7 d. Growth performance, intestinal permeability, TJP abundance, and CRF expression were examined. RESULTS Weaning caused increases (P < 0.05) in intestinal permeability by 40% and in CRF concentrations by 4.7 times in association with villus atrophy (P < 0.05). Western blot analysis showed reductions (P < 0.05) in jejunal expression of occludin, claudin-1, zonula occludens (ZO) 2, and ZO-3, but no changes in the abundance of claudin-3, claudin-4, or ZO-1 in weanling piglets compared with age-matched suckling controls. Glutamine supplementation improved (P < 0.05) intestinal permeability and villus height, while reducing (P < 0.05) jejunal mRNA and protein levels for CRF and attenuating (P < 0.05) weanling-induced decreases in occludin, claudin-1, ZO-2, and ZO-3 protein abundances. CONCLUSION Collectively, our results support an important role for l-glutamine in regulating expression of TJPs and CRF in the jejunum of weanling piglets.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Chen Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and Department of Animal Science, Texas A&M University, College Station, TX
| | - Yuli Sun
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Bin Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Beibei He
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| |
Collapse
|
91
|
Effects of dietary Bacillus subtilis on heat-stressed broilers performance, intestinal morphology and microflora composition. Anim Feed Sci Technol 2014. [DOI: 10.1016/j.anifeedsci.2014.10.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
92
|
Maternal exposure to low levels of corticosterone during lactation protects against experimental inflammatory colitis-induced damage in adult rat offspring. PLoS One 2014; 9:e113389. [PMID: 25405993 PMCID: PMC4236199 DOI: 10.1371/journal.pone.0113389] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/25/2014] [Indexed: 12/24/2022] Open
Abstract
Opposing emotional events (negative/trauma or positive/maternal care) during the postnatal period may differentially influence vulnerability to the effects of stress later in life. The development and course of intestinal disorders such as inflammatory bowel disease are negatively affected by persistent stress, but to date the role of positive life events on these pathologies has been entirely unknown. In the present study, the effect of early life beneficial experiences in the development of intestinal dysfunctions, where inflammation and stress stimuli play a primary role, was investigated. As a “positive” experimental model we used adult male rat progeny nursed by mothers whose drinking water was supplemented with moderate doses of corticosterone (CORT) (0.2 mg/ml) during the lactation period. Such animals have been generally shown to cope better with different environmental situations during life. The susceptibility to inflammatory experimental colitis induced by intracolonic infusion of TNBS (2,4,6-trinitrobenzenesulphonic acid) was investigated in CORT-nursed rats in comparison with control rats. This mild increase in maternal corticosterone during lactation induced, in CORT-nursed rats, a long lasting protective effect on TNBS-colitis, characterized by improvements in some indices of the disease (increased colonic myeloperoxidase activity, loss of body weight and food intake) and by the involvement of endogenous peripheral pathways known to participate in intestinal disorder development (lower plasma corticosterone levels and colonic mast cell degranulation, alterations in the colonic expression of both corticotrophin releasing factor/CRF and its receptor/CRH-1R). All these findings contribute to suggesting that the reduced vulnerability to TNBS-colitis in CORT-nursed rats is due to recovery from the colonic mucosal barrier dysfunction. Such long lasting changes induced by mild hormonal manipulation during lactation, making the adult also better adapted to colonic inflammatory stress, constitute a useful experimental model to investigate the etiopathogenetic mechanisms and therapeutic treatments of some gastrointestinal diseases.
Collapse
|
93
|
Welch MG, Margolis KG, Li Z, Gershon MD. Oxytocin regulates gastrointestinal motility, inflammation, macromolecular permeability, and mucosal maintenance in mice. Am J Physiol Gastrointest Liver Physiol 2014; 307:G848-62. [PMID: 25147234 PMCID: PMC4200316 DOI: 10.1152/ajpgi.00176.2014] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/18/2014] [Indexed: 01/31/2023]
Abstract
Enteric neurons express oxytocin (OT); moreover, enteric neurons and enterocytes express developmentally regulated OT receptors (OTRs). Although OT (with secretin) opposes intestinal inflammation, physiological roles played by enteric OT/OTR signaling have not previously been determined. We tested hypotheses that OT/OTR signaling contributes to enteric nervous system (ENS)-related gastrointestinal (GI) physiology. GI functions and OT effects were compared in OTR-knockout (OTRKO) and wild-type (WT) mice. Stool mass and water content were greater in OTRKO mice than in WT. GI transit time in OTRKO animals was faster than in WT; OT inhibited in vitro generation of ENS-dependent colonic migrating motor complexes in WT but not in OTRKO mice. Myenteric neurons were hyperplastic in OTRKO animals, and mucosal exposure to cholera toxin (CTX) in vitro activated Fos in more myenteric neurons in OTRKO than WT than in WT mice; OT inhibited the CTX response in WT but not in OTRKO mice. Villi and crypts were shorter in OTRKO than in WT mice, and transit-amplifying cell proliferation in OTRKO crypts was deficient. Macromolecular intestinal permeability in OTRKO was greater than WT mice, and experimental colitis was more severe in OTRKO mice; moreover, OT protected WT animals from colitis. Observations suggest that OT/OTR signaling acts as a brake on intestinal motility, decreases mucosal activation of enteric neurons, and promotes enteric neuronal development and/or survival. It also regulates proliferation of crypt cells and mucosal permeability; moreover OT/OTR signaling is protective against inflammation. Oxytocinergic signaling thus appears to play an important role in multiple GI functions that are subject to neuronal regulation.
