51
|
Abstract
Since diabetic cardiomyopathy was first reported four decades ago, substantial information on its pathogenesis and clinical features has accumulated. In the heart, diabetes enhances fatty acid metabolism, suppresses glucose oxidation, and modifies intracellular signaling, leading to impairments in multiple steps of excitation–contraction coupling, inefficient energy production, and increased susceptibility to ischemia/reperfusion injury. Loss of normal microvessels and remodeling of the extracellular matrix are also involved in contractile dysfunction of diabetic hearts. Use of sensitive echocardiographic techniques (tissue Doppler imaging and strain rate imaging) and magnetic resonance spectroscopy enables detection of diabetic cardiomyopathy at an early stage, and a combination of the modalities allows differentiation of this type of cardiomyopathy from other organic heart diseases. Circumstantial evidence to date indicates that diabetic cardiomyopathy is a common but frequently unrecognized pathological process in asymptomatic diabetic patients. However, a strategy for prevention or treatment of diabetic cardiomyopathy to improve its prognosis has not yet been established. Here, we review both basic and clinical studies on diabetic cardiomyopathy and summarize problems remaining to be solved for improving management of this type of cardiomyopathy.
Collapse
Affiliation(s)
- Takayuki Miki
- Division of Cardiology, Second Department of Internal Medicine, School of Medicine, Sapporo Medical University, South-1 West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | | | | | | |
Collapse
|
52
|
Li D, Huang B, Liu J, Li L, Li X. Decreased brain K(ATP) channel contributes to exacerbating ischemic brain injury and the failure of neuroprotection by sevoflurane post-conditioning in diabetic rats. PLoS One 2013; 8:e73334. [PMID: 23991188 PMCID: PMC3753248 DOI: 10.1371/journal.pone.0073334] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/19/2013] [Indexed: 11/25/2022] Open
Abstract
Diabetes leads to exacerbating brain injury after ischemic stroke, but the underlying mechanisms and whether therapeutic intervention with anesthetic post-conditioning can induce neuroprotection in this population are not known. We tested the hypothesis that alteration of brain mitochondrial (mito) KATP channels might cause exacerbating brain injury after ischemic stroke and attenuate anesthetic post-conditioning induced neuroprotection in diabetes. We also examined whether hyperglycemic correction with insulin would restore anesthetic post-conditioning in diabetes. Non-diabetic rats and diabetic rats treated with or without insulin were subjected to focal cerebral ischemia for 2 h followed by 24 h of reperfusion. Post-conditioning was performed by exposure to sevoflurane for 15 min, immediately at the onset of reperfusion. The role of the mitoKATP channel was assessed by administration of a selective blocker 5-hydroxydecanoate (5-HD) before sevoflurane post-conditioning or by diazoxide (DZX), a mitoKATP channel opener, given in place of sevoflurane. Compared with non-diabetic rats, diabetic rats had larger infarct volume and worse neurological outcome at 24 h after ischemia. Sevoflurane or DZX reduced the infarct volume and improved neurological outcome in non-diabetic rats but not in diabetic rats, and the protective effects of sevoflurane in non-diabetic rats were inhibited by pretreatment with 5-HD. Molecular studies revealed that expression of Kir6.2, an important mitoKATP channel component, was decreased in the brain of diabetic rats as compared to non-diabetic rats. In contrast, hyperglycemic correction with insulin in diabetic rats normalized expression of brain Kir6.2, reduced ischemic brain damage and restored neuroprotective effects of sevoflurane post-conditioning. Our findings suggest that decreased brain mitoKATP channel contributes to exacerbating ischemic brain injury and the failure of neuroprotection by anesthetic post-conditioning in diabetes. Insulin glycemic control in diabetes may restore the neuroprotective effects of anesthetic post-conditioning by modulation of brain mitoKATP channel.
Collapse
Affiliation(s)
- Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan City, Shandong Province, China
| | | | | | | | | |
Collapse
|
53
|
AMPK-regulated and Akt-dependent enhancement of glucose uptake is essential in ischemic preconditioning-alleviated reperfusion injury. PLoS One 2013; 8:e69910. [PMID: 23922853 PMCID: PMC3724784 DOI: 10.1371/journal.pone.0069910] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/13/2013] [Indexed: 01/04/2023] Open
Abstract
AIMS Ischemic preconditioning (IPC) is a potent form of endogenous protection. However, IPC-induced cardioprotective effect is significantly blunted in insulin resistance-related diseases and the underlying mechanism is unclear. This study aimed to determine the role of glucose metabolism in IPC-reduced reperfusion injury. METHODS Normal or streptozotocin (STZ)-treated diabetic rats subjected to 2 cycles of 5 min ischemia/5 min reperfusion prior to myocardial ischemia (30 min)/reperfusion (3 h). Myocardial glucose uptake was determined by (18)F-fluorodeoxyglucose-positron emission tomography (PET) scan and gamma-counter biodistribution assay. RESULTS IPC exerted significant cardioprotection and markedly improved myocardial glucose uptake 1 h after reperfusion (P<0.01) as evidenced by PET images and gamma-counter biodistribution assay in ischemia/reperfused rats. Meanwhile, myocardial translocation of glucose transporter 4 (GLUT4) to plasma membrane together with myocardial Akt and AMPK phosphorylation were significantly enhanced in preconditioned hearts. Intramyocardial injection of GLUT4 siRNA markedly decreased GLUT4 expression and blocked the cardioprotection of IPC as evidence by increased myocardial infarct size. Moreover, the PI3K inhibitor wortmannin significantly inhibited activation of Akt and AMPK, reduced GLUT4 translocation, glucose uptake and ultimately, depressed IPC-induced cardioprotection. Furthermore, IPC-afforded antiapoptotic effect was markedly blunted in STZ-treated diabetic rats. Exogenous insulin supplementation significantly improved glucose uptake via co-activation of myocardial AMPK and Akt and alleviated ischemia/reperfusion injury as evidenced by reduced myocardial apoptosis and infarction size in STZ-treated rats (P<0.05). CONCLUSIONS The present study firstly examined the role of myocardial glucose metabolism during reperfusion in IPC using direct genetic modulation in vivo. Augmented glucose uptake via co-activation of myocardial AMPK and Akt in reperfused myocardium is essential to IPC-alleviated reperfusion injury. This intrinsic metabolic modulation and cardioprotective capacity are present in STZ-treated hearts and can be triggered by insulin.
Collapse
|
54
|
Wensley I, Salaveria K, Bulmer AC, Donner DG, du Toit EF. Myocardial structure, function and ischaemic tolerance in a rodent model of obesity with insulin resistance. Exp Physiol 2013; 98:1552-64. [PMID: 23851919 DOI: 10.1113/expphysiol.2013.074948] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Obesity and its comorbidities (dyslipidaemia, insulin resistance and hypertension) that together constitute the metabolic syndrome are all risk factors for ischaemic heart disease. Although obesity has been reported to be an independent risk factor for congestive heart failure, whether obesity-induced heart failure develops in the absence of increased afterload (induced by hypertension) is not clear. We have previously shown that obesity with insulin resistance decreases myocardial tolerance to ischaemia-reperfusion, but the mechanism for this decreased tolerance remains unclear. We hypothesize that obesity with insulin resistance induces adverse cardiac remodelling and pump dysfunction, as well as adverse changes in myocardial prosurvival reperfusion injury salvage kinase (RISK) pathway signalling to reduce myocardial tolerance to ischaemia-reperfusion. Wistar rats were fed an obesogenic (obese group) or a standard rat chow diet (control group) for 32 weeks. Echocardiography was performed over the 32 weeks before isolated Langendorff-perfused hearts were subjected to 40 min coronary artery ligation followed by reperfusion, and functional recovery (rate-pressure product), infarct size and RISK pathway function were assessed (Western blot analysis). Obesity with insulin resistance increased myocardial lipid accumulation but had no effect on in vivo or ex vivo left ventricular structure/function. Hearts from obese rats had lower reperfusion rate-pressure products (13115 ± 562 beats min(-1) mmHg for obese rats versus 17781 ± 1109 beats min(-1) mmHg for control rats, P < 0.05) and larger infarcts (36.3 ± 5.6% of area at risk in obese rats versus 14.1 ± 2.8% of area at risk in control rats, P < 0.01) compared with control hearts. These changes were associated with reductions in RISK pathway function, with 30-50 and 40-60% reductions in Akt and glycogen synthase kinase 3 beta (GSK-3β) expression and phosphorylation, respectively, in obese rat hearts compared with control hearts. Total endothelial nitric oxide synthase expression was reduced by 25% in obese rats. We conclude that obesity with insulin resistance had no effect on basal cardiac structure or function but decreased myocardial tolerance to ischaemia-reperfusion. This reduction in ischaemic tolerance was likely to be due to compromised RISK pathway function in obese, insulin-resistant animals.
Collapse
Affiliation(s)
- I Wensley
- E. F. du Toit: School of Medical Science, Griffith University, Southport, QLD 4222, Australia.
| | | | | | | | | |
Collapse
|
55
|
Coetzee WA. Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacol Ther 2013; 140:167-75. [PMID: 23792087 DOI: 10.1016/j.pharmthera.2013.06.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 02/02/2023]
Abstract
Diazoxide has been identified over the past 50years to have a number of physiological effects, including lowering the blood pressure and rectifying hypoglycemia. Today it is used clinically to treat these conditions. More recently, another important mode of action emerged: diazoxide has powerful protective properties against cardiac ischemia. The heart has intrinsic protective mechanisms against ischemia injury; one of which is ischemic preconditioning. Diazoxide mimics ischemic preconditioning. The purpose of this treatise is to review the literature in an attempt to identify the many effectors of diazoxide and discuss how they may contribute to diazoxide's cardioprotective properties. Particular emphasis is placed on the concentration ranges in which diazoxide affects its different targets and how this compares with the concentrations commonly used to study cardioprotection. It is concluded that diazoxide may have several potential effectors that may potentially contribute to cardioprotection, including KATP channels in the pancreas, smooth muscle, endothelium, neurons and the mitochondrial inner membrane. Diazoxide may also affect other ion channels and ATPases and may directly regulate mitochondrial energetics. It is possible that the success of diazoxide lies in this promiscuity and that the compound acts to rebalance multiple physiological processes during cardiac ischemia.
