51
|
Cunha CMP, Amorim MM, de Azevedo Guendler J, Katz L. Factors associated with severe acute respiratory syndrome in pregnant/postpartum women with COVID-19 receiving care at referral centers in northeastern Brazil: Secondary analysis of a cohort study. Heliyon 2023; 9:e17131. [PMID: 37441093 PMCID: PMC10292915 DOI: 10.1016/j.heliyon.2023.e17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Background At the beginning of the COVID-19 pandemic, the greater risks associated with the new SARS-CoV-2 pathogen in pregnant women were as yet unclear. This study analyzed factors associated with severe acute respiratory syndrome (SARS) in pregnant/postpartum women with COVID-19. Methods A prospective and retrospective cohort study was conducted in eight referral centers in northeastern Brazil between April 2020 and December 2021 involving pregnant/postpartum women with a positive COVID-19 RT-PCR test. A multivariate analysis was then conducted using a hierarchical logistic regression model to evaluate the association between the independent variables and the presence of SARS. Findings Of 611 patients included, 522 were pregnant and 83 were postpartum, at the time of admission. Criteria for SARS were present in 215 patients (35·2%). Factors associated with SARS included overweight and/or obesity (adjusted odds ratio/AOR: 1·95; 95%CI: 1·21-3·12; p = 0·0054), parity ≥2 (AOR: 1·72; 95%CI: 1·21-2·45; p = 0·0025), gestational age <34 weeks (AOR: 3·54; 95%CI: 2·47-5·07; p < 0·0001) and duration of symptoms >7 days (AOR: 1·97; 95%CI: 1·35-2·89; p = 0·0004). SARS increased the likelihood of requiring oxygen therapy (RR = 8·80; 95%CI: 6·25-12·40; p = 0·0000), mechanical ventilation (RR = 8·15; 95%CI: 4·67-14·21; p = 0·0000), and admission to an ICU (RR = 6·54; 95%CI: 4·70-9·11; p = 0·0000), and of maternal near miss (RR = 10·82; 95%CI: 1·20-22·47; p = 0·0000) and maternal death (RR = 8·12; 95%CI: 3·11-21·09; p = 0·0000). Interpretation In patients with COVID-19, parity ≥2, overweight/obesity, gestational age <34 weeks and duration of symptoms >7 days increased the risk of SARS. Cesarean sections, oxygen therapy, and mechanical ventilation were more common in patients with SARS.
Collapse
Affiliation(s)
- Carolina Maria Pires Cunha
- Instituto de Medicina Integral Professor Fernando Figueira (IMIP), Recife, Pernambuco, Brazil
- Stricto Sensu Postgraduate Program, IMIP, Recife, Pernambuco, Brazil
| | - Melania Maria Amorim
- Instituto de Medicina Integral Professor Fernando Figueira (IMIP), Recife, Pernambuco, Brazil
- Stricto Sensu Postgraduate Program, IMIP, Recife, Pernambuco, Brazil
- Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, Brazil
| | - Julianna de Azevedo Guendler
- Instituto de Medicina Integral Professor Fernando Figueira (IMIP), Recife, Pernambuco, Brazil
- Stricto Sensu Postgraduate Program, IMIP, Recife, Pernambuco, Brazil
| | - Leila Katz
- Instituto de Medicina Integral Professor Fernando Figueira (IMIP), Recife, Pernambuco, Brazil
- Stricto Sensu Postgraduate Program, IMIP, Recife, Pernambuco, Brazil
| |
Collapse
|
52
|
Tieu V, Tibi S, Ling J. Regulation of SARS-CoV-2 infection by diet-modulated gut microbiota. Front Cell Infect Microbiol 2023; 13:1167827. [PMID: 37457959 PMCID: PMC10339388 DOI: 10.3389/fcimb.2023.1167827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection has claimed millions of lives since late 2019, yet there are still many unexplored areas in its pathogenesis and clinical outcomes. COVID-19 is a disease that can affects multiple systems, some of which are overlapped with those modulated by gut microbiota, especially the immune system, thus leading to our concentration on analyzing the roles of microbiota in COVID-19 pathogenesis through the gut-lung axis. Dysbiosis of the commensal intestinal microbes and their metabolites (e.g., SCFAs) as well as the expression and activity of ACE2 in the gut could influence the host's immune system in COVID-19 patients. Moreover, it has been known that the elderly and individuals diagnosed with comorbidities (e.g., hypertension, type 2 diabetes mellitus, cardiovascular disease, etc.) are more susceptible to gut flora alterations, SARS-CoV-2 infection, and death. Thus, in this review we will focus on analyzing how the gut microbiota regulates the immune system that leads to different responses to SARS-CoV-2 infection. Since diet is a major factor to modulate the status of gut microbiota, dietary influence on COVID-19 pathogenesis will be also discussed, aiming to shed light on how diet-modulated gut microbiota regulates the susceptibility, severity, and treatment of SARS-CoV-2 infection.
Collapse
|
53
|
Zhong Y, Sun Z, Xu P, Bai Y, Zhang Z, Wang G. The value of non-contrast chest CT in the prediction of myocardial injury in patients with the COVID-19 Omicron variant. Sci Rep 2023; 13:10321. [PMID: 37365223 DOI: 10.1038/s41598-023-37335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Omicron variant associated myocardial injury seriously affected the patient's health. Chest computed tomography (CT) is an essential imaging diagnostic tool for evaluating lung diseases in these patients, but its value in the diagnosis of myocardial injury remains unknown. The purpose of this study was to evaluate the lung lesions in patients with Omicron infection with or without myocardial injury, and to evaluate the predictive value of non-contrast chest CT in such patients with myocardial injury. We enrolled 122 consecutive hospitalized patients with laboratory-confirmed coronavirus disease 2019 (COVID-19) for non-contrast chest CT examination. These patients were divided into two groups according to whether myocardial injury occurred. Myocardial injury was defined as a Troponin I level above the 99th-percentile upper reference limit (0.04 ng/mL). The imaging manifestations of the patients' lungs were evaluated. Myocardial CT value, left atrium (LA) size, long diameter of left ventricular (LV), and cardiothoracic ratio (CTR) were recorded. Multivariate logistic analysis was performed to identify the predictive factors associated with myocardial injury. Of 122 patients, 61 patients (50%) had myocardial injury. Compared with patients without myocardial injury, there was worse NYHA class, more critical patients, higher incidence of bronchial meteorology, larger area and percentage of lung lesions, diameters of LA, and lower myocardial CT value in the myocardial injury group (P < 0.05). Troponin I concentration in patients with myocardial injury group showed negative correlation with myocardial CT value (r = - 0.319, P = 0.012). The multivariable logistic regression analysis showed that disease severity status (OR 2.279; 95% CI 1.247-4.165, P = 0.007), myocardial CT value (OR 0.849; 95% CI 0.752-0.958, P = 0.008), neutrophil count (OR 1.330; 95% CI 1.114-1.587, P = 0.002) were independent predictors of myocardial injury. The discrimination of the model was good (C-statistic = 0.845, 95% CI 0.775-0.914) and well calibrated with a Hosmer-Lemeshow test for goodness of fit (P = 0.476). Patients infected with Omicron with myocardial injury had more severe lung disease than those without myocardial injury. Non-contrast chest CT can be a useful method of detection of myocardial injury in Omicron infection patients.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Radiology, The First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Zhenggang Sun
- Department of Radiology, The First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Ping Xu
- Department of Radiology, The First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Yun Bai
- Department of Radiology, The First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Zheng Zhang
- Department of Radiology, The First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Guan Wang
- Department of Radiology, The First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
54
|
Gupta A, Marzook H, Ahmad F. Comorbidities and clinical complications associated with SARS-CoV-2 infection: an overview. Clin Exp Med 2023; 23:313-331. [PMID: 35362771 PMCID: PMC8972750 DOI: 10.1007/s10238-022-00821-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/12/2022] [Indexed: 01/08/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes major challenges to the healthcare system. SARS-CoV-2 infection leads to millions of deaths worldwide and the mortality rate is found to be greatly associated with pre-existing clinical conditions. The existing dataset strongly suggests that cardiometabolic diseases including hypertension, coronary artery disease, diabetes and obesity serve as strong comorbidities in coronavirus disease (COVID-19). Studies have also shown the poor outcome of COVID-19 in patients associated with angiotensin-converting enzyme-2 polymorphism, cancer chemotherapy, chronic kidney disease, thyroid disorder, or coagulation dysfunction. A severe complication of COVID-19 is mostly seen in people with compromised medical history. SARS-CoV-2 appears to attack the respiratory system causing pneumonia, acute respiratory distress syndrome, which lead to induction of severe systemic inflammation, multi-organ dysfunction, and death mostly in the patients who are associated with pre-existing comorbidity factors. In this article, we highlighted the key comorbidities and a variety of clinical complications associated with COVID-19 for a better understanding of the etiopathogenesis of COVID-19.
Collapse
Affiliation(s)
- Anamika Gupta
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE
| | - Hezlin Marzook
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE
| | - Firdos Ahmad
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE.
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE.
| |
Collapse
|
55
|
Golab F, Vahabzadeh G, SadeghRoudbari L, Shirazi A, Shabani R, Tanbakooei S, Kooshesh L. The Protective Potential Role of ACE2 against COVID-19. Adv Virol 2023; 2023:8451931. [PMID: 37275947 PMCID: PMC10238138 DOI: 10.1155/2023/8451931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Due to the coronavirus disease 2019 (COVID-19), researchers all over the world have tried to find an appropriate therapeutic approach for the disease. The angiotensin-converting enzyme 2 (ACE2) has been shown as a necessary receptor to cell fusion, which is involved in infection due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is commonly crucial for all organs and systems. When ACE2 is downregulated via the SARS-CoV-2 spike protein, it results in the angiotensin II (Ang II)/angiotensin type 1 receptor axis overactivation. Ang II has harmful effects, which can be evidenced by dysfunctions in many organs experienced by COVID-19 patients. ACE2 is the SARS-CoV-2 receptor and has an extensive distribution; thus, some COVID-19 cases experience several symptoms and complications. We suggest strategy for the potential protective effect of ACE2 to the viral infection. The current review will provide data to develop new approaches for preventing and controlling the COVID-19 outbreak.
Collapse
Affiliation(s)
- Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gelareh Vahabzadeh
- Razi Drug Research Center, Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila SadeghRoudbari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arefeh Shirazi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Robabeh Shabani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Tanbakooei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Lida Kooshesh
- Department of Cellular and Molecular Biology, Islamic Azad University, Tehran North Branch, Tehran, Iran
| |
Collapse
|
56
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
57
|
Mardi A, Kamran A, Pourfarzi F, Zare M, Hajipour A, Doaei S, Abediasl N, Hackett D. Potential of macronutrients and probiotics to boost immunity in patients with SARS-COV-2: a narrative review. Front Nutr 2023; 10:1161894. [PMID: 37312883 PMCID: PMC10259402 DOI: 10.3389/fnut.2023.1161894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/26/2023] [Indexed: 06/15/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-COV-2) may cause inflammation and increased cytokine secretion. Dietary factors may play an important role in enhancing the immune responses against infectious diseases such as SARS-COV-2. This narrative review aims to determine the effectiveness of macronutrients and probiotics to improve immunity in SARS-COV-2 patients. Dietary proteins may boost pulmonary function in SARS-COV-2 patients through inhibitory effects on the Angiotensin-converting enzyme (ACE) and reduce Angiotensin (ANG-II). Moreover, omega-3 fatty acids may improve oxygenation, acidosis, and renal function. Dietary fiber may also produce anti-inflammatory effects by reducing the level of high-sensitivity C-Reactive Protein (hs-CRP), Interleukin (IL-6), and Tumor necrosis factor (TNF-α). In addition, some evidence indicates that probiotics significantly improve oxygen saturation which may enhance survival rate. In conclusion, the consumption of a healthy diet including adequate macronutrients and probiotic intake may decrease inflammation and oxidative stress. Following this dietary practice is likely to strengthen the immune system and have beneficial effects against SARS-COV-2.
Collapse
Affiliation(s)
- Afrouz Mardi
- Department of Public Health, School of Health, Ardabil University of Medical Science, Ardabil, Iran
| | - Aziz Kamran
- School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Zare
- Department of Nutrition, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Azadeh Hajipour
- School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Saeid Doaei
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Abediasl
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Daniel Hackett
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Lidcombe, NSW, Australia
| |
Collapse
|
58
|
Abstract
The current epidemic of corona virus disease (COVID-19) has resulted in an immense health burden that became the third leading cause of death and potentially contributed to a decline in life expectancy in the United States. The severe acute respiratory syndrome-related coronavirus-2 binds to the surface-bound peptidase angiotensin-converting enzyme 2 (ACE2, EC 3.4.17.23) leading to tissue infection and viral replication. ACE2 is an important enzymatic component of the renin-angiotensin system (RAS) expressed in the lung and other organs. The peptidase regulates the levels of the peptide hormones Ang II and Ang-(1-7), which have distinct and opposing actions to one another, as well as other cardiovascular peptides. A potential consequence of severe acute respiratory syndrome-related coronavirus-2 infection is reduced ACE2 activity by internalization of the viral-ACE2 complex and subsequent activation of the RAS (higher ratio of Ang II:Ang-[1-7]) that may exacerbate the acute inflammatory events in COVID-19 patients and possibly contribute to the effects of long COVID-19. Moreover, COVID-19 patients present with an array of autoantibodies to various components of the RAS including the peptide Ang II, the enzyme ACE2, and the AT1 AT2 and Mas receptors. Greater disease severity is also evident in male COVID-19 patients, which may reflect underlying sex differences in the regulation of the 2 distinct functional arms of the RAS. The current review provides a critical evaluation of the evidence for an activated RAS in COVID-19 subjects and whether this system contributes to the greater severity of severe acute respiratory syndrome-related coronavirus-2 infection in males as compared with females.
Collapse
Affiliation(s)
- Mark C. Chappell
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
59
|
Alexander BT, South AM, August P, Bertagnolli M, Ferranti EP, Grobe JL, Jones EJ, Loria AS, Safdar B, Sequeira-Lopez MLS. Appraising the Preclinical Evidence of the Role of the Renin-Angiotensin-Aldosterone System in Antenatal Programming of Maternal and Offspring Cardiovascular Health Across the Life Course: Moving the Field Forward: A Scientific Statement From the American Heart Association. Hypertension 2023; 80:e75-e89. [PMID: 36951054 PMCID: PMC10242542 DOI: 10.1161/hyp.0000000000000227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
There is increasing interest in the long-term cardiovascular health of women with complicated pregnancies and their affected offspring. Emerging antenatal risk factors such as preeclampsia appear to increase the risk of hypertension and cardiovascular disease across the life course in both the offspring and women after pregnancy. However, the antenatal programming mechanisms responsible are complex and incompletely understood, with roots in alterations in the development, structure, and function of the kidney, heart, vasculature, and brain. The renin-angiotensin-aldosterone system is a major regulator of maternal-fetal health through the placental interface, as well as kidney and cardiovascular tissue development and function. Renin-angiotensin-aldosterone system dysregulation plays a critical role in the development of pregnancy complications such as preeclampsia and programming of long-term adverse cardiovascular health in both the mother and the offspring. An improved understanding of antenatal renin-angiotensin-aldosterone system programming is crucial to identify at-risk individuals and to facilitate development of novel therapies to prevent and treat disease across the life course. Given the inherent complexities of the renin-angiotensin-aldosterone system, it is imperative that preclinical and translational research studies adhere to best practices to accurately and rigorously measure components of the renin-angiotensin-aldosterone system. This comprehensive synthesis of preclinical and translational scientific evidence of the mechanistic role of the renin-angiotensin-aldosterone system in antenatal programming of hypertension and cardiovascular disease will help (1) to ensure that future research uses best research practices, (2) to identify pressing needs, and (3) to guide future investigations to maximize potential outcomes. This will facilitate more rapid and efficient translation to clinical care and improve health outcomes.
Collapse
|
60
|
Torabizadeh C, Iloonkashkooli R, Haghshenas H, Fararouei M. Prevalence of Cardiovascular Complications in Coronavirus Disease 2019 adult Patients: A Systematic Review and Meta-Analysis. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:243-267. [PMID: 37791325 PMCID: PMC10542931 DOI: 10.30476/ijms.2022.93701.2504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/03/2022] [Accepted: 04/26/2022] [Indexed: 10/05/2023]
Abstract
Background It has been found that the new coronavirus can affect various parts of the cardiovascular system. Cardiovascular complications caused by coronavirus disease 2019 (COVID-19) are often serious and can increase the mortality rate among infected patients. This study aimed to investigate the prevalence of cardiovascular complications in COVID-19 adult patients. Methods A systematic review and meta-analysis of observational studies published in English were conducted between December 2019 and February 2021. A complete search was performed in PubMed (PubMed Central and MEDLINE), Google Scholar, Cochrane Library, Science Direct, Ovid, Embase, Scopus, CINAHL, Web of Science, and WILEY, as well as BioRXiv, MedRXiv, and gray literature. A random effect model was used to examine the prevalence of cardiovascular complications among COVID-19 patients. The I2 test was used to measure heterogeneity across the included studies. Results A total of 74 studies involving 34,379 COVID-19 patients were included for meta-analysis. The mean age of the participants was 61.30±14.75 years. The overall pooled prevalence of cardiovascular complications was 23.45%. The most prevalent complications were acute myocardial injury (AMI) (19.38%, 95% CI=13.62-26.81, test for heterogeneity I2=97.5%, P<0.001), arrhythmia (11.16%, 95% CI=8.23-14.96, test for heterogeneity I2=91.5%, P<0.001), heart failure (HF) (7.56%, 95% CI=4.50-12.45, test for heterogeneity I2=96.3%, P<0.001), and cardiomyopathy (2.78%, 95% CI=0.34-9.68). The highest pooled prevalence of cardiac enzymes was lactate dehydrogenase (61.45%), troponin (23.10%), and creatine kinase-myocardial band or creatine kinase (14.52%). Conclusion The high prevalence of serious cardiovascular complications in COVID-19 patients (AMI, arrhythmia, and HF) necessitates increased awareness by healthcare administrators.
Collapse
Affiliation(s)
- Camellia Torabizadeh
- Community Based Psychiatric Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hajar Haghshenas
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararouei
- HIV/AIDs Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
61
|
Cheng A, Ren H, Ma Z, Alam N, Jia L, Liu E. Trends and characteristics of COVID-19 and cardiovascular disease related studies. Front Pharmacol 2023; 14:1105459. [PMID: 37180704 PMCID: PMC10166808 DOI: 10.3389/fphar.2023.1105459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction: The new coronavirus has caused a pandemic that has infected hundreds of millions of people around the world since its outbreak. But the cardiovascular damage caused by the new coronavirus is unknown. We have analyzed the current global scenario and the general pattern of growth. After summarizing the known relationship between cardiovascular diseases and new coronary pneumonia, relevant articles are analyzed through bibliometrics and visualization. Methods: Following our pre-designed search strategy, we selected publications on COVID-19 and cardiovascular disease in the Web of Science database. In our relevant bibliometric visualization analysis, a total of 7,028 related articles in the WOS core database up to 20th October 2022 were summarized, and the most prolific authors, the most prolific countries, and the journals and institutions that published the most articles were summarized and quantitatively analyzed. Results: SARS-CoV-2 is more infectious than SARS-CoV-1 and has significant involvement in the cardiovascular system in addition to pulmonary manifestations, with a difference of 10.16% (20.26%/10.10%) in the incidence of cardiovascular diseases. The number of cases increases in winter and decreases slightly in summer with temperature changes, but the increase in cases tends to break out of seasonality across the region as mutant strains emerge. The co-occurrence analysis found that with the progress of the epidemic, the research keywords gradually shifted from ACE2 and inflammation to the treatment of myocarditis and complications, indicating that the research on the new crown epidemic has entered the stage of prevention and treatment of complications. Conclusion: When combined with the current global pandemic trend, how to improve prognosis and reduce human body damage could become a research focus. At the same time, timely detection, prevention, and discovery of new mutant strains have also become key tasks in the fight against the epidemic, and full preparations have been made to prevent the spread of the next wave of mutant strains, and still need to continue to pay attention to the differential performance of the variant "omicron."
Collapse
Affiliation(s)
| | | | | | | | - Linying Jia
- Laboratory Animal Centre, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | | |
Collapse
|
62
|
Durante W. Glutamine Deficiency Promotes Immune and Endothelial Cell Dysfunction in COVID-19. Int J Mol Sci 2023; 24:7593. [PMID: 37108759 PMCID: PMC10144995 DOI: 10.3390/ijms24087593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused the death of almost 7 million people worldwide. While vaccinations and new antiviral drugs have greatly reduced the number of COVID-19 cases, there remains a need for additional therapeutic strategies to combat this deadly disease. Accumulating clinical data have discovered a deficiency of circulating glutamine in patients with COVID-19 that associates with disease severity. Glutamine is a semi-essential amino acid that is metabolized to a plethora of metabolites that serve as central modulators of immune and endothelial cell function. A majority of glutamine is metabolized to glutamate and ammonia by the mitochondrial enzyme glutaminase (GLS). Notably, GLS activity is upregulated in COVID-19, favoring the catabolism of glutamine. This disturbance in glutamine metabolism may provoke immune and endothelial cell dysfunction that contributes to the development of severe infection, inflammation, oxidative stress, vasospasm, and coagulopathy, which leads to vascular occlusion, multi-organ failure, and death. Strategies that restore the plasma concentration of glutamine, its metabolites, and/or its downstream effectors, in conjunction with antiviral drugs, represent a promising therapeutic approach that may restore immune and endothelial cell function and prevent the development of occlusive vascular disease in patients stricken with COVID-19.
Collapse
Affiliation(s)
- William Durante
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
63
|
Self WH, Shotwell MS, Gibbs KW, de Wit M, Files DC, Harkins M, Hudock KM, Merck LH, Moskowitz A, Apodaca KD, Barksdale A, Safdar B, Javaheri A, Sturek JM, Schrager H, Iovine N, Tiffany B, Douglas IS, Levitt J, Busse LW, Ginde AA, Brown SM, Hager DN, Boyle K, Duggal A, Khan A, Lanspa M, Chen P, Puskarich M, Vonderhaar D, Venkateshaiah L, Gentile N, Rosenberg Y, Troendle J, Bistran-Hall AJ, DeClercq J, Lavieri R, Joly MM, Orr M, Pulley J, Rice TW, Schildcrout JS, Semler MW, Wang L, Bernard GR, Collins SP. Renin-Angiotensin System Modulation With Synthetic Angiotensin (1-7) and Angiotensin II Type 1 Receptor-Biased Ligand in Adults With COVID-19: Two Randomized Clinical Trials. JAMA 2023; 329:1170-1182. [PMID: 37039791 PMCID: PMC10091180 DOI: 10.1001/jama.2023.3546] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/24/2023] [Indexed: 04/12/2023]
Abstract
Importance Preclinical models suggest dysregulation of the renin-angiotensin system (RAS) caused by SARS-CoV-2 infection may increase the relative activity of angiotensin II compared with angiotensin (1-7) and may be an important contributor to COVID-19 pathophysiology. Objective To evaluate the efficacy and safety of RAS modulation using 2 investigational RAS agents, TXA-127 (synthetic angiotensin [1-7]) and TRV-027 (an angiotensin II type 1 receptor-biased ligand), that are hypothesized to potentiate the action of angiotensin (1-7) and mitigate the action of the angiotensin II. Design, Setting, and Participants Two randomized clinical trials including adults hospitalized with acute COVID-19 and new-onset hypoxemia were conducted at 35 sites in the US between July 22, 2021, and April 20, 2022; last follow-up visit: July 26, 2022. Interventions A 0.5-mg/kg intravenous infusion of TXA-127 once daily for 5 days or placebo. A 12-mg/h continuous intravenous infusion of TRV-027 for 5 days or placebo. Main Outcomes and Measures The primary outcome was oxygen-free days, an ordinal outcome that classifies a patient's status at day 28 based on mortality and duration of supplemental oxygen use; an adjusted odds ratio (OR) greater than 1.0 indicated superiority of the RAS agent vs placebo. A key secondary outcome was 28-day all-cause mortality. Safety outcomes included allergic reaction, new kidney replacement therapy, and hypotension. Results Both trials met prespecified early stopping criteria for a low probability of efficacy. Of 343 patients in the TXA-127 trial (226 [65.9%] aged 31-64 years, 200 [58.3%] men, 225 [65.6%] White, and 274 [79.9%] not Hispanic), 170 received TXA-127 and 173 received placebo. Of 290 patients in the TRV-027 trial (199 [68.6%] aged 31-64 years, 168 [57.9%] men, 195 [67.2%] White, and 225 [77.6%] not Hispanic), 145 received TRV-027 and 145 received placebo. Compared with placebo, both TXA-127 (unadjusted mean difference, -2.3 [95% CrI, -4.8 to 0.2]; adjusted OR, 0.88 [95% CrI, 0.59 to 1.30]) and TRV-027 (unadjusted mean difference, -2.4 [95% CrI, -5.1 to 0.3]; adjusted OR, 0.74 [95% CrI, 0.48 to 1.13]) resulted in no difference in oxygen-free days. In the TXA-127 trial, 28-day all-cause mortality occurred in 22 of 163 patients (13.5%) in the TXA-127 group vs 22 of 166 patients (13.3%) in the placebo group (adjusted OR, 0.83 [95% CrI, 0.41 to 1.66]). In the TRV-027 trial, 28-day all-cause mortality occurred in 29 of 141 patients (20.6%) in the TRV-027 group vs 18 of 140 patients (12.9%) in the placebo group (adjusted OR, 1.52 [95% CrI, 0.75 to 3.08]). The frequency of the safety outcomes was similar with either TXA-127 or TRV-027 vs placebo. Conclusions and Relevance In adults with severe COVID-19, RAS modulation (TXA-127 or TRV-027) did not improve oxygen-free days vs placebo. These results do not support the hypotheses that pharmacological interventions that selectively block the angiotensin II type 1 receptor or increase angiotensin (1-7) improve outcomes for patients with severe COVID-19. Trial Registration ClinicalTrials.gov Identifier: NCT04924660.
Collapse
Affiliation(s)
- Wesley H. Self
- Vanderbilt Institute for Clinical and Translational Research, Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew S. Shotwell
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kevin W. Gibbs
- Department of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Marjolein de Wit
- Department of Medicine, Virginia Commonwealth University, Richmond
| | - D. Clark Files
- Department of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Michelle Harkins
- Department of Internal Medicine, University of New Mexico, Albuquerque
| | | | - Lisa H. Merck
- Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond
| | - Ari Moskowitz
- Department of Medicine, Montefiore Medical Center, Bronx, New York
| | | | - Aaron Barksdale
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha
| | - Basmah Safdar
- Department of Emergency Medicine, Yale University, New Haven, Connecticut
| | - Ali Javaheri
- Department of Medicine, Washington University, St Louis, Missouri
| | | | - Harry Schrager
- Department of Medicine, Tufts School of Medicine, Newton-Wellesley Hospital, Newton, Massachusetts
| | - Nicole Iovine
- Department of Medicine, University of Florida, Gainesville
| | | | - Ivor S. Douglas
- Department of Medicine, Denver Health Medical Center, Denver, Colorado
| | - Joseph Levitt
- Department of Medicine, Stanford University, Stanford, California
| | | | - Adit A. Ginde
- Department of Emergency Medicine, School of Medicine, University of Colorado, Aurora
| | - Samuel M. Brown
- Department of Pulmonary/Critical Care Medicine, Intermountain Medical Center, Murray, Utah
| | - David N. Hager
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Katherine Boyle
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Abhijit Duggal
- Department of Medicine, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Akram Khan
- Department of Medicine, Oregon Health & Science University, Portland
| | - Michael Lanspa
- Department of Pulmonary/Critical Care Medicine, Intermountain Medical Center, Murray, Utah
| | - Peter Chen
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michael Puskarich
- Department of Emergency Medicine, University of Minnesota, Minneapolis
| | - Derek Vonderhaar
- Department of Medicine, Ochsner Medical Center, New Orleans, Louisiana
| | | | - Nina Gentile
- Department of Emergency Medicine, Temple University, Philadelphia, Pennsylvania
| | - Yves Rosenberg
- National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - James Troendle
- National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Amanda J. Bistran-Hall
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Josh DeClercq
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert Lavieri
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Meghan Morrison Joly
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael Orr
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jill Pulley
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Todd W. Rice
- Vanderbilt Institute for Clinical and Translational Research, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Matthew W. Semler
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Li Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gordon R. Bernard
- Vanderbilt Institute for Clinical and Translational Research, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sean P. Collins
- Vanderbilt Institute for Clinical and Translational Research, Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Healthcare System, Nashville
| |
Collapse
|
64
|
Mavridi-Printezi A, Menichetti A, Mordini D, Amorati R, Montalti M. Recent Applications of Melanin-like Nanoparticles as Antioxidant Agents. Antioxidants (Basel) 2023; 12:antiox12040863. [PMID: 37107238 PMCID: PMC10135245 DOI: 10.3390/antiox12040863] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Nanosized antioxidants are highly advantageous in terms of versatility and pharmacokinetics, with respect to conventional molecular ones. Melanin-like materials, artificial species inspired by natural melanin, combine recognized antioxidant (AOX) activity with a unique versatility of preparation and modification. Due to this versatility and documented biocompatibility, artificial melanin has been incorporated into a variety of nanoparticles (NP) in order to give new platforms for nanomedicine with enhanced AOX activity. In this review article, we first discuss the chemical mechanisms behind the AOX activity of materials in the context of the inhibition of the radical chain reaction responsible for the peroxidation of biomolecules. We also focus briefly on the AOX properties of melanin-like NP, considering the effect of parameters such as size, preparation methods and surface functionalization on them. Then, we consider the most recent and relevant applications of AOX melanin-like NPs that are able to counteract ferroptosis and be involved in the treatment of important diseases that affect, e.g., the cardiovascular and nervous systems, as well as the kidneys, liver and articulations. A specific section will be dedicated to cancer treatment, since the role of melanin in this context is still very debated. Finally, we propose future strategies in AOX development for a better chemical understanding of melanin-like materials. In particular, the composition and structure of these materials are still debated, and they present a high level of variability. Thus, a better understanding of the mechanism behind the interaction of melanin-like nanostructures with different radicals and highly reactive species would be highly advantageous for the design of more effective and specific AOX nano-agents.
