51
|
Comparison of the effects of levocetirizine and losartan on diabetic nephropathy and vascular dysfunction in streptozotocin-induced diabetic rats. Eur J Pharmacol 2016; 780:82-92. [PMID: 27012991 DOI: 10.1016/j.ejphar.2016.03.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/27/2016] [Accepted: 03/18/2016] [Indexed: 01/30/2023]
Abstract
This work was designed to investigate the effects of levocetirizine, a histamine H1 receptor antagonist, on diabetes-induced nephropathy and vascular disorder, in comparison to an angiotensin II receptor antagonist, losartan. Diabetes was induced in male Sprague Dawley rats by a single intraperitoneal injection of streptozotocin (50mg/kg). Diabetic rats were divided into three groups; diabetic, diabetic-levocetirizine (0.5mg/kg/day) and diabetic-losartan (25mg/kg/day). Treatments were started two weeks following diabetes induction and continued for additional eight weeks. At the end of the experiment, urine was collected and serum was separated for biochemical measurements. Tissue homogenates of kidney and aorta were prepared for measuring oxidative stress, nitric oxide (NO), transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α). Moreover, histological analyses were conducted and aortic vascular reactivity was investigated. Levocetirizine improved renal function in diabetic rats (evidenced by mitigation of diabetes-induced changes in kidney to body weight ratio, serum albumin, urinary proteins and creatinine clearance). Moreover, levocetirizine attenuated the elevated renal levels of TNF-α and TGF-β1, ameliorated renal oxidative stress and restored NO bioavailability in diabetic kidney. These effects were comparable to or surpassed those produced by losartan. Moreover, levocetirizine, similar to losartan, reduced the enhanced responsiveness of diabetic aorta to phenylephrine. Histological evaluation of renal and aortic tissues further confirmed the beneficial effects of levocetirizine on diabetic nephropathy and revealed a greater attenuation of diabetes-induced vascular hypertrophy by levocetirizine than by losartan. In conclusion, levocetirizine may offer comparable renoprotective effect to, and possibly superior vasculoprotective effects than, losartan in streptozotocin-diabetic rats.
Collapse
|
52
|
Shin H, Eo H, Lim Y. Similarities and differences between alpha-tocopherol and gamma-tocopherol in amelioration of inflammation, oxidative stress and pre-fibrosis in hyperglycemia induced acute kidney inflammation. Nutr Res Pract 2015; 10:33-41. [PMID: 26865914 PMCID: PMC4742309 DOI: 10.4162/nrp.2016.10.1.33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/19/2015] [Accepted: 10/22/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND/OBJECTIVES Diabetes mellitus (DM) is a major chronic disease which increases global health problems. Diabetes-induced renal damage is associated with inflammation and fibrosis. Alpha (AT) and gamma-tocopherols (GT) have shown antioxidant and anti-inflammatory effects in inflammation-mediated injuries. The primary aim of this study was to investigate effects of AT and GT supplementations on hyperglycemia induced acute kidney inflammation in alloxan induced diabetic mice with different levels of fasting blood glucose (FBG). MATERIALS/METHODS Diabetes was induced by injection of alloxan monohydrate (150 mg/kg, i.p) in ICR mice (5.5-week-old, male) and mice were subdivided according to their FBG levels and treated with different diets for 2 weeks; CON: non-diabetic mice, m-DMC: diabetic control mice with mild FBG levels (250 mg/dl ≤ FBG ≤ 450 mg/dl), m-AT: m-DM mice fed AT supplementation (35 mg/kg diet), m-GT: m-DM mice with GT supplementation (35 mg/kg diet), s-DMC: diabetic control mice with severe FBG levels (450 mg/dl < FBG), s-AT: s-DM mice with AT supplementation, s-GT: s-DM mice with GT supplementation. RESULTS Both AT and GT supplementations showed similar beneficial effects on NFκB associated inflammatory response (phosphorylated inhibitory kappa B-α, interleukin-1β, C-reactive protein, monocyte chemotactic protein-1) and pre-fibrosis (tumor growth factor β-1 and protein kinase C-II) as well as an antioxidant emzyme, heme oxygenase-1 (HO-1) in diabetic mice. On the other hands, AT and GT showed different beneficial effects on kidney weight, FBG, and oxidative stress associated makers (malondialdehyde, glutathione peroxidase, and catalase) except HO-1. In particular, GT significantly preserved kidney weight in m-DM and improved FBG levels in s-DM and malondialdehyde and catalase in m- and s-DM, while AT significantly attenuated FBG levels in m-DM and improved glutathione peroxidase in m- and s-DM. CONCLUSIONS The results suggest that AT and GT with similarities and differences would be considered as beneficial nutrients to modulate hyperglycemia induced acute renal inflammation. Further research with careful approach is needed to confirm beneficial effects of tocopherols in diabetes with different FBG levels for clinical applications.
Collapse
Affiliation(s)
- Hanna Shin
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedaero, Dongdaemun-gu, Seoul 02447, Korea
| | - Hyeyoon Eo
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedaero, Dongdaemun-gu, Seoul 02447, Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedaero, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
53
|
Fang Q, Deng L, Wang L, Zhang Y, