51
|
Pashakhanloo F, Herzka DA, Ashikaga H, Mori S, Gai N, Bluemke DA, Trayanova NA, McVeigh ER. Myofiber Architecture of the Human Atria as Revealed by Submillimeter Diffusion Tensor Imaging. Circ Arrhythm Electrophysiol 2016; 9:e004133. [PMID: 27071829 DOI: 10.1161/circep.116.004133] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/15/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Accurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and disease. Thus far, such knowledge has been acquired from destructive sectioning, and there is a paucity of data about atrial fiber architecture variability in the human population. METHODS AND RESULTS In this study, we have developed a customized 3-dimensional diffusion tensor magnetic resonance imaging sequence on a clinical scanner that makes it possible to image an entire intact human heart specimen ex vivo at submillimeter resolution. The data from 8 human atrial specimens obtained with this technique present complete maps of the fibrous organization of the human atria. The findings demonstrate that the main features of atrial anatomy are mostly preserved across subjects although the exact location and orientation of atrial bundles vary. Using the full tractography data, we were able to cluster, visualize, and characterize the distinct major bundles in the human atria. Furthermore, quantitative characterization of the fiber angles across the atrial wall revealed that the transmural fiber angle distribution is heterogeneous throughout different regions of the atria. CONCLUSIONS The application of submillimeter diffusion tensor magnetic resonance imaging provides an unprecedented level of information on both human atrial structure, as well as its intersubject variability. The high resolution and fidelity of this data could enhance our understanding of structural contributions to atrial rhythm and pump disorders and lead to improvements in their targeted treatment.
Collapse
Affiliation(s)
- Farhad Pashakhanloo
- From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.)
| | - Daniel A Herzka
- From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.)
| | - Hiroshi Ashikaga
- From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.)
| | - Susumu Mori
- From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.)
| | - Neville Gai
- From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.)
| | - David A Bluemke
- From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.)
| | - Natalia A Trayanova
- From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.)
| | - Elliot R McVeigh
- From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.).
| |
Collapse
|
52
|
Giannakidis A, Gullberg GT, Pennell DJ, Firmin DN. Value of Formalin Fixation for the Prolonged Preservation of Rodent Myocardial Microanatomical Organization: Evidence by MR Diffusion Tensor Imaging. Anat Rec (Hoboken) 2016; 299:878-87. [PMID: 27111575 DOI: 10.1002/ar.23359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/10/2016] [Accepted: 03/14/2016] [Indexed: 11/08/2022]
Abstract
Previous ex vivo diffusion tensor imaging (DTI) studies on formalin-fixed myocardial tissue assumed that, after some initial changes in the first 48 hr since the start of fixation, DTI parameters remain stable over time. Prolonged preservation of cardiac tissue in formalin prior to imaging has been seen many times in the DTI literature as it is considered orderly. Our objective is to define the effects of the prolonged cardiac tissue exposure to formalin on tissue microanatomical organization, as this is assessed by DTI parameters. DTI experiments were conducted on eight excised rodent hearts that were fixed by immersion in formalin. The samples were randomly divided into two equinumerous groups corresponding to shorter (∼2 weeks) and more prolonged (∼6-8 weeks) durations of tissue exposure to formalin prior to imaging. We found that when the duration of cardiac tissue exposure to formalin before imaging increased, water diffusion became less restricted, helix angle (HA) histograms flattened out and exhibited heavier tails (even though the classic HA transmural variation was preserved), and a significant loss of inter-voxel primary diffusion orientation integrity was introduced. The prolonged preservation of cardiac tissue in formalin profoundly affected its microstructural organization, as this was assessed by DTI parameters. The accurate interpretation of diffusivity profiles necessitates awareness of the pitfalls of prolonged cardiac tissue exposure duration to formalin. The acquired knowledge works to the advantage of a proper experimental design of DTI studies of fixed hearts. Anat Rec, 299:878-887, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Archontis Giannakidis
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK.,Life Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Grant T Gullberg
- Life Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Radiology and Biomedical Imaging, University California San Francisco, San Francisco, California, USA
| | - Dudley J Pennell
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - David N Firmin
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
53
|
Cirillo M, Campana M, Brunelli F, Dalla Tomba M, Mhagna Z, Messina A, Villa E, Natalini G, Troise G. Time series analysis of physiologic left ventricular reconstruction in ischemic cardiomyopathy. J Thorac Cardiovasc Surg 2016; 152:382-91. [PMID: 27167021 DOI: 10.1016/j.jtcvs.2016.03.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The history of left ventricular reconstruction has demonstrated that the full spectrum of recoverable physiologic parameters is essential for a good functional result. We report the long-term outcome of a new surgical technique that arranges myocardial fibers in a near-normal disposition, also recovering left ventricular twisting. METHODS Between May 2006 and October 2013, 29 consecutive patients with previous anterior myocardial infarction and heart failure symptoms underwent physiologic left ventricular reconstruction surgery and coronary revascularization. Patients were examined by means of standard echocardiography and 2-dimensional speckle tracking at 8 time steps until 7 years after surgery. Ten geometric and functional parameters were evaluated at each step and analyzed by the linear mixed model test. RESULTS Hospital mortality was 0%. The mean percentage of indexed end-diastolic and end-systolic volume reduction was 45.7% and 50.9%, respectively. Ejection fraction and all of the volumes were significantly different in the postoperative period with a steady correction during time. Diastolic parameters were not worsened by surgical reconstruction. Ejection fraction and deceleration time showed a significant improvement during time. Left ventricular torsion increased immediately after the surgical correction from 2.8 ± 4.4 degrees to 8.7 ± 3.9 degrees (P = .02) and was still present 4 years after surgery. CONCLUSIONS Surgical conduction of ventricular reconstruction should be standardized to achieve the full spectrum of recoverable physiologic parameters. The renewal of ventricular torsion should be pursued as an adjunctive element of ventricular efficiency, mainly in ventricles that work at a critical level in the Frank-Starling relationship and pressure-volume loop.
Collapse
Affiliation(s)
- Marco Cirillo
- Heart Failure Surgery Unit, Poliambulanza Foundation Hospital, Brescia, Italy.
| | - Marco Campana
- Echocardiography Laboratory, Cardiology Unit, Cardiovascular Department, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Federico Brunelli
- Cardiac Surgery Unit, Cardiovascular Department, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Margherita Dalla Tomba
- Cardiac Surgery Unit, Cardiovascular Department, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Zean Mhagna
- Cardiac Surgery Unit, Cardiovascular Department, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Antonio Messina
- Cardiac Surgery Unit, Cardiovascular Department, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Emmanuel Villa
- Cardiac Surgery Unit, Cardiovascular Department, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Giuseppe Natalini
- Intensive Care Unit, Emergency Department, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Giovanni Troise
- Cardiac Surgery Unit, Cardiovascular Department, Poliambulanza Foundation Hospital, Brescia, Italy
| |
Collapse
|
54
|
Merchant SS, Gomez AD, Morgan JL, Hsu EW. Parametric Modeling of the Mouse Left Ventricular Myocardial Fiber Structure. Ann Biomed Eng 2016; 44:2661-73. [PMID: 26942586 DOI: 10.1007/s10439-016-1574-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/17/2016] [Indexed: 12/26/2022]
Abstract
Magnetic resonance diffusion tensor imaging (DTI) has greatly facilitated detailed quantifications of myocardial structures. However, structural patterns, such as the distinctive transmural rotation of the fibers, remain incompletely described. To investigate the validity and practicality of pattern-based analysis, 3D DTI was performed on 13 fixed mouse hearts and fiber angles in the left ventricle were transformed and fitted to parametric expressions constructed from elementary functions of the prolate spheroidal spatial variables. It was found that, on average, the myocardial fiber helix angle could be represented to 6.5° accuracy by the equivalence of a product of 10th-order polynomials of the radial and longitudinal variables, and 17th-order Fourier series of the circumferential variable. Similarly, the fiber imbrication angle could be described by 10th-order polynomials and 24th-order Fourier series, to 5.6° accuracy. The representations, while relatively concise, did not adversely affect the information commonly derived from DTI datasets including the whole-ventricle mean fiber helix angle transmural span and atlases constructed for the group. The unique ability of parametric models for predicting the 3D myocardial fiber structure from finite number of 2D slices was also demonstrated. These findings strongly support the principle of parametric modeling for characterizing myocardial structures in the mouse and beyond.
Collapse
Affiliation(s)
- Samer S Merchant
- Department of Bioengineering, University of Utah, 36 S Wasatch Dr Rm 3100, Salt Lake City, UT, 84112, USA.
| | - Arnold David Gomez
- Department of Bioengineering, University of Utah, 36 S Wasatch Dr Rm 3100, Salt Lake City, UT, 84112, USA
- Division of Cardiothoracic Surgery, University of Utah, Salt Lake City, UT, USA
| | - James L Morgan
- Department of Bioengineering, University of Utah, 36 S Wasatch Dr Rm 3100, Salt Lake City, UT, 84112, USA
| | - Edward W Hsu
- Department of Bioengineering, University of Utah, 36 S Wasatch Dr Rm 3100, Salt Lake City, UT, 84112, USA
| |
Collapse
|
55
|
Mazumder R, Choi S, Clymer BD, White RD, Kolipaka A. Diffusion Tensor Imaging of Healthy and Infarcted Porcine Hearts: Study on the Impact of Formalin Fixation. J Med Imaging Radiat Sci 2016; 47:74-85. [PMID: 26989451 PMCID: PMC4790101 DOI: 10.1016/j.jmir.2015.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Due to complexities of in-vivo cardiac diffusion tensor imaging (DTI), ex-vivo formalin-fixed specimens are used to investigate cardiac remodeling in diseases, and reported results have shown conflicting trends. This study investigates the impact of formalin-fixation on diffusion properties and optimizes tracking parameters based on controls to understand remodeling in myocardial-infarction (MI). METHODS DTI was performed on 4 healthy (controls) and 4 MI induced formalin-fixed (PoMI) ex-vivo porcine hearts. Controls were scanned pre-fixation (PrCtrl) and re-scanned (PoCtrl) after formalin-fixation. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were estimated in all hearts. Tracking parameters (FA, tract termination angle (TTA), fiber-length) were optimized in controls and then used to investigate structural remodeling in PoMI hearts. RESULTS Fixation increased ADC and decreased FA. PoMI showed increased ADC but decreased FA in infarcted zone compared to remote zone. TTA showed sharp increase in slope from 5°-10°, which flattened after 25° in all groups. Mean fiber-length for different tracking length range showed that PoCtrl had shorter fibers compared to PrCtrl. Fibers around infarction were shorter in length and disarrayed compared to PoCtrl group. CONCLUSION Formalin-fixation affects diffusion properties and hence DTI parametric trends observed in pathology may be influenced by the fixation process which can cause contradictory findings.
Collapse
Affiliation(s)
- Ria Mazumder
- Department of Electrical and Computer Engineering, 205
Dreese Laboratories, 2015 Neil Avenue, The Ohio State University, Columbus, Ohio
43210, USA
| | - Seongjin Choi
- Department of Radiology, Room 460, 395 W. 12th Avenue, The
Ohio State University, Columbus, Ohio 43210, USA
| | - Bradley D. Clymer
- Department of Electrical and Computer Engineering, 205
Dreese Laboratories, 2015 Neil Avenue, The Ohio State University, Columbus, Ohio
43210, USA
| | - Richard D. White
- Department of Radiology, Room 460, 395 W. 12th Avenue, The
Ohio State University, Columbus, Ohio 43210, USA
- Department of Internal Medicine-Division of Cardiovascular
Medicine, 244 Davis Heart & Lung Research Institute, 473 W. 12th Avenue, The
Ohio State University, Columbus, Ohio 43210, USA
| | - Arunark Kolipaka
- Department of Radiology, Room 460, 395 W. 12th Avenue, The
Ohio State University, Columbus, Ohio 43210, USA
- Department of Internal Medicine-Division of Cardiovascular
Medicine, 244 Davis Heart & Lung Research Institute, 473 W. 12th Avenue, The
Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
56
|
Molitoris JM, Paliwal S, Sekar RB, Blake R, Park J, Trayanova NA, Tung L, Levchenko A. Precisely parameterized experimental and computational models of tissue organization. Integr Biol (Camb) 2016; 8:230-242. [PMID: 26822672 DOI: 10.1039/c5ib00270b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Patterns of cellular organization in diverse tissues frequently display a complex geometry and topology tightly related to the tissue function. Progressive disorganization of tissue morphology can lead to pathologic remodeling, necessitating the development of experimental and theoretical methods of analysis of the tolerance of normal tissue function to structural alterations. A systematic way to investigate the relationship of diverse cell organization to tissue function is to engineer two-dimensional cell monolayers replicating key aspects of the in vivo tissue architecture. However, it is still not clear how this can be accomplished on a tissue level scale in a parameterized fashion, allowing for a mathematically precise definition of the model tissue organization and properties down to a cellular scale with a parameter dependent gradual change in model tissue organization. Here, we describe and use a method of designing precisely parameterized, geometrically complex patterns that are then used to control cell alignment and communication of model tissues. We demonstrate direct application of this method to guiding the growth of cardiac cell cultures and developing mathematical models of cell function that correspond to the underlying experimental patterns. Several anisotropic patterned cultures spanning a broad range of multicellular organization, mimicking the cardiac tissue organization of different regions of the heart, were found to be similar to each other and to isotropic cell monolayers in terms of local cell-cell interactions, reflected in similar confluency, morphology and connexin-43 expression. However, in agreement with the model predictions, different anisotropic patterns of cell organization, paralleling in vivo alterations of cardiac tissue morphology, resulted in variable and novel functional responses with important implications for the initiation and maintenance of cardiac arrhythmias. We conclude that variations of tissue geometry and topology can dramatically affect cardiac tissue function even if the constituent cells are themselves similar, and that the proposed method can provide a general strategy to experimentally and computationally investigate when such variation can lead to impaired tissue function.
Collapse
Affiliation(s)
- Jared M Molitoris
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD, 21205, USA
| | - Saurabh Paliwal
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD, 21205, USA
| | - Rajesh B Sekar
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD, 21205, USA
| | - Robert Blake
- Institute for Computational Medicine, Johns Hopkins University, 3400 N. Charles St., Hackerman Hall Room 216, Baltimore, MD, 21218, USA
| | - JinSeok Park
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, P.O. Box 208260, New Haven, CT, 06520, USA
| | - Natalia A Trayanova
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, 3400 N. Charles St., Hackerman Hall Room 216, Baltimore, MD, 21218, USA
| | - Leslie Tung
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD, 21205, USA
| | - Andre Levchenko
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, P.O. Box 208260, New Haven, CT, 06520, USA
| |
Collapse
|
57
|
Witzenburg CM, Dhume RY, Lake SP, Barocas VH. Automatic Segmentation of Mechanically Inhomogeneous Tissues Based on Deformation Gradient Jump. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:29-41. [PMID: 26168433 PMCID: PMC4739827 DOI: 10.1109/tmi.2015.2453316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Variations in properties, active behavior, injury, scarring, and/or disease can all cause a tissue's mechanical behavior to be heterogeneous. Advances in imaging technology allow for accurate full-field displacement tracking of both in vitro and in vivo deformation from an applied load. While detailed strain fields provide some insight into tissue behavior, material properties are usually determined by fitting stress-strain behavior with a constitutive equation. However, the determination of the mechanical behavior of heterogeneous soft tissue requires a spatially varying constitutive equation (i.e., one in which the material parameters vary with position). We present an approach that computationally dissects the sample domain into many homogeneous subdomains, wherein subdomain boundaries are formed by applying a betweenness based graphical analysis to the deformation gradient field to identify locations with large discontinuities. This novel partitioning technique successfully determined the shape, size and location of regions with locally similar material properties for: (1) a series of simulated soft tissue samples prescribed with both abrupt and gradual changes in anisotropy strength, prescribed fiber alignment, stiffness, and nonlinearity, (2) tissue analogs (PDMS and collagen gels) which were tested biaxially and speckle tracked (3) and soft tissues which exhibited a natural variation in properties (cadaveric supraspinatus tendon), a pathologic variation in properties (thoracic aorta containing transmural plaque), and active behavior (contracting cardiac sheet). The routine enables the dissection of samples computationally rather than physically, allowing for the study of small tissues specimens with unknown and irregular inhomogeneity.
Collapse
Affiliation(s)
- Colleen M. Witzenburg
- University of Minnesota, Minneapolis, MN 55455 USA and is now with the University of Virginia, Charlottesville, VA 22908 USA
| | | | - Spencer P. Lake
- University of Minnesota, Minneapolis, MN 55455 USA as is now with Washington University, St. Louis, MO 63130 USA
| | | |
Collapse
|
58
|
Wang Y, Cai W, Wang L, Xia R. Evaluate the early changes of myocardial fibers in rhesus monkey during sub-acute stage of myocardial infarction using diffusion tensor magnetic resonance imaging. Magn Reson Imaging 2015; 34:391-6. [PMID: 26708038 DOI: 10.1016/j.mri.2015.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/12/2015] [Indexed: 02/05/2023]
Abstract
PURPOSE The deterioration of cardiac mechanical function starts from the micro-alterations in the myocardial fibers after myocardial infarction (MI) due to the heart beats derived from the systole and diastole of the myocardial fibers. So, we want to evaluate quantitatively the early changes of myocardial fibers in rhesus monkey during sub-acute MI stage. MATERIALS AND METHODS Three fixed hearts with infarction after left anterior descending coronary artery ligation for 7days and eight age-matched intact controls were scanned by ex-vivo diffusion tensor magnetic resonance imaging (DT-MRI) to measure apparent diffusion coefficient (ADC), fractional anisotropy (FA) and helix angle (HA). RESULTS In comparison with healthy controls, FA and transmural range of HA in MI regions showed a significant reduction whereas ADC showed a significant increment (p<0.01). The double-helix myocardial fibers shifted further to left-handed helix around the infarcted and adjacent myocardium but shifted further to right-handed helix in remote myocardium. CONCLUSION HA is sensitive to evaluate quantitatively the early changes of myocardial fibers in sub-acute MI rhesus monkeys. The myocardial fibers in normal monkeys are similar to those in normal humans, suggesting that early changes of myocardial fibers in sub-acute MI monkeys can contribute to more accurately understand those in patients suffering sub-acute MI.
Collapse
Affiliation(s)
- Yuqing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No.11 ZhongGuanCun BeiYiTiao, Beijing, 100190, China.
| | - Wei Cai
- Department of Radiology, Beijing Jishuitan Hospital, 4th clinical medical college of Peking University, No.31 Xinjiekou East Road, Beijing, China, 100035
| | - Lei Wang
- Department of Radiology, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan, China, 610041
| | - Rui Xia
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, No.1 Friendship Road, Chongqing, China, 400016
| |
Collapse
|
59
|
Abdullah OM, Gomez AD, Merchant S, Heidinger M, Poelzing S, Hsu EW. Orientation dependence of microcirculation-induced diffusion signal in anisotropic tissues. Magn Reson Med 2015; 76:1252-62. [PMID: 26511215 DOI: 10.1002/mrm.25980] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 12/12/2022]
Abstract
PURPOSE To seek a better understanding of the effect of organized capillary flow on the MR diffusion-weighted signal. METHODS A theoretical framework was proposed to describe the diffusion-weighted MR signal, which was then validated both numerically using a realistic model of capillary network and experimentally in an animal model of isolated perfused heart preparation with myocardial blood flow verified by means of direct arterial spin labeling measurements. RESULTS Microcirculation in organized tissues gave rise to an MR signal that could be described as a combination of the bi-exponential behavior of conventional intravoxel incoherent motion (IVIM) theory and diffusion tensor imaging (DTI) -like anisotropy of the vascular signal, with the flow-related pseudo diffusivity represented as the linear algebraic product between the encoding directional unit vector and an appropriate tensor entity. Very good agreement between theoretical predictions and both numerical and experimental observations were found. CONCLUSION These findings suggest that the DTI formalism of anisotropic spin motion can be incorporated into the classical IVIM theory to describe the MR signal arising from diffusion and microcirculation in organized tissues. Magn Reson Med 76:1252-1262, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Osama M Abdullah
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA.
| | - Arnold David Gomez
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA.,Division of Cardiothoracic Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Samer Merchant
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| | - Michael Heidinger
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah, Salt Lake City, Utah, USA
| | - Steven Poelzing
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, Virginia, USA
| | - Edward W Hsu
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
60
|
von Deuster C, Stoeck CT, Genet M, Atkinson D, Kozerke S. Spin echo versus stimulated echo diffusion tensor imaging of the in vivo human heart. Magn Reson Med 2015; 76:862-72. [PMID: 26445426 PMCID: PMC4989478 DOI: 10.1002/mrm.25998] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/29/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022]
Abstract
Purpose To compare signal‐to‐noise ratio (SNR) efficiency and diffusion tensor metrics of cardiac diffusion tensor mapping using acceleration‐compensated spin‐echo (SE) and stimulated echo acquisition mode (STEAM) imaging. Methods Diffusion weighted SE and STEAM sequences were implemented on a clinical 1.5 Tesla MR system. The SNR efficiency of SE and STEAM was measured (b = 50–450 s/mm2) in isotropic agar, anisotropic diffusion phantoms and the in vivo human heart. Diffusion tensor analysis was performed on mean diffusivity, fractional anisotropy, helix and transverse angles. Results In the isotropic phantom, the ratio of SNR efficiency for SE versus STEAM, SNRt(SE/STEAM), was 2.84 ± 0.08 for all tested b‐values. In the anisotropic diffusion phantom the ratio decreased from 2.75 ± 0.05 to 2.20 ± 0.13 with increasing b‐value, similar to the in vivo decrease from 2.91 ± 0.43 to 2.30 ± 0.30. Diffusion tensor analysis revealed reduced deviation of helix angles from a linear transmural model and reduced transverse angle standard deviation for SE compared with STEAM. Mean diffusivity and fractional anisotropy were measured to be statistically different (P < 0.001) between SE and STEAM. Conclusion Cardiac DTI using motion‐compensated SE yields a 2.3–2.9× increase in SNR efficiency relative to STEAM and improved accuracy of tensor metrics. The SE method hence presents an attractive alternative to STEAM based approaches. Magn Reson Med 76:862–872, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Constantin von Deuster
- Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Christian T Stoeck
- Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Martin Genet
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - David Atkinson
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - Sebastian Kozerke
- Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
61
|
Saeed M, Van TA, Krug R, Hetts SW, Wilson MW. Cardiac MR imaging: current status and future direction. Cardiovasc Diagn Ther 2015; 5:290-310. [PMID: 26331113 DOI: 10.3978/j.issn.2223-3652.2015.06.07] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/17/2015] [Indexed: 12/12/2022]
Abstract
Coronary artery disease is currently a worldwide epidemic with increasing impact on healthcare systems. Magnetic resonance imaging (MRI) sequences give complementary information on LV function, regional perfusion, angiogenesis, myocardial viability and orientations of myocytes. T2-weighted short-tau inversion recovery (T2-STIR), fat suppression and black blood sequences have been frequently used for detecting edematous area at risk (AAR) of infarction. T2 mapping, however, indicated that the edematous reaction in acute myocardial infarct (AMI) is not stable and warranted the use of edematous area in evaluating therapies. On the other hand, cine MRI demonstrated reproducible data on LV function in healthy volunteers and LV remodeling in patients. Noninvasive first pass perfusion, using exogenous tracer (gadolinium-based contrast media) and arterial spin labeling MRI, using endogenous tracer (water), are sensitive and useful techniques for evaluating myocardial perfusion and angiogenesis. Recently, new strategies have been developed to quantify myocardial viability using T1-mapping and equilibrium contrast enhanced MR techniques because existing delayed contrast enhancement MRI (DE-MRI) sequences are limited in detecting patchy microinfarct and diffuse fibrosis. These new techniques were successfully used for characterizing diffuse myocardial fibrosis associated with myocarditis, amyloidosis, sarcoidosis heart failure, aortic hypertrophic cardiomyopathy, congenital heart disease, restrictive cardiomyopathy, arrhythmogenic right ventricular dysplasia and hypertension). Diffusion MRI provides information regarding microscopic tissue structure, while diffusion tensor imaging (DTI) helps to characterize the myocardium and monitor the process of LV remodeling after AMI. Novel trends in hybrid imaging, such as cardiac positron emission tomography (PET)/MRI and optical imaging/MRI, are recently under intensive investigation. With the promise of higher spatial-temporal resolution and 3D coverage in the near future, cardiac MRI will be an indispensible tool in the diagnosis of cardiac diseases, coronary intervention and myocardial therapeutic delivery.
Collapse
Affiliation(s)
- Maythem Saeed
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| | - Tu Anh Van
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| | - Roland Krug
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| | - Steven W Hetts
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| | - Mark W Wilson
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| |
Collapse
|
62
|
Welsh CL, DiBella EVR, Hsu EW. Higher-Order Motion-Compensation for In Vivo Cardiac Diffusion Tensor Imaging in Rats. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1843-1853. [PMID: 25775486 PMCID: PMC4560625 DOI: 10.1109/tmi.2015.2411571] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Motion of the heart has complicated in vivo applications of cardiac diffusion MRI and diffusion tensor imaging (DTI), especially in small animals such as rats where ultra-high-performance gradient sets are currently not available. Even with velocity compensation via, for example, bipolar encoding pulses, the variable shot-to-shot residual motion-induced spin phase can still give rise to pronounced artifacts. This study presents diffusion-encoding schemes that are designed to compensate for higher-order motion components, including acceleration and jerk, which also have the desirable practical features of minimal TEs and high achievable b-values. The effectiveness of these schemes was verified numerically on a realistic beating heart phantom, and demonstrated empirically with in vivo cardiac diffusion MRI in rats. Compensation for acceleration, and lower motion components, was found to be both necessary and sufficient for obtaining diffusion-weighted images of acceptable quality and SNR, which yielded the first in vivo cardiac DTI demonstrated in the rat. These findings suggest that compensation for higher order motion, particularly acceleration, can be an effective alternative solution to high-performance gradient hardware for improving in vivo cardiac DTI.
Collapse
Affiliation(s)
| | - Edward V. R. DiBella
- Department of Radiology, UCAIR, University of Utah, Salt Lake City, UT 84112 USA
| | - Edward W. Hsu
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
63
|
Bakermans AJ, Abdurrachim D, Moonen RPM, Motaal AG, Prompers JJ, Strijkers GJ, Vandoorne K, Nicolay K. Small animal cardiovascular MR imaging and spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:1-47. [PMID: 26282195 DOI: 10.1016/j.pnmrs.2015.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rik P M Moonen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abdallah G Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katrien Vandoorne
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
64
|
Bernus O, Radjenovic A, Trew ML, LeGrice IJ, Sands GB, Magee DR, Smaill BH, Gilbert SH. Comparison of diffusion tensor imaging by cardiovascular magnetic resonance and gadolinium enhanced 3D image intensity approaches to investigation of structural anisotropy in explanted rat hearts. J Cardiovasc Magn Reson 2015; 17:31. [PMID: 25926126 PMCID: PMC4414435 DOI: 10.1186/s12968-015-0129-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 03/11/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) can through the two methods 3D FLASH and diffusion tensor imaging (DTI) give complementary information on the local orientations of cardiomyocytes and their laminar arrays. METHODS Eight explanted rat hearts were perfused with Gd-DTPA contrast agent and fixative and imaged in a 9.4T magnet by two types of acquisition: 3D fast low angle shot (FLASH) imaging, voxels 50 × 50 × 50 μm, and 3D spin echo DTI with monopolar diffusion gradients of 3.6 ms duration at 11.5 ms separation, voxels 200 × 200 × 200 μm. The sensitivity of each approach to imaging parameters was explored. RESULTS The FLASH data showed laminar alignments of voxels with high signal, in keeping with the presumed predominance of contrast in the interstices between sheetlets. It was analysed, using structure-tensor (ST) analysis, to determine the most (v1(ST)), intermediate (v2(ST)) and least (v3(ST)) extended orthogonal directions of signal continuity. The DTI data was analysed to determine the most (e1(DTI)), intermediate (e2(DTI)) and least (e3(DTI)) orthogonal eigenvectors of extent of diffusion. The correspondence between the FLASH and DTI methods was measured and appraised. The most extended direction of FLASH signal (v1(ST)) agreed well with that of diffusion (e1(DTI)) throughout the left ventricle (representative discrepancy in the septum of 13.3 ± 6.7°: median ± absolute deviation) and both were in keeping with the expected local orientations of the long-axis of cardiomyocytes. However, the orientation of the least directions of FLASH signal continuity (v3(ST)) and diffusion (e3(ST)) showed greater discrepancies of up to 27.9 ± 17.4°. Both FLASH (v3(ST)) and DTI (e3(DTI)) where compared to directly measured laminar arrays in the FLASH images. For FLASH the discrepancy between the structure-tensor calculated v3(ST) and the directly measured FLASH laminar array normal was of 9 ± 7° for the lateral wall and 7 ± 9° for the septum (median ± inter quartile range), and for DTI the discrepancy between the calculated v3(DTI) and the directly measured FLASH laminar array normal was 22 ± 14° and 61 ± 53.4°. DTI was relatively insensitive to the number of diffusion directions and to time up to 72 hours post fixation, but was moderately affected by b-value (which was scaled by modifying diffusion gradient pulse strength with fixed gradient pulse separation). Optimal DTI parameters were b = 1000 mm/s(2) and 12 diffusion directions. FLASH acquisitions were relatively insensitive to the image processing parameters explored. CONCLUSIONS We show that ST analysis of FLASH is a useful and accurate tool in the measurement of cardiac microstructure. While both FLASH and the DTI approaches appear promising for mapping of the alignments of myocytes throughout myocardium, marked discrepancies between the cross myocyte anisotropies deduced from each method call for consideration of their respective limitations.
Collapse
Affiliation(s)
- Olivier Bernus
- Inserm U1045 - Centre de Recherche Cardio-Thoracique, L'Institut de rythmologie et modélisation cardiaque LIRYC, Université de Bordeaux, PTIB - campus Xavier Arnozan, Avenue du Haut Leveque, 33604, Pessac, France.
| | - Aleksandra Radjenovic
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow, G12 8TA, UK.
| | - Mark L Trew
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| | - Ian J LeGrice
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
- Department of Physiology, University of Auckland, Auckland, New Zealand.
| | - Gregory B Sands
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| | - Derek R Magee
- School of Computing, The University of Leeds, Leeds, LS2 9JT, UK.
| | - Bruce H Smaill
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
- Department of Physiology, University of Auckland, Auckland, New Zealand.
| | - Stephen H Gilbert
- Mathematical Cell Physiology, Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|
65
|
Yap CH, Park DW, Dutta D, Simon M, Kim K. Methods for using 3-D ultrasound speckle tracking in biaxial mechanical testing of biological tissue samples. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1029-42. [PMID: 25616585 PMCID: PMC4346411 DOI: 10.1016/j.ultrasmedbio.2014.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/23/2014] [Accepted: 10/27/2014] [Indexed: 05/25/2023]
Abstract
Being multilayered and anisotropic, biological tissues such as cardiac and arterial walls are structurally complex, making the full assessment and understanding of their mechanical behavior challenging. Current standard mechanical testing uses surface markers to track tissue deformations and does not provide deformation data below the surface. In the study described here, we found that combining mechanical testing with 3-D ultrasound speckle tracking could overcome this limitation. Rat myocardium was tested with a biaxial tester and was concurrently scanned with high-frequency ultrasound in three dimensions. The strain energy function was computed from stresses and strains using an iterative non-linear curve-fitting algorithm. Because the strain energy function consists of terms for the base matrix and for embedded fibers, spatially varying fiber orientation was also computed by curve fitting. Using finite-element simulations, we first validated the accuracy of the non-linear curve-fitting algorithm. Next, we compared experimentally measured rat myocardium strain energy function values with those in the literature and found a matching order of magnitude. Finally, we retained samples after the experiments for fiber orientation quantification using histology and found that the results satisfactorily matched those computed in the experiments. We conclude that 3-D ultrasound speckle tracking can be a useful addition to traditional mechanical testing of biological tissues and may provide the benefit of enabling fiber orientation computation.
Collapse
Affiliation(s)
- Choon Hwai Yap
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Dae Woo Park
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Debaditya Dutta
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Marc Simon
- Heart and Vascular Institute, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Kang Kim
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Heart and Vascular Institute, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
66
|
Veress AI, Fung GSK, Lee TS, Tsui BMW, Kicska GA, Paul Segars W, Gullberg GT. The direct incorporation of perfusion defect information to define ischemia and infarction in a finite element model of the left ventricle. J Biomech Eng 2014; 137:051004. [PMID: 25367177 DOI: 10.1115/1.4028989] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Indexed: 11/08/2022]
Abstract
This paper describes the process in which complex lesion geometries (specified by computer generated perfusion defects) are incorporated in the description of nonlinear finite element (FE) mechanical models used for specifying the motion of the left ventricle (LV) in the 4D extended cardiac torso (XCAT) phantom to simulate gated cardiac image data. An image interrogation process was developed to define the elements in the LV mesh as ischemic or infarcted based upon the values of sampled intensity levels of the perfusion maps. The intensity values were determined for each of the interior integration points of every element of the FE mesh. The average element intensity levels were then determined. The elements with average intensity values below a user-controlled threshold were defined as ischemic or infarcted depending upon the model being defined. For the infarction model cases, the thresholding and interrogation process were repeated in order to define a border zone (BZ) surrounding the infarction. This methodology was evaluated using perfusion maps created by the perfusion cardiac-torso (PCAT) phantom an extension of the 4D XCAT phantom. The PCAT was used to create 3D perfusion maps representing 90% occlusions at four locations (left anterior descending (LAD) segments 6 and 9, left circumflex (LCX) segment 11, right coronary artery (RCA) segment 1) in the coronary tree. The volumes and shapes of the defects defined in the FE mechanical models were compared with perfusion maps produced by the PCAT. The models were incorporated into the XCAT phantom. The ischemia models had reduced stroke volume (SV) by 18-59 ml. and ejection fraction (EF) values by 14-50% points compared to the normal models. The infarction models, had less reductions in SV and EF, 17-54 ml. and 14-45% points, respectively. The volumes of the ischemic/infarcted regions of the models were nearly identical to those volumes obtained from the perfusion images and were highly correlated (R² = 0.99).
Collapse
|
67
|
Abdullah OM, Drakos SG, Diakos NA, Wever-Pinzon O, Kfoury AG, Stehlik J, Selzman CH, Reid BB, Brunisholz K, Verma DR, Myrick C, Sachse FB, Li DY, Hsu EW. Characterization of diffuse fibrosis in the failing human heart via diffusion tensor imaging and quantitative histological validation. NMR IN BIOMEDICINE 2014; 27:1378-86. [PMID: 25200106 PMCID: PMC4215542 DOI: 10.1002/nbm.3200] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 07/09/2014] [Accepted: 08/15/2014] [Indexed: 05/16/2023]
Abstract
Non-invasive imaging techniques are highly desirable as an alternative to conventional biopsy for the characterization of the remodeling of tissues associated with disease progression, including end-stage heart failure. Cardiac diffusion tensor imaging (DTI) has become an established method for the characterization of myocardial microstructure. However, the relationships between diffuse myocardial fibrosis, which is a key biomarker for staging and treatment planning of the failing heart, and measured DTI parameters have yet to be investigated systematically. In this study, DTI was performed on left ventricular specimens collected from patients with chronic end-stage heart failure as a result of idiopathic dilated cardiomyopathy (n = 14) and from normal donors (n = 5). Scalar DTI parameters, including fractional anisotropy (FA) and mean (MD), primary (D1 ), secondary (D2 ) and tertiary (D3 ) diffusivities, were correlated with collagen content measured by digital microscopy. Compared with hearts from normal subjects, the FA in failing hearts decreased by 22%, whereas the MD, D2 and D3 increased by 12%, 14% and 24%, respectively (P < 0.01). No significant change was detected for D1 between the two groups. Furthermore, significant correlation was observed between the DTI scalar indices and quantitative histological measurements of collagen (i.e. fibrosis). Pearson's correlation coefficients (r) between collagen content and FA, MD, D2 and D3 were -0.51, 0.59, 0.56 and 0.62 (P < 0.05), respectively. The correlation between D1 and collagen content was not significant (r = 0.46, P = 0.05). Computational modeling analysis indicated that the behaviors of the DTI parameters as a function of the degree of fibrosis were well explained by compartmental exchange between myocardial and collagenous tissues. Combined, these findings suggest that scalar DTI parameters can be used as metrics for the non-invasive assessment of diffuse fibrosis in failing hearts.