Collapse
Affiliation(s)
| | - Arianna Menichetti
- Department of Chemistry «Giacomo Ciamician», University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Dario Mordini
- Department of Chemistry «Giacomo Ciamician», University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Riccardo Amorati
- Department of Chemistry «Giacomo Ciamician», University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Montalti
- Department of Chemistry «Giacomo Ciamician», University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| |
Collapse
|
65
|
Fedorchenko Y, Zimba O. Long COVID in autoimmune rheumatic diseases. Rheumatol Int 2023; 43:1197-1207. [PMID: 36995436 PMCID: PMC10061411 DOI: 10.1007/s00296-023-05319-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
Consequences of Corona Virus Disease-19 (COVID-19) in patients with rheumatic diseases (RDs) are clinically diverse. SARS-CoV-2 infection has been associated with various autoimmune and rheumatic manifestations over the past three years. Emerging evidence points to the possibility of Long COVID predisposition in rheumatic patients due to the changes in immune regulatory response. The aim of this article was to overview data on the pathobiology of Long COVID in patients with RDs. Related risk factors, clinical characteristics, and prognosis of Long COVID in RDs were analyzed. Relevant articles were retrieved from Medline/PubMed, Scopus, and Directory of Open Access Journals (DOAJ). Diverse mechanisms of viral persistence, chronic low-grade inflammation, lasting production of autoantibodies, endotheliopathy, vascular complications, and permanent tissue damage have been described in association with Long COVID. Patients with RDs who survive COVID-19 often experience severe complications due to the immune disbalance resulting in multiple organ damage. Regular monitoring and treatment are warranted in view of the accumulating evidence.
Collapse
Affiliation(s)
- Yuliya Fedorchenko
- Department of Pathophysiology, Ivano-Frankivsk National Medical University, Halytska Str. 2, Ivano-Frankivsk, 76018, Ukraine.
| | - Olena Zimba
- Department of Clinical Rheumatology and Immunology, University Hospital in Krakow, Krakow, Poland
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Department of Internal Medicine N2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
66
|
Sato K, Fujii K, Tanaka H, Hori M, Hibi H, Toyokuni S. Exposure of low-temperature plasma after vaccination in tongue promotes systemic IgM induction against spike protein of SARS-CoV-2. Free Radic Res 2023; 57:30-37. [PMID: 36919453 DOI: 10.1080/10715762.2023.2190486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
COVID-19 has been pandemic since 2020 with persistent generation of new variants. Cellular receptor for SARS-CoV-2 is angiotensin-converting enzyme 2 (ACE2), where transmembrane serine protease-2 (TMPRSS2) is essential for viral internalization. We recently reported abundant expression of ACE2 and TMPRSS2 in the oral cavity of humans and mice. Therefore, oral cavity may work for COVID-19 infection gates. Here we undertook to evaluate whether vaccination in the tongue harbors any merit in comparison to subcutaneous injection. Low-temperature plasma (LTP) is the fourth physical state of matters with ionization above gas but at body temperature. LTP provides complex chemistry, eventually supplying oxidative and/or nitrosative stress on the interface. LTP-associated cellular death has been reported to cause apoptosis and/or ferroptosis. However, there is few data available on immunogenicity retention after LTP exposure. We therefore studied the effect of LTP exposure after the injection of keyhole limpet hemocyanin (KLH) or spike 2 protein of SARS-CoV-2 to the tongue of six-week-old male BALB/c mice, compared to subcutaneous vaccination. Whereas LTP did not change the expression of ACE2 and TMPRSS2 in the tongue, repeated LTP exposure after tongue vaccination significantly promoted systemic and specific IgM production at day 11. In contrast, repeated LTP exposure after subcutaneous vaccination of KLH decreased systemic IgM production. Of note, tongue injection produced significantly higher titer of IgM and IgG in the case of KLH. In conclusion, LTP significantly reinforced humoral immunity by IgM after tongue injection. Vaccination to the tongue can be a novel strategy to acquire immediate immunity.
Collapse
Affiliation(s)
- Kotaro Sato
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kouki Fujii
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
67
|
Greaney AM, Raredon MSB, Kochugaeva MP, Niklason LE, Levchenko A. SARS-CoV-2 leverages airway epithelial protective mechanism for viral infection. iScience 2023; 26:106175. [PMID: 36788793 PMCID: PMC9912025 DOI: 10.1016/j.isci.2023.106175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Despite much concerted effort to better understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection, relatively little is known about the dynamics of early viral entry and infection in the airway. Here we analyzed a single-cell RNA sequencing dataset of early SARS-CoV-2 infection in a humanized in vitro model, to elucidate key mechanisms by which the virus triggers a cell-systems-level response in the bronchial epithelium. We find that SARS-CoV-2 virus preferentially enters the tissue via ciliated cell precursors, giving rise to a population of infected mature ciliated cells, which signal to basal cells, inducing further rapid differentiation. This feedforward loop of infection is mitigated by further cell-cell communication, before interferon signaling begins at three days post-infection. These findings suggest hijacking by the virus of potentially beneficial tissue repair mechanisms, possibly exacerbating the outcome. This work both elucidates the interplay between barrier tissues and viral infections and may suggest alternative therapeutic approaches targeting non-immune response mechanisms.
Collapse
Affiliation(s)
- Allison Marie Greaney
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06511, USA
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06511, USA
- Medical Scientist Training Program, Yale University, New Haven, CT 06511, USA
| | - Maria P. Kochugaeva
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Laura E. Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
- Humacyte Inc., Durham, NC 27713, USA
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
68
|
Thirumugam G, Radhakrishnan Y, Ramamurthi S, Bhaskar JP, Krishnaswamy B. A systematic review on impact of SARS-CoV-2 infection. Microbiol Res 2023; 271:127364. [PMID: 36989761 PMCID: PMC10015779 DOI: 10.1016/j.micres.2023.127364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Innumerable pathogens including RNA viruses have catastrophic pandemic propensity, in turn, SARS-CoV-2 infection is highly contagious. Emergence of SARS-CoV-2 variants with high mutation rate additionally codifies infectious ability of virus and arisen clinical imputations to human health. Although, our knowledge of mechanism of virus infection and its impact on host system has been substantially demystified, uncertainties about the emergence of virus are still not fully understood. To date, there are no potentially curative drugs are identified against the viral infection. Even though, drugs are repurposed in the initial period of infection, many are significantly negative in clinical trials. Moreover, the infection is dependent on organ status, co-morbid conditions, variant of virus and geographic region. This review article aims to comprehensively describe the SARS-CoV-2 infection and the impacts in the host cellular system. This review also briefly provides an overview of genome, proteome and metabolome associated risk to infection and the advancement of therapeutics in SARS-CoV-2 infection management.
Collapse
Key Words
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
- who, world health organization
- mers-cov-middle, east respiratory syndrome coronavirus
- ig, immunoglobulin
- rgd, arginine-glycine-aspartic
- nk-natural, killer cells
- s1 and s2, subunits of s protein
- nsp, non-structural proteins
- voi, varian of interest
- voc, variant of concern
- vum-variant, under monitoring
- ace2, angiotensin converting enzyme 2
- nsp-non-structural, proteins
- orf-open, reading frame
- sars-cov-2
- variants
- omics
- alternative medicines
Collapse
Affiliation(s)
- Gowripriya Thirumugam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Yashwanth Radhakrishnan
- ITC - Life Sciences and Technology Centre, Peenya Industrial Area, 1(st) Phase, Bangalore 560058, Karnataka, India
| | - Suresh Ramamurthi
- ITC - Life Sciences and Technology Centre, Peenya Industrial Area, 1(st) Phase, Bangalore 560058, Karnataka, India
| | - James Prabhanand Bhaskar
- ITC - Life Sciences and Technology Centre, Peenya Industrial Area, 1(st) Phase, Bangalore 560058, Karnataka, India
| | - Balamurugan Krishnaswamy
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India,Corresponding author
| |
Collapse
|
69
|
Roy A, Sarkar A, Nayak D, Das S. Ultradiluted SARS-CoV-2 Spike Protein mitigates hyperinflammation in lung via ferritin and MMP-9 regulation in BALB/c mice. Virus Res 2023; 329:199091. [PMID: 36918101 PMCID: PMC10015450 DOI: 10.1016/j.virusres.2023.199091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
AIM This study investigated the prophylactic and therapeutic role of ultradiluted preparation of the Delta variant of SARS-CoV-2 recombinant spike (S) protein during S antigen-induced inflammatory process of disease progression along with the probable mechanism of action. MAIN METHODS Ultradiluted S protein (UDSP) was prepared and administered orally to adult BALB/c mice before and after administration of S antigen intranasally. After an observation period of 72 h, animals were sacrificed and expression level of ferritin was assayed through ELISA. The genetic expressions of cytokines, IL-6, IL-10, IL-1β, TNFα, IL-17, MMP-9, TIMP-1, ferritin light and heavy chains, and mitochondrial ferritin from lung tissues were investigated through RT-PCR. Formalin-fixed lung tissue sections were stained with hematoxylin and eosin to observe the degree of pathological changes. The activity of MMP-9 in lung tissues was investigated through gelatin zymography and immunofluorescence of MMP-9 in lung tissue sections was performed to revalidate the finding from gelatin zymography. Systems biology approach was used to elucidate a probable pathway where UDSP attenuated the inflammation through the regulation of pro- and anti-inflammatory cytokines. KEY FINDINGS UDSP attenuated the S antigen-induced hyperinflammation in the lung by regulating pro- and anti-inflammatory cytokines, calming cytokine storm, reducing ferritin level both in transcriptional and translational levels, and restoring critical ratio of MMP-9: TIMP-1. SIGNIFICANCE Our findings suggest a probable pathway by which UDSP might have attenuated inflammation through the regulation of cytokines, receptors, and other molecules. This proclaims UDSP as a promising antiviral agent in the treatment of COVID-19-induced immunopathogenesis.
Collapse
Affiliation(s)
- Anirban Roy
- Virology Laboratory, DAC Regional Research Institute, Kolkata, West Bengal 700035, India
| | - Avipsha Sarkar
- Virology Laboratory, DAC Regional Research Institute, Kolkata, West Bengal 700035, India
| | - Debadatta Nayak
- CCRH, Institutional Area, Janakpuri, New Delhi, Delhi 110058, India
| | - Satadal Das
- Virology Laboratory, DAC Regional Research Institute, Kolkata, West Bengal 700035, India.
| |
Collapse
|
70
|
Datta AK, Mukherjee A, Biswas A. Gastrointestinal, Respiratory, and Olfactory Neurotropism of Sars-Cov2 as a Possible Trigger of Parkinson's Disease: Is a Multi-Hit Multi-Step Process on the Cards. Ann Indian Acad Neurol 2023; 26:127-136. [PMID: 37179662 PMCID: PMC10171009 DOI: 10.4103/aian.aian_767_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/20/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Since the first emergence of COVID-19 on the global stage, there has been a wealth of evidence to suggest that SARS-Cov2 is not merely a pulmonary pathogen. This virus is unique in its ability to disrupt cellular pathways related to protein homeostasis, mitochondrial function, stress response, and aging. Such effects raise concerns about the long-term fate of survivors of COVID-19 infection, particularly regarding neurodegenerative diseases. The concept of interaction between environmental factors and alpha-synuclein formation in the olfactory bulb and vagal autonomic terminals with subsequent caudo-cranial migration has received much attention in the context of PD pathogenesis. Anosmia and gastrointestinal symptoms are two well-known symptoms of COVID-19, with evidence of an olfactory bulb and vagal infiltration by SARS-CoV2. This raises the possibility of the spread of the viral particles to the brain along multiple cranial nerve routes. Neurotropism, coupled with the ability of the SARS-Cov2 virion to induce abnormal protein folding and stress responses in the central nervous system, in presence of an inflammatory milieu, reinforced by hypoxia, coagulopathy, and endothelial dysfunction, reverberates the intriguing possibility of activation of a neurodegenerative cascade leading to the development of pathological alpha-synuclein aggregates and thus, triggering the development of PD in survivors of COVID19. This review attempts to summarize and critically appraise existing evidence from basic science research and clinical reports of links between COVID-19 and PD and explores the prospect of a multi-hit pathophysiological process, induced by SARS-Cov2 infection, ultimately converging on perturbed cellular protein homeostasis, which although is intriguing, presently lacks robust evidence for confirmation.
Collapse
Affiliation(s)
- Amlan K. Datta
- Department of Neurology, Institute of Post Graduate of Medical Education and Research (IPGME&R) and Bangur Institute of Neurosciences (BIN), Kolkata, West Bengal, India
| | - Adreesh Mukherjee
- Department of Neurology, Institute of Post Graduate of Medical Education and Research (IPGME&R) and Bangur Institute of Neurosciences (BIN), Kolkata, West Bengal, India
| | - Atanu Biswas
- Department of Neurology, Institute of Post Graduate of Medical Education and Research (IPGME&R) and Bangur Institute of Neurosciences (BIN), Kolkata, West Bengal, India
| |
Collapse
|
71
|
Botto L, Lonati E, Russo S, Cazzaniga E, Bulbarelli A, Palestini P. Effects of PM2.5 Exposure on the ACE/ACE2 Pathway: Possible Implication in COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4393. [PMID: 36901403 PMCID: PMC10002082 DOI: 10.3390/ijerph20054393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Particulate matter (PM) is a harmful component of urban air pollution and PM2.5, in particular, can settle in the deep airways. The RAS system plays a crucial role in the pathogenesis of pollution-induced inflammatory diseases: the ACE/AngII/AT1 axis activates a pro-inflammatory pathway counteracted by the ACE2/Ang(1-7)/MAS axis, which in turn triggers an anti-inflammatory and protective pathway. However, ACE2 acts also as a receptor through which SARS-CoV-2 penetrates host cells to replicate. COX-2, HO-1, and iNOS are other crucial proteins involved in ultrafine particles (UFP)-induced inflammation and oxidative stress, but closely related to the course of the COVID-19 disease. BALB/c male mice were subjected to PM2.5 sub-acute exposure to study its effects on ACE2 and ACE, COX-2, HO-1 and iNOS proteins levels, in the main organs concerned with the pathogenesis of COVID-19. The results obtained show that sub-acute exposure to PM2.5 induces organ-specific modifications which might predispose to greater susceptibility to severe symptomatology in the case of SARS-CoV-2 infection. The novelty of this work consists in using a molecular study, carried out in the lung but also in the main organs involved in the disease, to analyze the close relationship between exposure to pollution and the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Stefania Russo
- FIMP-Federazione Italiana Medici Pediatri, 00185 Rome, Italy
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- POLARIS Centre, University of Milano-Bicocca, 20126 Milan, Italy
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- POLARIS Centre, University of Milano-Bicocca, 20126 Milan, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- POLARIS Centre, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
72
|
Araújo CRDS, Fernandes J, Caetano DS, Barros AEVDR, de Souza JAF, Machado MDGR, de Aguiar MIR, Brandão SCS, Campos SL, de Andrade ADFD, Brandão DC. Endothelial function, arterial stiffness and heart rate variability of patients with cardiovascular diseases hospitalized due to COVID-19. Heart Lung 2023; 58:210-216. [PMID: 36621104 PMCID: PMC9805900 DOI: 10.1016/j.hrtlng.2022.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND The novel coronavirus disease (COVID-19) may cause vascular (e.g., endothelial dysfunction, and arterial stiffness), cardiac, autonomic (e.g., heart rate variability [HRV]), and systemic inflammatory response via direct viral attack, hypoxia-induced injury, or immunological dysregulation, especially in those patients with pre-existing cardiovascular diseases (CVD). However, to date, no study has shown prevalence of endothelial dysfunction, arterial stiffness and heart rate variability assessed by bedside peripheral arterial tonometry in patients with previous CVD hospitalized in the acute phase of COVID-19. OBJECTIVE This study aimed to assess the prevalence of endothelial dysfunction, arterial stiffness, and altered HRV in patients with CVD hospitalized due to COVID-19. METHODS This cross-sectional study was conducted from July 2020 to February 2021. Included male and female adult patients aged 40 to 60 years with previous CVD and diagnosed with COVID-19. Anthropometric data, comorbidities, and blood tests were analyzed. Endothelial function, arterial stiffness, and HRV were assessed using peripheral arterial tonometry (PAT), and the statistical significance was set at 5%. RESULTS Fourteen (51.8%) patients presented endothelial dysfunction (reactive hyperemia index = 1.2 ± 0.3) and enhancement in the high-frequency component of HRV (p < 0.05). There was a high prevalence of endothelial dysfunction, especially in patients with chronic heart failure (10 (71.4%)). Patients with preserved endothelial function showed a high augmentation index normalized to a heart rate of 75 bpm (p < 0.01), suggesting arterial stiffness. CONCLUSION Patients with CVD hospitalized due to COVID-19 presented endothelial dysfunction assessed using PAT, which could be used as a biomarker for arterial stiffness and altered HRV. The possibility of detecting vascular and autonomic changes during phase II of COVID-19 may help to prevent possible long-term complications.
Collapse
Affiliation(s)
| | - Juliana Fernandes
- Department of Physiotherapy. Federal University of Pernambuco, Recife, Brazil
| | | | | | | | | | | | | | - Shirley Lima Campos
- Department of Physiotherapy. Federal University of Pernambuco, Recife, Brazil
| | | | | |
Collapse
|
73
|
Rabaan AA, Smajlović S, Tombuloglu H, Ćordić S, Hajdarević A, Kudić N, Mutai AA, Turkistani SA, Al-Ahmed SH, Al-Zaki NA, Al Marshood MJ, Alfaraj AH, Alhumaid S, Al-Suhaimi E. SARS-CoV-2 infection and multi-organ system damage: A review. BIOMOLECULES & BIOMEDICINE 2023; 23:37-52. [PMID: 36124445 PMCID: PMC9901898 DOI: 10.17305/bjbms.2022.7762] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 02/03/2023]
Abstract
The SARS-CoV-2 infection causes COVID-19, which has affected approximately six hundred million people globally as of August 2022. Organs and cells harboring angiotensin-converting enzyme 2 (ACE2) surface receptors are the primary targets of the virus. However, once it enters the body through the respiratory system, the virus can spread hematogenously to infect other body organs. Therefore, COVID-19 affects many organs, causing severe and long-term complications, even after the disease has ended, thus worsening the quality of life. Although it is known that the respiratory system is most affected by the SARS-CoV-2 infection, many organs/systems are affected in the short and long term. Since the COVID-19 disease simultaneously affects many organs, redesigning diagnostic and therapy policies to fit the damaged organs is strongly recommended. Even though the pathophysiology of many problems the infection causes is unknown, the frequency of COVID-19 cases rises with age and the existence of preexisting symptoms. This study aims to update our knowledge of SARS-CoV-2 infection and multi-organ dysfunction interaction based on clinical and theoretical evidence. For this purpose, the study comprehensively elucidates the most recent studies on the effects of SARS-CoV-2 infection on multiple organs and systems, including respiratory, cardiovascular, gastrointestinal, renal, nervous, endocrine, reproductive, immune, and parts of the integumentary system. Understanding the range of atypical COVID-19 symptoms could improve disease surveillance, limit transmission, and avoid additional multi-organ-system problems.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Samira Smajlović
- Laboratory Diagnostics Institute Dr. Dedić, Bihać, Bosnia and Herzegovina
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sabahudin Ćordić
- Cantonal Hospital “Dr. Irfan Ljubijankić”, Microbiological Laboratory, Bihać, Bosnia and Herzegovina
| | - Azra Hajdarević
- International Burch University, Faculty of Engineering and Natural Sciences, Department of Genetics and Bioengineering, Ilidža, Bosnia and Herzegovina
| | - Nudžejma Kudić
- University of Sarajevo, Faculty of Agriculture and Food Science, Sarajevo, Bosnia and Herzegovina
| | - Abbas Al Mutai
- Research Center, Almoosa Specialist Hospital, Al Mubarraz, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | | | - Shamsah H Al-Ahmed
- Specialty Pediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Nisreen A Al-Zaki
- Specialty Pediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Mona J Al Marshood
- Specialty Pediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Amal H Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Ebtesam Al-Suhaimi
- Biology Department, College of Science and Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
74
|
Kutlu Ö, Demircan YT, Yıldız K, Kalkan G, Demirseren DD, An İ, Oba MÇ, Emre S, Şenel E, Bilgili SG, Savaş SE, Aktürk AŞ, Türkmen D, Çakmak SK, Kulaklı S, Demirbaş A, Altunışık N, Coşansu NC, Aksoy GG, Tosun M, Kurt BÖ, Şentürk N, Şener S, Özden HK, Temiz SA, Atak MF, Süslü H, Oğuz ID, Kılıç S, Ustaoğlu E, Topal İO, Akbulut TÖ, Korkmaz İ, Kılıç A, Hızlı P, Küçük ÖS, Çaytemel C, Kara RÖ, Koska MC, Tatar K, Dikicier BS, Ağırgöl Ş, Akşan B, Karadağ AS. The effect of COVID-19 on development of hair and nail disorders: a Turkish multicenter, controlled study. Int J Dermatol 2023; 62:202-211. [PMID: 36281828 PMCID: PMC9874876 DOI: 10.1111/ijd.16454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/07/2022] [Accepted: 10/05/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND A broad spectrum of skin diseases, including hair and nails, can be directly or indirectly triggered by COVID-19. It is aimed to examine the type and frequency of hair and nail disorders after COVID-19 infection. METHODS This is a multicenter study conducted on consecutive 2171 post-COVID-19 patients. Patients who developed hair and nail disorders and did not develop hair and nail disorders were recruited as subject and control groups. The type and frequency of hair and nail disorders were examined. RESULTS The rate of the previous admission in hospital due to COVID-19 was statistically significantly more common in patients who developed hair loss after getting infected with COVID-19 (P < 0.001). Telogen effluvium (85%) was the most common hair loss type followed by worsening of androgenetic alopecia (7%) after COVID-19 infection. The mean stress scores during and after getting infected with COVID-19 were 6.88 ± 2.77 and 3.64 ± 3.04, respectively, in the hair loss group and were 5.77 ± 3.18 and 2.81 ± 2.84, respectively, in the control group (P < 0.001, P < 0.001). The frequency of recurrent COVID-19 was statistically significantly higher in men with severe androgenetic alopecia (Grades 4-7 HNS) (P = 0.012; Odds ratio: 2.931 [1.222-7.027]). The most common nail disorders were leukonychia, onycholysis, Beau's lines, onychomadesis, and onychoschisis, respectively. The symptoms of COVID-19 were statistically significantly more common in patients having nail disorders after getting infected with COVID-19 when compared to the control group (P < 0.05). CONCLUSION The development of both nail and hair disorders after COVID-19 seems to be related to a history of severe COVID-19.
Collapse
Affiliation(s)
- Ömer Kutlu
- Department of Dermatology and Venereology, School of Medicine, Tokat Gaziosmanpaşa UniversityTokatTurkey
| | | | - Kenan Yıldız
- Department of Dermatology and Venereology, Adana Seyhan State HospitalAdanaTurkey
| | - Gӧknur Kalkan
- Department of Dermatology and Venereology, School of Medicine, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt UniversityAnkaraTurkey
| | - Duriye Deniz Demirseren
- Department of Dermatology and Venereology, School of Medicine, Ankara Bilkent City Hospital, University of Health ScienceAnkaraTurkey
| | - İsa An
- Department of Dermatology and Venereology, Şanlıurfa Training and Research HospitalŞanlıurfaTurkey
| | - Muazzez Çiğdem Oba
- Department of Dermatology and Venereology, Sancaktepe Şehit Prof. Dr. İlhan Varank Training and Research HospitalIstanbulTurkey
| | - Selma Emre
- Department of Dermatology and Venereology, School of Medicine, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt UniversityAnkaraTurkey
| | - Engin Şenel
- Department of Dermatology and Venereology, School of Medicine, Erol Olcak Training and Research Hospital, Hitit ÜniversityÇankırıTurkey
| | - Serap Güneş Bilgili
- Department of Dermatology and Venereology, School of Medicine, Van Yüzüncü Yıl UniversityVanTurkey
| | - Sevil Erdoğan Savaş
- Department of Dermatology and Venereology, School of Medicine, Sultan 2. Abdülhamid Han Training and Research Hospital, Health Science UniversityIstanbulTurkey
| | - Aysun Şikar Aktürk
- Department of Dermatology and Venereology, School of Medicine, Kocaeli UniversityKocaeliTurkey
| | - Dursun Türkmen
- Department of Dermatology and Venereology, School of Medicine, İnönü UniversityMalatyaTurkey
| | - Seray Külcü Çakmak
- Department of Dermatology and Venereology, School of Medicine, Ankara Bilkent City Hospital, University of Health ScienceAnkaraTurkey
| | - Sevgi Kulaklı
- Department of Dermatology and Venereology, School of Medicine, Giresun UniversityKocaeliTurkey
| | - Abdullah Demirbaş
- Department of Dermatology and Venereology, School of Medicine, Evliya Çelebi Training and Research Hospital, Kütahya Health Science UniversityKonyaTurkey
| | - Nihal Altunışık
- Department of Dermatology and Venereology, School of Medicine, İnönü UniversityMalatyaTurkey
| | - Nur Cihan Coşansu
- Department of Dermatology and Venereology, Sakarya Training and Research HospitalSakaryaTurkey
| | - Güneş Gur Aksoy
- Department of Dermatology and Venereology, School of Medicine, Ankara Bilkent City Hospital, University of Health ScienceAnkaraTurkey
| | - Mustafa Tosun
- Department of Dermatology and Venereology, School of Medicine, Sivas Cumhuriyet UniversitySivasTurkey
| | - Birgül Özkesici Kurt
- Department of Dermatology and Venereology, Adıyaman Training and Research HospitalAntalyaTurkey
| | - Nilgün Şentürk
- Department of Dermatology and Venereology, School of Medicine, Samsun Ondokuz Mayıs UniversitySamsunTurkey
| | - Serpil Şener
- Department of Dermatology and Venereology, School of Medicine, İnönü UniversityMalatyaTurkey
| | - Hatice Kaya Özden
- Department of Dermatology and Venereology, Kocaeli Derince Training and Research HospitalKocaeliTurkey
| | - Selami Aykut Temiz
- Department of Dermatology and Venereology, Meram School of Medicine, Necmettin Erbakan UniversityKonyaTurkey
| | - Mehmet Fatih Atak
- Department of Dermatology and Venereology, Tokat State HospitalTokatTurkey
| | - Hülya Süslü
- Department of Dermatology and Venereology, ıstanbul Haseki Training and Research HospitalIstanbulTurkey
| | - Işil Deniz Oğuz
- Department of Dermatology and Venereology, School of Medicine, Giresun UniversityKocaeliTurkey
| | - Sevilay Kılıç
- Department of Dermatology and Venereology, School of Medicine, Çanakkale Onsekiz Mart UniversityÇanakkaleTurkey
| | - Eda Ustaoğlu
- Department of Dermatology and Venereology, Bursa City HospitalBursaTurkey
| | - İlteriş Oğuz Topal
- Department of Dermatology and Venereology, Prof. Dr. Cemil Tascioglu City Hospital, Health Science UniversityIstanbulTurkey
| | - Tuğba Özkök Akbulut
- Department of Dermatology and Venereology, ıstanbul Haseki Training and Research HospitalIstanbulTurkey
| | - İbrahim Korkmaz
- Department of Dermatology and Venereology, ıstanbul Haseki Training and Research HospitalIstanbulTurkey
| | - Arzu Kılıç
- Department of Dermatology and Venereology, School of Medicine, Balıkesir UniversityBalıkesirTurkey
| | - Pelin Hızlı
- Department of Dermatology and Venereology, School of Medicine, Balıkesir UniversityBalıkesirTurkey
| | - Özlem Su Küçük
- Department of Dermatology and Venereology, School of Medicine, Bezmialem Vakıf UniversityIstanbulTurkey
| | - Ceyda Çaytemel
- Department of Dermatology and Venereology, School of Medicine, Başakşehir Çam ve Sakura City HospitalIstanbulTurkey
| | - Rabia Öztaş Kara
- Department of Dermatology and Venereology, Sakarya Training and Research HospitalSakaryaTurkey
| | - Mahmut Can Koska
- Department of Dermatology and Venereology, Artvin State HospitalArtvinTurkey
| | - Kübra Tatar
- Department of Dermatology and Venereology, School of Medicine, Van Yüzüncü Yıl UniversityVanTurkey
| | - Bahar Sevimli Dikicier
- Department of Dermatology and Venereology, School of Medicine, Sakarya Training and Research Hospital, Sakarya UniversitySakaryaTurkey
| | - Şenay Ağırgöl
- Department of Dermatology and Venereology, School of Medicine, Başakşehir Çam ve Sakura City HospitalIstanbulTurkey
| | - Burak Akşan
- Department of Dermatology and Venereology, School of Medicine, Giresun UniversityKocaeliTurkey
| | - Ayşe Serap Karadağ
- Memorial Health Group, Atasehir and Sisli Hospital, Dermatology ClinicIstanbulTurkey
| |
Collapse
|
75
|
Gong X, Khan A, Wani MY, Ahmad A, Duse A. COVID-19: A state of art on immunological responses, mutations, and treatment modalities in riposte. J Infect Public Health 2023; 16:233-249. [PMID: 36603376 PMCID: PMC9798670 DOI: 10.1016/j.jiph.2022.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Over the last few years, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) unleashed a global public health catastrophe that had a substantial influence on human physical and mental health, the global economy, and socio-political dynamics. SARS-CoV-2 is a respiratory pathogen and the cause of ongoing COVID-19 pandemic, which testified how unprepared humans are for pandemics. Scientists and policymakers continue to face challenges in developing ideal therapeutic agents and vaccines, while at the same time deciphering the pathology and immunology of SARS-CoV-2. Challenges in the early part of the pandemic included the rapid development of diagnostic assays, vaccines, and therapeutic agents. The ongoing transmission of COVID-19 is coupled with the emergence of viral variants that differ in their transmission efficiency, virulence, and vaccine susceptibility, thus complicating the spread of the pandemic. Our understanding of how the human immune system responds to these viruses as well as the patient groups (such as the elderly and immunocompromised individuals) who are often more susceptible to serious illness have both been aided by this epidemic. COVID-19 causes different symptoms to occur at different stages of infection, making it difficult to determine distinct treatment regimens employed for the various clinical phases of the disease. Unsurprisingly, determining the efficacy of currently available medications and developing novel therapeutic strategies have been a process of trial and error. The global scientific community collaborated to research and develop vaccines at a neck-breaking speed. This review summarises the overall picture of the COVID-19 pandemic, different mutations in SARS-CoV-2, immune response, and the treatment modalities against SARS-CoV-2.
Collapse
Affiliation(s)
- Xiaolong Gong
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amber Khan
- Department of Clinical Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Kingdom of Saudi Arabia
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Division of Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa,Corresponding author at: Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adriano Duse
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Division of Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
76
|
Abstract
The pandemic of COVID-19 in worldwide causes recent millions of morbidity and mortality in all countries and is the most important challenge in the world in recent years. Coronavirus is a single-stranded RNA virus and infection with COVID-19 leads to acute respiratory distress syndrome, lung inflammation, cytokine storm, and death. The other complications include endothelial dysfunction, activation of coagulation, thromboembolic events, and vascular disease. Cardiovascular complications such as myocardial and stroke ischemia, pulmonary thromboembolism, systemic arterial, and deep vein thrombosis were reported. In this review, we presented immuno-pathological mechanisms and the effects of COVID-19 on the cardiovascular system, heart, vessels, coagulation system, and molecular glance of immuno-inflammation to the COVID-19's pathology on the cardiovascular system.
Collapse
Affiliation(s)
- Entezar Mehrabi Nasab
- Department of Cardiology, School of Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Cardiology, School of Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hassan Aghajani
- Department of Cardiology, School of Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Hassanzadeh Makoei
- Department of Cardiology, School of Medicine, Ayatollah Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
77
|
Cornea A, Lata I, Simu M, Rosca EC. Assessment and Diagnosis of HIV-Associated Dementia. Viruses 2023; 15:v15020378. [PMID: 36851592 PMCID: PMC9966987 DOI: 10.3390/v15020378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The modern combined antiretroviral treatment (cART) for human immunodeficiency virus (HIV) infection has substantially lowered the incidence of HIV-associated dementia (HAD). The dominant clinical features include deficits in cognitive processing speed, concentration, attention, and memory. As people living with HIV become older, with high rates of comorbidities and concomitant treatments, the prevalence and complexity of cognitive impairment are expected to increase. Currently, the management of HAD and milder forms of HAND is grounded on the best clinical practice, as there is no specific, evidence-based, proven intervention for managing cognitive impairment. The present article acknowledges the multifactorial nature of the cognitive impairments found in HIV patients, outlining the current concepts in the field of HAD. Major areas of interest include neuropsychological testing and neuroimaging to evaluate CNS status, focusing on greater reliability in the exclusion of associated diseases and allowing for earlier diagnosis. Additionally, we considered the evidence for neurological involvement in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the impact of the coronavirus (COVID-19) pandemic, with wider consequences to population health than can be attributed to the virus itself. The indirect effects of COVID-19, including the increased adoption of telehealth, decreased access to community resources, and social isolation, represent a significant health burden, disproportionately affecting older adults with dementia who have limited social networks and increased functional dependence on the community and health system. This synopsis reviews these aspects in greater detail, identifying key gaps and opportunities for researchers and clinicians; we provide an overview of the current concepts in the field of HAD, with suggestions for diagnosing and managing this important neurological complication, which is intended to be applicable across diverse populations, in line with clinical observations, and closely representative of HIV brain pathology.
Collapse
Affiliation(s)
- Amalia Cornea
- Department of Neurology, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Neurology, Clinical Emergency County Hospital Timisoara, Bd. Iosif Bulbuca No. 10, 300736 Timisoara, Romania
| | - Irina Lata
- Department of Neurology, Clinical Emergency County Hospital Timisoara, Bd. Iosif Bulbuca No. 10, 300736 Timisoara, Romania
| | - Mihaela Simu
- Department of Neurology, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Neurology, Clinical Emergency County Hospital Timisoara, Bd. Iosif Bulbuca No. 10, 300736 Timisoara, Romania
| | - Elena Cecilia Rosca
- Department of Neurology, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Neurology, Clinical Emergency County Hospital Timisoara, Bd. Iosif Bulbuca No. 10, 300736 Timisoara, Romania
| |
Collapse
|
78
|
A Review on COVID-19: Primary Receptor, Endothelial Dysfunction, Related Comorbidities, and Therapeutics. IRANIAN JOURNAL OF SCIENCE 2023. [PMCID: PMC9843681 DOI: 10.1007/s40995-022-01400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global pandemic named coronavirus disease-19 (COVID-19) and resulted in a worldwide economic crisis. Utilizing the spike-like protein on its surface, the SARS-CoV-2 binds to the receptor angiotensin-converting enzyme 2 (ACE2), which highly expresses on the surface of many cell types. Given the crucial role of ACE2 in the renin–angiotensin system, its engagement by SARS-CoV-2 could potentially result in endothelial cell perturbation. This is supported by the observation that one of the most common consequences of COVID-19 infection is endothelial dysfunction and subsequent vascular damage. Furthermore, endothelial dysfunction is the shared denominator among previous comorbidities, including hypertension, kidney disease, cardiovascular diseases, etc., which are associated with an increased risk of severe disease and mortality in COVID-19 patients. Several vaccines and therapeutics have been developed and suggested for COVID-19 therapy. The present review summarizes the relationship between ACE2 and endothelial dysfunction and COVID-19, also reviews the most common comorbidities associated with COVID-19, and finally reviews several categories of potential therapies against COVID-19.
Collapse
|
79
|
Marwah H, Pant J, Yadav J, Shah K, Dewangan HK. Biosensor Detection of COVID-19 in Lung Cancer: Hedgehog and Mucin Signaling Insights. Curr Pharm Des 2023; 29:3442-3457. [PMID: 38270161 DOI: 10.2174/0113816128276948231204111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/25/2023] [Indexed: 01/26/2024]
Abstract
Coronavirus disease 2019 is a global pandemic, particularly affecting individuals with pre-existing lung conditions and potentially leading to pulmonary fibrosis. Age and healthcare system limitations further amplify susceptibility to both diseases, especially in low- and middle-income countries. The intricate relationship between Coronavirus disease 2019 and lung cancer highlights their clinical implications and the potential for early detection through biosensor techniques involving hedgehog and mucin signaling. This study highlights the connection between Coronavirus disease 2019 and lung cancer, focusing on the mucosa, angiotensin- altering enzyme 2 receptors, and their impact on the immune system. It details the inflammatory mechanisms triggered by Coronavirus disease 2019, which can result in pulmonary fibrosis and influence the cancer microenvironment. Various cytokines like Interleukins-6 and Tumor Necrosis Factor-alpha are examined for their roles in both diseases. Moreover, the review delves into the Hedgehog signaling pathways and their significance in lung cancer, particularly their influence on embryonic cell proliferation and tissue integrity. Mucin signaling is another vital aspect, highlighting the diverse mucin expression patterns in respiratory epithelial tissues and their potential as biomarkers. The review concludes with insights into diagnostic imaging techniques like chest computed tomography, Positron Emission Tomography and Computed Tomography, and Magnetic Resonance Imaging for early lung cancer detection, emphasizing the crucial role of biosensors in identifying specific biomarkers for early disease detection. This review provides a comprehensive overview of the clinical impact of Coronavirus disease 2019 on lung cancer patients and the potential for biosensors utilizing hedgehog and mucin signaling for early detection. It underscores the ongoing need for research and innovation to address these critical healthcare challenges.
Collapse
Affiliation(s)
- Harneet Marwah
- University Institute of Pharma Sciences (UIPS), Chandigarh University, NH-95 Chandigarh Ludhiana Highway, Mohali, Punjab, India
| | - Janmejay Pant
- University Institute of Pharma Sciences (UIPS), Chandigarh University, NH-95 Chandigarh Ludhiana Highway, Mohali, Punjab, India
| | - Jiten Yadav
- University Institute of Pharma Sciences (UIPS), Chandigarh University, NH-95 Chandigarh Ludhiana Highway, Mohali, Punjab, India
| | - Kamal Shah
- Institute of Pharmaceutical Research (IPR), GLA University Mathura, NH-2 Delhi Mathura Road, Po-CHaumuhan, Uttar Pradesh, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University, NH-95 Chandigarh Ludhiana Highway, Mohali, Punjab, India
| |
Collapse
|
80
|
Meter M, Barcot O, Jelicic I, Gavran I, Skopljanac I, Parcina MZ, Dolic K, Ivelja MP. Revision of Clinical Pre-Test Probability Scores in Hospitalized Patients with Pulmonary Embolism and SARS-CoV-2 Infection. Rev Cardiovasc Med 2023; 24:18. [PMID: 39076868 PMCID: PMC11270401 DOI: 10.31083/j.rcm2401018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 07/31/2024] Open
Abstract
Background The need for computed tomography pulmonary angiography (CTPA) to rule out pulmonary embolism (PE) is based on clinical scores in association with D-dimer measurements. PE is a recognized complication in patients with SARS-CoV-2 infection due to a pro-thrombotic state which may reduce the usefulness of preexisting pre-test probability scores. Aim The purpose was to analyze new clinical and laboratory parameters while comparing existing and newly proposed scoring system for PE detection in hospitalized COVID-19 patients (HCP). Methods We conducted a retrospective study of 270 consecutive HCPs who underwent CTPA due to suspected PE. The Modified Wells, Revised Geneva, Simplified Geneva, YEARS, 4-Level Pulmonary Embolism Clinical Probability Score (4PEPS), and PE rule-out criteria (PERC) scores were calculated and the area under the receiver operating characteristic curve (AuROC) was measured. Results Overall incidence of PE among our study group of HCPs was 28.1%. The group of patients with PE had a significantly longer COVID-19 duration upon admission, at 10 vs 8 days, p = 0.006; higher D-dimer levels of 10.2 vs 5.3 μ g/L, p < 0.001; and a larger proportion of underlying chronic kidney disease, at 16% vs 7%, p = 0.041. From already established scores, only 4PEPS and the modified Wells score reached statistical significance in detecting the difference between the HCP groups with or without PE. We proposed a new chronic kidney disease, D-dimers, 10 days of illness before admission (CDD-10) score consisting of the three aforementioned variables: C as chronic kidney disease (0.5 points if present), D as D-dimers (negative 1.5 points if normal, 2 points if over 10.0 μ g/L), and D-10 as day-10 of illness carrying 2 points if lasting more than 10 days before admission or 1 point if longer than 8 days. The CDD-10 score ranged from -1.5 to 4.5 and had an AuROC of 0.672, p < 0.001 at cutoff value at 0.5 while 4PEPS score had an AuROC of 0.638 and Modified Wells score 0.611. The clinical probability of PE was low (0%) when the CDD-10 value was negative, moderate (24%) for CDD-10 ranging 0-2.5 and high (43%) when over 2.5. Conclusions Better risk stratification is needed for HCPs who require CTPA for suspected PE. Our newly proposed CDD-10 score demonstrates the best accuracy in predicting PE in patients hospitalized for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mijo Meter
- Department of Cardiology, University Hospital of Split, 21000 Split, Croatia
| | - Ognjen Barcot
- Department of Surgery, University Hospital of Split, 21000 Split, Croatia
| | - Irena Jelicic
- Department of Infectious Diseases, University Hospital of Split, 21000 Split, Croatia
| | - Ivana Gavran
- Department of Cardiology, University Hospital of Split, 21000 Split, Croatia
| | - Ivan Skopljanac
- Department of Pulmology, University Hospital of Split, 21000 Split, Croatia
| | | | - Kresimir Dolic
- Department of Radiology, University Hospital of Split, 21000 Split, Croatia
- University Department of Health Studies, University of Split, 21000 Split, Croatia
- School of Medicine, University of Split, 21000 Split, Croatia
| | - Mirela Pavicic Ivelja
- Department of Infectious Diseases, University Hospital of Split, 21000 Split, Croatia
- University Department of Health Studies, University of Split, 21000 Split, Croatia
| |
Collapse
|
81
|
Gupta P, Rani V. The Surging Mechanistic Role of Angiotensin Converting Enzyme 2 in Human Pathologies: A Potential Approach for Herbal Therapeutics. Curr Drug Targets 2023; 24:1046-1054. [PMID: 37861036 DOI: 10.2174/0113894501247616231009065415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/27/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Advancements in biological sciences revealed the significant role of angiotensin-converting enzyme 2 (ACE2), a key cell surface receptor in various human pathologies. ACE2 is a metalloproteinase that not only functions in the regulation of Angiotensin II but also possesses some non-catalytic roles in the human body. There is considerable uncertainty regarding its protein expression, despite its presence in virtually all organs. The level of ACE2 expression and its subcellular localisation in humans may be a key determinant of susceptibility to various infections, symptoms, and outcomes of numerous diseases. Therefore, we summarize the distribution and expression pattern of ACE2 in different cell types related to all major human tissues and organs. Moreover, this review constitutes accumulated evidences of the important resources for further studies on ACE2 Inhibitory capacity via different natural compounds in order to understand its mechanism as the potential drug target in disease pathophysiology and to aid in the development of an effective therapeutic approach towards the various diseases.
Collapse
Affiliation(s)
- Priyadarshini Gupta
- Transcriptome laboratory, Centre of Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, India
| | - Vibha Rani
- Transcriptome laboratory, Centre of Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, India
| |
Collapse
|
82
|
Stavileci B, Ereren E, Özdemir E, Özdemir B, Cengiz M, Enar R. The impact of daily troponin I and D-dimer serum levels on mortality in COVID-19 pneumonia patients. Cardiovasc J Afr 2023; 34:16-22. [PMID: 35687085 PMCID: PMC10392793 DOI: 10.5830/cvja-2022-017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 04/01/2022] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is an infection resulting in very high morbidity and mortality rates globally. Limited data are available on the cardiovascular manifestations in these patients. The aim of this study was to analyse the daily troponin I and D-dimer levels and their impact on the need for intensive care and on mortality rates of COVID-19-infected patients. METHODS Two-hundred and five patients who were hospitalised between 20 March and 5 May 2020, with a diagnosis of moderate-to-severe COVID-19 pneumonia, were analysed retrospectively. Serum troponin I and D-dimer levels were recorded for at least 10 days after admission. RESULTS The average age was higher in the group of patients who died compared to the group who were discharged (67.79 ± 14.9 vs 56.87 ± 18.15 years, respectively, p < 0.001). The presence of hypertension, diabetes mellitus, previous coronary bypass surgery, heart failure, chronic renal failure and chronic obstructive pulmonary disease statistically significantly affected mortality rates (p = 0.003, 0.004, 0.045, 0.02, 0.003, 0.007, respectively). The first 10 days of measurements of troponin I and D-dimer were associated with intensive care requirements and mortality (p < 0.001). Both troponin I and D-dimer were higher in the group who died compared to the patients requiring intensive care. Troponin I values of ≥ 16.05 pg/ml on the seventh day were related to the need for intensive care [area under the curve (AUC) 0.896, sensitivity 78.6%, specificity 78.3%, p < 0.001). Troponin I values ≥ 30.25 pg/ml on the ninth day were related to mortality (AUC 0.920, sensitivity 89.5%, specificity 89.3%, p < 0.001). D-dimer values ≥ 878 hg/ml on the second day were associated with intensive care need (AUC 0.896, sensitivity 78.6%, specificity 78.3%, p < 0.001). D-dimer values ≥ 1 106 hg/ml on the 10th day were associated with mortality (AUC 0.817, sensitivity 68.4%, specificity 65.2%, p < 0.001). It was observed that hospitalisation periods ≥ 9.5 days were associated with mortality (AUC 0.738, sensitivity 68.4%, specificity 65.9%, p < 0.001). CONCLUSIONS We showed that hospitalisations ≥ 9.5 days in duration were related to increased mortality rates. Troponin I and D-dimer follow-up values in the serum were more effective than other inflammatory markers in predicting mortality and the need for intensive care. A high troponin I value should alert the clinician in terms of clinical deterioration.
Collapse
Affiliation(s)
- Berna Stavileci
- Department of Cardiology, Biruni University Faculty of Medicine, Küçükçekmece, Istanbul, Turkey.
| | - Emrah Ereren
- Department of Cardiovascular Surgery, Samsun Training and Research Hospital, Ilkadim, Samsun, Turkey
| | - Emrah Özdemir
- Department of Cardiology, Biruni University Faculty of Medicine, Küçükçekmece, Istanbul, Turkey
| | - Bahar Özdemir
- Department of Internal Medicine, Istanbul Bakirköy Dr Sadi Konuk Training and Research Hospital, Bakırköy, Istanbul, Turkey
| | - Mahir Cengiz
- Department of Internal Medicine, Biruni University Faculty of Medicine, Küç ükçekmece, Istanbul, Turkey
| | - Rasim Enar
- Department of Cardiology, Istanbul University Cerrahpaşa Medical Faculty, Cerrahpaşa-Fatih, Istanbul, Turkey
| |
Collapse
|
83
|
Sun X, Xu Y, Zhou J. Angiotensin converting enzyme 2 activation improves allergic rhinitis and suppresses Th2 cytokine release. Immun Inflamm Dis 2023; 11:e763. [PMID: 36705419 PMCID: PMC9846113 DOI: 10.1002/iid3.763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Allergic rhinitis (AR) is primarily regulated by type I hypersensitivity, with Th2 and immunoglobulin E (IgE) playing essential roles. This study aimed to determine whether angiotensin converting enzyme (ACE)2 could participate in the regulation of AR. METHODS Nasal mucosal tissues of AR patients were collected to determine ACE2 levels. Following AR mouse models were established, ACE2 levels in nasal mucosa were determined. Then the influences of diminazene aceturate (ACE2 agonist) on AR symptoms, pathology, specific antibodies, histamine, and interleukins (ILs) release in vivo were evaluated. Afterward, human nasal mucosa epithelial cells were exposed to IL-13, and the impacts of ACE2 overexpression on the secretion of pro-inflammatory factors in vitro were assessed. RESULTS ACE2 levels significantly declined in nasal mucosa both in patients and mouse models (p < .001). Diminazene aceturate treatment elevated the ACE2 level in mice (p < .01), accompanied by reduced frequency of nasal spray and nasal friction, decreased eosinophils and goblet cells (p < .001) according to histopathological staining. Furthermore, lgE, lgG1, histamine, and IL levels in mice were also decreased (p < .05). In vitro experiments revealed that ACE2 overexpression suppressed the secretion of pro-inflammatory factors (p < .001). CONCLUSION Together, ACE2 activation can alleviate the symptoms of AR in mice and inhibit the release of Th2 cytokines. Activating ACE2 is a promising therapeutic approach for AR.
Collapse
Affiliation(s)
- Xiuying Sun
- Department of OtorhinostomologyThe Affiliated Huaian No. 1 People′s Hospital of Nanjing Medical UniversityHuai′anJiangsuChina
| | - Yu Xu
- Department of OtorhinostomologyThe Affiliated Huaian No. 1 People′s Hospital of Nanjing Medical UniversityHuai′anJiangsuChina
| | - Jinhui Zhou
- Department of OtorhinostomologyThe Affiliated Huaian No. 1 People′s Hospital of Nanjing Medical UniversityHuai′anJiangsuChina
| |
Collapse
|
84
|
Chen Z, Huang J, Zhang J, Xu Z, Li Q, Ouyang J, Yan Y, Sun S, Ye H, Wang F, Zhu J, Wang Z, Chao J, Pu Y, Gu Z. A storm in a teacup -- A biomimetic lung microphysiological system in conjunction with a deep-learning algorithm to monitor lung pathological and inflammatory reactions. Biosens Bioelectron 2023; 219:114772. [PMID: 36272347 DOI: 10.1016/j.bios.2022.114772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 10/06/2022]
Abstract
Creating a biomimetic in vitro lung model to recapitulate the infection and inflammatory reactions has been an important but challenging task for biomedical researchers. The 2D based cell culture models - culturing of lung epithelium - have long existed but lack multiple key physiological conditions, such as the involvement of different types of immune cells and the creation of connected lung models to study viral or bacterial infection between different individuals. Pioneers in organ-on-a-chip research have developed lung alveoli-on-a-chip and connected two lung chips with direct tubing and flow. Although this model provides a powerful tool for lung alveolar disease modeling, it still lacks interactions among immune cells, such as macrophages and monocytes, and the mimic of air flow and aerosol transmission between lung-chips is missing. Here, we report the development of an improved human lung physiological system (Lung-MPS) with both alveolar and pulmonary bronchial chambers that permits the integration of multiple immune cells into the system. We observed amplified inflammatory signals through the dynamic interactions among macrophages, epithelium, endothelium, and circulating monocytes. Furthermore, an integrated microdroplet/aerosol transmission system was fabricated and employed to study the propagation of pseudovirus particles containing microdroplets in integrated Lung-MPSs. Finally, a deep-learning algorithm was developed to characterize the activation of cells in this Lung-MPS. This Lung-MPS could provide an improved and more biomimetic sensory system for the study of COVID-19 and other high-risk infectious lung diseases.
Collapse
Affiliation(s)
- Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou#2, Nanjing, Jiangsu, 210096, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Jie Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210000, China; Department of Respiratory and Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Jing Zhang
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Zikang Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou#2, Nanjing, Jiangsu, 210096, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou#2, Nanjing, Jiangsu, 210096, China
| | - Jun Ouyang
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Yuchuan Yan
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Shiqi Sun
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Huan Ye
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Fei Wang
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Jianfeng Zhu
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Zhangyan Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210000, China
| | - Jie Chao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210000, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210000, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou#2, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210000, China.
| |
Collapse
|
85
|
Chaube U, Patel BD, Bhatt HG. A hypothesis on designing strategy of effective RdRp inhibitors for the treatment of SARS-CoV-2. 3 Biotech 2023; 13:12. [PMID: 36532857 PMCID: PMC9755803 DOI: 10.1007/s13205-022-03430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Vaccines are used as one of the major weapons for the eradication of pandemic. However, the rise of different variants of the SARS-CoV-2 virus is creating doubts regarding the end of the pandemic. Hence, there is an urgent need to develop more drug candidates which can be useful for the treatment of COVID-19. In the present research for the scientific hypothesis, emphasis was given on the direct antiviral therapy available for the treatment of COVID-19. In lieu of this, the available molecular targets which include Severe Acute Respiratory Syndrome Chymotrypsin-like Protease (SARS-3CLpro), Papain-Like Cysteine Protease (PLpro), and RNA-Dependent RNA Polymerase (RdRp) were explored. As per the current scientific reports and literature, among all the available molecular targets, RNA-Dependent RNA Polymerase (RdRp) was found to be a crucial molecular target for the treatment of COVID-19. Most of the inhibitors which are reported against this target consisted of the free amine group and carbonyl group which might be playing an important role in the binding interaction with the RdRp protein. Among all the reported RdRp inhibitors, remdesivir, favipiravir, and molnupiravir were found to be the most promising drugs against COVID-19. Overall, the structural features of this RNA-Dependent RNA Polymerase (RdRp) inhibitors proved the importance of pyrrolo-triazine and pyrimidine scaffolds. Previous computational models of these drug molecules indicated that substitution with the polar functional group, hydrogen bond donor, and electronegative atoms on these scaffolds may increase the activity against the RdRp protein. Hence, in line with the proposed hypothesis, in the present research work for the evaluation of the hypothesis, new molecules were designed from the pyrrolo-triazine and pyrimidine scaffolds. Further, molecular docking and MD simulation studies were performed with these designed molecules. All these designed molecules (DM-1, DM-2, and DM-3) showed the results as per the proposed hypothesis. Among all the designed molecules, DM-1 showed promising results against the RdRp protein of SARS-CoV-2. In the future, these structural features can be used for the development of new RdRp inhibitors with improved activity. Also, in the future lead compound DM-1 can be explored against the RdRp protein for the treatment of COVID-19.
Collapse
Affiliation(s)
- Udit Chaube
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| | - Bhumika D. Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| | - Hardik G. Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| |
Collapse
|
86
|
Liu MJ, Sun XQ, Li LB, Wang G, Shi YF. Title: Serious COVID-19 may have a causal relationship with myocardial injury: A Mendelian randomization study. Front Genet 2023; 14:1135887. [PMID: 37035726 PMCID: PMC10076613 DOI: 10.3389/fgene.2023.1135887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Background: The association of coronavirus disease 2019 (COVID-19) with myocardial injury is not well known. This study explored the association between them using the Mendelian randomization (MR) method. Method: We obtained summary data from genome-wide association studies (GWAS) on myocardial injury and COVID-19 from public databases. Then, as tool variables, we chose single nucleotide polymorphisms associated with susceptibility and COVID-19 severity to investigate the causal relationship of COVID-19 with myocardial injury using inverse-variance weighting (IVW) as the primary approach. Finally, the reliability of the results was evaluated by performing sensitivity analyses. Results: As revealed by the IVW analyses, the seriously hospitalized patients with COVID-19 had causality with myocardial injury, with an β of 0.14 and 95% confidence interval (CI) of 0.03-0.25 (p = 0.01). The results showed that COVID-19 with severe respiratory symptoms positively affected myocardial injury (β = 0.11, 95% CI = 0.03-0.19; p = 0.005). Conclusion: According to this study, severe respiratory symptoms and hospitalization due to COVID-19 may increase the risk of myocardial injury.
Collapse
Affiliation(s)
- Mei Jia Liu
- Department of Ultrasound, The Second Hospital, Jilin University, Changchun, China
| | - Xue Qing Sun
- Department of Cardiology, The Second Hospital, Jilin University, Changchun, China
| | - Long Bo Li
- Department of Cardiology, The Second Hospital, Jilin University, Changchun, China
| | - Guan Wang
- Department of Cardiology, The Second Hospital, Jilin University, Changchun, China
| | - Yong Feng Shi
- Department of Cardiology, The Second Hospital, Jilin University, Changchun, China
- *Correspondence: Yong Feng Shi,
| |
Collapse
|
87
|
Kheyri Z, Alizadeh M, Akbarpour S, Hosamirudsari H, Niya MHK, Aliasgharpour F, Meidan MM, Hassanzadeh S, Dowran R, Jafarpour A. Renin-Angiotensin-Aldosterone Axis Inhibition Improves Outcome of Diabetic Patients with Chronic Hypertension and COVID-19: An Iranian Perspective. Adv Biomed Res 2022; 11:109. [PMID: 36798924 PMCID: PMC9926032 DOI: 10.4103/abr.abr_177_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 02/18/2023] Open
Abstract
Background Safe use of drugs such as angiotensin-converting enzyme 2 (ACE2) inhibitors and angiotensin receptor blockers (ARBs) in COVID diabetic patients needs comprehensive studies. This study addressed this issue from the Iranian perspective. Materials and Methods Admitted COVID-19 patients were divided into four groups in this historical cohort study. Group 1 included 740 non-diabetic, non-hypertensive patients. Group 2 included 132 non-hypertensive diabetic patients. Group 3 included 154 non-diabetic hypertensive patients. Group 4 included 183 diabetic patients who were under ACE inhibitors or ARBs. Death, intensive care unit (ICU) admission, and length of hospitalization were compared between the groups. Results After considering associated factors such as age, gender, dyslipidemia, cardiovascular diseases, rheumatoid arthritis (RA), chronic kidney disease (CKD), history of surgery, and corticosteroid use, diabetic patients (group 2) were associated with increased mortality (CI 95%, OR 1.93 [1.11-3.33]). Presence of diabetes (group 2) and hypertension were associated with an increased need for ICU admission (CI 95%, OR 1.69 [1.04-2.76]; CI 95%, OR 1.71 [1.08-2.71], respectively). Group 4 patients although having a similar rate of ICU admission with group 2 and 3 patients, had significantly better ICU survival. Conclusions The current study suggests that ACE inhibitors and ARBs are associated with decreased mortality, ICU admission, and better ICU survival in the diabetic subgroup of hypertensive patients.
Collapse
Affiliation(s)
- Zahedin Kheyri
- Department of Internal Medicine, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Alizadeh
- Infectious Disease Department, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Akbarpour
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadiseh Hosamirudsari
- Department of Infectious Disease, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran,Address for correspondence: Dr. Hadiseh Hosamirudsari, Department of Infectious Disease, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran. E-mail:
| | - Mohammad H. K. Niya
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran,Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Aliasgharpour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Students‘ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh M. Meidan
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Students‘ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrbanoo Hassanzadeh
- Department of Internal Medicine, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Dowran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Jafarpour
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
88
|
Factors of Persistent Limited Exercise Tolerance in Patients after COVID-19 with Normal Left Ventricular Ejection Fraction. Biomedicines 2022; 10:biomedicines10123257. [PMID: 36552013 PMCID: PMC9775927 DOI: 10.3390/biomedicines10123257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Exercise intolerance de novo is one of the most common reported symptoms in patients recovering from the Coronavirus Disease 2019 (COVID-19). The present study determines etiological and pathophysiological factors influencing the mechanism of impaired exercise tolerance in patients during Long-COVID. Consequently, the factors affecting the percentage predicted oxygen uptake at peak exercise (%VO2pred) in patients after COVID-19 with a normal left ventricular ejection fraction (LVEF) were assessment. A total of 120 patients recovering from COVID-19 at three to six months after confirmed diagnosis were included. The clinical examinations, laboratory test results, echocardiography, non-invasive body mass analysis, and spiroergometry were evaluated. The subjects were divided into the following groups: study patients’ group with worsen oxygen uptake (%VO2pred < 80%; n = 47) and control group presenting%VO2pred ≥ 80% (n = 73). ClinicalTrials.gov Identifier: NCT04828629. The male gender and the percent of total body water content (TBW%) were significantly higher in the study group compared to the control group (53 vs. 29%, p = 0.007 and 52.67 (±6.41) vs. 49.89 (±4.59), p = 0.02; respectively). Patients with %VO2pred < 80% presented significantly lower global peak systolic strain (GLPS), tricuspid annular plane systolic excursion (TAPSE), and late diastolic filling (A) velocity (19.34 (±1.72)% vs. 20.10 (±1.35)%, p = 0.03; 21.86 (±4.53) vs. 24.08 (±3.20) mm, p = 0.002 and median 59.5 (IQR: 50.0−71.0) vs. 70.5 (IQR: 62.0−80.0) cm/s, p = 0.004; respectively) compared to the controls. The results of the multiple logistic regression model show that (A) velocity (OR 0.40, 95%CI: 0.17−0.95; p = 0.03) and male gender (OR 2.52, 95%CI: 1.07−5.91; p = 0.03) were independently associated with %VO2pred. Conclusions: Men have over twice the risk of persistent limited exercise tolerance in Long-COVID than women. The decreased (A) velocity, TAPSE, GLPS, and hydration status are connected with limited exercise tolerance after COVID-19 in patients with normal LVEF.
Collapse
|
89
|
Martínez-Colón GJ, Ratnasiri K, Chen H, Jiang S, Zanley E, Rustagi A, Verma R, Chen H, Andrews JR, Mertz KD, Tzankov A, Azagury D, Boyd J, Nolan GP, Schürch CM, Matter MS, Blish CA, McLaughlin TL. SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages. Sci Transl Med 2022; 14:eabm9151. [PMID: 36137009 PMCID: PMC9529056 DOI: 10.1126/scitranslmed.abm9151] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 09/09/2022] [Indexed: 01/11/2023]
Abstract
Obesity, characterized by chronic low-grade inflammation of the adipose tissue, is associated with adverse coronavirus disease 2019 (COVID-19) outcomes, yet the underlying mechanism is unknown. To explore whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of adipose tissue contributes to pathogenesis, we evaluated COVID-19 autopsy cases and deeply profiled the response of adipose tissue to SARS-CoV-2 infection in vitro. In COVID-19 autopsy cases, we identified SARS-CoV-2 RNA in adipocytes with an associated inflammatory infiltrate. We identified two distinct cellular targets of infection: adipocytes and a subset of inflammatory adipose tissue-resident macrophages. Mature adipocytes were permissive to SARS-CoV-2 infection; although macrophages were abortively infected, SARS-CoV-2 initiated inflammatory responses within both the infected macrophages and bystander preadipocytes. These data suggest that SARS-CoV-2 infection of adipose tissue could contribute to COVID-19 severity through replication of virus within adipocytes and through induction of local and systemic inflammation driven by infection of adipose tissue-resident macrophages.
Collapse
Affiliation(s)
| | - Kalani Ratnasiri
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Heping Chen
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Elizabeth Zanley
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Renu Verma
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Han Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jason R. Andrews
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kirsten D. Mertz
- Institute of Pathology, Cantonal Hospital Baselland, 4410, Liestal, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, 4056, Basel, Switzerland
| | - Dan Azagury
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jack Boyd
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Garry P. Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Christian M. Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72070, Tübingen, Germany
| | - Matthias S. Matter
- Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, 4056, Basel, Switzerland
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Tracey L. McLaughlin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
90
|
Bioinformatics analysis reveals molecular connections between non-alcoholic fatty liver disease (NAFLD) and COVID-19. J Cell Commun Signal 2022; 16:609-619. [PMID: 35525888 PMCID: PMC9078374 DOI: 10.1007/s12079-022-00678-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has devastatingly impacted people's lives. Non-alcoholic fatty liver disease (NAFLD) is fatal comorbidity of COVID-19 seen with potential risk factors to develop severe symptoms. This research focuses on determining and elucidating the molecular factors and connections that might contribute to the severity of SARS-CoV-2 infection in NAFLD patients. Here, we comprehensively inspected the genes involved in NAFLD and SARS-CoV-2 entry factors (SCEFs) found by searching through the DisGeNet database and literature review, respectively. Further, we identified the SCEFs-related proteins through protein-protein interaction (PPI) network construction, MCODE, and Cytohubba. Next, the shared genes involved in NAFLD and SARS-CoV-2 entry, and hub gene were determined, followed by the GO and KEGG pathways analysis. X2K database was used to construct the upstream regulatory network of hub genes, as well as to identify the top ten candidates of transcription factors (TFs) and protein kinases (PKs). PPI analysis identified connections between 4 top SCEFs, including ACE, ADAM17, DPP4, and TMPRSS2 and NAFLD-related genes such as ACE, DPP4, IL-10, TNF, and AKT1. GO and KEGG analysis revealed the top ten biological processes and pathways, including cytokine-mediated signaling, PI3K-Akt, AMPK, and mTOR signaling pathways. The upstream regulatory network revealed that AKT1 and MAPK14 as important PKs and HIF1A and SP1 as important TFs associated with AKT1, IL-10, and TNF. The molecular connections identified between COVID-19 and NAFLD may shed light on discovering the causes of the severity of SARS-CoV-2 infected NAFLD patients.
Collapse
|
91
|
Yang P, Lang J, Li H, Lu J, Lin H, Tian G, Bai H, Yang J, Ning K. TCM-Suite: A comprehensive and holistic platform for Traditional Chinese Medicine component identification and network pharmacology analysis. IMETA 2022; 1:e47. [PMID: 38867910 PMCID: PMC10989960 DOI: 10.1002/imt2.47] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 06/14/2024]
Abstract
DNA-based biological ingredient identification and downstream pharmacology network analysis are commonly used in research for Traditional Chinese Medicine preparations (TCM formulas). Advancements in bioinformatics tools and the accumulation of related data have become driving forces for progress in this field. However, a lack of a platform integrating biological ingredient identification and downstream pharmacology network analysis hinders the deep understanding of TCM. In this study, we developed the TCM-Suite platform composed of two sub-databases, Holmes-Suite and Watson-Suite, for TCM biological ingredient identification and network pharmacology investigation, respectively, both are among the most complete: In the Holmes-Suite, we collected and processed six types of marker gene sequences, accounting for 1,251,548 marker gene sequences. In the Watson-Suite, we curated and integrated a massive number of entries from more than 10 public databases. Importantly, we developed a comprehensive pipeline to integrate TCM biological ingredient identification and downstream network pharmacology research, allowing users to simultaneously identify components of a TCM formula and analyze its potential pharmacology mechanism. Furthermore, we designed search engines and a user-friendly platform to better search and visualize these rich resources. TCM-Suite is a comprehensive and holistic platform for TCM-based drug discovery and repurposing. TCM-Suite website: http://TCM-Suite.AImicrobiome.cn.
Collapse
Affiliation(s)
- Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular‐imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems BiologyCollege of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Jidong Lang
- Geneis Beijing Co., Ltd.BeijingChina
- Department of sciencesQingdao Genesis Institute of Big Data Mining and PrecisionQingdaoShandongChina
- Academician WorkstationChangsha Medical UniversityChangshaChina
| | - Hongjun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular‐imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems BiologyCollege of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Jinxiang Lu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular‐imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems BiologyCollege of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Hanyang Lin
- Sequenxe Biological Technology Co., Ltd.XiamenChina
| | - Geng Tian
- Geneis Beijing Co., Ltd.BeijingChina
- Department of sciencesQingdao Genesis Institute of Big Data Mining and PrecisionQingdaoShandongChina
| | - Hong Bai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular‐imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems BiologyCollege of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Jialiang Yang
- Geneis Beijing Co., Ltd.BeijingChina
- Department of sciencesQingdao Genesis Institute of Big Data Mining and PrecisionQingdaoShandongChina
- Academician WorkstationChangsha Medical UniversityChangshaChina
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular‐imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems BiologyCollege of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
92
|
Viveiros A, Noyce RS, Gheblawi M, Colombo D, Bilawchuk LM, Clemente-Casares X, Marchant DJ, Kassiri Z, Del Nonno F, Evans DH, Oudit GY. SARS-CoV-2 infection downregulates myocardial ACE2 and potentiates cardiac inflammation in humans and hamsters. Am J Physiol Heart Circ Physiol 2022; 323:H1262-H1269. [PMID: 36367689 PMCID: PMC9705018 DOI: 10.1152/ajpheart.00578.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myocardial pathologies resulting from SARS-CoV-2 infections are consistently rising with mounting case rates and reinfections; however, the precise global burden is largely unknown and will have an unprecedented impact. Understanding the mechanisms of COVID-19-mediated cardiac injury is essential toward the development of cardioprotective agents that are urgently needed. Assessing novel therapeutic strategies to tackle COVID-19 necessitates an animal model that recapitulates human disease. Here, we sought to compare SARS-CoV-2-infected animals with patients with COVID-19 to identify common mechanisms of cardiac injury. Two-month-old hamsters were infected with either the ancestral (D614) or Delta variant (B.1.617.2) of SARS-CoV-2 for 2 days, 7 days, and/or 14 days. We measured viral RNA and cytokine expression at the earlier time points to capture the initial stages of infection in the lung and heart. We assessed myocardial angiotensin-converting enzyme 2 (ACE2), the entry receptor for the SARS-CoV-2 virus, and cardioprotective enzyme, as well as markers for inflammatory cell infiltration in the hamster hearts at days 7 and 14. In parallel, human hearts were stained for ACE2, viral nucleocapsid, and inflammatory cells. Indeed, we identify myocardial ACE2 downregulation and myeloid cell burden as common events in both hamsters and humans infected with SARS-CoV-2, and we propose targeting downstream ACE2 downregulation as a therapeutic avenue that warrants clinical investigation.NEW & NOTEWORTHY Cardiac manifestations of COVID-19 in humans are mirrored in the SARS-CoV-2 hamster model, recapitulating myocardial damage, ACE2 downregulation, and a consistent pattern of immune cell infiltration independent of viral dose and variant. Therefore, the hamster model is a valid approach to study therapeutic strategies for COVID-19-related heart disease.
Collapse
Affiliation(s)
- Anissa Viveiros
- 1Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada,2Mazankowski Alberta Heart Institute, University of
Alberta, Edmonton, Alberta, Canada
| | - Ryan S. Noyce
- 3Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada,4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Mahmoud Gheblawi
- 1Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Daniele Colombo
- 5Pathology Unit, IRCCS Istituto Nazionale per le Malattie
Infettive “Lazzaro Spallanzani”, Rome, Italy
| | - Leanne M. Bilawchuk
- 3Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada,4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Xavier Clemente-Casares
- 4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - David J. Marchant
- 3Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada,4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- 1Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Franca Del Nonno
- 5Pathology Unit, IRCCS Istituto Nazionale per le Malattie
Infettive “Lazzaro Spallanzani”, Rome, Italy
| | - David H. Evans
- 3Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada,4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y. Oudit
- 1Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada,2Mazankowski Alberta Heart Institute, University of
Alberta, Edmonton, Alberta, Canada,6Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
93
|
Coles MJ, Masood M, Crowley MM, Hudgi A, Okereke C, Klein J. It Ain't Over 'Til It's Over: SARS CoV-2 and Post-infectious Gastrointestinal Dysmotility. Dig Dis Sci 2022; 67:5407-5415. [PMID: 35357608 PMCID: PMC8968095 DOI: 10.1007/s10620-022-07480-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
The ongoing pandemic resulting from severe acute respiratory syndrome-caused by coronavirus 2 (SARS-CoV-2)-has posed a multitude of healthcare challenges of unprecedented proportions. Intestinal enterocytes have the highest expression of angiotensin-converting enzyme-2 (ACE2), which functions as the key receptor for SARS-CoV-2 entry into cells. As such, particular interest has been accorded to SARS-CoV-2 and how it manifests within the gastrointestinal system. The acute and chronic alimentary clinical implications of infection are yet to be fully elucidated, however, the gastrointestinal consequences from non-SARS-CoV-2 viral GI tract infections, coupled with the generalized nature of late sequelae following COVID-19 disease, would predict that motility disorders are likely to be seen in these patients. Determination of the chronic effects of COVID-19 disease, herein defined as GI disease which is persistent or recurrent more than 3 months following recovery from the acute respiratory illness, will require comprehensive investigations comprising combined endoscopic- and motility-based evaluation. It will be fascinating to ascertain whether the specific post-COVID-19 phenotype is hypotonic or hypertonic in nature and to identify the most vulnerable target portions of the gut. A specific biological hypothesis is that motility disorders may result from SARS-CoV-2-induced angiotensin-converting enzyme 2 (ACE2) depletion. Since SARS-CoV-2 is known to exhibit direct neuronal tropism, the potential also exists for the development of neurogenic motility disorders. This review aims to explore some of the potential pathophysiologic mechanisms underlying motility dysfunction as it relates to ACE2 and thereby aims to provide the foundation for mechanism-based potential therapeutic options.
