51
|
Cardiac-specific overexpression of aldehyde dehydrogenase 2 exacerbates cardiac remodeling in response to pressure overload. Redox Biol 2018; 17:440-449. [PMID: 29885625 PMCID: PMC5991908 DOI: 10.1016/j.redox.2018.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022] Open
Abstract
Pathological cardiac remodeling during heart failure is associated with higher levels of lipid peroxidation products and lower abundance of several aldehyde detoxification enzymes, including aldehyde dehydrogenase 2 (ALDH2). An emerging idea that could explain these findings concerns the role of electrophilic species in redox signaling, which may be important for adaptive responses to stress or injury. The purpose of this study was to determine whether genetically increasing ALDH2 activity affects pressure overload-induced cardiac dysfunction. Mice subjected to transverse aortic constriction (TAC) for 12 weeks developed myocardial hypertrophy and cardiac dysfunction, which were associated with diminished ALDH2 expression and activity. Cardiac-specific expression of the human ALDH2 gene in mice augmented myocardial ALDH2 activity but did not improve cardiac function in response to pressure overload. After 12 weeks of TAC, ALDH2 transgenic mice had larger hearts than their wild-type littermates and lower capillary density. These findings show that overexpression of ALDH2 augments the hypertrophic response to pressure overload and imply that downregulation of ALDH2 may be an adaptive response to certain forms of cardiac pathology.
Collapse
|
52
|
Rafie K, Gorelik A, Trapannone R, Borodkin VS, van Aalten DMF. Thio-Linked UDP-Peptide Conjugates as O-GlcNAc Transferase Inhibitors. Bioconjug Chem 2018; 29:1834-1840. [PMID: 29723473 PMCID: PMC6016062 DOI: 10.1021/acs.bioconjchem.8b00194] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
O-GlcNAc
transferase (OGT) is an essential glycosyltransferase
that installs the O-GlcNAc post-translational modification on the
nucleocytoplasmic proteome. We report the development of S-linked
UDP–peptide conjugates as potent bisubstrate OGT inhibitors.
These compounds were assembled in a modular fashion by photoinitiated
thiol–ene conjugation of allyl-UDP and optimal acceptor peptides
in which the acceptor serine was replaced with cysteine. The conjugate
VTPVC(S-propyl-UDP)TA (Ki = 1.3 μM)
inhibits the OGT activity in HeLa cell lysates. Linear fusions of
this conjugate with cell penetrating peptides were explored as prototypes
of cell-penetrant OGT inhibitors. A crystal structure of human OGT
with the inhibitor revealed mimicry of the interactions seen in the
pseudo-Michaelis complex. Furthermore, a fluorophore-tagged derivative
of the inhibitor works as a high affinity probe in a fluorescence
polarimetry hOGT assay.
Collapse
Affiliation(s)
- Karim Rafie
- Division of Gene Regulation and Expression, School of Life Sciences , University of Dundee , DD1 5EH Dundee , U.K
| | - Andrii Gorelik
- Division of Gene Regulation and Expression, School of Life Sciences , University of Dundee , DD1 5EH Dundee , U.K
| | - Riccardo Trapannone
- Division of Gene Regulation and Expression, School of Life Sciences , University of Dundee , DD1 5EH Dundee , U.K
| | - Vladimir S Borodkin
- Division of Gene Regulation and Expression, School of Life Sciences , University of Dundee , DD1 5EH Dundee , U.K
| | - Daan M F van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences , University of Dundee , DD1 5EH Dundee , U.K
| |
Collapse
|
53
|
Ducheix S, Magré J, Cariou B, Prieur X. Chronic O-GlcNAcylation and Diabetic Cardiomyopathy: The Bitterness of Glucose. Front Endocrinol (Lausanne) 2018; 9:642. [PMID: 30420836 PMCID: PMC6215811 DOI: 10.3389/fendo.2018.00642] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes (T2D) is a major risk factor for heart failure. Diabetic cardiomyopathy (DC) is characterized by diastolic dysfunction and left ventricular hypertrophy. Epidemiological data suggest that hyperglycaemia contributes to the development of DC. Several cellular pathways have been implicated in the deleterious effects of high glucose concentrations in the heart: oxidative stress, accumulation of advanced glycation end products (AGE), and chronic hexosamine biosynthetic pathway (HBP) activation. In the present review, we focus on the effect of chronic activation of the HBP on diabetic heart function. The HBP supplies N-acetylglucosamine moiety (O-GlcNAc) that is O-linked by O-GlcNAc transferase (OGT) to proteins on serine or threonine residues. This post-translational protein modification modulates the activity of the targeted proteins. In the heart, acute activation of the HBP in response to ischaemia-reperfusion injury appears to be protective. Conversely, chronic activation of the HBP in the diabetic heart affects Ca2+ handling, contractile properties, and mitochondrial function and promotes stress signaling, such as left ventricular hypertrophy and endoplasmic reticulum stress. Many studies have shown that O-GlcNAc impairs the function of key protein targets involved in these pathways, such as phospholamban, calmodulin kinase II, troponin I, and FOXO1. The data show that excessive O-GlcNAcylation is a major trigger of the glucotoxic events that affect heart function under chronic hyperglycaemia. Supporting this finding, pharmacological or genetic inhibition of the HBP in the diabetic heart improves heart function. In addition, the SGLT2 inhibitor dapagliflozin, a glucose lowering agent, has recently been shown to lower cardiac HBP in a lipodystophic T2D mice model and to concomitantly improve the diastolic dysfunction of these mice. Therefore, targeting cardiac-excessive O-GlcNAcylation or specific target proteins represents a potential therapeutic option to treat glucotoxicity in the diabetic heart.