Collapse
Affiliation(s)
| | - Stavros G. Drakos
- Molecular Medicine Program, University of Utah
- UTAH Cardiac Transplant Program (University of Utah Hospital, Intermountain Medical Center, Salt Lake Veterans Affairs Medical Center)
| | | | - Omar Wever-Pinzon
- UTAH Cardiac Transplant Program (University of Utah Hospital, Intermountain Medical Center, Salt Lake Veterans Affairs Medical Center)
| | - Abdallah G. Kfoury
- UTAH Cardiac Transplant Program (University of Utah Hospital, Intermountain Medical Center, Salt Lake Veterans Affairs Medical Center)
| | - Josef Stehlik
- UTAH Cardiac Transplant Program (University of Utah Hospital, Intermountain Medical Center, Salt Lake Veterans Affairs Medical Center)
| | - Craig H. Selzman
- UTAH Cardiac Transplant Program (University of Utah Hospital, Intermountain Medical Center, Salt Lake Veterans Affairs Medical Center)
| | - Bruce B. Reid
- UTAH Cardiac Transplant Program (University of Utah Hospital, Intermountain Medical Center, Salt Lake Veterans Affairs Medical Center)
| | - Kim Brunisholz
- UTAH Cardiac Transplant Program (University of Utah Hospital, Intermountain Medical Center, Salt Lake Veterans Affairs Medical Center)
| | - Divya Ratan Verma
- UTAH Cardiac Transplant Program (University of Utah Hospital, Intermountain Medical Center, Salt Lake Veterans Affairs Medical Center)
| | | | - Frank B. Sachse
- Department of Bioengineering, University of Utah
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah
| | - Dean Y. Li
- Molecular Medicine Program, University of Utah
| | | |
Collapse
|
68
|
Angeli S, Befera N, Peyrat JM, Calabrese E, Johnson GA, Constantinides C. A high-resolution cardiovascular magnetic resonance diffusion tensor map from ex-vivo C57BL/6 murine hearts. J Cardiovasc Magn Reson 2014; 16:77. [PMID: 25323636 PMCID: PMC4198699 DOI: 10.1186/s12968-014-0077-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 09/01/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The complex cardiac fiber structural organization and spatial arrangement of cardiomyocytes in laminar sheetlets contributes greatly to cardiac functional and contractile ejection patterns. This study presents the first comprehensive, ultra-high resolution, fully quantitative statistical tensor map of the fixed murine heart at isotropic resolution of 43 μm using diffusion tensor (DT) cardiovascular magnetic resonance (CMR). METHODS Imaging was completed in approximately 12 hours using a six-directional encoding scheme, in five ex vivo healthy C57BL/6 mouse hearts. The tensor map constructed from this data provides an average description of the murine fiber architecture visualized with fiber tractography, and its population variability, using the latest advances in image tensor analysis and statistics. RESULTS Results show that non-normalized cardiac tensor maps are associated with mean fractional anisotropy of 0.25 ± 0.07 and mean diffusivity of 8.9 ± 1.6 × 10⁻⁴mm²/s. Moreover, average mid-ventricular helical angle distributions ranged between -41 ± 3° and +52 ± 5° and were highly correlated with transmural depth, in agreement with prior published results in humans and canines. Calculated variabilities of local myocyte orientations were 2.0° and 1.4°. Laminar sheet orientation variability was found to be less stable at 2.6°. Despite such variations, the murine heart seems to be highly structured, particularly when compared to canines and humans. CONCLUSIONS This tensor map has the potential to yield an accurate mean representation and identification of common or unique features of the cardiac myocyte architecture, to establish a baseline standard reference of DTI indices, and to improve detection of biomarkers, especially in pathological states or post-transgenetic modifications.
Collapse
Affiliation(s)
- Stelios Angeli
- Department of Mechanical and Manufacturing Engineering, Laboratory of Physiology and Biomedical Imaging, School of Engineering, University of Cyprus, 75 Kalipoleos Avenue, Green Park Building, Nicosia, Cyprus.
| | - Nicholas Befera
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA.
| | - Jean-Marc Peyrat
- Qatar Robotic Surgery Centre, Qatar Science & Technology Park, Doha, Qatar.
| | - Evan Calabrese
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA.
| | | | - Christakis Constantinides
- Department of Mechanical and Manufacturing Engineering, Laboratory of Physiology and Biomedical Imaging, School of Engineering, University of Cyprus, 75 Kalipoleos Avenue, Green Park Building, Nicosia, Cyprus.
- Chi-Biomedical Limited, 36 Parthenonos Street, Apartment 303, Strovolos, 2021, Nicosia, Cyprus.
| |
Collapse
|
69
|
Stoeck CT, Kalinowska A, von Deuster C, Harmer J, Chan RW, Niemann M, Manka R, Atkinson D, Sosnovik DE, Mekkaoui C, Kozerke S. Dual-phase cardiac diffusion tensor imaging with strain correction. PLoS One 2014; 9:e107159. [PMID: 25191900 PMCID: PMC4156436 DOI: 10.1371/journal.pone.0107159] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/05/2014] [Indexed: 12/03/2022] Open
Abstract
Purpose In this work we present a dual-phase diffusion tensor imaging (DTI) technique that incorporates a correction scheme for the cardiac material strain, based on 3D myocardial tagging. Methods In vivo dual-phase cardiac DTI with a stimulated echo approach and 3D tagging was performed in 10 healthy volunteers. The time course of material strain was estimated from the tagging data and used to correct for strain effects in the diffusion weighted acquisition. Mean diffusivity, fractional anisotropy, helix, transverse and sheet angles were calculated and compared between systole and diastole, with and without strain correction. Data acquired at the systolic sweet spot, where the effects of strain are eliminated, served as a reference. Results The impact of strain correction on helix angle was small. However, large differences were observed in the transverse and sheet angle values, with and without strain correction. The standard deviation of systolic transverse angles was significantly reduced from 35.9±3.9° to 27.8°±3.5° (p<0.001) upon strain-correction indicating more coherent fiber tracks after correction. Myocyte aggregate structure was aligned more longitudinally in systole compared to diastole as reflected by an increased transmural range of helix angles (71.8°±3.9° systole vs. 55.6°±5.6°, p<0.001 diastole). While diastolic sheet angle histograms had dominant counts at high sheet angle values, systolic histograms showed lower sheet angle values indicating a reorientation of myocyte sheets during contraction. Conclusion An approach for dual-phase cardiac DTI with correction for material strain has been successfully implemented. This technique allows assessing dynamic changes in myofiber architecture between systole and diastole, and emphasizes the need for strain correction when sheet architecture in the heart is imaged with a stimulated echo approach.
Collapse
Affiliation(s)
- Christian T. Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Aleksandra Kalinowska
- Department of Mechanical and Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Constantin von Deuster
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Jack Harmer
- Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Rachel W. Chan
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - Markus Niemann
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Robert Manka
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
- Department of Radiology, University Hospital Zurich, Zurich, Switzerland
| | - David Atkinson
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - David E. Sosnovik
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, University Hospital Center of Nîmes, EA 2415, Nîmes, France
- Faculty of Medicine, Montpellier 1 University, Montpellier, France
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
70
|
Li K, Dortch RD, Welch EB, Bryant ND, Buck AKW, Towse TF, Gochberg DF, Does MD, Damon BM, Park JH. Multi-parametric MRI characterization of healthy human thigh muscles at 3.0 T - relaxation, magnetization transfer, fat/water, and diffusion tensor imaging. NMR IN BIOMEDICINE 2014; 27:1070-84. [PMID: 25066274 PMCID: PMC4153695 DOI: 10.1002/nbm.3159] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/28/2014] [Accepted: 06/01/2014] [Indexed: 05/11/2023]
Abstract
Muscle diseases commonly have clinical presentations of inflammation, fat infiltration, fibrosis, and atrophy. However, the results of existing laboratory tests and clinical presentations are not well correlated. Advanced quantitative MRI techniques may allow the assessment of myo-pathological changes in a sensitive and objective manner. To progress towards this goal, an array of quantitative MRI protocols was implemented for human thigh muscles; their reproducibility was assessed; and the statistical relationships among parameters were determined. These quantitative methods included fat/water imaging, multiple spin-echo T2 imaging (with and without fat signal suppression, FS), selective inversion recovery for T1 and quantitative magnetization transfer (qMT) imaging (with and without FS), and diffusion tensor imaging. Data were acquired at 3.0 T from nine healthy subjects. To assess the repeatability of each method, the subjects were re-imaged an average of 35 days later. Pre-testing lifestyle restrictions were applied to standardize physiological conditions across scans. Strong between-day intra-class correlations were observed in all quantitative indices except for the macromolecular-to-free water pool size ratio (PSR) with FS, a metric derived from qMT data. Two-way analysis of variance revealed no significant between-day differences in the mean values for any parameter estimate. The repeatability was further assessed with Bland-Altman plots, and low repeatability coefficients were obtained for all parameters. Among-muscle differences in the quantitative MRI indices and inter-class correlations among the parameters were identified. There were inverse relationships between fractional anisotropy (FA) and the second eigenvalue, the third eigenvalue, and the standard deviation of the first eigenvector. The FA was positively related to the PSR, while the other diffusion indices were inversely related to the PSR. These findings support the use of these T1 , T2 , fat/water, and DTI protocols for characterizing skeletal muscle using MRI. Moreover, the data support the existence of a common biophysical mechanism, water content, as a source of variation in these parameters.
Collapse
Affiliation(s)
- Ke Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Rajasekaran MR, Sinha S, Seo Y, Salehi M, Bhargava V, Mittal RK. Myoarchitectural and functional alterations in rabbit external anal sphincter muscle following experimental surgical trauma. Am J Physiol Gastrointest Liver Physiol 2014; 307:G445-51. [PMID: 24994856 DOI: 10.1152/ajpgi.00450.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Obstetrical trauma to external anal sphincter (EAS) is extremely common; however, its role in the development of anal incontinence is not clear. We examined the regenerative process and functional impact of experimental surgical trauma to EAS muscle in an animal model. Surgical myotomy, a craniocaudal incision extending along the entire length and thickness of the EAS, was performed in rabbits. Animals were allowed to recover, and anal pressures were recorded at weekly intervals for 12 wk using a custom-designed probe system to determine the length-tension property of EAS muscle. Animals were killed at predetermined time intervals, and the anal canal was harvested for histochemical studies (for determination of muscle/connective tissue/collagen) and sarcomere length measurement. In addition, magnetic resonance diffusion tensor imaging (MR-DTI) and fiber tracking was performed to determine myoarchitectural changes in the EAS. Myotomy of the EAS muscle resulted in significant impairment of its length-tension property that showed only partial recovery during the 12-wk study period. Histology revealed marked increase in the fibrosis (connective tissue = 69% following myotomy vs. 28% in controls) at 3 wk, which persisted at 12 wk. Immunostaining studies confirmed deposition of collagen in the fibrotic tissue. There was no change in the sarcomere length following myotomy. MR-DTI studies revealed disorganized muscle fiber orientation in the regenerating muscle. We conclude that, following experimental injury, the EAS muscle heals with an increase in the collagen content and loss of normal myoarchitecture, which we suspect is the cause of impaired EAS function.
Collapse
Affiliation(s)
- M Raj Rajasekaran
- Division of Gastroenterology, Department of Medicine, San Diego Veterans Affairs Health Care System; and
| | - Shantanu Sinha
- Muscle Imaging and Modeling Laboratory, Department of Radiology, University of California, San Diego, California
| | - Youngjin Seo
- Division of Gastroenterology, Department of Medicine, San Diego Veterans Affairs Health Care System; and
| | - Mitra Salehi
- Division of Gastroenterology, Department of Medicine, San Diego Veterans Affairs Health Care System; and
| | - Valmik Bhargava
- Division of Gastroenterology, Department of Medicine, San Diego Veterans Affairs Health Care System; and
| | - Ravinder K Mittal
- Division of Gastroenterology, Department of Medicine, San Diego Veterans Affairs Health Care System; and
| |
Collapse
|
72
|
Post-mortem cardiac diffusion tensor imaging: detection of myocardial infarction and remodeling of myofiber architecture. Eur Radiol 2014; 24:2810-8. [DOI: 10.1007/s00330-014-3322-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 06/24/2014] [Accepted: 07/07/2014] [Indexed: 12/12/2022]
|
73
|
Mostaço-Guidolin LB, Ko ACT, Wang F, Xiang B, Hewko M, Tian G, Major A, Shiomi M, Sowa MG. Collagen morphology and texture analysis: from statistics to classification. Sci Rep 2014; 3:2190. [PMID: 23846580 PMCID: PMC3709165 DOI: 10.1038/srep02190] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/07/2013] [Indexed: 02/08/2023] Open
Abstract
In this study we present an image analysis methodology capable of quantifying morphological changes in tissue collagen fibril organization caused by pathological conditions. Texture analysis based on first-order statistics (FOS) and second-order statistics such as gray level co-occurrence matrix (GLCM) was explored to extract second-harmonic generation (SHG) image features that are associated with the structural and biochemical changes of tissue collagen networks. Based on these extracted quantitative parameters, multi-group classification of SHG images was performed. With combined FOS and GLCM texture values, we achieved reliable classification of SHG collagen images acquired from atherosclerosis arteries with >90% accuracy, sensitivity and specificity. The proposed methodology can be applied to a wide range of conditions involving collagen re-modeling, such as in skin disorders, different types of fibrosis and muscular-skeletal diseases affecting ligaments and cartilage.