Collapse
Affiliation(s)
- William A Coetzee
- Department of Pediatrics, NYU School of Medicine, New York, NY 10016, United States; Department of Physiology & Neuroscience, NYU School of Medicine, New York, NY 10016, United States; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
56
|
α-Lipoic acid ameliorates mitochondrial impairment and reverses apoptosis in FABP3-overexpressing embryonic cancer cells. J Bioenerg Biomembr 2013; 45:459-66. [DOI: 10.1007/s10863-013-9506-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
|
57
|
Song GX, Shen YH, Liu YQ, Sun W, Miao LP, Zhou LJ, Liu HL, Yang R, Kong XQ, Cao KJ, Qian LM, Sheng YH. Overexpression of FABP3 promotes apoptosis through inducing mitochondrial impairment in embryonic cancer cells. J Cell Biochem 2013; 113:3701-8. [PMID: 22753283 DOI: 10.1002/jcb.24243] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fatty acid-binding protein 3 (FABP3) is a low-molecular-weight protein with a distinct tissue distribution that may play an important role in fatty acid transport, cell growth, cellular signaling, and gene transcription. Previously, we have found that FABP3 was involved in apoptosis-associated congenital cardiac malformations, but the underlying mechanisms have not yet been described. In the present study, we investigated the characteristics of mitochondrial dysfunction in embryonic cancer cells (P19 cells) that overexpressed FABP3. We demonstrated that in FABP3-overexpressing P19 cells a lower cellular ATP production was accompanied by a dramatic decrease in mitochondrial membrane potential (MMP), despite the lack of a substantial decrease in the mtDNA copy number. In addition, FABP3 overexpression also led to an imbalance in mitochondrial dynamics and to excess intracellular reactive oxygen species production. Collectively, our results indicated that overexpression of FABP3 in P19 cells caused mitochondrion dysfunction that might be responsible for the development of FABP3-induced apoptosis.
Collapse
Affiliation(s)
- Gui Xian Song
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
van den Brom CE, Bulte CS, Loer SA, Bouwman RA, Boer C. Diabetes, perioperative ischaemia and volatile anaesthetics: consequences of derangements in myocardial substrate metabolism. Cardiovasc Diabetol 2013; 12:42. [PMID: 23452502 PMCID: PMC3599199 DOI: 10.1186/1475-2840-12-42] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/21/2013] [Indexed: 12/18/2022] Open
Abstract
Volatile anaesthetics exert protective effects on the heart against perioperative ischaemic injury. However, there is growing evidence that these cardioprotective properties are reduced in case of type 2 diabetes mellitus. A strong predictor of postoperative cardiac function is myocardial substrate metabolism. In the type 2 diabetic heart, substrate metabolism is shifted from glucose utilisation to fatty acid oxidation, resulting in metabolic inflexibility and cardiac dysfunction. The ischaemic heart also loses its metabolic flexibility and can switch to glucose or fatty acid oxidation as its preferential state, which may deteriorate cardiac function even further in case of type 2 diabetes mellitus.Recent experimental studies suggest that the cardioprotective properties of volatile anaesthetics partly rely on changing myocardial substrate metabolism. Interventions that target at restoration of metabolic derangements, like lifestyle and pharmacological interventions, may therefore be an interesting candidate to reduce perioperative complications. This review will focus on the current knowledge regarding myocardial substrate metabolism during volatile anaesthesia in the obese and type 2 diabetic heart during perioperative ischaemia.
Collapse
Affiliation(s)
- Charissa E van den Brom
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, VU University Medical Center, De Boelelaan 1117, Amsterdam, the Netherlands.
| | | | | | | | | |
Collapse
|
59
|
Hausenloy DJ, Wynne AM, Mocanu MM, Yellon DM. Glimepiride treatment facilitates ischemic preconditioning in the diabetic heart. J Cardiovasc Pharmacol Ther 2012; 18:263-9. [PMID: 23263382 DOI: 10.1177/1074248412468945] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIMS The diabetic heart is resistant to the myocardial infarct-limiting effects of ischemic preconditioning (IPC). This may be in part due to the downregulation of the phosphatidylinositol 3'-kinase-Akt pathway, an essential component of IPC protection. We hypothesized that treating the diabetic heart with the sulfonylurea, glimepiride, which has been reported to activate Akt, may lower the threshold required to protect the diabetic heart by IPC. METHODS Goto-Kakizaki rats (a type II lean model of diabetes) received glimepiride (20 mg/kg per d, by oral gavage) or vehicle for (a) 3 months (chronic treatment) or (b) 24 hours (subacute treatment). In the third group, glimepiride (10 μmol/L) was administered only to the isolated hearts on the Langendorff apparatus (acute treatment). All hearts were subjected to 35 minutes ischemia and 120 minutes reperfusion ex vivo, at the end of which infarct size was determined by tetrazolium staining. Preconditioning treatment comprised 1 (IPC-1) or 3 (IPC-3) cycles of 5 minutes global ischemia and 10 minutes reperfusion. RESULTS The diabetic heart was found to be resistant to IPC such that 3-IPC cycles, instead of the usual 1-IPC cycle, were required for cardioprotection. However, pretreatment with glimepiride lowered the threshold for IPC such that both 1 and 3 cycles of IPC elicited cardioprotection: chronic glimepiride treatment (IPC-1 31.9% ± 3.8% and IPC-3 33.5% ± 2.4% vs 43.9% ± 1.4% control, P < .05; N > 6 per group); subacute glimepiride treatment (IPC-1 31.1% ± 3.0% and IPC-3 29.3% ± 3.3% vs 42.2% ± 2.3% control, P < .05 N > 6 per group); and acute glimepiride treatment (IPC-1 28.2% ± 3.7% and IPC-3 24.6% ± 5.4% vs 41.9% ± 5.4% control, P < .05; N > 6 per group). This effect of glimepiride was independent of changes in blood glucose. CONCLUSIONS We report for the first time that glimepiride treatment facilitates the cardioprotective effect elicited by IPC in the diabetic heart.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, London, UK.
| | | | | | | |
Collapse
|
60
|
Diabetes mellitus reduces the function and expression of ATP-dependent K⁺ channels in cardiac mitochondria. Life Sci 2012; 92:664-8. [PMID: 23261529 DOI: 10.1016/j.lfs.2012.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 11/20/2022]
Abstract
AIM Our goal was to determine the effects of type I diabetes mellitus on the function and expression of ATP-dependent K(+) channels in cardiac mitochondria (mitoKATP), composed of a pore-forming subunit (Kir6.1) and a diazoxide-sensitive sulphonylurea receptor (SUR1). We tested the hypothesis that diabetes reduces Kir6.1 and SUR1 expression as well as diazoxide-induced depolarization of mitochondrial membrane potential (ΔΨm). MAIN METHODS Male FVB mice were made diabetic for 5weeks with multiple low dose injections of streptozotocin. Cardiac mitochondria were separated into two populations: subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM). mitoKATP expression was determined via Western blot analysis of Kir6.1 and SUR1 proteins. mitoKATP function was determined by measuring ΔΨm with the potentiometric dye rhodamine 123. KEY FINDINGS Diabetes reduced Kir6.1 and SUR1 expression in IFM by over 40% (p<0.05 for both). Similarly, diabetes reduced Kir6.1 expression in SSM by approximately 40% (p<0.05); however, SUR1 expression was unaffected. Opening mitoKATP with diazoxide (100μM) depolarized control IFM ΔΨm by 80% of the valinomycin maximum; diabetic IFM depolarized only 30% (p<0.05). Diazoxide-induced depolarization was much less in SSM (20-30%) and unaffected by diabetes. SIGNIFICANCE Our data indicate that diabetes reduces mitoKATP expression and function in IFM. These changes in mitoKATP may provide an opportunity to understand mechanisms leading to diabetic cardiomyopathy and loss of cardioprotective mechanisms in the diabetic heart.
Collapse
|
61
|
Donner D, Headrick JP, Peart JN, du Toit EF. Obesity improves myocardial ischaemic tolerance and RISK signalling in insulin-insensitive rats. Dis Model Mech 2012; 6:457-66. [PMID: 23161371 PMCID: PMC3597027 DOI: 10.1242/dmm.010959] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Obesity with associated metabolic disturbances worsens ischaemic heart disease outcomes, and rodent studies confirm that obesity with insulin-resistance impairs myocardial resistance to ischemia-reperfusion (I-R) injury. However, the effects of obesity per se are unclear, with some evidence for paradoxic cardioprotection (particularly in older subjects). We tested the impact of dietary obesity on I-R tolerance and reperfusion injury salvage kinase (RISK) signalling in hearts from middle-aged (10 months old) insulin-insensitive rats. Hearts from Wistar rats on either a 32-week control (CD) or high carbohydrate obesogenic (OB) diet were assessed for I-R resistance in vivo (45 minutes left anterior descending artery occlusion and 120 minutes reperfusion) and ex vivo (25 minutes ischemia and 60 minutes reperfusion). Expression and δ-opioid receptor (δ-OR) phospho-regulation of pro-survival (Akt/PKB, Erk1/2, eNOS) and pro-injury (GSK3β) enzymes were also examined. OB rats were heavier (764±25 versus 657±22 g for CD; P<0.05), hyperleptinaemic (11.1±0.7 versus 5.0±0.7 for CD; P<0.01) and comparably insulin-insensitive (HOMA-IR of 63.2±3.3 versus 63.2±1.6 for CD). In vivo infarction was more than halved in OB (20±3%) versus CD rats (45±6% P<0.05), as was post-ischaemic lactate dehydrogenase efflux (0.4±0.3 mU/ml versus 5.6±0.5 mU/ml; P<0.02) and ex vivo contractile dysfunction (62±2% versus 44±6% recovery of ventricular force; P<0.05). OB hearts exhibited up to 60% higher Akt expression, with increased phosphorylation of eNOS (+100%), GSK3β (+45%) and Erk1/2 (+15%). Pre-ischaemic δ-OR agonism with BW373U86 improved recoveries in CD hearts in association with phosphorylation of Akt (+40%), eNOS (+75%) and GSK3β (+30%), yet failed to further enhance RISK-NOS activation or I-R outcomes in OB hearts. In summary, dietary obesity in the context of age-related insulin-insensitivity paradoxically improves myocardial I-R tolerance, in association with moderate hyperleptinaemic and enhanced RISK expression and phospho-regulation. However, OB hearts are resistant to further RISK modulation and cardioprotection via acute δ-OR agonism.