Collapse
Affiliation(s)
- Simon Ducheix
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Jocelyne Magré
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Bertrand Cariou
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Xavier Prieur
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
- *Correspondence: Xavier Prieur
| |
Collapse
|
54
|
Miura T, Kume M, Kawamura T, Yamamoto K, Hamakubo T, Nishihara S. O-GlcNAc on PKCζ Inhibits the FGF4-PKCζ-MEK-ERK1/2 Pathway via Inhibition of PKCζ Phosphorylation in Mouse Embryonic Stem Cells. Stem Cell Reports 2017; 10:272-286. [PMID: 29249667 PMCID: PMC5768893 DOI: 10.1016/j.stemcr.2017.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) differentiate into multiple cell types during organismal development. Fibroblast growth factor 4 (FGF4) signaling induces differentiation from ESCs via the phosphorylation of downstream molecules such as mitogen-activated protein kinase/extracellular signal-related kinase (MEK) and extracellular signal-related kinase 1/2 (ERK1/2). The FGF4-MEK-ERK1/2 pathway is inhibited to maintain ESCs in the undifferentiated state. However, the inhibitory mechanism of the FGF4-MEK-ERK1/2 pathway in ESCs is uncharacterized. O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is a post-translational modification characterized by the attachment of a single N-acetylglucosamine (GlcNAc) to the serine and threonine residues of nuclear or cytoplasmic proteins. Here, we showed that the O-GlcNAc on the phosphorylation site of PKCζ inhibits PKCζ phosphorylation (activation) and, consequently, the FGF4-PKCζ-MEK-ERK1/2 pathway in ESCs. Our results demonstrate the mechanism for the maintenance of the undifferentiated state of ESCs via the inhibition of the FGF4-PKCζ-MEK-ERK1/2 pathway by O-GlcNAcylation on PKCζ. PKCζ activates the MEK-ERK1/2 pathway by FGF4 stimulation O-GlcNAc on the phosphorylation site of PKCζ inhibits PKCζ activation in ESCs FGF4-PKCζ-MEK-ERK1/2 pathway is inhibited by O-GlcNAc on PKCζ in ESCs
Collapse
Affiliation(s)
- Taichi Miura
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan; National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masahiko Kume
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Takeshi Kawamura
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Takao Hamakubo
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
| | - Shoko Nishihara
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan.
| |
Collapse
|
55
|
Moerkamp AT, Leung HW, Bax NAM, Holst S, Lodder K, Berends T, Dingenouts CKE, Choo A, Smits AM, Goumans MJ. Glycosylated Cell Surface Markers for the Isolation of Human Cardiac Progenitors. Stem Cells Dev 2017; 26:1552-1565. [PMID: 28891400 DOI: 10.1089/scd.2017.0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of stem cell therapy after cardiac injury is to replace damaged cardiac tissue. Human cardiac progenitor cells (CPCs) represent an interesting cell population for clinical strategies to treat cardiac disease and human CPC-specific antibodies would aid in the clinical implementation of cardiac progenitor-based cell therapy. However, the field of CPC biology suffers from the lack of human CPC-specific markers. Therefore, we raised a panel of monoclonal antibodies (mAb) against CPCs. Of this panel of antibodies, we show that mAb C1096 recognizes a progenitor-like population in the fetal and adult human heart and partially colocalize with reported CPC populations in vitro. Furthermore, mAb C1096 can be used to isolate a multipotent progenitor population from human heart tissue. Interestingly, the two lead candidates, mAb C1096 and mAb C19, recognize glycosylated residues on PECAM1 (platelet and endothelial cell adhesion molecule 1) and GRP78, respectively, and de-N-glycosylation significantly abolishes their binding. Thereby, this report describes new clinically applicable antibodies against human CPCs, and for the first time demonstrates the importance of glycosylated residues as CPCs specific markers.
Collapse
Affiliation(s)
- Asja T Moerkamp
- 1 Department of Molecular Cell Biology, Leiden University Medical Center , Leiden, the Netherlands
| | - Hau Wan Leung
- 2 Bioprocessing Technology Institute , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Noortje A M Bax
- 1 Department of Molecular Cell Biology, Leiden University Medical Center , Leiden, the Netherlands .,3 Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, the Netherlands
| | - Stephanie Holst
- 4 Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden, the Netherlands
| | - Kirsten Lodder
- 1 Department of Molecular Cell Biology, Leiden University Medical Center , Leiden, the Netherlands
| | - Thijs Berends
- 1 Department of Molecular Cell Biology, Leiden University Medical Center , Leiden, the Netherlands
| | - Calinda K E Dingenouts
- 1 Department of Molecular Cell Biology, Leiden University Medical Center , Leiden, the Netherlands
| | - Andre Choo
- 2 Bioprocessing Technology Institute , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore .,5 Department of Bioengineering, National University of Singapore , Singapore, Singapore
| | - Anke M Smits
- 1 Department of Molecular Cell Biology, Leiden University Medical Center , Leiden, the Netherlands
| | - Marie-José Goumans
- 1 Department of Molecular Cell Biology, Leiden University Medical Center , Leiden, the Netherlands
| |
Collapse
|
56
|
Ida S, Morino K, Sekine O, Ohashi N, Kume S, Chano T, Iwasaki K, Harada N, Inagaki N, Ugi S, Maegawa H. Diverse metabolic effects of O-GlcNAcylation in the pancreas but limited effects in insulin-sensitive organs in mice. Diabetologia 2017. [PMID: 28642969 DOI: 10.1007/s00125-017-4327-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS/HYPOTHESIS O-GlcNAcylation is characterised by the addition of N-acetylglucosamine to various proteins by O-GlcNAc transferase (OGT) and serves in sensing intracellular nutrients by modulating various cellular processes. Although it has been speculated that O-GlcNAcylation is associated with glucose metabolism, its exact role in whole body glucose metabolism has not been fully elucidated. Here, we investigated whether loss of O-GlcNAcylation globally and in specific organs affected glucose metabolism in mammals under physiological conditions. METHODS Tamoxifen-inducible global Ogt-knockout (Ogt-KO) mice were generated by crossbreeding Ogt-flox mice with R26-Cre-ERT2 mice. Liver, skeletal muscle, adipose tissue and pancreatic beta cell-specific Ogt-KO mice were generated by crossbreeding Ogt-flox mice with Alb-Cre, Mlc1f-Cre, Adipoq-Cre and Pdx1 PB-CreER™ mice, respectively. Glucose metabolism was evaluated by i.p. glucose and insulin tolerance tests. RESULTS Tamoxifen-inducible global Ogt-KO mice exhibited a lethal phenotype from 4 weeks post injection, suggesting that O-GlcNAcylation is essential for survival in adult mice. Tissue-specific Ogt deletion from insulin-sensitive organs, including liver, skeletal muscle and adipose tissue, had little impact on glucose metabolism under physiological conditions. However, pancreatic beta cell-specific Ogt-KO mice displayed transient hypoglycaemia (Ogt-flox 5.46 ± 0.41 vs Ogt-βKO 3.88 ± 0.26 mmol/l) associated with about twofold higher insulin secretion and accelerated adiposity, followed by subsequent hyperglycaemia (Ogt-flox 6.34 ± 0.32 vs Ogt-βKO 26.4 ± 2.37 mmol/l) with insulin depletion accompanied by beta cell apoptosis. CONCLUSIONS/INTERPRETATION These findings suggest that O-GlcNAcylation has little effect on glucose metabolism in insulin-sensitive tissues but plays a crucial role in pancreatic beta cell function and survival under physiological conditions. Our results provide novel insight into O-GlcNAc biology and physiology in glucose metabolism.
Collapse
Affiliation(s)
- Shogo Ida
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Katsutaro Morino
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan.
| | - Osamu Sekine
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Natsuko Ohashi
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kanako Iwasaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Ugi
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
57
|
Levine ZG, Walker S. The Biochemistry of O-GlcNAc Transferase: Which Functions Make It Essential in Mammalian Cells? Annu Rev Biochem 2017; 85:631-57. [PMID: 27294441 DOI: 10.1146/annurev-biochem-060713-035344] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
O-linked N-acetylglucosamine transferase (OGT) is found in all metazoans and plays an important role in development but at the single-cell level is only essential in dividing mammalian cells. Postmitotic mammalian cells and cells of invertebrates such as Caenorhabditis elegans and Drosophila can survive without copies of OGT. Why OGT is required in dividing mammalian cells but not in other cells remains unknown. OGT has multiple biochemical activities. Beyond its well-known role in adding β-O-GlcNAc to serine and threonine residues of nuclear and cytoplasmic proteins, OGT also acts as a protease in the maturation of the cell cycle regulator host cell factor 1 (HCF-1) and serves as an integral member of several protein complexes, many of them linked to gene expression. In this review, we summarize current understanding of the mechanisms underlying OGT's biochemical activities and address whether known functions of OGT could be related to its essential role in dividing mammalian cells.
Collapse
Affiliation(s)
- Zebulon G Levine
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|
58
|
O-GlcNAcylation and cardiovascular disease. Biochem Soc Trans 2017; 45:545-553. [PMID: 28408494 DOI: 10.1042/bst20160164] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 01/20/2023]
Abstract
The post-translational modification of serine and threonine residues of proteins found in numerous subcellular locations by O-linked N-acetylglucosamine (O-GlcNAc) is emerging as a key mediator of many cardiovascular pathophysiological processes. Early studies implicated increased protein O-GlcNAcylation as contributing to the cardiovascular complications associated with diabetes, whereas subsequent studies demonstrated that acute increases in O-GlcNAc levels were protective against ischemia/reperfusion injury. There is now a growing understanding that O-GlcNAc modification of proteins influences numerous cellular functions, including transcription, protein turnover, calcium handling, and bioenergetics. As a result, a more nuanced view of the role of protein O-GlcNAcylation in the cardiovascular system is emerging along with the recognition that it is required for normal cellular function and homeostasis. Consequently, the impact of changes in O-GlcNAc cycling due to stress or disease on the heart is complex and highly dependent on the specific context of these events. The goal of this review is to provide an overview of some of the more recent advances in our understanding of the role O-GlcNAcylation plays in mediating cardiovascular function and disease.
Collapse
|
59
|
Dassanayaka S, Brainard RE, Watson LJ, Long BW, Brittian KR, DeMartino AM, Aird AL, Gumpert AM, Audam TN, Kilfoil PJ, Muthusamy S, Hamid T, Prabhu SD, Jones SP. Cardiomyocyte Ogt limits ventricular dysfunction in mice following pressure overload without affecting hypertrophy. Basic Res Cardiol 2017; 112:23. [PMID: 28299467 PMCID: PMC5555162 DOI: 10.1007/s00395-017-0612-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/08/2017] [Indexed: 10/20/2022]
Abstract
The myocardial response to pressure overload involves coordination of multiple transcriptional, posttranscriptional, and metabolic cues. The previous studies show that one such metabolic cue, O-GlcNAc, is elevated in the pressure-overloaded heart, and the increase in O-GlcNAcylation is required for cardiomyocyte hypertrophy in vitro. Yet, it is not clear whether and how O-GlcNAcylation participates in the hypertrophic response in vivo. Here, we addressed this question using patient samples and a preclinical model of heart failure. Protein O-GlcNAcylation levels were increased in myocardial tissue from heart failure patients compared with normal patients. To test the role of OGT in the heart, we subjected cardiomyocyte-specific, inducibly deficient Ogt (i-cmOgt -/-) mice and Ogt competent littermate wild-type (WT) mice to transverse aortic constriction. Deletion of cardiomyocyte Ogt significantly decreased O-GlcNAcylation and exacerbated ventricular dysfunction, without producing widespread changes in metabolic transcripts. Although some changes in hypertrophic and fibrotic signaling were noted, there were no histological differences in hypertrophy or fibrosis. We next determined whether significant differences were present in i-cmOgt -/- cardiomyocytes from surgically naïve mice. Interestingly, markers of cardiomyocyte dedifferentiation were elevated in Ogt-deficient cardiomyocytes. Although no significant differences in cardiac dysfunction were apparent after recombination, it is possible that such changes in dedifferentiation markers could reflect a larger phenotypic shift within the Ogt-deficient cardiomyocytes. We conclude that cardiomyocyte Ogt is not required for cardiomyocyte hypertrophy in vivo; however, loss of Ogt may exert subtle phenotypic differences in cardiomyocytes that sensitize the heart to pressure overload-induced ventricular dysfunction.
Collapse
Affiliation(s)
- Sujith Dassanayaka
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Robert E Brainard
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Lewis J Watson
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
- Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY, USA
| | - Bethany W Long
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Kenneth R Brittian
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Angelica M DeMartino
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Allison L Aird
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Anna M Gumpert
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Timothy N Audam
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Peter J Kilfoil
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Senthilkumar Muthusamy
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Tariq Hamid
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
- Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sumanth D Prabhu
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
- Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven P Jones
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA.
| |
Collapse
|
60
|
Ono S, Kume S, Yasuda-Yamahara M, Yamahara K, Takeda N, Chin-Kanasaki M, Araki H, Sekine O, Yokoi H, Mukoyama M, Uzu T, Araki SI, Maegawa H. O-linked β-N-acetylglucosamine modification of proteins is essential for foot process maturation and survival in podocytes. Nephrol Dial Transplant 2017; 32:1477-1487. [DOI: 10.1093/ndt/gfw463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/02/2016] [Indexed: 11/14/2022] Open
|
61
|
Abstract
The O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification (O-GlcNAcylation) is the dynamic and reversible attachment of N-acetylglucosamine to serine and threonine residues of nucleocytoplasmic target proteins. It is abundant in metazoa, involving hundreds of proteins linked to a plethora of biological functions with implications in human diseases. The process is catalysed by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) that add and remove sugar moieties respectively. OGT knockout is embryonic lethal in a range of animal models, hampering the study of the biological role of O-GlcNAc and the dissection of catalytic compared with non-catalytic roles of OGT. Therefore, selective and potent chemical tools are necessary to inhibit OGT activity in the context of biological systems. The present review focuses on the available OGT inhibitors and summarizes advantages, limitations and future challenges.
Collapse
|
62
|
Mailleux F, Gélinas R, Beauloye C, Horman S, Bertrand L. O-GlcNAcylation, enemy or ally during cardiac hypertrophy development? Biochim Biophys Acta Mol Basis Dis 2016; 1862:2232-2243. [PMID: 27544701 DOI: 10.1016/j.bbadis.2016.08.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 12/11/2022]
Abstract
O-linked attachment of the monosaccharide β-N-acetyl-glucosamine (O-GlcNAcylation) is a post-translational modification occurring on serine and threonine residues, which is evolving as an important mechanism for the regulation of various cellular processes. The present review will, first, provide a general background on the molecular regulation of protein O-GlcNAcylation and will summarize the role of this post-translational modification in various acute cardiac pathologies including ischemia-reperfusion. Then, we will focus on research studies examining protein O-GlcNAcylation in the context of cardiac hypertrophy. A particular emphasis will be laid on the convergent but also divergent actions of O-GlcNAcylation according to the type of hypertrophy investigated, including physiological, pressure overload-induced and diabetes-linked cardiac hypertrophy. In an attempt to distinguish whether O-GlcNAcylation is detrimental or beneficial, this review will present the different O-GlcNAcylated targets involved in hypertrophy development. We will finally argue on potential interest to target O-GlcNAc processes to treat cardiac hypertrophy. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Florence Mailleux
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Roselle Gélinas
- Montreal Heart Institute, Montreal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada
| | - Christophe Beauloye
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium; Cliniques Universitaires Saint-Luc, Division of Cardiology, Brussels, Belgium
| | - Sandrine Horman
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Luc Bertrand
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.
| |
Collapse
|
63
|
Wysoczynski M, Dassanayaka S, Zafir A, Ghafghazi S, Long BW, Noble C, DeMartino AM, Brittian KR, Bolli R, Jones SP. A New Method to Stabilize C-Kit Expression in Reparative Cardiac Mesenchymal Cells. Front Cell Dev Biol 2016; 4:78. [PMID: 27536657 PMCID: PMC4971111 DOI: 10.3389/fcell.2016.00078] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 11/13/2022] Open
Abstract
Cell therapy improves cardiac function. Few cells have been investigated more extensively or consistently shown to be more effective than c-kit sorted cells; however, c-kit expression is easily lost during passage. Here, our primary goal was to develop an improved method to isolate c-kit(pos) cells and maintain c-kit expression after passaging. Cardiac mesenchymal cells (CMCs) from wild-type mice were selected by polystyrene adherence properties. CMCs adhering within the first hours are referred to as rapidly adherent (RA); CMCs adhering subsequently are dubbed slowly adherent (SA). Both RA and SA CMCs were c-kit sorted. SA CMCs maintained significantly higher c-kit expression than RA cells; SA CMCs also had higher expression endothelial markers. We subsequently tested the relative efficacy of SA vs. RA CMCs in the setting of post-infarct adoptive transfer. Two days after coronary occlusion, vehicle, RA CMCs, or SA CMCs were delivered percutaneously with echocardiographic guidance. SA CMCs, but not RA CMCs, significantly improved cardiac function compared to vehicle treatment. Although the mechanism remains to be elucidated, the more pronounced endothelial phenotype of the SA CMCs coupled with the finding of increased vascular density suggest a potential pro-vasculogenic action. This new method of isolating CMCs better preserves c-kit expression during passage. SA CMCs, but not RA CMCs, were effective in reducing cardiac dysfunction. Although c-kit expression was maintained, it is unclear whether maintenance of c-kit expression per se was responsible for improved function, or whether the differential adherence property itself confers a reparative phenotype independently of c-kit.
Collapse
Affiliation(s)
- Marcin Wysoczynski
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Sujith Dassanayaka
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Ayesha Zafir
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Shahab Ghafghazi
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Bethany W Long
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Camille Noble
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Angelica M DeMartino
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Kenneth R Brittian
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Steven P Jones
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| |
Collapse
|
64
|
Zafir A, Bradley JA, Long BW, Muthusamy S, Li Q, Hill BG, Wysoczynski M, Prabhu SD, Bhatnagar A, Bolli R, Jones SP. O-GlcNAcylation Negatively Regulates Cardiomyogenic Fate in Adult Mouse Cardiac Mesenchymal Stromal Cells. PLoS One 2015; 10:e0142939. [PMID: 26565625 PMCID: PMC4643874 DOI: 10.1371/journal.pone.0142939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/28/2015] [Indexed: 11/25/2022] Open
Abstract
In both preclinical and clinical studies, cell transplantation of several cell types is used to promote repair of damaged organs and tissues. Nevertheless, despite the widespread use of such strategies, there remains little understanding of how the efficacy of cell therapy is regulated. We showed previously that augmentation of a unique, metabolically derived stress signal (i.e., O-GlcNAc) improves survival of cardiac mesenchymal stromal cells; however, it is not known whether enhancing O-GlcNAcylation affects lineage commitment or other aspects of cell competency. In this study, we assessed the role of O-GlcNAc in differentiation of cardiac mesenchymal stromal cells. Exposure of these cells to routine differentiation protocols in culture increased markers of the cardiomyogenic lineage such as Nkx2.5 and connexin 40, and augmented the abundance of transcripts associated with endothelial and fibroblast cell fates. Differentiation significantly decreased the abundance of O-GlcNAcylated proteins. To determine if O-GlcNAc is involved in stromal cell differentiation, O-GlcNAcylation was increased pharmacologically during the differentiation protocol. Although elevated O-GlcNAc levels did not significantly affect fibroblast and endothelial marker expression, acquisition of cardiomyocyte markers was limited. In addition, increasing O-GlcNAcylation further elevated smooth muscle actin expression. In addition to lineage commitment, we also evaluated proliferation and migration, and found that increasing O-GlcNAcylation did not significantly affect either; however, we found that O-GlcNAc transferase--the protein responsible for adding O-GlcNAc to proteins--is at least partially required for maintaining cellular proliferative and migratory capacities. We conclude that O-GlcNAcylation contributes significantly to cardiac mesenchymal stromal cell lineage and function. O-GlcNAcylation and pathological conditions that may affect O-GlcNAc levels (such as diabetes) should be considered carefully in the context of cardiac cell therapy.
Collapse
Affiliation(s)
- Ayesha Zafir
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - James A. Bradley
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Bethany W. Long
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Senthilkumar Muthusamy
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Qianhong Li
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Bradford G. Hill
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Marcin Wysoczynski
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Sumanth D. Prabhu
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Aruni Bhatnagar
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Roberto Bolli
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Steven P. Jones
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
65
|
Makino A, Dai A, Han Y, Youssef KD, Wang W, Donthamsetty R, Scott BT, Wang H, Dillmann WH. O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice. Am J Physiol Cell Physiol 2015; 309:C593-9. [PMID: 26269457 PMCID: PMC4628934 DOI: 10.1152/ajpcell.00069.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is the primary cause of morbidity and mortality in diabetes, and endothelial dysfunction is commonly seen in these patients. Increased O-linked N-acetylglucosamine (O-GlcNAc) protein modification is one of the central pathogenic features of diabetes. Modification of proteins by O-GlcNAc (O-GlcNAcylation) is regulated by two key enzymes: β-N-acetylglucosaminidase [O-GlcNAcase (OGA)], which catalyzes the reduction of protein O-GlcNAcylation, and O-GlcNAc transferase (OGT), which induces O-GlcNAcylation. However, it is not known whether reducing O-GlcNAcylation can improve endothelial dysfunction in diabetes. To examine the effect of endothelium-specific OGA overexpression on protein O-GlcNAcylation and coronary endothelial function in diabetic mice, we generated tetracycline-inducible, endothelium-specific OGA transgenic mice, and induced OGA by doxycycline administration in streptozotocin-induced type 1 diabetic mice. OGA protein expression was significantly decreased in mouse coronary endothelial cells (MCECs) isolated from diabetic mice compared with control MCECs, whereas OGT protein level was markedly increased. The level of protein O-GlcNAcylation was increased in diabetic compared with control mice, and OGA overexpression significantly decreased the level of protein O-GlcNAcylation in MCECs from diabetic mice. Capillary density in the left ventricle and endothelium-dependent relaxation in coronary arteries were significantly decreased in diabetes, while OGA overexpression increased capillary density to the control level and restored endothelium-dependent relaxation without changing endothelium-independent relaxation. We found that connexin 40 could be the potential target of O-GlcNAcylation that regulates the endothelial functions in diabetes. These data suggest that OGA overexpression in endothelial cells improves endothelial function and may have a beneficial effect on coronary vascular complications in diabetes.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Cells, Cultured
- Connexins/metabolism
- Coronary Artery Disease/enzymology
- Coronary Artery Disease/genetics
- Coronary Artery Disease/physiopathology
- Coronary Vessels/drug effects
- Coronary Vessels/enzymology
- Coronary Vessels/physiopathology
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/physiopathology
- Diabetic Angiopathies/enzymology
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/physiopathology
- Endothelial Cells/drug effects
- Endothelial Cells/enzymology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiopathology
- Enzyme Induction
- Enzyme Inhibitors/pharmacology
- Glycosylation
- Histone Acetyltransferases/antagonists & inhibitors
- Histone Acetyltransferases/biosynthesis
- Histone Acetyltransferases/genetics
- Humans
- Hyaluronoglucosaminidase/antagonists & inhibitors
- Hyaluronoglucosaminidase/biosynthesis
- Hyaluronoglucosaminidase/genetics
- Male
- Mice, Transgenic
- N-Acetylglucosaminyltransferases/metabolism
- Neovascularization, Physiologic
- Protein Processing, Post-Translational
- Signal Transduction
- Vasodilation
- beta-N-Acetylhexosaminidases/antagonists & inhibitors
- beta-N-Acetylhexosaminidases/biosynthesis
- beta-N-Acetylhexosaminidases/genetics
- Gap Junction alpha-5 Protein
Collapse
Affiliation(s)
- Ayako Makino
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and Department of Medicine, University of California, San Diego, La Jolla, California
| | - Anzhi Dai
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ying Han
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Katia D Youssef
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Weihua Wang
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Reshma Donthamsetty
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Brian T Scott
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Hong Wang
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Wolfgang H Dillmann
- Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
66
|
Wende AR. Post-translational modifications of the cardiac proteome in diabetes and heart failure. Proteomics Clin Appl 2015; 10:25-38. [PMID: 26140508 PMCID: PMC4698356 DOI: 10.1002/prca.201500052] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/03/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
Abstract
Cardiovascular complications are the leading cause of death in diabetic patients. Decades of research has focused on altered gene expression, altered cellular signaling, and altered metabolism. This work has led to better understanding of disease progression and treatments aimed at reversing or stopping this deadly process. However, one of the pieces needed to complete the puzzle and bridge the gap between altered gene expression and changes in signaling/metabolism is the proteome and its host of modifications. Defining the mechanisms of regulation includes examining protein levels, localization, and activity of the functional component of cellular machinery. Excess or misutilization of nutrients in obesity and diabetes may lead to PTMs contributing to cardiovascular disease progression. PTMs link regulation of metabolic changes in the healthy and diseased heart with regulation of gene expression itself (e.g. epigenetics), protein enzymatic activity (e.g. mitochondrial oxidative capacity), and function (e.g. contractile machinery). Although a number of PTMs are involved in each of these pathways, we will highlight the role of the serine and threonine O‐linked addition of β‐N‐acetyl‐glucosamine or O‐GlcNAcylation. This nexus of nutrient supply, utilization, and storage allows for the modification and translation of mitochondrial function to many other aspects of the cell.
Collapse
Affiliation(s)
- Adam R Wende
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
67
|
Medford HM, Marsh SA. The role of O-GlcNAc transferase in regulating the gene transcription of developing and failing hearts. Future Cardiol 2015; 10:801-12. [PMID: 25495821 DOI: 10.2217/fca.14.42] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heart failure treatment currently centers on symptom management, primarily through reductions in systemic blood pressure and fluid retention. The O-linked attachment of β-N-acetylglucosamine to cardiac proteins is increased in cardiovascular disease and heart failure, and O-GlcNAc transferase (OGT) is the enzyme that catalyzes this addition. Deletion of OGT is embryonically lethal, and cardiomyocyte-specific OGT knockdown causes the exacerbation of heart failure. Stem cell therapy is currently a major focus of heart failure research, and it was recently discovered that OGT is intricately involved with stem cell differentiation. This article focuses on the relationship of OGT with epigenetics and pluripotency, and integrates OGT with several emerging areas of heart failure research, including calcium signaling.
Collapse
Affiliation(s)
- Heidi M Medford
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | | |
Collapse
|
68
|
Ortiz-Meoz RF, Jiang J, Lazarus MB, Orman M, Janetzko J, Fan C, Duveau DY, Tan ZW, Thomas CJ, Walker S. A small molecule that inhibits OGT activity in cells. ACS Chem Biol 2015; 10:1392-7. [PMID: 25751766 DOI: 10.1021/acschembio.5b00004] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
O-GlcNAc transferase (OGT) is an essential mammalian enzyme that regulates numerous cellular processes through the attachment of O-linked N-acetylglucosamine (O-GlcNAc) residues to nuclear and cytoplasmic proteins. Its targets include kinases, phosphatases, transcription factors, histones, and many other intracellular proteins. The biology of O-GlcNAc modification is still not well understood, and cell-permeable inhibitors of OGT are needed both as research tools and for validating OGT as a therapeutic target. Here, we report a small molecule OGT inhibitor, OSMI-1, developed from a high-throughput screening hit. It is cell-permeable and inhibits protein O-GlcNAcylation in several mammalian cell lines without qualitatively altering cell surface N- or O-linked glycans. The development of this molecule validates high-throughput screening approaches for the discovery of glycosyltransferase inhibitors, and further optimization of this scaffold may lead to yet more potent OGT inhibitors useful for studying OGT in animal models.