Collapse
Affiliation(s)
- Leila B Mostaço-Guidolin
- National Research Council Canada, Medical Devices Portfolio 435 Ellice Avenue, Winnipeg, MB, Canada R3B 1Y6
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Froeling M, Strijkers GJ, Nederveen AJ, Chamuleau SA, Luijten PR. Diffusion Tensor MRI of the Heart – In Vivo Imaging of Myocardial Fiber Architecture. CURRENT CARDIOVASCULAR IMAGING REPORTS 2014. [DOI: 10.1007/s12410-014-9276-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
75
|
Ma L, Cui B, Shao Y, Ni B, Zhang W, Luo Y, Zhang S. Electroacupuncture improves cardiac function and remodeling by inhibition of sympathoexcitation in chronic heart failure rats. Am J Physiol Heart Circ Physiol 2014; 306:H1464-71. [PMID: 24585780 DOI: 10.1152/ajpheart.00889.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic heart failure (CHF) is responsible for significant morbidity and mortality worldwide, mainly as a result of neurohumoral activation. Acupuncture has been used to treat a wide range of diseases and conditions. In this study, we investigated the effects of electroacupuncture (EA) on the sympathetic nerve activity, heart function, and remodeling in CHF rats after ligation of the left anterior descending coronary artery. CHF rats were randomly selected to EA and control groups for acute and chronic experiments. In the acute experiment, both the renal sympathetic nerve activity and cardiac sympathetic afferent reflex elicited by epicardial application of capsaicin were recorded. In the chronic experiment, we performed EA for 30 min once a day for 1 wk to test the long-term EA effects on heart function, remodeling, as well as infarct size in CHF rats. The results show EA significantly decreased the renal sympathetic nerve activity effectively, inhibited cardiac sympathetic afferent reflex, and lowered the blood pressure of CHF rats. Treating CHF rats with EA for 1 wk dramatically increased left ventricular ejection fraction and left ventricular fraction shortening, reversed the enlargement of left ventricular end-systolic dimension and left ventricular end-diastolic dimension, and shrunk the infarct size. In this experiment, we demonstrated EA attenuates sympathetic overactivity. Additionally, long-term EA improves cardiac function and remodeling and reduces infarct size in CHF rats. EA is a novel and potentially useful therapy for treating CHF.
Collapse
Affiliation(s)
- Luyao Ma
- Division of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Baiping Cui
- Division of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yongfeng Shao
- Division of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Buqing Ni
- Division of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Weiran Zhang
- Division of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Yonggang Luo
- Division of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Shijiang Zhang
- Division of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
76
|
Sosnovik DE, Mekkaoui C, Huang S, Chen HH, Dai G, Stoeck CT, Ngoy S, Guan J, Wang R, Kostis WJ, Jackowski MP, Wedeen VJ, Kozerke S, Liao R. Microstructural impact of ischemia and bone marrow-derived cell therapy revealed with diffusion tensor magnetic resonance imaging tractography of the heart in vivo. Circulation 2014; 129:1731-41. [PMID: 24619466 PMCID: PMC4034455 DOI: 10.1161/circulationaha.113.005841] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/31/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND The arrangement of myofibers in the heart is highly complex and must be replicated by injected cells to produce functional myocardium. A novel approach to characterize the microstructural response of the myocardium to ischemia and cell therapy, with the use of serial diffusion tensor magnetic resonance imaging tractography of the heart in vivo, is presented. METHODS AND RESULTS Validation of the approach was performed in normal (n=6) and infarcted mice (n=6) as well as healthy human volunteers. Mice (n=12) were then injected with bone marrow mononuclear cells 3 weeks after coronary ligation. In half of the mice the donor and recipient strains were identical, and in half the strains were different. A positive response to cell injection was defined by a decrease in mean diffusivity, an increase in fractional anisotropy, and the appearance of new myofiber tracts with the correct orientation. A positive response to bone marrow mononuclear cell injection was seen in 1 mouse. The response of the majority of mice to bone marrow mononuclear cell injection was neutral (9/12) or negative (2/12). The in vivo tractography findings were confirmed with histology. CONCLUSIONS Diffusion tensor magnetic resonance imaging tractography was able to directly resolve the ability of injected cells to generate new myofiber tracts and provided a fundamental readout of their regenerative capacity. A highly novel and translatable approach to assess the efficacy of cell therapy in the heart is thus presented.
Collapse
Affiliation(s)
- David E. Sosnovik
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Choukri Mekkaoui
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Shuning Huang
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Howard H. Chen
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Guangping Dai
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Christian T. Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Soeun Ngoy
- Cardiac Muscle Research Laboratory, Divisions of Cardiology and Genetics, Brigham and Woman’s Hospital, Harvard Medical School, Boston MA
| | - Jian Guan
- Cardiac Muscle Research Laboratory, Divisions of Cardiology and Genetics, Brigham and Woman’s Hospital, Harvard Medical School, Boston MA
| | - Ruopeng Wang
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - William J. Kostis
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Marcel P. Jackowski
- Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - Van J. Wedeen
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Ronglih Liao
- Cardiac Muscle Research Laboratory, Divisions of Cardiology and Genetics, Brigham and Woman’s Hospital, Harvard Medical School, Boston MA
| |
Collapse
|
77
|
Dunmore-Buyze PJ, Tate E, Xiang FL, Detombe SA, Nong Z, Pickering JG, Drangova M. Three-dimensional imaging of the mouse heart and vasculature using micro-CT and whole-body perfusion of iodine or phosphotungstic acid. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:383-90. [PMID: 24764151 DOI: 10.1002/cmmi.1588] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 12/20/2022]
Abstract
Recent studies have investigated histological staining compounds as micro-computed tomography (micro-CT) contrast agents, delivered by soaking tissue specimens in stain and relying on passive diffusion for agent uptake. This study describes a perfusion approach using iodine or phosphotungstic acid (PTA) stains, delivered to an intact mouse, to capitalize on the microvasculature as a delivery conduit for parenchymal staining and direct contact for staining artery walls. Twelve C57BL/6 mice, arterially perfused with either 25% Lugol's solution or 5% PTA solution were scanned intact and reconstructed with 26 µm isotropic voxels. The animals were fixed and the heart and surrounding vessels were excised, embedded and scanned; isolated heart images were reconstructed with 13 µm isotropic voxels. Myocardial enhancement and artery diameters were measured. Both stains successfully enhanced the myocardium and vessel walls. Interestingly, Lugol's solution provided a significantly higher enhancement of the myocardium than PTA [2502 ± 437 vs 656 ± 178 Hounsfield units (HU); p < 0.0001], delineating myofiber architecture and orientation. There was no significant difference in vessel wall enhancement (Lugol's, 1036 ± 635 HU; PTA, 738 ± 124 HU; p = 0.29), but coronary arteries were more effectively segmented from the PTA-stained hearts, enabling segmented imaging of fifth- order coronary artery branches. The combination of whole mouse perfusion delivery and use of heavy metal-containing stains affords high-resolution imaging of the mouse heart and vasculature by micro-CT. The differential imaging patterns of Lugol's- and PTA-stained tissues reveals new opportunities for micro-analyses of cardiac and vascular tissues.
Collapse
Affiliation(s)
- P Joy Dunmore-Buyze
- Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
78
|
Kali A, Cokic I, Tang RLQ, Yang HJ, Sharif B, Marbán E, Li D, Berman DS, Dharmakumar R. Determination of location, size, and transmurality of chronic myocardial infarction without exogenous contrast media by using cardiac magnetic resonance imaging at 3 T. Circ Cardiovasc Imaging 2014; 7:471-81. [PMID: 24682268 DOI: 10.1161/circimaging.113.001541] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Late-gadolinium-enhanced (LGE) cardiac MRI (CMR) is a powerful method for characterizing myocardial infarction (MI), but the requisite gadolinium infusion is estimated to be contraindicated in ≈20% of patients with MI because of end-stage chronic kidney disease. The purpose of this study is to investigate whether T1 CMR obtained without contrast agents at 3 T could be an alternative to LGE CMR for characterizing chronic MIs using a canine model of MI. METHODS AND RESULTS Canines (n=29) underwent CMR at 7 days (acute MI [AMI]) and 4 months (chronic MI [CMI]) after MI. Infarct location, size, and transmurality measured by using native T1 maps and LGE images at 1.5 T and 3 T were compared. Resolution of edema between AMI and CMI was examined with T2 maps. T1 maps overestimated infarct size and transmurality relative to LGE images in AMI (P=0.016 and P=0.007, respectively), which was not observed in CMI (P=0.49 and P=0.81, respectively) at 3 T. T1 maps underestimated infarct size and transmurality relative to LGE images in AMI and CMI (P<0.001) at 1.5 T. Relative to the remote territories, T1 of the infarcted myocardium was increased in CMI and AMI (P<0.05), and T2 of the infarcted myocardium was increased in AMI (P<0.001) but not in CMI (P>0.20) at both field strengths. Histology showed extensive replacement fibrosis within the CMI territories. CMI detection sensitivity and specificity of T1 CMR at 3 T were 95% and 97%, respectively. CONCLUSIONS Native T1 maps at 3 T can determine the location, size, and transmurality of CMI with high diagnostic accuracy. Patient studies are necessary for clinical translation.
Collapse
Affiliation(s)
- Avinash Kali
- From the Biomedical Imaging Research Institute, Department of Biomedical Sciences (A.K., I.C., R.L.Q.T., H.-J.Y., B.S., D.L., R.D.) and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (E.M., D.L., D. S. B., R.D.); Department of Bioengineering (A.K., H.-J.Y.) and Department of Medicine, David Geffen School of Medicine (D. S. B., R.D.), University of California, Los Angeles, CA; and Department of Radiology, Northwestern University, Chicago, IL (A.K., R.L.Q.T., D.L., R.D.)
| | - Ivan Cokic
- From the Biomedical Imaging Research Institute, Department of Biomedical Sciences (A.K., I.C., R.L.Q.T., H.-J.Y., B.S., D.L., R.D.) and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (E.M., D.L., D. S. B., R.D.); Department of Bioengineering (A.K., H.-J.Y.) and Department of Medicine, David Geffen School of Medicine (D. S. B., R.D.), University of California, Los Angeles, CA; and Department of Radiology, Northwestern University, Chicago, IL (A.K., R.L.Q.T., D.L., R.D.)
| | - Richard L Q Tang
- From the Biomedical Imaging Research Institute, Department of Biomedical Sciences (A.K., I.C., R.L.Q.T., H.-J.Y., B.S., D.L., R.D.) and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (E.M., D.L., D. S. B., R.D.); Department of Bioengineering (A.K., H.-J.Y.) and Department of Medicine, David Geffen School of Medicine (D. S. B., R.D.), University of California, Los Angeles, CA; and Department of Radiology, Northwestern University, Chicago, IL (A.K., R.L.Q.T., D.L., R.D.)
| | - Hsin-Jung Yang
- From the Biomedical Imaging Research Institute, Department of Biomedical Sciences (A.K., I.C., R.L.Q.T., H.-J.Y., B.S., D.L., R.D.) and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (E.M., D.L., D. S. B., R.D.); Department of Bioengineering (A.K., H.-J.Y.) and Department of Medicine, David Geffen School of Medicine (D. S. B., R.D.), University of California, Los Angeles, CA; and Department of Radiology, Northwestern University, Chicago, IL (A.K., R.L.Q.T., D.L., R.D.)
| | - Behzad Sharif
- From the Biomedical Imaging Research Institute, Department of Biomedical Sciences (A.K., I.C., R.L.Q.T., H.-J.Y., B.S., D.L., R.D.) and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (E.M., D.L., D. S. B., R.D.); Department of Bioengineering (A.K., H.-J.Y.) and Department of Medicine, David Geffen School of Medicine (D. S. B., R.D.), University of California, Los Angeles, CA; and Department of Radiology, Northwestern University, Chicago, IL (A.K., R.L.Q.T., D.L., R.D.)
| | - Eduardo Marbán
- From the Biomedical Imaging Research Institute, Department of Biomedical Sciences (A.K., I.C., R.L.Q.T., H.-J.Y., B.S., D.L., R.D.) and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (E.M., D.L., D. S. B., R.D.); Department of Bioengineering (A.K., H.-J.Y.) and Department of Medicine, David Geffen School of Medicine (D. S. B., R.D.), University of California, Los Angeles, CA; and Department of Radiology, Northwestern University, Chicago, IL (A.K., R.L.Q.T., D.L., R.D.)
| | - Debiao Li
- From the Biomedical Imaging Research Institute, Department of Biomedical Sciences (A.K., I.C., R.L.Q.T., H.-J.Y., B.S., D.L., R.D.) and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (E.M., D.L., D. S. B., R.D.); Department of Bioengineering (A.K., H.-J.Y.) and Department of Medicine, David Geffen School of Medicine (D. S. B., R.D.), University of California, Los Angeles, CA; and Department of Radiology, Northwestern University, Chicago, IL (A.K., R.L.Q.T., D.L., R.D.)
| | - Daniel S Berman
- From the Biomedical Imaging Research Institute, Department of Biomedical Sciences (A.K., I.C., R.L.Q.T., H.-J.Y., B.S., D.L., R.D.) and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (E.M., D.L., D. S. B., R.D.); Department of Bioengineering (A.K., H.-J.Y.) and Department of Medicine, David Geffen School of Medicine (D. S. B., R.D.), University of California, Los Angeles, CA; and Department of Radiology, Northwestern University, Chicago, IL (A.K., R.L.Q.T., D.L., R.D.)
| | - Rohan Dharmakumar
- From the Biomedical Imaging Research Institute, Department of Biomedical Sciences (A.K., I.C., R.L.Q.T., H.-J.Y., B.S., D.L., R.D.) and Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (E.M., D.L., D. S. B., R.D.); Department of Bioengineering (A.K., H.-J.Y.) and Department of Medicine, David Geffen School of Medicine (D. S. B., R.D.), University of California, Los Angeles, CA; and Department of Radiology, Northwestern University, Chicago, IL (A.K., R.L.Q.T., D.L., R.D.).
| |
Collapse
|
79
|
Chen Y, Ye L, Zhong J, Li X, Yan C, Chandler MP, Calvin S, Xiao F, Negia M, Low WC, Zhang J, Yu X. The Structural Basis of Functional Improvement in Response to Human Umbilical Cord Blood Stem Cell Transplantation in Hearts With Postinfarct LV Remodeling. Cell Transplant 2013; 24:971-83. [PMID: 24332083 DOI: 10.3727/096368913x675746] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cellular therapy for myocardial repair has been one of the most intensely investigated interventional strategies for acute myocardial infarction. Although the therapeutic potential of stem cells has been demonstrated in various studies, the underlying mechanisms for such improvements are poorly understood. In the present study, we investigated the long-term effects of stem cell therapy on both myocardial fiber organization and regional contractile function using a rat model of postinfarct remodeling. Human nonhematopoietic umbilical cord blood stem cells (nh-UCBSCs) were administered via tail vein to rats 2 days after infarct surgery. Animals were maintained without immunosuppressive therapy. In vivo and ex vivo MR imaging was performed on infarct hearts 10 months after cell transplantation. Compared to the age-matched rats exposed to the identical surgery, both global and regional cardiac functions of the nh-UCBSC-treated hearts, such as ejection fraction, ventricular strain, and torsion, were significantly improved. More importantly, the treated hearts exhibited preserved fiber orientation and water diffusivities that were similar to those in sham-operated control hearts. These data provide the first evidence that nh-UCBSC treatment may prevent/delay untoward structural remodeling in postinfarct hearts, which supports the improved LV function observed in vivo in the absence of immunosuppression, suggesting a beneficial paracrine effect occurred with the cellular therapy.
Collapse
Affiliation(s)
- Yong Chen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Diffusion MRI tractography of the developing human fetal heart. PLoS One 2013; 8:e72795. [PMID: 23991152 PMCID: PMC3753231 DOI: 10.1371/journal.pone.0072795] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/15/2013] [Indexed: 11/19/2022] Open
Abstract
Objective Human myocardium has a complex and anisotropic 3D fiber pattern. It remains unknown, however, when in fetal life this anisotropic pattern develops and whether the human heart is structurally fully mature at birth. We aimed here to use diffusion tensor MRI (DTI) tractography to characterize the evolution of fiber architecture in the developing human fetal heart. Methods Human fetal hearts (n = 5) between 10–19 weeks of gestation were studied. The heart from a 6-day old neonate and an adult human heart served as controls. The degree of myocardial anisotropy was measured by calculating the fractional anisotropy (FA) index. In addition, fiber tracts were created by numerically integrating the primary eigenvector field in the heart into coherent streamlines. Results At 10–14 weeks the fetal hearts were highly isotropic and few tracts could be resolved. Between 14–19 weeks the anisotropy seen in the adult heart began to develop. Coherent fiber tracts were well resolved by 19 weeks. The 19-week myocardium, however, remained weakly anisotropic with a low FA and no discernable sheet structure. Conclusions The human fetal heart remains highly isotropic until 14–19 weeks, at which time cardiomyocytes self-align into coherent tracts. This process lags 2–3 months behind the onset of cardiac contraction, which may be a prerequisite for cardiomyocyte maturation and alignment. No evidence of a connective tissue scaffold guiding this process could be identified by DTI. Maturation of the heart’s sheet structure occurs late in gestation and evolves further after birth.
Collapse
|
81
|
Crooijmans HJ, Ruder TD, Zech WD, Somaini S, Scheffler K, Thali MJ, Bieri O. Feasibility of quantitative diffusion imaging of the heart in post-mortem MR. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.jofri.2013.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
82
|
Chua J, Zhou W, Ho JK, Patel NA, Mackensen GB, Mahajan A. Acute right ventricular pressure overload compromises left ventricular function by altering septal strain and rotation. J Appl Physiol (1985) 2013; 115:186-93. [PMID: 23661621 DOI: 10.1152/japplphysiol.01208.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While right ventricular (RV) dysfunction has long been known to affect the performance of left ventricle (LV), the mechanisms remain poorly defined. Recently, speckle-tracking echocardiography has demonstrated that preservation of strain and rotational dynamics is crucial to both LV systolic and diastolic function. We hypothesized that alteration in septal strain and rotational dynamics of the LV occurs during acute RV pressure overload (RVPO) and leads to decreased cardiac performance. Seven anesthetized pigs underwent median sternotomy and placement of intraventricular pressure-volume conductance catheters. Two-dimensional echocardiographic images and LV pressure-volume loops were acquired for offline analysis at baseline and after banding of the pulmonary artery to achieve RVPO (>50 mmHg) induced RV dysfunction. RVPO resulted in a significant decrease (P < 0.05) in LV end-systolic elastance (50%), systolic change in pressure over change in time (19%), end-diastolic volume (22%), and cardiac output (37%) that correlated with decrease in LV global circumferential strain (58%), LV apical rotation (28%), peak untwisting (reverse rotation) rate (27%), and prolonged time to peak rotation (17%), while basal rotation was not significantly altered. RVPO reduced septal radial and circumferential strain, while no other segment of the LV midpapillary wall was affected. RVPO decreased septal radial strain on LV side by 27% and induced a negative radial strain from 28 ± 5 to -16 ± 2% on the RV side of the septum. The septal circumferential strain on both LV and RV side decreased by 46 and 50%, respectively, following RVPO (P < 0.05). Our results suggest that acute RVPO impairs LV performance by primarily altering septal strain and apical rotation.
Collapse
Affiliation(s)
- Jason Chua
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
83
|
Young AA, Prince JL. Cardiovascular magnetic resonance: deeper insights through bioengineering. Annu Rev Biomed Eng 2013; 15:433-61. [PMID: 23662778 DOI: 10.1146/annurev-bioeng-071812-152346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heart disease is the main cause of morbidity and mortality worldwide, with coronary artery disease, diabetes, and obesity being major contributing factors. Cardiovascular magnetic resonance (CMR) can provide a wealth of quantitative information on the performance of the heart, without risk to the patient. Quantitative analyses of these data can substantially augment the diagnostic quality of CMR examinations and can lead to more effective characterization of disease and quantification of treatment benefit. This review provides an overview of the current state of the art in CMR with particular regard to the quantification of motion, both microscopic and macroscopic, and the application of bioengineering analysis for the evaluation of cardiac mechanics. We discuss the current clinical practice and the likely advances in the next 5-10 years, as well as the ways in which clinical examinations can be augmented by bioengineering analysis of strain, compliance, and stress.
Collapse
Affiliation(s)
- A A Young
- Department of Anatomy with Radiology, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand.
| | | |
Collapse
|
84
|
Cordero-Grande L, Vegas-Sánchez-Ferrero G, Casaseca-de-la-Higuera P, Aja-Fernández S, Alberola-López C. A magnetic resonance software simulator for the evaluation of myocardial deformation estimation. Med Eng Phys 2013; 35:1331-40. [PMID: 23561923 DOI: 10.1016/j.medengphy.2013.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 01/08/2013] [Accepted: 03/02/2013] [Indexed: 11/30/2022]
Abstract
This paper proposes a methodology to design a physiologically realistic computer simulator of images of the left ventricle myocardium based on a patient-specific biomechanical model. The simulator takes a magnetic resonance image of a given patient at end diastole, uses a manual segmentation of that image to model the geometry of the myocardium and sets the parameters of the constitutive model used for biomechanical simulation according to a regional labeling of the contractility of the myocardium for that patient. The simulated deformations are used to warp the magnetic resonance dataset throughout the cardiac cycle to generate different image modalities. The simulator is validated by quantifying its ability to model actual deformations in a set of patients affected by an acute myocardial infarction. Specifically a high correlation has been encountered between the ejection fraction derived from the simulated end systolic deformation of the myocardium and the myocardium segmented from actual data. Additionally, most of the parameters that describe the simulated deformation compare well with reported values. Overall, the simulator is intended as a testbed for extensive comparisons of myocardial motion tracking methods due to its ability to relate the impaired myocardial function with the associated ventricular remodeling, a novel contribution in the literature of cardiac image simulators.
Collapse
Affiliation(s)
- Lucilio Cordero-Grande
- Laboratorio de Procesado de Imagen, ETSIT, University of Valladolid, Paseo de Belén 15, 40011 Valladolid, Spain.
| | | | | | | | | |
Collapse
|
85
|
Vadakkumpadan F, Arevalo H, Trayanova NA. Patient-specific modeling of the heart: estimation of ventricular fiber orientations. J Vis Exp 2013:50125. [PMID: 23329052 DOI: 10.3791/50125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Patient-specific simulations of heart (dys)function aimed at personalizing cardiac therapy are hampered by the absence of in vivo imaging technology for clinically acquiring myocardial fiber orientations. The objective of this project was to develop a methodology to estimate cardiac fiber orientations from in vivo images of patient heart geometries. An accurate representation of ventricular geometry and fiber orientations was reconstructed, respectively, from high-resolution ex vivo structural magnetic resonance (MR) and diffusion tensor (DT) MR images of a normal human heart, referred to as the atlas. Ventricular geometry of a patient heart was extracted, via semiautomatic segmentation, from an in vivo computed tomography (CT) image. Using image transformation algorithms, the atlas ventricular geometry was deformed to match that of the patient. Finally, the deformation field was applied to the atlas fiber orientations to obtain an estimate of patient fiber orientations. The accuracy of the fiber estimates was assessed using six normal and three failing canine hearts. The mean absolute difference between inclination angles of acquired and estimated fiber orientations was 15.4 °. Computational simulations of ventricular activation maps and pseudo-ECGs in sinus rhythm and ventricular tachycardia indicated that there are no significant differences between estimated and acquired fiber orientations at a clinically observable level.The new insights obtained from the project will pave the way for the development of patient-specific models of the heart that can aid physicians in personalized diagnosis and decisions regarding electrophysiological interventions.
Collapse
Affiliation(s)
- Fijoy Vadakkumpadan
- Institute for Computational Medicine and the Department of Biomedical Engineering, Johns Hopkins University, USA.