Collapse
Affiliation(s)
- Michael J Coles
- Department of Gastroenterology, Temple University Hospital, Philadelphia, USA.
| | - Muaaz Masood
- Department of Internal Medicine, Medical College of Georgia, Augusta, USA
| | - Madeline M Crowley
- Department of Biomedical Engineering, University of British Colombia, Vancouver, Canada
| | - Amit Hudgi
- Department of Internal Medicine, Medical College of Georgia, Augusta, USA
| | - Chijioke Okereke
- Department of Internal Medicine, Medical College of Georgia, Augusta, USA
| | - Jeremy Klein
- Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| |
Collapse
|
94
|
Molecular Function of cGAS-STING in SARS-CoV-2: A Novel Approach to COVID-19 Treatment. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6189254. [PMID: 36457340 PMCID: PMC9708357 DOI: 10.1155/2022/6189254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Coronavirus illness 2019 is a significant worldwide health danger that began with severe acute respiratory syndrome coronavirus two infections. It is the largest pandemic of our lifetime to date, affecting millions of people and crippling economies globally. There is currently no viable therapy for this devastating condition. The fast spread of SARS-CoV-2 underlines the critical need for favorable treatments to prevent SARS-CoV-2 infection and dissemination. Regulating the upstream cytokine release might be a possible method for COVID-19 therapy. We propose that more consideration be paid to the dysregulated IFN-I release in COVID-19 and that cGAS and STING be considered therapeutic targets for avoiding cytokine storms and as critical components in host antiviral defense mechanisms.
Collapse
|
95
|
Papagerakis S, Said R, Ketabat F, Mahmood R, Pundir M, Lobanova L, Guenther G, Pannone G, Lavender K, McAlpin BR, Moreau A, Chen X, Papagerakis P. When the clock ticks wrong with COVID-19. Clin Transl Med 2022; 12:e949. [PMID: 36394205 PMCID: PMC9670202 DOI: 10.1002/ctm2.949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the coronavirus family that causes the novel coronavirus disease first diagnosed in 2019 (COVID-19). Although many studies have been carried out in recent months to determine why the disease clinical presentations and outcomes can vary significantly from asymptomatic to severe or lethal, the underlying mechanisms are not fully understood. It is likely that unique individual characteristics can strongly influence the broad disease variability; thus, tailored diagnostic and therapeutic approaches are needed to improve clinical outcomes. The circadian clock is a critical regulatory mechanism orchestrating major physiological and pathological processes. It is generally accepted that more than half of the cell-specific genes in any given organ are under circadian control. Although it is known that a specific role of the circadian clock is to coordinate the immune system's steady-state function and response to infectious threats, the links between the circadian clock and SARS-CoV-2 infection are only now emerging. How inter-individual variability of the circadian profile and its dysregulation may play a role in the differences noted in the COVID-19-related disease presentations, and outcome remains largely underinvestigated. This review summarizes the current evidence on the potential links between circadian clock dysregulation and SARS-CoV-2 infection susceptibility, disease presentation and progression, and clinical outcomes. Further research in this area may contribute towards novel circadian-centred prognostic, diagnostic and therapeutic approaches for COVID-19 in the era of precision health.
Collapse
Affiliation(s)
- Silvana Papagerakis
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Surgery, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Biochemistry, Microbiology and Immunology, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Otolaryngology – Head and Neck Surgery, Medical SchoolThe University of MichiganAnn ArborMichiganUSA
| | - Raed Said
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Surgery, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Anatomy, Physiology and Pharmacology, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Farinaz Ketabat
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Razi Mahmood
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Surgery, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Meenakshi Pundir
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Liubov Lobanova
- Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Greg Guenther
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Giuseppe Pannone
- Anatomic Pathology Unit, Department of Clinic and Experimental MedicineUniversity of FoggiaFoggiaItaly
| | - Kerry Lavender
- Department of Biochemistry, Microbiology and Immunology, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Blake R. McAlpin
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal DiseasesCentre Hospitalier Universitaire (CHU) Sainte‐Justine Research CenterMontrealQuebecCanada,Department of Stomatology, Faculty of Dentistry and Department of Biochemistry and Molecular Medicine, Faculty of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Xiongbiao Chen
- Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Mechanical Engineering, School of EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Petros Papagerakis
- Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
96
|
Teixeira-Vaz A, Rocha JA, Costa A, Simões Moreira T, Almeida E Reis D, Oliveira M, Silva AI, Paiva JA. What is the impact of previous cerebrovascular disease on critical COVID-19 patients' mortality? A prospective cohort study. J Neurol Sci 2022; 442:120382. [PMID: 36037666 PMCID: PMC9400379 DOI: 10.1016/j.jns.2022.120382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 01/08/2023]
Abstract
OBJECTIVES We aimed to evaluate the effect of previous cerebrovascular disease (CVD) on mortality rates of critically ill COVID-19 patients. MATERIALS & METHODS A prospective cohort study was performed between May/2020 and May/2021, at a tertiary-care-center. We consecutively included adult patients admitted to intensive care units (ICU) having as primary diagnosis Acute Respiratory Distress Syndrome due to SARS-CoV-2, requiring invasive mechanical ventilation for >48 h. We considered as exposure the diagnosis of previous CVD and as main outcome the in-ICU mortality. RESULTS The study sample included 178 patients: 74.2% were males, with a mean age of 63 ± 12.4 years-old(yo). Previous CVD was documented in 17 patients (9.6%). During the study period, the mortality rate at ICU was of 33.1% (n = 59). The proportion of mortality at ICU was higher in patients with prior CVD (58.8% vs 30.4%; p = 0.02). Also, older patients (66 ± 11.4 yo vs. 62 ± 12.7 yo, p = 0.04) and those with higher score at SAPSII at ICU admission (47.8 ± 15.4 vs. 40.7 ± 15.9; p = 0.01) had a higher ICU deathrate. Patients with previous CVD had a 2.70 (95%CI = 1.36-5.39) higher likelihood of dying compared to those who had no previous CVD. After adjustment (for gender, age, SAPSII and total length of stay), multivariate Cox analysis revealed that previous CVD remained a strong predictor for in-ICU death in critically ill COVID-19 patients (HR = 2.51; 95%CI = 1.15-5.51). CONCLUSIONS Previous CVD was significantly associated to higher mortality in critical COVID-19 patients. We suggest that, in patients with previous CVD, prioritization of vaccination strategies should be implemented alongst with higher surveillance when infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Ana Teixeira-Vaz
- Physical Medicine and Rehabilitation Department, Centro Hospitalar Universitário de São João, Porto, Portugal.
| | - José Afonso Rocha
- Physical Medicine and Rehabilitation Department, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Andreia Costa
- Neurology Department, Centro Hospitalar Universitário de São João, Porto, Portugal; Faculty of Medicine, University of Porto, Portugal
| | - Tiago Simões Moreira
- Physical Medicine and Rehabilitation Department, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - David Almeida E Reis
- Physical Medicine and Rehabilitation Department, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Mafalda Oliveira
- Physical Medicine and Rehabilitation Department, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Ana Isabel Silva
- Physical Medicine and Rehabilitation Department, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - José Artur Paiva
- Faculty of Medicine, University of Porto, Portugal; Intensive Care Medicine Department, Centro Hospitalar Universitário de São João, Porto, Portugal
| |
Collapse
|
97
|
Ranjbar T, Oza PP, Kashfi K. The Renin-Angiotensin-Aldosterone System, Nitric Oxide, and Hydrogen Sulfide at the Crossroads of Hypertension and COVID-19: Racial Disparities and Outcomes. Int J Mol Sci 2022; 23:ijms232213895. [PMID: 36430371 PMCID: PMC9699619 DOI: 10.3390/ijms232213895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 is caused by SARS-CoV-2 and is more severe in the elderly, racial minorities, and those with comorbidities such as hypertension and diabetes. These pathologies are often controlled with medications involving the renin-angiotensin-aldosterone system (RAAS). RAAS is an endocrine system involved in maintaining blood pressure and blood volume through components of the system. SARS-CoV-2 enters the cells through ACE2, a membrane-bound protein related to RAAS. Therefore, the use of RAAS inhibitors could worsen the severity of COVID-19's symptoms, especially amongst those with pre-existing comorbidities. Although a vaccine is currently available to prevent and reduce the symptom severity of COVID-19, other options, such as nitric oxide and hydrogen sulfide, may also have utility to prevent and treat this virus.
Collapse
Affiliation(s)
- Tara Ranjbar
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Palak P. Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
98
|
Bolat E, Eker F, Kaplan M, Duman H, Arslan A, Saritaş S, Şahutoğlu AS, Karav S. Lactoferrin for COVID-19 prevention, treatment, and recovery. Front Nutr 2022; 9:992733. [PMID: 36419551 PMCID: PMC9676636 DOI: 10.3389/fnut.2022.992733] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/07/2022] [Indexed: 09/22/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), a unique beta-coronavirus, has caused the most serious outbreak of the last century at the global level. SARS-CoV-2 infections were firstly reported in the city of Wuhan in China in 2019 and this new disease was named COVID-19 by World Health Organization (WHO). As this novel disease can easily be transmitted from one individual to another via respiratory droplets, many nations around the world have taken several precautions regarding the reduction in social activities and quarantine for the limitation of the COVID-19 transmission. SARS-CoV-2 is known to cause complications that may include pneumonia, acute respiratory distress syndrome (ARDS), multi-organ failure, septic shock, and death. To prevent and treat COVID-19, some significant studies have been conducted since the outbreak. One of the most noticeable therapeutic approaches is related to a multifunctional protein, lactoferrin. Lactoferrin (Lf) is an 80 kDa cationic glycoprotein that has a great range of benefits from improving the immunity to antiviral effects due to its unique characteristics such as the iron-binding ability. This review summarizes the characteristics of SARS-CoV-2 and the potential applications of Lf for the prevention, treatment, and recovery of COVID-19.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Merve Kaplan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Ayşenur Arslan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Sümeyye Saritaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | | | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
99
|
Zoodsma M, de Nooijer AH, Grondman I, Gupta MK, Bonifacius A, Koeken VACM, Kooistra E, Kilic G, Bulut O, Gödecke N, Janssen N, Kox M, Domínguez-Andrés J, van Gammeren AJ, Ermens AAM, van der Ven AJAM, Pickkers P, Blasczyk R, Behrens GMN, van de Veerdonk FL, Joosten LAB, Xu CJ, Eiz-Vesper B, Netea MG, Li Y. Targeted proteomics identifies circulating biomarkers associated with active COVID-19 and post-COVID-19. Front Immunol 2022; 13:1027122. [PMID: 36405747 PMCID: PMC9670186 DOI: 10.3389/fimmu.2022.1027122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/17/2022] [Indexed: 07/25/2023] Open
Abstract
The ongoing Coronavirus Disease 2019 (COVID-19) pandemic is caused by the highly infectious Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). There is an urgent need for biomarkers that will help in better stratification of patients and contribute to personalized treatments. We performed targeted proteomics using the Olink platform and systematically investigated protein concentrations in 350 hospitalized COVID-19 patients, 186 post-COVID-19 individuals, and 61 healthy individuals from 3 independent cohorts. Results revealed a signature of acute SARS-CoV-2 infection, which is represented by inflammatory biomarkers, chemokines and complement-related factors. Furthermore, the circulating proteome is still significantly affected in post-COVID-19 samples several weeks after infection. Post-COVID-19 individuals are characterized by upregulation of mediators of the tumor necrosis (TNF)-α signaling pathways and proteins related to transforming growth factor (TGF)-ß. In addition, the circulating proteome is able to differentiate between patients with different COVID-19 disease severities, and is associated with the time after infection. These results provide important insights into changes induced by SARS-CoV-2 infection at the proteomic level by integrating several cohorts to obtain a large disease spectrum, including variation in disease severity and time after infection. These findings could guide the development of host-directed therapy in COVID-19.
Collapse
Affiliation(s)
- Martijn Zoodsma
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Aline H. de Nooijer
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Inge Grondman
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Manoj Kumar Gupta
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Valerie A. C. M. Koeken
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Emma Kooistra
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gizem Kilic
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ozlem Bulut
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nina Gödecke
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Nico Janssen
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Anton A. M. Ermens
- Department of Clinical Chemistry and Hematology, Amphia Hospital, Breda, Netherlands
| | - Andre J. A. M. van der Ven
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Georg M. N. Behrens
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Frank L. van de Veerdonk
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Mihai G. Netea
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
100
|
Axelerad A, Stuparu AZ, Muja LF, Docu Axelerad S, Petrov SG, Gogu AE, Jianu DC. Narrative Review of New Insight into the Influence of the COVID-19 Pandemic on Cardiovascular Care. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1554. [PMID: 36363511 PMCID: PMC9694465 DOI: 10.3390/medicina58111554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2024]
Abstract
Background and Objectives: The purpose of this paper was to perform a literature review on the effects of the COVID-19 pandemic on cardiothoracic and vascular surgery care and departments. Materials and Methods: To conduct this evaluation, an electronic search of many databases was conducted, and the resulting papers were chosen and evaluated. Results: Firstly, we have addressed the impact of COVID-19 infection on the cardiovascular system from the pathophysiological and treatment points of view. Afterwards, we analyzed every cardiovascular disease that seemed to appear after a COVID-19 infection, emphasizing the treatment. In addition, we have analyzed the impact of the pandemic on the cardiothoracic and vascular departments in different countries and the transitions that appeared. Finally, we discussed the implications of the cardiothoracic and vascular specialists' and residents' work and studies on the pandemic. Conclusions: The global pandemic caused by SARS-CoV-2 compelled the vascular profession to review the treatment of certain vascular illnesses and find solutions to address the vascular consequences of COVID-19 infection. The collaboration between vascular surgeons, public health specialists, and epidemiologists must continue to investigate the impact of the pandemic and the response to the public health issue.
Collapse
Affiliation(s)
- Any Axelerad
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
- Department of Neurology, ‘Sf. Ap. Andrei’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Alina Zorina Stuparu
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
- Department of Neurology, ‘Sf. Ap. Andrei’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Lavinia Florenta Muja
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
- Department of Neurology, ‘Sf. Ap. Andrei’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | | | - Silvia Georgeta Petrov
- Doctoral School of the Faculty of Psychology and Educational Sciences within the University of Bucharest, 050663 Bucharest, Romania
| | - Anca Elena Gogu
- Department of Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Dragos Catalin Jianu
- Department of Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| |
Collapse
|