Collapse
Affiliation(s)
- Rodrigo F. Ortiz-Meoz
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States
| | - Jiaoyang Jiang
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States
| | - Michael B. Lazarus
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States
| | - Marina Orman
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States
| | - John Janetzko
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States
| | - Chenguang Fan
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States
| | - Damien Y. Duveau
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Zhi-Wei Tan
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States
| | - Craig J. Thomas
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Suzanne Walker
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
69
|
Muthusamy S, DeMartino AM, Watson LJ, Brittian KR, Zafir A, Dassanayaka S, Hong KU, Jones SP. MicroRNA-539 is up-regulated in failing heart, and suppresses O-GlcNAcase expression. J Biol Chem 2014; 289:29665-76. [PMID: 25183011 DOI: 10.1074/jbc.m114.578682] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Derangements in metabolism and related signaling pathways characterize the failing heart. One such signal, O-linked β-N-acetylglucosamine (O-GlcNAc), is an essential post-translational modification regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase (OGA), which modulate the function of many nuclear and cytoplasmic proteins. We recently reported reduced OGA expression in the failing heart, which is consistent with the pro-adaptive role of increased O-GlcNAcylation during heart failure; however, molecular mechanisms regulating these enzymes during heart failure remain unknown. Using miRNA microarray analysis, we observed acute and chronic changes in expression of several miRNAs. Here, we focused on miR-539 because it was predicted to target OGA mRNA. Indeed, co-transfection of the OGA-3'UTR containing reporter plasmid and miR-539 overexpression plasmid significantly reduced reporter activity. Overexpression of miR-539 in neonatal rat cardiomyocytes significantly suppressed OGA expression and consequently increased O-GlcNAcylation; conversely, the miR-539 inhibitor rescued OGA protein expression and restored O-GlcNAcylation. In conclusion, this work identifies the first target of miR-539 in the heart and the first miRNA that regulates OGA. Manipulation of miR-539 may represent a novel therapeutic target in the treatment of heart failure and other metabolic diseases.
Collapse
Affiliation(s)
- Senthilkumar Muthusamy
- From the Institute of Molecular Cardiology, and, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202
| | - Angelica M DeMartino
- From the Institute of Molecular Cardiology, and, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202
| | - Lewis J Watson
- From the Institute of Molecular Cardiology, and, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202
| | - Kenneth R Brittian
- From the Institute of Molecular Cardiology, and, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202
| | - Ayesha Zafir
- From the Institute of Molecular Cardiology, and, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202
| | - Sujith Dassanayaka
- From the Institute of Molecular Cardiology, and, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202
| | - Kyung U Hong
- From the Institute of Molecular Cardiology, and, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202
| | - Steven P Jones
- From the Institute of Molecular Cardiology, and, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
70
|
Myslicki JP, Belke DD, Shearer J. Role of O-GlcNAcylation in nutritional sensing, insulin resistance and in mediating the benefits of exercise. Appl Physiol Nutr Metab 2014; 39:1205-13. [PMID: 25203141 DOI: 10.1139/apnm-2014-0122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this review is to highlight the role of O-linked β-N-acetylglucosamine (O-GlcNAc) protein modification in metabolic disease states and to summarize current knowledge of how exercise affects this important post-translational signalling pathway. O-GlcNAc modification is an intracellular tool capable of integrating energy supply with demand. The accumulation of excess energy associated with obesity and insulin resistance is mediated, in part, by the hexosamine biosynthetic pathway (HBP), which results in the O-GlcNAcylation of a myriad of proteins, thereby affecting their respective function, stability, and localization. Insulin resistance is related to the excessive O-GlcNAcylation of key metabolic proteins causing a chronic blunting of insulin signalling pathways and precipitating the accompanying pathologies, such as heart and kidney disease. Lifestyle modifications such as diet and exercise also modify the pathway. Exercise is a front-line and cost-effective therapeutic approach for insulin resistance, and recent work shows that the intervention can alter O-GlcNAc gene expression, signalling, and protein modification. However, there is currently no consensus on the effect of frequency, intensity, type, and duration of exercise on O-GlcNAc modification, the HBP, and its related enzymes. On one end of the spectrum, mild, prolonged swim training reduces O-GlcNAcylation, while on the other end, higher intensity treadmill running increases cardiac protein O-GlcNAc modification. Clearly, a balance between acute and chronic stress of exercise is needed to reap the benefits of the intervention on O-GlcNAc signalling.
Collapse
Affiliation(s)
- Jason P Myslicki
- a Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | | |
Collapse
|