Collapse
Affiliation(s)
- Martha G Welch
- Department of Psychiatry, Pediatrics, and Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Kara G Margolis
- Department of Psychiatry, Pediatrics, and Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Zhishan Li
- Department of Psychiatry, Pediatrics, and Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Michael D Gershon
- Department of Psychiatry, Pediatrics, and Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York
| |
Collapse
|
94
|
Zhao Y, Qian L. Homocysteine-mediated intestinal epithelial barrier dysfunction in the rat model of irritable bowel syndrome caused by maternal separation. Acta Biochim Biophys Sin (Shanghai) 2014; 46:917-9. [PMID: 25187412 DOI: 10.1093/abbs/gmu076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Yun Zhao
- Key Laboratory of Stress Medicine, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Lingjia Qian
- Key Laboratory of Stress Medicine, Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
95
|
Abstract
Psychological stress is known to induce somatic symptoms. Classically, many gut physiological responses to stress are mediated by the hypothalamus-pituitary-adrenal axis. There is, however, a growing body of evidence of stress-induced corticotrophin-releasing factor (CRF) release causing bowel dysfunction through multiple pathways, either through the HPA axis, the autonomic nervous systems, or directly on the bowel itself. In addition, recent findings of CRF influencing the composition of gut microbiota lend support for the use of probiotics, antibiotics, and other microbiota-altering agents as potential therapeutic measures in stress-induced bowel dysfunction.
Collapse
Affiliation(s)
- Yu-Ming Chang
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, 3912 Taubman Center, SPC 5362, 1500 East Medical Center Drive, Ann Arbor, MI, USA
| | - Mohamad El-Zaatari
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, 6518 MSRB 1, 1150 W. Medical Center Drive, Ann Arbor, MI, USA
| | - John Y Kao
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, 1150 W. Medical Center Drive, 6520A MSRB 1, SPC 5682, Ann Arbor, MI 48109-5682, USA
| |
Collapse
|
96
|
De Palma G, Collins SM, Bercik P, Verdu EF. The microbiota-gut-brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both? J Physiol 2014; 592:2989-97. [PMID: 24756641 PMCID: PMC4214655 DOI: 10.1113/jphysiol.2014.273995] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/17/2014] [Indexed: 12/29/2022] Open
Abstract
The gut-brain axis is the bidirectional communication between the gut and the brain, which occurs through multiple pathways that include hormonal, neural and immune mediators. The signals along this axis can originate in the gut, the brain or both, with the objective of maintaining normal gut function and appropriate behaviour. In recent years, the study of gut microbiota has become one of the most important areas in biomedical research. Attention has focused on the role of gut microbiota in determining normal gut physiology and immunity and, more recently, on its role as modulator of host behaviour ('microbiota-gut-brain axis'). We therefore review the literature on the role of gut microbiota in gut homeostasis and link it with mechanisms that could influence behaviour. We discuss the association of dysbiosis with disease, with particular focus on functional bowel disorders and their relationship to psychological stress. This is of particular interest because exposure to stressors has long been known to increase susceptibility to and severity of gastrointestinal diseases.
Collapse
Affiliation(s)
- Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Stephen M Collins
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
97
|
Wang B, Wu G, Zhou Z, Dai Z, Sun Y, Ji Y, Li W, Wang W, Liu C, Han F, Wu Z. Glutamine and intestinal barrier function. Amino Acids 2014; 47:2143-54. [PMID: 24965526 DOI: 10.1007/s00726-014-1773-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/27/2014] [Indexed: 12/27/2022]
Abstract
The intestinal barrier integrity is essential for the absorption of nutrients and health in humans and animals. Dysfunction of the mucosal barrier is associated with increased gut permeability and development of multiple gastrointestinal diseases. Recent studies highlighted a critical role for glutamine, which had been traditionally considered as a nutritionally non-essential amino acid, in activating the mammalian target of rapamycin cell signaling in enterocytes. In addition, glutamine has been reported to enhance intestinal and whole-body growth, to promote enterocyte proliferation and survival, and to regulate intestinal barrier function in injury, infection, weaning stress, and other catabolic conditions. Mechanistically, these effects were mediated by maintaining the intracellular redox status and regulating expression of genes associated with various signaling pathways. Furthermore, glutamine stimulates growth of the small intestinal mucosa in young animals and also enhances ion transport by the gut in neonates and adults. Growing evidence supports the notion that glutamine is a nutritionally essential amino acid for neonates and a conditionally essential amino acid for adults. Thus, as a functional amino acid with multiple key physiological roles, glutamine holds great promise in protecting the gut from atrophy and injury under various stress conditions in mammals and other animals.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.,Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuli Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wei Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chuang Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feng Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
98
|
Galley JD, Bailey MT. Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes 2014; 5:390-6. [PMID: 24690880 PMCID: PMC4153778 DOI: 10.4161/gmic.28683] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Exposure to stressful stimuli results in the activation of multiple physiological processes aimed at maintaining homeostasis within the body. These physiological processes also have the capacity to influence the composition of microbial communities, and research now indicates that exposure to stressful stimuli leads to gut microbiota dysbiosis. While the relative abundance of many different bacterial types can be altered during stressor exposure, findings in nonhuman primates and laboratory rodents, as well as humans, indicate that bacteria in the genus Lactobacillus are consistently reduced in the gut during stress. The gut microbiota, including the lactobacilli, have many functions that enhance the health of the host. This review presents studies involving germfree and antibiotic treated mice, as well as mice given Lactobacillus spp. to prevent stressor-induced reductions in lactobacilli, to provide evidence that the microbiota contribute to stressor-induced immunomodulation, both in gut mucosa as well as in systemic compartments. This review will also discuss the evidence that commensal gut microbes have bidirectional effects on gastrointestinal physiology during stressor exposure.
Collapse
Affiliation(s)
- Jeffrey D Galley
- Division of Oral Biology; College of Dentistry; The Ohio State University; Columbus, OH USA
| | - Michael T Bailey
- Division of Oral Biology; College of Dentistry; The Ohio State University; Columbus, OH USA,Institute for Behavioral Medicine Research; Wexner Medical Center; The Ohio State University; Columbus, OH USA,Correspondence to: Michael T Bailey,
| |
Collapse
|
99
|
Mayer EA, Savidge T, Shulman RJ. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 2014; 146:1500-12. [PMID: 24583088 PMCID: PMC4114504 DOI: 10.1053/j.gastro.2014.02.037] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/02/2014] [Accepted: 02/25/2014] [Indexed: 12/02/2022]
Abstract
Alterations in the bidirectional interactions between the intestine and the nervous system have important roles in the pathogenesis of irritable bowel syndrome (IBS). A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. A small and poorly defined role for dysbiosis in the development of IBS symptoms has been established through characterization of altered intestinal microbiota in IBS patients and reported improvement of subjective symptoms after its manipulation with prebiotics, probiotics, or antibiotics. It remains to be determined whether IBS symptoms are caused by alterations in brain signaling from the intestine to the microbiota or primary disruption of the microbiota, and whether they are involved in altered interactions between the brain and intestine during development. We review the potential mechanisms involved in the pathogenesis of IBS in different groups of patients. Studies are needed to better characterize alterations to the intestinal microbiome in large cohorts of well-phenotyped patients, and to correlate intestinal metabolites with specific abnormalities in gut-brain interactions.
Collapse
Affiliation(s)
- Emeran A Mayer
- Oppenheimer Center for Neurobiology of Stress, Division of Digestive Diseases, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California.
| | - Tor Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Microbiome Center, Department of Pathology, Houston, Texas; Texas Children's Hospital, Houston, Texas
| | - Robert J Shulman
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Children's Nutrition Research Center, Houston, Texas; Texas Children's Hospital, Houston, Texas
| |
Collapse
|
100
|
De Palma G, Collins SM, Bercik P. The microbiota-gut-brain axis in functional gastrointestinal disorders. Gut Microbes 2014; 5:419-29. [PMID: 24921926 PMCID: PMC4153782 DOI: 10.4161/gmic.29417] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Functional gastrointestinal disorders (FGIDs) are highly prevalent and pose a significant burden on health care and society, and impact patients' quality of life. FGIDs comprise a heterogeneous group of disorders, with unclear underlying pathophysiology. They are considered to result from the interaction of altered gut physiology and psychological factors via the gut-brain axis, where brain and gut symptoms are reciprocally influencing each other's expression. Intestinal microbiota, as a part of the gut-brain axis, plays a central role in FGIDs. Patients with Irritable Bowel Syndrome, a prototype of FGIDs, display altered composition of the gut microbiota compared with healthy controls and benefit, at the gastrointestinal and psychological levels, from the use of probiotics and antibiotics. This review aims to recapitulate the available literature on FGIDs and microbiota-gut-brain axis.
Collapse
|