Collapse
Affiliation(s)
- Daniel Donner
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University Gold Coast, QLD 4217, Australia
| | | | | | | |
Collapse
|
62
|
Nautiyal M, Katakam PVG, Busija DW, Gallagher PE, Tallant EA, Chappell MC, Diz DI. Differences in oxidative stress status and expression of MKP-1 in dorsal medulla of transgenic rats with altered brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2012; 303:R799-806. [PMID: 22914751 DOI: 10.1152/ajpregu.00566.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ANG II-stimulated production of reactive oxygen species (ROS) through NADPH oxidase is suggested to activate MAPK pathways, which are implicated in neurally mediated pressor effects of ANG II. Emerging evidence suggests that ANG-(1-7) up regulates MAPK phosphatases to reduce MAPK signaling and attenuate actions of ANG II. Whether angiotensin peptides participate in long-term regulation of these systems in the brain is not known. Therefore, we determined tissue and mitochondrial ROS, as well as expression and activity of MAPK phosphatase-1 (MKP-1) in brain dorsal medullary tissue of hypertensive transgenic (mRen2)27 rats exhibiting higher ANG II/ANG-(1-7) tone or hypotensive transgenic rats with targeted decreased glial expression of angiotensinogen, ASrAOGEN (AS) exhibiting lower ANG II/ANG-(1-7) tone compared with normotensive Sprague-Dawley (SD) rats that serve as the control strain. Transgenic (mRen2)27 rats showed higher medullary tissue NADPH oxidase activity and dihydroethidium fluorescence in isolated mitochondria vs. SD or AS rats. Mitochondrial uncoupling protein 2 was lower in AS and unchanged in (mRen2)27 compared with SD rats. MKP-1 mRNA and protein expression were higher in AS and unchanged in (mRen2)27 compared with SD rats. AS rats also had lower phosphorylated ERK1/2 and JNK consistent with higher MKP-1 activity. Thus, an altered brain renin-angiotensin system influences oxidative stress status and regulates MKP-1 expression. However, there is a dissociation between these effects and the hemodynamic profiles. Higher ROS was associated with hypertension in (mRen2)27 and normal MKP-1, whereas the higher MKP-1 was associated with hypotension in AS, where ROS was normal relative to SD rats.
Collapse
Affiliation(s)
- Manisha Nautiyal
- The Hypertension and Vascular Research Center, Wake Forest Univ. School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1032, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Miki T, Itoh T, Sunaga D, Miura T. Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovasc Diabetol 2012; 11:67. [PMID: 22694800 PMCID: PMC3461466 DOI: 10.1186/1475-2840-11-67] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 01/25/2023] Open
Abstract
In spite of the current optimal therapy, the mortality of patients with ischemic heart disease (IHD) remains high, particularly in cases with diabetes mellitus (DM) as a co-morbidity. Myocardial infarct size is a major determinant of prognosis in IHD patients, and development of a novel strategy to limit infarction is of great clinical importance. Ischemic preconditioning (PC), postconditioning (PostC) and their mimetic agents have been shown to reduce infarct size in experiments using healthy animals. However, a variety of pharmacological agents have failed to demonstrate infarct size limitation in clinical trials. One of the possible reasons for the discrepancy between the results of animal experiments and clinical trials is that co-morbidities, including DM, modified myocardial responses to ischemia/reperfusion and to cardioprotective agents. Here we summarize observations of the effects of DM on myocardial infarct size and ischemic PC and PostC and discuss perspectives for protection of DM hearts.
Collapse
Affiliation(s)
- Takayuki Miki
- Second Department of Internal Medicine, Sapporo Medical University School of Medicine, South-1 West-16, Sapporo 060-8543, Japan.
| | | | | | | |
Collapse
|
64
|
Song T, Lv LY, Xu J, Tian ZY, Cui WY, Wang QS, Qu G, Shi XM. Diet-induced obesity suppresses sevoflurane preconditioning against myocardial ischemia-reperfusion injury: role of AMP-activated protein kinase pathway. Exp Biol Med (Maywood) 2011; 236:1427-36. [PMID: 22075552 DOI: 10.1258/ebm.2011.011165] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity is a major risk factor for coronary artery disease, but its impact on anesthetic-induced cardioprotective actions is unexplored. We tested whether obesity inhibits anesthetic sevoflurane-induced preconditioning and whether this effect is mediated via the AMP-activated protein kinase (AMPK) signaling pathway. Sprague-Dawley rats were fed a high-fat (HF, 45% kcal as fat) or low-fat (LF, 10% kcal as fat) diet for 12 weeks. HF-fed rats developed metabolic disturbances including visceral obesity, hyperinsulinemia, hyperleptinemia and dyslipidemia. HF- or LF-fed rats subjected to 25 min of myocardial ischemia followed by 120 min of reperfusion were assigned to the following groups: control, sevoflurane preconditioning, sevoflurane plus AMPK inhibitor ara-A or AMPK activator A769662 alone. Infarct size was similar between the two control groups. Sevoflurane preconditioning significantly reduced infarct size in LF-fed rats but failed to induce cardioprotection in HF-fed rats. Phosphorylation of AMPK and endothelial nitric oxide synthase, as well as myocardial nitrite and nitrate, were also increased by sevoflurane preconditioning in LF-fed rats but not in HF-fed rats. Pretreatment with ara-A inhibited phosphorylation of AMPK and reversed sevoflurane preconditioning-induced cardioprotection in LF-fed rats, whereas it had no effects in HF-fed rats. In addition, sevoflurane preconditioning failed to enhance reactive oxygen species (ROS) generation in the myocardium of HF-fed rats compared with LF-fed rats. Direct activation of AMPK with A769662 equally increased phosphorylation of AMPK and reduced infarct size in both LF- and HF-fed rats. The results suggest that diet-induced obesity suppresses sevoflurane preconditioning-induced cardioprotective action, probably due to a diminished effect of sevoflurane preconditioning on activation of the ROS-mediated AMPK signaling pathway.
Collapse
Affiliation(s)
- Tao Song
- Department of Anesthesiology, The First Affiliated Hospital, China Medical University, Shenyang 110001, China.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Ye Y, Perez-Polo JR, Aguilar D, Birnbaum Y. The potential effects of anti-diabetic medications on myocardial ischemia-reperfusion injury. Basic Res Cardiol 2011; 106:925-52. [PMID: 21892746 DOI: 10.1007/s00395-011-0216-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/04/2011] [Accepted: 08/16/2011] [Indexed: 12/15/2022]
Abstract
Heart disease and stroke account for 65% of the deaths in people with diabetes mellitus (DM). DM and hyperglycemia cause systemic inflammation, endothelial dysfunction, a hypercoagulable state with impaired fibrinolysis and increased platelet degranulation, and reduced coronary collateral blood flow. DM also interferes with myocardial protection afforded by preconditioning and postconditioning. Newer anti-diabetic agents should not only reduce serum glucose and HbA1c levels, but also improve cardiovascular outcomes. The older sulfonylurea agent, glyburide, abolishes the benefits of ischemic and pharmacologic preconditioning, but newer sulfonylurea agents, such as glimepiride, may not interfere with preconditioning. GLP-1 analogs and sitagliptin, an oral dipeptidyl peptidase IV inhibitor, limit myocardial infarct size in animal models by increasing intracellular cAMP levels and activating protein kinase A, whereas metformin protects the heart by activating AMP-activated protein kinase. Both thiazolidinediones (rosiglitazone and pioglitazone) limit infarct size in animal models. The protective effect of pioglitazone is dependent on downstream activation of cytosolic phospholipase A(2) and cyclooxygenase-2 with subsequent increased production of 15-epi-lipoxin A(4), prostacyclin and 15-d-PGJ(2). We conclude that agents used to treat DM have additional actions that have been shown to affect the ability of the heart to protect itself against ischemia-reperfusion injury in preclinical models. However, the effects of these agents in doses used in the clinical setting to minimize ischemia-reperfusion injury and to affect clinical outcomes in patients with DM have yet to be shown. The clinical implications as well as the mechanisms of protection should be further studied.
Collapse
Affiliation(s)
- Yumei Ye
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | |
Collapse
|
66
|
Lemoine S, Zhu L, Buléon C, Massetti M, Gérard JL, Galera P, Hanouz JL. Mechanisms involved in the desflurane-induced post-conditioning of isolated human right atria from patients with type 2 diabetes. Br J Anaesth 2011; 107:510-8. [PMID: 21862498 DOI: 10.1093/bja/aer201] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Desflurane triggers post-conditioning in the diabetic human myocardium. We determined whether protein kinase C (PKC), mitochondrial adenosine triphosphate-sensitive potassium (mitoK(ATP)) channels, Akt, and glycogen synthase kinase-3β (GSK-3β) were involved in the in vitro desflurane-induced post-conditioning of human myocardium from patients with type 2 diabetes. METHODS The isometric force of contraction (FoC) of human right atrial trabeculae obtained from patients with type 2 diabetes was recorded during 30 min of hypoxia followed by 60 min of reoxygenation. Desflurane (6%) was administered during the first 5 min of reoxygenation either alone or in the presence of calphostin C (PKC inhibitor) or 5-hydroxydecanoate (5-HD) (mitoK(ATP) channel antagonist). Phorbol 12-myristate 13-acetate (PKC activator) and diazoxide (a mitoK(ATP) channel opener) were superfused during early reoxygenation. The FoC at the end of the 60 min reoxygenation period was compared among treatment groups (FoC(60); mean and sd). The phosphorylation of Akt and GSK-3β was studied using western blotting. RESULTS Desflurane enhanced the recovery of force [FoC(60): 79 (3)% of baseline] after 60 min of reoxygenation when compared with the control group (P>0.0001). Calphostin C and 5-HD abolished the beneficial effect of desflurane-induced post-conditioning (both P<0.0001). Phorbol 12-myristate 13-acetate and diazoxide enhanced the FoC(60) when compared with the control group (both P<0.0001). Desflurane increased the level of phosphorylation of Akt and GSK-3β (P<0.0001). CONCLUSIONS Desflurane-induced post-conditioning in human myocardium from patients with type 2 diabetes was mediated by the activation of PKC, the opening of the mitoK(ATP) channels, and the phosphorylation of Akt and GSK-3β.
Collapse
Affiliation(s)
- S Lemoine
- Laboratory of Experimental Anaesthesiology and Cellular Physiology EA3212, Institut Fédératif de Recherche ICORE146, Université de Caen Basse Normandie, Caen, France.
| | | | | | | | | | | | | |
Collapse
|
67
|
Calorie restriction and resveratrol in cardiovascular health and disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1477-89. [PMID: 21749920 DOI: 10.1016/j.bbadis.2011.06.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/05/2011] [Accepted: 06/24/2011] [Indexed: 11/24/2022]
Abstract
Calorie restriction is one of the most effective nutritional interventions that reproducibly protects against obesity, diabetes and cardiovascular disease. Recent evidence suggests that even when implemented over a short period, calorie restriction is a safe and effective treatment for cardiovascular disease. Herein, we review the effects of calorie restriction on the cardiovascular system as well as the biological effects of resveratrol, the most widely studied molecule that appears to mimic calorie restriction. An overview of microarray data reveals that the myocardial transcriptional effects of calorie restriction overlap with the transcriptional responses to resveratrol treatment. In addition, calorie restriction and resveratrol modulate similar pathways to improve mitochondrial function, reduce oxidative stress and increase nitric oxide production that are involved in atherosclerosis prevention, blood pressure reduction, attenuation of left-ventricular hypertrophy, resistance to myocardial ischemic injury and heart failure prevention. We also review the data that suggest that the effects of calorie restriction and resveratrol on the cardiovascular system may involve signaling through the silent information regulator of transcription (SIRT), Akt and the AMP-activated protein kinase (AMPK) pathways. While accumulating data demonstrate the health benefits of calorie restriction and resveratrol in experimental animal models, whether these interventions translate to patients with cardiovascular disease remains to be determined.
Collapse
|
68
|
Ren JY, Song JX, Lu MY, Chen H. Cardioprotection by ischemic postconditioning is lost in isolated perfused heart from diabetic rats: Involvement of transient receptor potential vanilloid 1, calcitonin gene-related peptide and substance P. ACTA ACUST UNITED AC 2011; 169:49-57. [PMID: 21554904 DOI: 10.1016/j.regpep.2011.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 03/11/2011] [Accepted: 04/16/2011] [Indexed: 10/18/2022]
Abstract
We previously found that the expression of transient receptor potential vanilloid 1 (TRPV1) and contents of calcitonin gene-related peptide (CGRP) and substance P (SP), two main neuropeptides released from TRPV1, were decreased in diabetic hearts. This study aimed to test whether decreased TRPV1, CGRP and SP levels were responsible for the loss of cardioprotection by ischemic postconditioning (IPostC) in isolated perfused heart from streptozotocin-induced diabetic rats. IPostC effectively protected non-diabetic hearts against ischemia/reperfusion injury by improving cardiac function and lowering creatine kinase (CK) and cardiac troponin I (cTnI) release, which could be abolished by inhibiting TRPV1, CGRP receptor or SP receptor. However, IPostC had no effect on cardiac function and the release of CK and cTnI in diabetic hearts regardless of whether TRPV1, CGRP receptor or SP receptor were inhibited. CGRP or SP-induced postconditioning significantly prevented both non-diabetic and diabetic hearts from ischemia/reperfusion injury by improving cardiac function and lowering CK and cTnI release. Additionally, IPostC markedly increased CGRP and SP release in non-diabetic hearts, which could be reversed with TRPV1 inhibition, but not CGRP receptor or SP receptor inhibition. However, IPostC failed to affect CGRP and SP release in diabetic hearts in the presence or absence of TRPV1, CGRP receptor or SP receptor inhibition. These results indicate that the loss of cardioprotection by IPostC during diabetes is partly associated with a failure to increase CGRP and SP release, likely due to decreased TRPV1 expression and CGRP and SP contents in diabetic hearts.
Collapse
Affiliation(s)
- Jing-Yi Ren
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | | | | | | |
Collapse
|
69
|
Asanuma H, Kitakaze M. Does the treatment of both hypertension and cardiac hypertrophy not only prevent but also treat acute myocardial infarction? Circ J 2011; 75:1061-2. [PMID: 21467665 DOI: 10.1253/circj.cj-11-0292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
70
|
Huhn R, Heinen A, Hollmann MW, Schlack W, Preckel B, Weber NC. Cyclosporine A administered during reperfusion fails to restore cardioprotection in prediabetic Zucker obese rats in vivo. Nutr Metab Cardiovasc Dis 2010; 20:706-712. [PMID: 19819119 DOI: 10.1016/j.numecd.2009.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 06/03/2009] [Accepted: 06/23/2009] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Hyperglycaemia blocks sevoflurane-induced postconditioning, and cardioprotection in hyperglycaemic myocardium can be restored by inhibition of the mitochondrial permeability transition pore (mPTP). We investigated whether sevoflurane-induced postconditioning is also blocked in the prediabetic heart and if so, whether cardioprotection could be restored by inhibiting mPTP. METHODS AND RESULTS Zucker lean (ZL) and Zucker obese (ZO) rats were assigned to one of seven groups. Animals underwent 25 min of ischaemia and 120 min of reperfusion. Control (ZL-/ZO Con) animals were not further treated. postconditioning groups (ZL-/ZO Sevo-post) received sevoflurane for 5 min starting 1min prior to the onset of reperfusion. The mPTP inhibitor cyclosporine A (CsA) was administered intravenously in a concentration of 5 (ZO CsA and ZO CsA+Sevo-post) or 10 mg/kg (ZO CsA10+Sevo-post) 5 min before the onset of reperfusion. At the end of reperfusion, infarct sizes were measured by TTC staining. Blood samples were collected to measure plasma levels of insulin, cholesterol and triglycerides. Sevoflurane postconditioning reduced infarct size in ZL rats to 35±12% (p<0.05 vs. ZL Con: 60±6%). In ZO rats sevoflurane postconditioning was abolished (ZO Sevo-post: 59±12%, n.s. vs. ZO Con: 58±6%). 5 mg and 10 mg CsA could not restore cardioprotection (ZO CsA+Sevo-post: 59±7%, ZO CsA10+Sevo-post: 57±14%; n.s. vs. ZO Con). In ZO rats insulin, cholesterol and triglyceride levels were significant higher than in ZL rats (all p<0.05). CONCLUSION Inhibition of mPTP with CsA failed to restore cardioprotection in the prediabetic but normoglycaemic heart of Zucker obese rats in vivo.
Collapse
Affiliation(s)
- R Huhn
- Department of Anaesthesiology, Academic Medical Centre (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
71
|
Zhu XH, Yuan HJ, Wu YN, Kang Y, Jiao JJ, Gao WZ, Liu YX, Lou JS, Xia Z. Non-invasive limb ischemic pre-conditioning reduces oxidative stress and attenuates myocardium ischemia-reperfusion injury in diabetic rats. Free Radic Res 2010; 45:201-10. [PMID: 20942563 DOI: 10.3109/10715762.2010.522576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study was to explore whether repeated non-invasive limb ischemic pre-conditioning (NLIP) can confer an equivalent cardioprotection against myocardial ischemia-reperfusion (I/R) injury in acute diabetic rats to the extent of conventional myocardial ischemic pre-conditioning (MIP) and whether or not the delayed protection of NLIP is mediated by reducing myocardial oxidative stress after ischemia-reperfusion. Streptozotocin-induced diabetic rats were randomized to four groups: Sham group, the I/R group, the MIP group and the NLIP group. Compared with the I/R group, both the NLIP and MIP groups showed an amelioration of ventricular arrhythmia, reduced myocardial infarct size, increased activities of total superoxide dismutase (SOD), manganese-SOD and glutathione peroxidase, increased expression of manganese-SOD mRNA and decreased xanthine oxidase activity and malondialdehyde concentration (All p < 0.05 vs I/R group). It is concluded that non-invasive limb ischemic pre-conditioning reduces oxidative stress and attenuates myocardium ischemia-reperfusion injury in diabetic rats.
Collapse
Affiliation(s)
- Xue-Hui Zhu
- Department of Pharmacology, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
High-glucose condition reduces cardioprotective effects of insulin against mechanical stress-induced cell injury. Life Sci 2010; 87:154-61. [DOI: 10.1016/j.lfs.2010.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/25/2010] [Accepted: 06/05/2010] [Indexed: 11/18/2022]
|
73
|
Rane S, He M, Sayed D, Yan L, Vatner D, Abdellatif M. An antagonism between the AKT and beta-adrenergic signaling pathways mediated through their reciprocal effects on miR-199a-5p. Cell Signal 2010; 22:1054-62. [PMID: 20193759 PMCID: PMC2872486 DOI: 10.1016/j.cellsig.2010.02.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 02/19/2010] [Indexed: 11/24/2022]
Abstract
We have recently reported that downregulation of miR-199a-5p is necessary and sufficient for inducing upregulation of its targets, including hypoxia-inducible factor-1 alpha (Hif-1 alpha) and Sirt1, during hypoxia preconditioning (HPC). Conversely, others and we have reported that miR-199a-5p is upregulated during cardiac hypertrophy. Thus, the objective of this study was to delineate the signaling pathways that regulate the expression of miR-199a-5p and its targets, and their role in myocyte survival during hypoxia. Since HPC is mediated through activation of the AKT pathway, we questioned if AKT is sufficient for inducing downregulation of miR-199a-5p. Our present study shows that overexpression of a constitutively active AKT (caAKT) induced 70% reduction in miR-199a-5p and was associated with a robust increase in HiF-1 alpha (10+/-2 fold) and Sirt1 (4+/-0.8 fold) that was reversed by overexpression of miR-199a-5p. Similarly, insulin receptor-stimulated activation of the AKT pathway induced downregulation of miR-199a-5p and upregulation of its targets. In contrast, beta-adrenergic receptor (beta AR) activation in vitro and in vivo, induced 1.8-3.5-fold increase in miR-199a-5p. Accordingly, we predicted that beta AR would antagonize AKT-induced, miR-199a-5p-dependent, upregulation of Hif-1 alpha and Sirt1. Indeed, pre-treating the myocytes with isoproterenol before applying HPC, caAKT, or insulin resulted in 87+/-3%, 75+/-15%, and 100% reductions in Hif-1 alpha expression, respectively, and sensitized the cells to hypoxic injury. Thus, activation of beta-adrenergic signaling counteracts the survival effects of the AKT pathway via upregulating miR-199a-5p.
Collapse
Affiliation(s)
| | - Minzhen He
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Danish Sayed
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Lin Yan
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Dorothy Vatner
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Maha Abdellatif
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| |
Collapse
|
74
|
Ischemic preconditioning in the aging heart: from bench to bedside. Ageing Res Rev 2010; 9:153-62. [PMID: 19615470 DOI: 10.1016/j.arr.2009.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/05/2009] [Accepted: 07/06/2009] [Indexed: 11/23/2022]
Abstract
Coronary artery disease is the leading cause of death in industrialized countries for people older than 65 years of age. The reasons are still unclear. A reduction of endogenous mechanisms against ischemic insults has been proposed to explain this phenomenon. Cardiac ischemic preconditioning represents the most powerful endogenous protective mechanism against ischemia. Brief episodes of ischemia are able to protect the heart against a following more prolonged ischemic period. This protective mechanism seems to be reduced with aging both in experimental and clinical studies. Alterations of mediators release and/or intracellular pathways may be responsible for age-related ischemic preconditioning reduction. Opposite studies are questionable for the experimental model used, the timing of ischemic preconditioning, and the selection of elderly patients. Several pharmacological stimuli failed to mimic ischemic preconditioning in the aging heart but exercise training and caloric restriction separately, and more powerfully taken together, are able to completely preserve and/or restore the age-related reduction of ischemic preconditioning.
Collapse
|
75
|
Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 2010; 12:537-77. [PMID: 19650713 PMCID: PMC2824521 DOI: 10.1089/ars.2009.2531] [Citation(s) in RCA: 529] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Given their essential function in aerobic metabolism, mitochondria are intuitively of interest in regard to the pathophysiology of diabetes. Qualitative, quantitative, and functional perturbations in mitochondria have been identified and affect the cause and complications of diabetes. Moreover, as a consequence of fuel oxidation, mitochondria generate considerable reactive oxygen species (ROS). Evidence is accumulating that these radicals per se are important in the pathophysiology of diabetes and its complications. In this review, we first present basic concepts underlying mitochondrial physiology. We then address mitochondrial function and ROS as related to diabetes. We consider different forms of diabetes and address both insulin secretion and insulin sensitivity. We also address the role of mitochondrial uncoupling and coenzyme Q. Finally, we address the potential for targeting mitochondria in the therapy of diabetes.
Collapse
Affiliation(s)
- William I Sivitz
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Iowa City Veterans Affairs Medical Center and University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|
76
|
Rohilla A, Singh G, Singh M, Bala kumar P. Possible involvement of PKC-δ in the abrogated cardioprotective potential of ischemic preconditioning in hyperhomocysteinemic rat hearts. Biomed Pharmacother 2010; 64:195-202. [DOI: 10.1016/j.biopha.2009.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/29/2009] [Accepted: 04/01/2009] [Indexed: 01/31/2023] Open
|
77
|
Miki T, Miura T, Hotta H, Tanno M, Yano T, Sato T, Terashima Y, Takada A, Ishikawa S, Shimamoto K. Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition. Diabetes 2009; 58:2863-72. [PMID: 19755525 PMCID: PMC2780889 DOI: 10.2337/db09-0158] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Alteration in endoplasmic reticulum (ER) stress in diabetic hearts and its effect on cytoprotective signaling are unclear. Here, we examine the hypothesis that ER stress in diabetic hearts impairs phospho-glycogen synthase kinase (GSK)-3beta-mediated suppression of mitochondrial permeability transition pore (mPTP) opening, compromising myocardial response to cytoprotective signaling. RESEARCH DESIGN AND METHODS A rat model of type 2 diabetes (OLETF) and its control (LETO) were treated with tauroursodeoxycholic acid (TUDCA) (100 mg . kg(-1) . day(-1) for 7 days), an ER stress modulator. Infarction was induced by 20-min coronary occlusion and 2-h reperfusion. RESULTS Levels of ER chaperones (GRP78 and GRP94) in the myocardium and level of nonphoshopho-GSK-3beta in the mitochondria were significantly higher in OLETF than in LETO rats. TUDCA normalized levels of GRP78 and GRP94 and mitochondrial GSK-3beta in OLETF rats. Administration of erythropoietin (EPO) induced phosphorylation of Akt and GSK-3beta and reduced infarct size (% risk area) from 47.4 +/- 5.2% to 23.9 +/- 3.5% in LETO hearts. However, neither phosphorylation of Akt and GSK-3beta nor infarct size limitation was induced by EPO in OLETF rats. The threshold for mPTP opening was significantly lower in mitochondria from EPO-treated OLETF rats than in those from EPO-treated LETO rats. TUDCA restored responses of GSK-3beta, mPTP opening threshold, and infarct size to EPO receptor activation in OLETF rats. There was a significant correlation between mPTP opening threshold and phospho-GSK-3beta-to-total GSK-3beta ratio in the mitochondrial fraction. CONCLUSIONS Disruption of protective signals leading to GSK-3beta phosphorylation and increase in mitochondrial GSK-3beta are dual mechanisms by which increased ER stress inhibits EPO-induced suppression of mPTP opening and cardioprotection in diabetic hearts.
Collapse
Affiliation(s)
- Takayuki Miki
- From the Second Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuji Miura
- From the Second Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Corresponding author: Tetsuji Miura,
| | - Hiroyuki Hotta
- From the Second Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- From the Second Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Yano
- From the Second Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takahiro Sato
- From the Second Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiaki Terashima
- From the Second Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akifumi Takada
- From the Second Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoko Ishikawa
- From the Second Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuaki Shimamoto
- From the Second Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
78
|
Evaluation of the relationship between hyperinsulinaemia and myocardial ischaemia/reperfusion injury in a rat model of depression. Clin Sci (Lond) 2009; 118:259-67. [PMID: 19575693 DOI: 10.1042/cs20090108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Major depression is associated with medical co-morbidity, such as ischaemic heart disease and diabetes, but the underlying pathophysiological mechanisms remain unclear. The FSL (Flinders Sensitive Line) rat is a genetic animal model of depression exhibiting features similar to those of depressed individuals. The aim of the present study was to compare the myocardial responsiveness to I/R (ischaemia/reperfusion) injury and the effects of IPC (ischaemic preconditioning) in hearts from FSL rats using SD (Sprague-Dawley) rats as controls and to characterize differences in glucose metabolism and insulin sensitivity between FSL and SD rats. Hearts were perfused in a Langendorff model and were subjected or not to IPC before 40 min of global ischaemia, followed by 120 min of reperfusion. Myocardial infarct size was found to be significantly larger in the FSL rats than in the SD rats following I/R injury (62.4+/-4.2 compared with 46.9+/-2.9%; P<0.05). IPC reduced the infarct size (P<0.01) and improved haemodynamic function (P<0.01) in both FSL and SD rats. No significant difference was found in blood glucose levels between the two groups measured after 12 h of fasting, but fasting plasma insulin (70.1+/-8.9 compared with 40.9+/-4.7 pmol/l; P<0.05) and the HOMA (homoeostatic model assessment) index (P<0.01) were significantly higher in FSL rats compared with SD rats. In conclusion, FSL rats had larger infarct sizes following I/R injury and were found to be hyperinsulinaemic compared with SD rats, but appeared to have a maintained cardioprotective mechanism against I/R injury, as IPC reduced infarct size in these rats. This animal model may be useful in future studies when examining the mechanisms that contribute to the cardiovascular complications associated with depression.
Collapse
|
79
|
Lee J, Xu Y, Lu L, Bergman B, Leitner JW, Greyson C, Draznin B, Schwartz GG. Multiple abnormalities of myocardial insulin signaling in a porcine model of diet-induced obesity. Am J Physiol Heart Circ Physiol 2009; 298:H310-9. [PMID: 19897715 DOI: 10.1152/ajpheart.00359.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heightened cardiovascular risk among patients with systemic insulin resistance is not fully explained by the extent of atherosclerosis. It is unknown whether myocardial insulin resistance accompanies systemic insulin resistance and contributes to increased cardiovascular risk. This study utilized a porcine model of diet-induced obesity to determine if myocardial insulin resistance develops in parallel with systemic insulin resistance and investigated potential mechanisms for such changes. Micropigs (n = 16) were assigned to control (low fat, no added sugars) or intervention (25% wt/wt coconut oil and 20% high-fructose corn syrup) diet for 7 mo. Intervention diet resulted in obesity, hypertension, and dyslipidemia. Systemic insulin resistance was manifest by elevated fasting glucose and insulin, abnormal response to intravenous glucose tolerance testing, and blunted skeletal muscle phosphatidylinositol-3-kinase (PI 3-kinase) activation and protein kinase B (Akt) phosphorylation in response to insulin. In myocardium, insulin-stimulated glucose uptake, PI 3-kinase activation, and Akt phosphorylation were also blunted in the intervention diet group. These findings were explained by increased myocardial content of p85alpha (regulatory subunit of PI 3-kinase), diminished association of PI 3-kinase with insulin receptor substrate (IRS)-1 in response to insulin, and increased serine-307 phosphorylation of IRS-1. Thus, in a porcine model of diet-induced obesity that recapitulates many characteristics of insulin-resistant patients, myocardial insulin resistance develops along with systemic insulin resistance and is associated with multiple abnormalities of insulin signaling.
Collapse
Affiliation(s)
- Jenny Lee
- Veterans Affairs Medical Center, University of Colorado, Denver, Colorado, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Matsumoto S, Cho S, Tosaka S, Ureshino H, Maekawa T, Hara T, Sumikawa K. Pharmacological preconditioning in type 2 diabetic rat hearts: the roles of mitochondrial ATP-sensitive potassium channels and the phosphatidylinositol 3-kinase-Akt pathway. Cardiovasc Drugs Ther 2009; 23:263-70. [PMID: 19597978 DOI: 10.1007/s10557-009-6184-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE The authors examined whether olprinone, a phosphodiesterase type 3 inhibitor, or isoflurane, a volatile anesthetic, could protect the heart against myocardial infarction in type 2 diabetic rats and whether the underlying mechanisms involve protein kinase C (PKC), mitochondrial ATP-sensitive potassium (m-K(ATP)) channels, or the phosphatidylinositol 3-kinase (PI3K)-Akt pathway. METHODS All rats underwent 30 min of coronary artery occlusion followed by 2 h of reperfusion. Wistar rats received isoflurane or olprinone before ischemia with or without the PKC inhibitor chelerythrine (CHE), the m-K(ATP) channel blocker 5-hydroxydecanoic acid (5HD), or the PI3K-Akt inhibitor LY294002 (LY). Goto-Kakizaki (GK) rats were randomly assigned to receive isoflurane or olprinone. In another group, GK rats received LY before the olprinone. RESULTS In the Wistar rats, both isoflurane (38 +/- 11%) and olprinone (40 +/- 11%) reduced infarct size as compared to the control group (59 +/- 8%). In the GK rats, olprinone (41 +/- 9%) but not isoflurane (53 +/- 11%) reduced infarct size as compared to the GK control group (58 +/- 14%). The beneficial effects of olprinone were blocked by LY (58 +/- 14%). In the Wistar rats, CHE, 5HD, and LY prevented isoflurane-induced reductions of infarct size. On the other hand, LY but not CHE or 5HD prevented olprinone-induced reductions of infarct size. CONCLUSIONS Olprinone but not isoflurane protects the heart against myocardial infarction in type 2 diabetic rats. The olprinone-induced cardioprotective effect is mediated by the PI3K-Akt pathway but not PKC or m-K(ATP) channels.
Collapse
Affiliation(s)
- Shuhei Matsumoto
- Department of Anesthesiology, Nagasaki University School of Medicine, Nagasaki, 852-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
81
|
Huhn R, Heinen A, Weber NC, Kerindongo RP, Oei GTML, Hollmann MW, Schlack W, Preckel B. Helium-induced early preconditioning and postconditioning are abolished in obese Zucker rats in vivo. J Pharmacol Exp Ther 2009; 329:600-7. [PMID: 19244549 DOI: 10.1124/jpet.108.149971] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Preconditioning is abolished in the prediabetic Zucker obese rat. It has been shown that prevention of mitochondrial permeability transition pore (mPTP) opening is involved in preconditioning by the noble gas helium. Here, we investigated: 1) whether helium induces pre- and postconditioning in Zucker rats and 2) whether possible regulators of the mPTP [i.e., mitochondrial respiration or the extracellular signal-regulated kinase (Erk) 1/2, Akt/glycogen synthase kinase (GSK)-3beta signaling pathway] are influenced. Anesthetized Zucker lean (ZL) and Zucker obese (ZO) rats were randomized to seven groups. Control animals were not treated (ZL-/ZO-Con). Preconditioning groups (ZL-/ZO-He-PC) inhaled 70% helium for 3 x 5 or 6 x 5 min, and postconditioning groups (ZL-/ZO-He-PostC) inhaled 70% helium for 15 min at the onset of reperfusion. Animals underwent 25 min of ischemia and 120 min of reperfusion. In additional experiments, hearts were excised after the third helium exposure for analysis of mitochondrial respiration and for Western blot analysis of Erk1/2, Akt, and GSK-3beta phosphorylation. Helium reduced infarct size from 52 +/- 3% (mean +/- S.E.) to 32 +/- 2% and 37 +/- 2% in ZL rats (ZL-HE-PC, ZL-He-PostC), respectively, but not in ZO rats [ZO-He-PC, 56 +/- 3%; ZO-He-PC (6x), 57 +/- 4%; and ZO-He-PostC, 51 +/- 3% versus ZO-Con, 54 +/- 3%]. Mitochondrial respiration analysis showed that helium causes mild uncoupling in ZL rats (2.27 +/- 0.03 versus 2.51 +/- 0.03) but not in ZO rats (2.52 +/- 0.04 versus 2.52 +/- 0.03). Helium had no effect on Erk1/2 and Akt phosphorylation. GSK-3beta phosphorylation during ischemia was reduced after helium application in ZL but not in ZO rats. Helium-induced preconditioning is abolished in obese Zucker rats in vivo, probably caused by a diminished effect of helium on mitochondrial respiration.
Collapse
Affiliation(s)
- R Huhn
- Department of Anesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Heymans S, Hirsch E, Anker SD, Aukrust P, Balligand JL, Cohen-Tervaert JW, Drexler H, Filippatos G, Felix SB, Gullestad L, Hilfiker-Kleiner D, Janssens S, Latini R, Neubauer G, Paulus WJ, Pieske B, Ponikowski P, Schroen B, Schultheiss HP, Tschöpe C, Van Bilsen M, Zannad F, McMurray J, Shah AM. Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2009; 11:119-29. [PMID: 19168509 DOI: 10.1093/eurjhf/hfn043] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The increasing prevalence of heart failure poses enormous challenges for health care systems worldwide. Despite effective medical interventions that target neurohumoral activation, mortality and morbidity remain substantial. Evidence for inflammatory activation as an important pathway in disease progression in chronic heart failure has emerged in the last two decades. However, clinical trials of 'anti-inflammatory' therapies (such as anti-tumor necrosis factor-alpha approaches) have to date failed to show benefit in heart failure patients. The Heart Failure Association of the European Society of Cardiology recently organized an expert workshop to address the issue of inflammation in heart failure from a basic science, translational and clinical perspective, and to assess whether specific inflammatory pathways may yet serve as novel therapeutic targets for this condition. This consensus document represents the outcome of the workshop and defines key research questions that still need to be addressed as well as considering the requirements for future clinical trials in this area.
Collapse
Affiliation(s)
- Stephane Heymans
- Experimental & Molecular Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Nadtochiy SM, Burwell LS, Ingraham CA, Spencer CM, Friedman AE, Pinkert CA, Brookes PS. In vivo cardioprotection by S-nitroso-2-mercaptopropionyl glycine. J Mol Cell Cardiol 2009; 46:960-8. [PMID: 19339206 DOI: 10.1016/j.yjmcc.2009.01.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 01/21/2009] [Accepted: 01/23/2009] [Indexed: 12/12/2022]
Abstract
The reversible S-nitrosation and inhibition of mitochondrial complex I is a potential mechanism of cardioprotection, recruited by ischemic preconditioning (IPC), S-nitrosothiols, and nitrite. Previously, to exploit this mechanism, the mitochondrial S-nitrosating agent S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) was developed, and protected perfused hearts and isolated cardiomyocytes against ischemia-reperfusion (IR) injury. In the present study, the murine left anterior descending coronary artery (LAD) occlusion model of IR injury was employed, to determine the protective efficacy of SNO-MPG in vivo. Intraperitoneal administration of 1 mg/kg SNO-MPG, 30 min prior to occlusion, significantly reduced myocardial infarction and improved EKG parameters, following 30 min occlusion plus 2 or 24 h reperfusion. SNO-MPG protected to the same degree as IPC, and notably was also protective when administered at reperfusion. Cardioprotection was accompanied by increased mitochondrial protein S-nitrosothiol content, and inhibition of complex I, both of which were reversed after 2 h reperfusion. Finally, hearts from mice harboring a heterozygous mutation in the complex I NDUSF4 subunit were refractory to protection by either SNO-MPG or IPC, suggesting that a fully functional complex I, capable of reversible inhibition is critical for cardioprotection. Overall, these results are consistent with a role for mitochondrial S-nitrosation and complex I inhibition in the cardioprotective mechanism of IPC and SNO-MPG in vivo.
Collapse
Affiliation(s)
- Sergiy M Nadtochiy
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY 14620, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Affiliation(s)
- James M. Downey
- Department of Physiology, University of South Alabama, College of Medicine
| | - Michael V. Cohen
- Department of Physiology, University of South Alabama, College of Medicine
- Department of Medicine, University of South Alabama, College of Medicine
| |
Collapse
|
85
|
Acute treatment with rosuvastatin protects insulin resistant (C57BL/6J ob/ob) mice against transient cerebral ischemia. J Cereb Blood Flow Metab 2008; 28:1927-35. [PMID: 18665182 PMCID: PMC2632795 DOI: 10.1038/jcbfm.2008.81] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to investigate the short-term effects of rosuvastatin (RSV), a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, on transient, focal cerebral ischemia in C57BL/6J ob/ob mice with insulin resistance (IR). Male ob/ob, lean, or wild-type (WT) mice were treated with RSV (10 mg/kg per day, i.p.) or vehicle for 3 days. Ischemia was induced by 60 mins of middle cerebral artery occlusion (MCAO) and cortical blood flow (CBF) was monitored by laser-Doppler flowmetry. Infarct volumes were measured 24 h after reperfusion. IR mice exhibited a higher infarct volume compared with Lean or WT mice, and RSV reduced infarct volume only in obese mice (40%+/-3% versus 32%+/-3%, P<0.05). Blood cholesterol and insulin levels were elevated in ob/ob mice but were unaffected by RSV. The CBF reductions during MCAO were similar in all groups and were not affected by RSV. Although RSV did not increase cortical endothelial NO synthase (eNOS) levels in the ob/ob mice, it attenuated the increased cortical expression of intracellular adhesion molecule-1 (ICAM-1) after MCAO from ob/ob mice. Thus, RSV protects against stroke in IR mice by a mechanism independent of effects on the lipid profile, CBF, or eNOS but dependent on suppression of post-MCAO ICAM-1 expression.
Collapse
|
86
|
Katakam PVG, Domoki F, Snipes JA, Busija AR, Jarajapu YPR, Busija DW. Impaired mitochondria-dependent vasodilation in cerebral arteries of Zucker obese rats with insulin resistance. Am J Physiol Regul Integr Comp Physiol 2008; 296:R289-98. [PMID: 19005015 DOI: 10.1152/ajpregu.90656.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria affect cerebrovascular tone by activation of mitochondrial ATP-sensitive K+ (K ATP) channels and generation of reactive oxygen species (ROS). Insulin resistance accompanying obesity causes mitochondrial dysfunction, but the consequences on the cerebral circulation have not been fully identified. We evaluated the mitochondrial effects of diazoxide, a putative mitochondrial K ATP channel activator, on cerebral arteries of Zucker obese (ZO) rats with insulin resistance and lean (ZL) controls. Diameter measurements showed diminished diazoxide-induced vasodilation in ZO compared with ZL rats. Maximal relaxation was 38 +/- 3% in ZL vs. 21 +/- 4% in ZO rats (P < 0.05). Iberiotoxin, a Ca2+-activated K+ channel inhibitor, or manganese(III) tetrakis(4-benzoic acid)porphyrin chloride, an SOD mimetic, or endothelial denudation diminished vasodilation to diazoxide, implicating Ca2+-activated K+ channels, ROS, and endothelial factors in vasodilation. Inhibition of nitric oxide synthase (NOS) in ZL rats diminished diazoxide-induced vasodilation in intact arteries, but vasodilation was unaffected in endothelium-denuded arteries. In contrast, NOS inhibition in ZO rats enhanced vasodilation in endothelium-denuded arteries, but intact arteries were unaffected, suggesting that activity of endothelial NOS was abolished, whereas factors derived from nonendothelial NOS promoted vasoconstriction. Fluorescence microscopy showed decreased mitochondrial depolarization, ROS production, and nitric oxide generation in response to diazoxide in ZO arteries. Protein and mRNA measurements revealed increased expression of endothelial NOS and SODs in ZO arteries. Thus, cerebrovascular dilation to mitochondria-derived factors involves integration of endothelial and smooth muscle mechanisms. Furthermore, mitochondria-mediated vasodilation was diminished in ZO rats due to impaired mitochondrial K(ATP) channel activation, diminished mitochondrial ROS generation, increased ROS scavenging, and abnormal NOS activity.
Collapse
Affiliation(s)
- Prasad V G Katakam
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | |
Collapse
|
87
|
Peterson JM, Bryner RW, Sindler A, Frisbee JC, Alway SE. Mitochondrial apoptotic signaling is elevated in cardiac but not skeletal muscle in the obese Zucker rat and is reduced with aerobic exercise. J Appl Physiol (1985) 2008; 105:1934-43. [PMID: 18832755 DOI: 10.1152/japplphysiol.00037.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial apoptosis and apoptotic signaling modulations by aerobic training were studied in cardiac and skeletal muscles of obese Zucker rats (OZR), a rodent model of metabolic syndrome. Comparisons were made between left ventricle, soleus, and gastrocnemius muscles from OZR (n = 16) and aged-matched lean Zucker rats (LZR; n = 16) that were untrained (n = 8) or aerobically trained on a treadmill for 9 wk (n = 8). Cardiac Bcl-2 protein expression levels were approximately 50% lower in the OZR compared with the LZR, with no difference in either of the skeletal muscles. Bax protein expression levels were similar in skeletal muscles of the OZR compared with the LZR. Furthermore, mitochondrial apoptotic signaling was not different in skeletal muscles of OZR and LZR groups. However, there was an approximate sevenfold increase in the Bax protein accumulation in the myocardial mitochondrial-rich protein fraction of the OZR compared with the LZR. Additionally, there was an increase in cytosolic cytochrome c released from the mitochondria, caspase-9 and caspase-3 activity, with a corresponding elevation in DNA fragmentation in the cardiac muscles of the OZR compared with the LZR. Exercise training reduced cardiac Bax protein levels, the mitochondrial localization of Bax, cytosolic cytochrome c, caspase activity, and DNA fragmentation in cardiac muscles of the OZR after exercise, with no change in the skeletal muscles. These data show that mitochondrial apoptosis is elevated in the cardiac but not skeletal muscles of the OZR, but aerobic exercise training was effective in reducing cardiac mitochondrial apoptotic signaling.
Collapse
Affiliation(s)
- Jonathan M Peterson
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, School of Medicine, Robert C. Byrd Health Science Center, West Virginia Univ., Morgantown, WV 26506-9227, USA
| | | | | | | | | |
Collapse
|
88
|
Busija DW, Gaspar T, Domoki F, Katakam PV, Bari F. Mitochondrial-mediated suppression of ROS production upon exposure of neurons to lethal stress: mitochondrial targeted preconditioning. Adv Drug Deliv Rev 2008; 60:1471-7. [PMID: 18652858 PMCID: PMC2612561 DOI: 10.1016/j.addr.2008.03.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 03/31/2008] [Indexed: 12/27/2022]
Abstract
Preconditioning represents the condition where transient exposure of cells to an initiating event leads to protection against subsequent, potentially lethal stimuli. Recent studies have established that mitochondrial-centered mechanisms are important mediators in promoting development of the preconditioning response. However, many details concerning these mechanisms are unclear. The purpose of this review is to describe the initiating and subsequent intracellular events involving mitochondria which can lead to neuronal preconditioning. These mitochondrial specific targets include: 1) potassium channels located on the inner mitochondrial membrane; 2) respiratory chain enzymes; and 3) oxidative phosphorylation. Following activation of mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels and/or increased production of reactive oxygen species (ROS) resulting from the disruption of the respiratory chain or during energy substrate deprivation, morphological changes or signaling events involving protein kinases confer immediate or delayed preconditioning on neurons that will allow them to survive otherwise lethal insults. While the mechanisms involved are not known with certainty, the results of preconditioning are the enhanced neuronal viability, the attenuated influx of intracellular calcium, the reduced availability of ROS, the suppression of apoptosis, and the maintenance of ATP levels during and following stress.
Collapse
Affiliation(s)
- David W Busija
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC NC 27157-1010, USA.
| | | | | | | | | |
Collapse
|
89
|
Bouhidel O, Pons S, Souktani R, Zini R, Berdeaux A, Ghaleh B. Myocardial ischemic postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am J Physiol Heart Circ Physiol 2008; 295:H1580-6. [PMID: 18689499 DOI: 10.1152/ajpheart.00379.2008] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ischemic postconditioning (IPCD) significantly reduces infarct size in healthy animals and protects the human heart. Because obesity is a major risk factor of cardiovascular diseases, the effects of IPCD were investigated in 8- to 10-wk-old leptin-deficient obese (ob/ob) mice and compared with wild-type C57BL/6J (WT) mice. All animals underwent 30 min of coronary artery occlusion followed by 24 h of reperfusion associated or not with IPCD (6 cycles of 10-s occlusion, 10-s reperfusion). Additional mice were killed at 10 min of reperfusion for Western blotting. IPCD reduced infarct size by 58% in WT mice (33+/-1% vs. 14+/-3% for control and IPCD, respectively, P<0.05) but failed to induce cardioprotection in ob/ob mice (53+/-4% vs. 56+/-5% for control and IPCD, respectively). In WT mice, IPCD significantly increased the phosphorylation of Akt (+77%), ERK1/2 (+41%), and their common target p70S6K1 (+153% at Thr389 and +57% at Thr421/Ser424). In addition, the phosphorylated AMP-activated protein kinase (AMPK)-to-total AMPK ratio was also increased by IPCD in WT mice (+64%, P<0.05). This was accompanied by decreases in phosphatase and tensin homolog deleted on chromosome 10 (PTEN), MAP kinase phosphatase (MKP)-3, and protein phosphatase (PP)2C levels. In contrast, IPCD failed to increase the phosphorylation state of all these kinases in ob/ob mice, and the level of the three phosphatases was significantly increased. Thus, although IPCD reduces myocardial infarct size in healthy animals, its cardioprotective effect vanishes with obesity. The lack of enhanced phosphorylation by IPCD of Akt, ERK1/2, p70S6K1, and AMPK might partly explain the loss of cardioprotection in this experimental model of obese mice.
Collapse
Affiliation(s)
- Omar Bouhidel
- Institut National de la Santé et de la Recherche Médicale U841, Equipe 3, Université Paris 12, Créteil, France
| | | | | | | | | | | |
Collapse
|
90
|
Liang GY, Cai QY, Niu YM, Zheng H, Gao ZY, Liu DX, Xu G. Cardiac glucose uptake and suppressed expression/translocation of myocardium glucose transport-4 in dogs undergoing ischemia-reperfusion. Exp Biol Med (Maywood) 2008; 233:1142-8. [PMID: 18535164 DOI: 10.3181/0801-rm-33] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Impaired glucose metabolism is implicated in cardiac failure during ischemia-reperfusion. This study examined cardiac glucose uptake and expression of glucose transport-4 (GLUT-4) in dogs undergoing ischemia-reperfusion. Cardiac ischemia was induced by cardiopulmonary bypass for 30 min or 120 min in dogs. Plasma insulin and glucose concentrations were measured at pre-bypass (control), and aortic cross-clamp off (ischemia-reperfusion) at 15, 45, and 75 min. At the same time, the left ventricle biopsies were taken for GLUT-4 immunohistochemistry and glycogen content analysis. In dogs receiving 120-min ischemia, coronary arterial and venous glucose concentrations were increased, but the net glucose uptake in ischemia-reperfusion heart were significantly decreased from 25% (control) to zero at 15 and 45 min of reperfusion, and recovered to only 7% after 75 min reperfusion. Myocardium glycogen contents were decreased by 65%. Plasma insulin levels and Insulin Resistant Index were markedly increased in dogs undergoing 120-min ischemia and reperfusion. These changes were relatively mild and reversible in dogs receiving only 30-min ischemia followed by reperfusion. Expression of total GLUT-4 in myocardium was decreased 40% and translocation of GLUT-4 from cytoplasm to surface membrane was decreased 90% in dogs receiving 120-min ischemia followed by 15-min reperfusion. Suppressed translocation of GLUT-4 was also evident in dogs receiving 30-min ischemia, but to a lesser extent. Reduced myocardium glucose uptake, utilization, and glycogen content are clearly associated with ischemia-reperfusion heart injury. This appears to be due, at least in part, to suppressed expression and translocation of myocardium GLUT-4.
Collapse
Affiliation(s)
- Gui-You Liang
- Affiliated Hospital of Zunyi Medical College, Department of Thoracic and Cardiovascular Surgery, 149 Da-Lian Road, Zunyi, Guizhou 563003, China.
| | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Insulin resistance is characteristic of obesity, type 2 diabetes, and components of the cardiometabolic syndrome, including hypertension and dyslipidemia, that collectively contribute to a substantial risk for cardiovascular disease. Metabolic actions of insulin in classic insulin target tissues (eg, skeletal muscle, fat, and liver), as well as actions in nonclassic targets (eg, cardiovascular tissue), help to explain why insulin resistance and metabolic dysregulation are central in the pathogenesis of the cardiometabolic syndrome and cardiovascular disease. Glucose and lipid metabolism are largely dependent on mitochondria to generate energy in cells. Thereby, when nutrient oxidation is inefficient, the ratio of ATP production/oxygen consumption is low, leading to an increased production of superoxide anions. Reactive oxygen species formation may have maladaptive consequences that increase the rate of mutagenesis and stimulate proinflammatory processes. In addition to reactive oxygen species formation, genetic factors, aging, and reduced mitochondrial biogenesis all contribute to mitochondrial dysfunction. These factors also contribute to insulin resistance in classic and nonclassic insulin target tissues. Insulin resistance emanating from mitochondrial dysfunction may contribute to metabolic and cardiovascular abnormalities and subsequent increases in cardiovascular disease. Furthermore, interventions that improve mitochondrial function also improve insulin resistance. Collectively, these observations suggest that mitochondrial dysfunction may be a central cause of insulin resistance and associated complications. In this review, we discuss mechanisms of mitochondrial dysfunction related to the pathophysiology of insulin resistance in classic insulin-responsive tissue, as well as cardiovascular tissue.
Collapse
Affiliation(s)
- Jeong-A Kim
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA
| | | | | |
Collapse
|
92
|
Burwell LS, Brookes PS. Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia-reperfusion injury. Antioxid Redox Signal 2008; 10:579-99. [PMID: 18052718 DOI: 10.1089/ars.2007.1845] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During cardiac ischemia-reperfusion (IR) injury, excessive generation of reactive oxygen species (ROS) and overload of Ca(2+) at the mitochondrial level both lead to opening of the mitochondrial permeability transition (PT) pore on reperfusion. This can result in the depletion of ATP, irreversible oxidation of proteins, lipids, and DNA within the cardiomyocyte, and can trigger cell-death pathways. In contrast, mitochondria are also implicated in the cardioprotective signaling processes of ischemic preconditioning (IPC), to prevent IR-related pathology. Nitric oxide (NO*) has emerged as a potent effector molecule for a variety of cardioprotective strategies, including IPC. Whereas NO* is most noted for its activation of the "classic" soluble guanylate cyclase (sGC) signaling pathway, emerging evidence indicates that NO can directly act on mitochondria, independent of the sGC pathway, affording acute cardioprotection against IR injury. These direct effects of NO* on mitochondria are the focus of this review.
Collapse
Affiliation(s)
- Lindsay S Burwell
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
93
|
Terao S, Yilmaz G, Stokes KY, Ishikawa M, Kawase T, Granger DN. Inflammatory and Injury Responses to Ischemic Stroke in Obese Mice. Stroke 2008; 39:943-50. [DOI: 10.1161/strokeaha.107.494542] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background and Purpose—
Although epidemiological studies reveal an increased incidence of obesity and an association between obesity and the prevalence/severity of ischemic stroke, little is known about the mechanisms that link obesity to ischemic stroke. This study tested the hypothesis that obesity exacerbates the cerebrovascular dysfunction and tissue injury induced by brain ischemia and reperfusion.
Methods—
The adhesion of leukocytes and platelets in cerebral venules, blood–brain barrier permeability, brain water content, and infarct volume were measured in wild-type, obese (
ob/ob
), and leptin-reconstituted
ob/ob
mice subjected to 30 minutes middle cerebral artery occlusion and reperfusion. Tissue and plasma cytokine levels were determined by cytometric bead array, and a role for monocyte chemoattractant protein-1 and interleukin-6 was assessed using blocking antibodies.
Results—
Compared with wild-type mice,
ob/ob
exhibited larger increases in leukocyte and platelet adhesion, blood–brain barrier permeability, water content, and infarct volume after middle cerebral artery occlusion–reperfusion. Reconstitution of leptin in
ob/ob
mice tended to further enhance all reperfusion-induced responses.
Ob/ob
mice also exhibited higher plasma levels of monocyte chemoattractant protein-1 and interleukin-6 than wild-type mice. Immunoneutralization of monocyte chemoattractant protein-1, but not interleukin-6, reduced infarct volume in
ob/ob
mice.
Conclusions—
Obesity worsens the inflammatory and injury responses to middle cerebral artery occlusion and reperfusion by a mechanism independent of leptin deficiency. monocyte chemoattractant protein-1 appears to contribute to the exaggerated responses to ischemic stroke in obese mice.
Collapse
Affiliation(s)
- Satoshi Terao
- From the Department of Molecular and Cellular Physiology (S.T., G.Y., K.Y.S., D.N.G.), Louisiana State University Health Sciences Center, Shreveport, La; the Department of Neurosurgery (M.I.), Jichi Medical School Hospital, Jichi, Japan; and the Department of Neurosurgery (T.K.), Keio University Hospital, Keio, Japan
| | - Gokhan Yilmaz
- From the Department of Molecular and Cellular Physiology (S.T., G.Y., K.Y.S., D.N.G.), Louisiana State University Health Sciences Center, Shreveport, La; the Department of Neurosurgery (M.I.), Jichi Medical School Hospital, Jichi, Japan; and the Department of Neurosurgery (T.K.), Keio University Hospital, Keio, Japan
| | - Karen Y. Stokes
- From the Department of Molecular and Cellular Physiology (S.T., G.Y., K.Y.S., D.N.G.), Louisiana State University Health Sciences Center, Shreveport, La; the Department of Neurosurgery (M.I.), Jichi Medical School Hospital, Jichi, Japan; and the Department of Neurosurgery (T.K.), Keio University Hospital, Keio, Japan
| | - Mami Ishikawa
- From the Department of Molecular and Cellular Physiology (S.T., G.Y., K.Y.S., D.N.G.), Louisiana State University Health Sciences Center, Shreveport, La; the Department of Neurosurgery (M.I.), Jichi Medical School Hospital, Jichi, Japan; and the Department of Neurosurgery (T.K.), Keio University Hospital, Keio, Japan
| | - Takeshi Kawase
- From the Department of Molecular and Cellular Physiology (S.T., G.Y., K.Y.S., D.N.G.), Louisiana State University Health Sciences Center, Shreveport, La; the Department of Neurosurgery (M.I.), Jichi Medical School Hospital, Jichi, Japan; and the Department of Neurosurgery (T.K.), Keio University Hospital, Keio, Japan
| | - D. Neil Granger
- From the Department of Molecular and Cellular Physiology (S.T., G.Y., K.Y.S., D.N.G.), Louisiana State University Health Sciences Center, Shreveport, La; the Department of Neurosurgery (M.I.), Jichi Medical School Hospital, Jichi, Japan; and the Department of Neurosurgery (T.K.), Keio University Hospital, Keio, Japan
| |
Collapse
|
94
|
Sasaki H, Ogawa K, Shimizu M, Mori C, Takatsuka H, Okazaki F, Kawai M, Taniguchi I, Mochizuki S. The insulin sensitizer pioglitazone improves the deterioration of ischemic preconditioning in type 2 diabetes mellitus rats. Int Heart J 2008; 48:623-35. [PMID: 17998772 DOI: 10.1536/ihj.48.623] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigated the effects of ischemic preconditioning (IP) on reperfusion arrhythmias in type 2 diabetic rats as well as the effects of the insulin sensitizer pioglitazone. Thirty-week-old OLETF rats with or without pioglitazone (10 mg/kgBW, orally) were used as a model for type 2 diabetes. LETO rats served as controls. The incidences and durations of reperfusion ventricular tachyarrhythmias (RVT) were evaluated using a working heart method. After 5 minutes of initial perfusion, the rats were divided into the following groups: 1) control rats without IP (CIP(-)), 2) control rats with IP (CIP(+)), 3) diabetic rats without IP (DIP(-)), 4) diabetic rats with IP (DIP(+)), 5) pioglitazone-treated diabetic rats without IP (TDIP(-)), and 6) pioglitazone-treated diabetic rats with IP (TDIP(+)). Three 2-minute cycles of global diastolic ischemia and 5 minutes of reperfusion before long ischemia were performed as IP. The incidence and duration of RVT in CIP(+) were significantly lower than in CIP(-). There was no significant difference in the duration of RVT between DIP(+) and DIP(-). However, the duration of RVT in TDIP(+) was significantly shorter than TDIP(-). These results suggested that the effects of IP on reperfusion arrhythmias are deteriorated in type 2 diabetic rats. The insulin sensitizer pioglitazone can improve the deterioration of IP against reperfusion arrhythmias in type 2 diabetic rats.
Collapse
Affiliation(s)
- Hideki Sasaki
- Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Bibliography. Current world literature. Growth and development. Curr Opin Endocrinol Diabetes Obes 2008; 15:79-101. [PMID: 18185067 DOI: 10.1097/med.0b013e3282f4f084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
96
|
Gáspár T, Katakam P, Snipes JA, Kis B, Domoki F, Bari F, Busija DW. Delayed neuronal preconditioning by NS1619 is independent of calcium activated potassium channels. J Neurochem 2007; 105:1115-28. [PMID: 18182041 DOI: 10.1111/j.1471-4159.2007.05210.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1,3-Dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS1619), a potent activator of the large conductance Ca2+ activated potassium (BK(Ca)) channel, has been demonstrated to induce preconditioning (PC) in the heart. The aim of our study was to test the delayed PC effect of NS1619 in rat cortical neuronal cultures against oxygen-glucose deprivation, H2O2, or glutamate excitotoxicity. We also investigated its actions on reactive oxygen species (ROS) generation, and on mitochondrial and plasma membrane potentials. Furthermore, we tested the activation of the phosphoinositide 3-kinase (PI3K) signaling pathway, and the effect of NS1619 on caspase-3/7. NS1619 dose-dependently protected the cells against the toxic insults, and the protection was completely blocked by a superoxide dismutase mimetic and a PI3K antagonist, but not by BK(Ca) channel inhibitors. Application of NS1619 increased ROS generation, depolarized isolated mitochondria, hyperpolarized the neuronal cell membrane, and activated the PI3K signaling cascade. However, only the effect on the cell membrane potential was antagonized by BK(Ca) channel blockers. NS1619 inhibited the activation of capase-3/7. In summary, NS1619 is a potent inducer of delayed neuronal PC. However, the neuroprotective effect seems to be independent of cell membrane and mitochondrial BK(Ca) channels. Rather it is the consequence of ROS generation, activation of the PI3K pathway, and inhibition of caspase activation.
Collapse
Affiliation(s)
- Tamás Gáspár
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, North Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Myocardial protection aims at preventing myocardial tissue loss: (a) In the acute stage, i.e., during primary angioplasty in acute myocardial infarction. In this setup, the attenuation of reperfusion injury is the main target. As a "mechanical" means, post-conditioning has already been tried in man with encouraging results. Pharmacologic interventions that could be of promise are statins, insulin, peptide hormones, including erythropoietin, fibroblast growth factor, and many others. (b) The patient with chronic coronary artery disease offers another paradigm, with the target of avoidance of further myocyte loss through apoptosis and inflammation. Various pharmacologic agents may prove useful in this context, together with exercise and "mechanical" improvement of cardiac function with attenuation of myocardial stretch, which by itself is a noxious influence. A continuous effort toward acute and chronically preserving myocardial integrity is a concept concerning both the researcher and the clinician.
Collapse
Affiliation(s)
- Dennis V Cokkinos
- 1st Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece.
| | | |
Collapse
|
98
|
Bibliography. Current world literature. Obesity and nutrition. Curr Opin Endocrinol Diabetes Obes 2007; 14:421-6. [PMID: 17940474 DOI: 10.1097/med.0b013e3282f0ca40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|