| | | | | |
Collapse
|
86
|
Zhang L, Allen J, Hu L, Caruthers SD, Wickline SA, Chen J. Cardiomyocyte architectural plasticity in fetal, neonatal, and adult pig hearts delineated with diffusion tensor MRI. Am J Physiol Heart Circ Physiol 2012; 304:H246-52. [PMID: 23161881 DOI: 10.1152/ajpheart.00129.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiomyocyte organization is a critical determinant of coordinated cardiac contractile function. Because of the acute opening of the pulmonary circulation, the relative workload of the left ventricle (LV) and right ventricle (RV) changes substantially immediately after birth. We hypothesized that three-dimensional cardiomyocyte architecture might be required to adapt rapidly to accommodate programmed perinatal changes of cardiac function. Isolated fixed hearts from pig fetuses or pigs at midgestation, preborn, postnatal day 1 (P1), postnatal day 5, postnatal day 14 (P14), and adulthood (n = 5 for each group) were acquired for diffusion-weighted magnetic resonance imaging. Cardiomyocyte architecture was visualized by three-dimensional fiber tracking and was quantitatively evaluated by the measured helix angle (α(h)). Upon the completion of MRI, hearts were sectioned and stained with hematoxylin/eosin (H&E) to evaluate cardiomyocyte alignment, with picrosirius red to evaluate collagen content, and with anti-Ki67 to evaluate postnatal cell proliferation. The helical architecture of cardiomyocyte was observed as early as the midgestational period. Postnatal changes of cardiomyocyte architecture were observed from P1 to P14, which primary occurred in the septum and RV free wall (RVFW). In the septum, the volume ratio of LV- vs. RV-associated cardiomyocytes rapidly changed from RV-LV balanced pattern at birth to LV dominant pattern by P14. In the RVFW, subendocardial α(h) decreased by ~30° from P1 to P14. These findings indicate that the helical architecture of cardiomyocyte is developed as early as the midgestation period. Substantial and rapid adaptive changes in cardiac microarchitecture suggested considerable developmental plasticity of cardiomyocyte form and function in the postnatal period in response to altered cardiac mechanical function.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Medicine, Washington University, Saint Louis, MO 63108, USA
| | | | | | | | | | | |
Collapse
|
87
|
Mekkaoui C, Huang S, Chen HH, Dai G, Reese TG, Kostis WJ, Thiagalingam A, Maurovich-Horvat P, Ruskin JN, Hoffmann U, Jackowski MP, Sosnovik DE. Fiber architecture in remodeled myocardium revealed with a quantitative diffusion CMR tractography framework and histological validation. J Cardiovasc Magn Reson 2012; 14:70. [PMID: 23061749 PMCID: PMC3506570 DOI: 10.1186/1532-429x-14-70] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study of myofiber reorganization in the remote zone after myocardial infarction has been performed in 2D. Microstructural reorganization in remodeled hearts, however, can only be fully appreciated by considering myofibers as continuous 3D entities. The aim of this study was therefore to develop a technique for quantitative 3D diffusion CMR tractography of the heart, and to apply this method to quantify fiber architecture in the remote zone of remodeled hearts. METHODS Diffusion Tensor CMR of normal human, sheep, and rat hearts, as well as infarcted sheep hearts was performed ex vivo. Fiber tracts were generated with a fourth-order Runge-Kutta integration technique and classified statistically by the median, mean, maximum, or minimum helix angle (HA) along the tract. An index of tract coherence was derived from the relationship between these HA statistics. Histological validation was performed using phase-contrast microscopy. RESULTS In normal hearts, the subendocardial and subepicardial myofibers had a positive and negative HA, respectively, forming a symmetric distribution around the midmyocardium. However, in the remote zone of the infarcted hearts, a significant positive shift in HA was observed. The ratio between negative and positive HA variance was reduced from 0.96 ± 0.16 in normal hearts to 0.22 ± 0.08 in the remote zone of the remodeled hearts (p < 0.05). This was confirmed histologically by the reduction of HA in the subepicardium from -52.03° ± 2.94° in normal hearts to -37.48° ± 4.05° in the remote zone of the remodeled hearts (p < 0.05). CONCLUSIONS A significant reorganization of the 3D fiber continuum is observed in the remote zone of remodeled hearts. The positive (rightward) shift in HA in the remote zone is greatest in the subepicardium, but involves all layers of the myocardium. Tractography-based quantification, performed here for the first time in remodeled hearts, may provide a framework for assessing regional changes in the left ventricle following infarction.
Collapse
Affiliation(s)
- Choukri Mekkaoui
- Athinoula A. Martinos Center For Biomedical Imaging, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuning Huang
- Athinoula A. Martinos Center For Biomedical Imaging, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard H Chen
- Athinoula A. Martinos Center For Biomedical Imaging, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guangping Dai
- Athinoula A. Martinos Center For Biomedical Imaging, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy G Reese
- Athinoula A. Martinos Center For Biomedical Imaging, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William J Kostis
- Athinoula A. Martinos Center For Biomedical Imaging, Boston, MA, USA
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aravinda Thiagalingam
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pal Maurovich-Horvat
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeremy N Ruskin
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Udo Hoffmann
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcel P Jackowski
- Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - David E Sosnovik
- Athinoula A. Martinos Center For Biomedical Imaging, Boston, MA, USA
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Athinoula A. Martinos Center For Biomedical Imaging, 149 13th Street, Charlestown, MA, 02129, USA
| |
Collapse
|
88
|
Nielles-Vallespin S, Mekkaoui C, Gatehouse P, Reese TG, Keegan J, Ferreira PF, Collins S, Speier P, Feiweier T, de Silva R, Jackowski MP, Pennell DJ, Sosnovik DE, Firmin D. In vivo diffusion tensor MRI of the human heart: reproducibility of breath-hold and navigator-based approaches. Magn Reson Med 2012; 70:454-65. [PMID: 23001828 DOI: 10.1002/mrm.24488] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 11/11/2022]
Abstract
The aim of this study was to implement a quantitative in vivo cardiac diffusion tensor imaging (DTI) technique that was robust, reproducible, and feasible to perform in patients with cardiovascular disease. A stimulated-echo single-shot echo-planar imaging (EPI) sequence with zonal excitation and parallel imaging was implemented, together with a novel modification of the prospective navigator (NAV) technique combined with a biofeedback mechanism. Ten volunteers were scanned on two different days, each time with both multiple breath-hold (MBH) and NAV multislice protocols. Fractional anisotropy (FA), mean diffusivity (MD), and helix angle (HA) fiber maps were created. Comparison of initial and repeat scans showed good reproducibility for both MBH and NAV techniques for FA (P > 0.22), MD (P > 0.15), and HA (P > 0.28). Comparison of MBH and NAV FA (FAMBHday1 = 0.60 ± 0.04, FANAVday1 = 0.60 ± 0.03, P = 0.57) and MD (MDMBHday1 = 0.8 ± 0.2 × 10(-3) mm(2) /s, MDNAVday1 = 0.9 ± 0.2 × 10(-3) mm(2) /s, P = 0.07) values showed no significant differences, while HA values (HAMBHday1Endo = 22 ± 10°, HAMBHday1Mid-Endo = 20 ± 6°, HAMBHday1Mid-Epi = -1 ± 6°, HAMBHday1Epi = -17 ± 6°, HANAVday1Endo = 7 ± 7°, HANAVday1Mid-Endo = 13 ± 8°, HANAVday1Mid-Epi = -2 ± 7°, HANAVday1Epi = -14 ± 6°) were significantly different. The scan duration was 20% longer with the NAV approach. Currently, the MBH approach is the more robust in normal volunteers. While the NAV technique still requires resolution of some bulk motion sensitivity issues, these preliminary experiments show its potential for in vivo clinical cardiac diffusion tensor imaging and for delivering high-resolution in vivo 3D DTI tractography of the heart.
Collapse
|
89
|
Dabiri BE, Lee H, Parker KK. A potential role for integrin signaling in mechanoelectrical feedback. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:196-203. [PMID: 22819851 DOI: 10.1016/j.pbiomolbio.2012.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/11/2012] [Indexed: 01/20/2023]
Abstract
Certain forms of heart disease involve gross morphological changes to the myocardium that alter its hemodynamic loading conditions. These changes can ultimately lead to the increased deposition of extracellular matrix (ECM) proteins, such as collagen and fibronectin, which together work to pathologically alter the myocardium's bulk tissue mechanics. In addition to changing the mechanical properties of the heart, this maladaptive remodeling gives rise to changes in myocardium electrical conductivity and synchrony since the tissue's mechanical properties are intimately tied to its electrical characteristics. This phenomenon, called mechanoelectrical coupling (MEC), can render individuals affected by heart disease arrhythmogenic and susceptible to Sudden Cardiac Death (SCD). The underlying mechanisms of MEC have been attributed to various processes, including the action of stretch activated channels and changes in troponin C-Ca(2+) binding affinity. However, changes in the heart post infarction or due to congenital myopathies are also accompanied by shifts in the expression of various molecular components of cardiomyocytes, including the mechanosensitive family of integrin proteins. As transmembrane proteins, integrins mechanically couple the ECM with the intracellular cytoskeleton and have been implicated in mediating ion homeostasis in various cell types, including neurons and smooth muscle. Given evidence of altered integrin expression in the setting of heart disease coupled with the associated increased risk for arrhythmia, we argue in this review that integrin signaling contributes to MEC. In light of the significant mortality associated with arrhythmia and SCD, close examination of all culpable mechanisms, including integrin-mediated MEC, is necessary.
Collapse
Affiliation(s)
- Borna E Dabiri
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Pierce Hall 321, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
90
|
Abstract
A heart attack kills off many cells in the heart. Parts of the heart become thin and fail to contract properly following the replacement of lost cells by scar tissue. However, the notion that the same adult cardiomyocytes beat throughout the lifespan of the organ and organism, without the need for a minimum turnover, gives way to a fascinating investigations. Since the late 1800s, scientists and cardiologists wanted to demonstrate that the cardiomyocytes cannot be generated after the perinatal period in human beings. This curiosity has been passed down in subsequent years and has motivated more and more accurate studies in an attempt to exclude the presence of renewed cardiomyocytes in the tissue bordering the ischaemic area, and then to confirm the dogma of the heart as terminally differentiated organ. Conversely, peri-lesional mitosis of cardiomyocytes were discovered initially by light microscopy and subsequently confirmed by more sophisticated technologies. Controversial evidence of mechanisms underlying myocardial regeneration has shown that adult cardiomyocytes are renewed through a slow turnover, even in the absence of damage. This turnover is ensured by the activation of rare clusters of progenitor cells interspersed among the cardiac cells functionally mature. Cardiac progenitor cells continuously interact with each other, with the cells circulating in the vessels of the coronary microcirculation and myocardial cells in auto-/paracrine manner. Much remains to be understood; however, the limited functional recovery in human beings after myocardial injury clearly demonstrates weak regenerative potential of cardiomyocytes and encourages the development of new approaches to stimulate this process.
Collapse
Affiliation(s)
- Lucio Barile
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
91
|
Vadakkumpadan F, Arevalo H, Ceritoglu C, Miller M, Trayanova N. Image-based estimation of ventricular fiber orientations for personalized modeling of cardiac electrophysiology. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:1051-60. [PMID: 22271833 PMCID: PMC3518051 DOI: 10.1109/tmi.2012.2184799] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Technological limitations pose a major challenge to acquisition of myocardial fiber orientations for patient-specific modeling of cardiac (dys)function and assessment of therapy. The objective of this project was to develop a methodology to estimate cardiac fiber orientations from in vivo images of patient heart geometries. An accurate representation of ventricular geometry and fiber orientations was reconstructed, respectively, from high-resolution ex vivo structural magnetic resonance (MR) and diffusion tensor (DT) MR images of a normal human heart, referred to as the atlas. Ventricular geometry of a patient heart was extracted, via semiautomatic segmentation, from an in vivo computed tomography (CT) image. Using image transformation algorithms, the atlas ventricular geometry was deformed to match that of the patient. Finally, the deformation field was applied to the atlas fiber orientations to obtain an estimate of patient fiber orientations. The accuracy of the fiber estimates was assessed using six normal and three failing canine hearts. The mean absolute difference between inclination angles of acquired and estimated fiber orientations was 15.4°. Computational simulations of ventricular activation maps and pseudo-ECGs in sinus rhythm and ventricular tachycardia indicated that there are no significant differences between estimated and acquired fiber orientations at a clinically observable level.
Collapse
Affiliation(s)
- Fijoy Vadakkumpadan
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
92
|
Witzenburg C, Raghupathy R, Kren SM, Taylor DA, Barocas VH. Mechanical changes in the rat right ventricle with decellularization. J Biomech 2012; 45:842-9. [PMID: 22209312 PMCID: PMC3294143 DOI: 10.1016/j.jbiomech.2011.11.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2011] [Indexed: 11/30/2022]
Abstract
The stiffness, anisotropy, and heterogeneity of freshly dissected (control) and perfusion-decellularized rat right ventricles were compared using an anisotropic inverse mechanics method. Cruciform tissue samples were speckled and then tested under a series of different biaxial loading configurations with simultaneous force measurement on all four arms and displacement mapping via image correlation. Based on the displacement and force data, the sample was segmented into piecewise homogeneous partitions. Tissue stiffness and anisotropy were characterized for each partition using a large-deformation extension of the general linear elastic model. The perfusion-decellularized tissue had significantly higher stiffness than the control, suggesting that the cellular contribution to stiffness, at least under the conditions used, was relatively small. Neither anisotropy nor heterogeneity (measured by the partition standard deviation of the modulus and anisotropy) varied significantly between control and decellularized samples. We thus conclude that although decellularization produces quantitative differences in modulus, decellularized tissue can provide a useful model of the native tissue extracellular matrix. Further, the large-deformation inverse method presented herein can be used to characterize complex soft tissue behaviors.
Collapse
Affiliation(s)
- Colleen Witzenburg
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Ramesh Raghupathy
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Stefan M. Kren
- Center for Cardiovascular Repair, Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455
| | - Doris A. Taylor
- Center for Cardiovascular Repair, Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455
| | - Victor H. Barocas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
93
|
Wenk JF, Klepach D, Lee LC, Zhang Z, Ge L, Tseng EE, Martin A, Kozerke S, Gorman JH, Gorman RC, Guccione JM. First evidence of depressed contractility in the border zone of a human myocardial infarction. Ann Thorac Surg 2012; 93:1188-93. [PMID: 22326127 DOI: 10.1016/j.athoracsur.2011.12.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/13/2011] [Accepted: 12/19/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND The temporal progression in extent and severity of regional myofiber contractile dysfunction in normally perfused border zone (BZ) myocardium adjacent to a myocardial infarction (MI) has been shown to be an important pathophysiologic feature of the adverse remodeling process in large animal models. We sought, for the first time, to document the presence of impaired contractility of the myofibers in the human BZ myocardium. METHODS A 62-year-old man who experienced an MI in 1985 and had recently had complete revascularization was studied. Myofiber systolic contractile stress developed in the normally perfused BZ adjacent to the MI (T(max_B)) and that developed in regions remote from the MI (T(max_R)) were quantified using cardiac catheterization, magnetic resonance imaging, and mathematical modeling. RESULTS The resulting finite element model of the patient's beating left ventricle was able to simulate the reduced systolic strains measured using magnetic resonance imaging at matching left ventricular pressures and volumes. The T(max_B) (73.1 kPa) was found to be greatly reduced relative to T(max_R) (109.5 kPa). These results were found to be independent of assumptions relating to BZ myofiber orientation. CONCLUSIONS The results of this study document the presence of impaired contractility of the myofibers in the BZ myocardium and support its role in the post-MI remodeling process in patients. To fully establish this important conclusion serial evaluations beginning at the time of the index MI will need to be performed in a cohort of patients. The current study supports the importance and demonstrates the feasibility of larger and longer-term studies.
Collapse
Affiliation(s)
- Jonathan F Wenk
- Department of Mechanical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Healy LJ, Jiang Y, Hsu EW. Quantitative comparison of myocardial fiber structure between mice, rabbit, and sheep using diffusion tensor cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2011; 13:74. [PMID: 22117695 PMCID: PMC3235060 DOI: 10.1186/1532-429x-13-74] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 11/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accurate interpretations of cardiac functions require precise structural models of the myocardium, but the latter is not available always and for all species. Although scaling or substitution of myocardial fiber information from alternate species has been used in cardiac functional modeling, the validity of such practice has not been tested. METHODS Fixed mouse (n = 10), rabbit (n = 6), and sheep (n = 5) hearts underwent diffusion tensor imaging (DTI). The myocardial structures in terms of the left ventricular fiber orientation helix angle index were quantitatively compared between the mouse rabbit and sheep hearts. RESULTS The results show that significant fiber structural differences exist between any two of the three species. Specifically, the subepicardial fiber orientation, and the transmural range and linearity of fiber helix angles are significantly different between the mouse and either rabbit or sheep. Additionally, a significant difference was found between the transmural helix angle range between the rabbit and sheep. Across different circumferential regions of the heart, the fiber orientation was not found to be significantly different. CONCLUSIONS The current study indicates that myocardial structural differences exist between different size hearts. An immediate implication of the present findings for myocardial structural or functional modeling studies is that caution must be exercised when extrapolating myocardial structures from one species to another.
Collapse
Affiliation(s)
- Lindsey J Healy
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| | - Yi Jiang
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, USA
| | - Edward W Hsu
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
95
|
Yang F, Zhu YM, Magnin IE, Luo JH, Croisille P, Kingsley PB. Feature-based interpolation of diffusion tensor fields and application to human cardiac DT-MRI. Med Image Anal 2011; 16:459-81. [PMID: 22154961 DOI: 10.1016/j.media.2011.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 10/26/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
Abstract
Diffusion tensor interpolation is an important issue in the application of diffusion tensor magnetic resonance imaging (DT-MRI) to the human heart, all the more as the points representing the myocardium of the heart are often sparse. We propose a feature-based interpolation framework for the tensor fields from cardiac DT-MRI, by taking into account inherent relationships between tensor components. In this framework, the interpolation consists in representing a diffusion tensor in terms of two tensor features, eigenvalues and orientation, interpolating the Euler angles or the quaternion relative to tensor orientation and the logarithmically transformed eigenvalues, and reconstructing the tensor to be interpolated from the interpolated eigenvalues and tensor orientations. The results obtained with the aid of both synthetic and real cardiac DT-MRI data demonstrate that the feature-based schemes based on Euler angles or quaternions not only maintain the advantages of Log-Euclidean and Riemannian interpolation as for preserving the tensor's symmetric positive-definiteness and the monotonic determinant variation, but also preserve, at the same time, the monotonicity of fractional anisotropy (FA) and mean diffusivity (MD) values, which is not the case with Euclidean, Cholesky and Log-Euclidean methods. As a result, both interpolation schemes remove the phenomenon of FA collapse, and consequently avoid introducing artificial fiber crossing, with the difference that the quaternion is independent of coordinate system while Euler angles have the property of being more suitable for sophisticated interpolations.
Collapse
Affiliation(s)
- Feng Yang
- CREATIS, CNRS UMR 5220, INSERM U1044, INSA Lyon, University of Lyon, Villeurbanne, France.
| | | | | | | | | | | |
Collapse
|
96
|
Buckberg G, Hoffman JI, Nanda NC, Coghlan C, Saleh S, Athanasuleas C. Ventricular Torsion and Untwisting: Further Insights into Mechanics and Timing Interdependence: A Viewpoint. Echocardiography 2011; 28:782-804. [DOI: 10.1111/j.1540-8175.2011.01448.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
97
|
Hales PW, Burton RAB, Bollensdorff C, Mason F, Bishop M, Gavaghan D, Kohl P, Schneider JE. Progressive changes in T₁, T₂ and left-ventricular histo-architecture in the fixed and embedded rat heart. NMR IN BIOMEDICINE 2011; 24:836-43. [PMID: 21834007 PMCID: PMC4448107 DOI: 10.1002/nbm.1629] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 07/25/2010] [Accepted: 09/21/2010] [Indexed: 05/31/2023]
Abstract
Chemical tissue fixation, followed by embedding in either agarose or Fomblin, is common practice in time-intensive MRI studies of ex vivo biological samples, and is required to prevent tissue autolysis and sample motion. However, the combined effect of fixation and sample embedding may alter tissue structure and MRI properties. We investigated the progressive changes in T(1) and T(2) relaxation times, and the arrangement of locally prevailing cardiomyocyte orientation determined using diffusion tensor imaging, in embedded ex vivo rat hearts fixed using Karnovsky's solution (glutaraldehyde-formaldehyde mix). Three embedding media were investigated: (i) standard agarose (n = 3 hearts); (ii) Fomblin (n = 4 hearts); and (iii) iso-osmotic agarose (n = 3 hearts); in the latter, the osmolarity of the fixative and embedding medium was adjusted to 300 mOsm to match more closely that of native tissue. The T(1) relaxation time in the myocardium showed a pronounced decrease over a 48-h period following embedding in Fomblin (-11.3 ± 6.2%; mean ± standard deviation), but was stable in standard agarose- and iso-osmotic agarose-embedded hearts. The mean myocardial T(2) relaxation time increased in all embedded hearts: by 35.1 ± 14.7% with standard agarose embedding, 13.1 ± 5.6% with Fomblin and 13.3 ± 1.4% with iso-osmotic agarose. Deviation in the orientation of the primary eigenvector of the diffusion tensor occurred in all hearts (mean angular changes of 6.6°, 3.2° and 1.9° per voxel after 48 h in agarose-, Fomblin- and iso-osmotic agarose-embedded hearts, respectively), indicative of progressive structural changes in myocardial histo-architecture, in spite of previous exposure to fast-acting tissue fixation. Our results suggest that progressive structural changes occur in chemically fixed myocardium, and that the extent of these changes is modulated by the embedding medium, and by osmotic gradients between the fixative in the tissue and the surrounding medium.
Collapse
Affiliation(s)
- Patrick W Hales
- Department of Cardiovascular Medicine, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Goergen CJ, Sosnovik DE. From molecules to myofibers: multiscale imaging of the myocardium. J Cardiovasc Transl Res 2011; 4:493-503. [PMID: 21643889 DOI: 10.1007/s12265-011-9284-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/26/2011] [Indexed: 01/14/2023]
Abstract
Pathology in the heart can be examined at several scales, ranging from the molecular to the macroscopic. Traditionally, fluorescence-based techniques such as flow cytometry have been used to study the myocardium at the molecular, cellular, and microscopic levels. Recent advances in magnetic resonance imaging (MRI), however, have made it possible to image certain cellular and molecular events in the myocardium noninvasively in vivo. In addition, diffusion MRI has been used to image myocardial fiber architecture and microstructure in the intact heart. Diffusion MRI tractography, in particular, is providing novel insights into myocardial microsctructure in both health and disease. Recent developments have also been made in fluorescence imaging, making it possible to image fluorescent probes in the heart of small animals noninvasively in vivo. Moreover, techniques have been developed to perform in vivo fluorescence tomography of the mouse heart. These advances in MRI and fluorescence imaging allow events in the myocardium to be imaged at several scales linking molecular changes to alterations in microstructure and microstructural changes to gross function. A complete and integrated picture of pathophysiology in the myocardium is thus obtained. This multiscale approach has the potential to be of significant value not only in preclinical research but, ultimately, in the clinical arena as well.
Collapse
Affiliation(s)
- Craig J Goergen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
99
|
Gurev V, Lee T, Constantino J, Arevalo H, Trayanova NA. Models of cardiac electromechanics based on individual hearts imaging data: image-based electromechanical models of the heart. Biomech Model Mechanobiol 2011; 10:295-306. [PMID: 20589408 PMCID: PMC3166526 DOI: 10.1007/s10237-010-0235-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
Abstract
Current multi-scale computational models of ventricular electromechanics describe the full process of cardiac contraction on both the micro- and macro- scales including: the depolarization of cardiac cells, the release of calcium from intracellular stores, tension generation by cardiac myofilaments, and mechanical contraction of the whole heart. Such models are used to reveal basic mechanisms of cardiac contraction as well as the mechanisms of cardiac dysfunction in disease conditions. In this paper, we present a methodology to construct finite element electromechanical models of ventricular contraction with anatomically accurate ventricular geometry based on magnetic resonance and diffusion tensor magnetic resonance imaging of the heart. The electromechanical model couples detailed representations of the cardiac cell membrane, cardiac myofilament dynamics, electrical impulse propagation, ventricular contraction, and circulation to simulate the electrical and mechanical activity of the ventricles. The utility of the model is demonstrated in an example simulation of contraction during sinus rhythm using a model of the normal canine ventricles.
Collapse
Affiliation(s)
- Viatcheslav Gurev
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., CSEB Room 218, Baltimore, MD 21218, USA.
| | | | | | | | | |
Collapse
|
100
|
Veress AI, Segars WP, Tsui BMW, Gullberg GT. Incorporation of a left ventricle finite element model defining infarction into the XCAT imaging phantom. IEEE TRANSACTIONS ON MEDICAL IMAGING 2011; 30:915-927. [PMID: 21041157 PMCID: PMC3097415 DOI: 10.1109/tmi.2010.2089801] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The 4D extended cardiac-torso (XCAT) phantom was developed to provide a realistic and flexible model of the human anatomy and cardiac and respiratory motions for use in medical imaging research. A prior limitation to the phantom was that it did not accurately simulate altered functions of the heart that result from cardiac pathologies such as coronary artery disease (CAD). We overcame this limitation in a previous study by combining the phantom with a finite-element (FE) mechanical model of the left ventricle (LV) capable of more realistically simulating regional defects caused by ischemia. In the present work, we extend this model giving it the ability to accurately simulate motion abnormalities caused by myocardial infarction (MI), a far more complex situation in terms of altered mechanics compared with the modeling of acute ischemia. The FE model geometry is based on high resolution CT images of a normal male subject. An anterior region was defined as infarcted and the material properties and fiber distribution were altered, according to the bio-physiological properties of two types of infarction, i.e., fibrous and remodeled infarction (30% thinner wall than fibrous case). Compared with the original, surface-based 4D beating heart model of the XCAT, where regional abnormalities are modeled by simply scaling down the motion in those regions, the FE model was found to provide a more accurate representation of the abnormal motion of the LV due to the effects of fibrous infarction as well as depicting the motion of remodeled infarction. In particular, the FE models allow for the accurate depiction of dyskinetic motion. The average circumferential strain results were found to be consistent with measured dyskinetic experimental results. Combined with the 4D XCAT phantom, the FE model can be used to produce realistic multimodality sets of imaging data from a variety of patients in which the normal or abnormal cardiac function is accurately represented.
Collapse
Affiliation(s)
| | - W. Paul Segars
- Department of Radiology, Duke University, Durham, NC 27705 USA
| | | | - Grant T. Gullberg
- E. O. Lawrence Berkeley National Laboratory, Life Science Division, Berkeley, CA 94720 USA
| |
Collapse
|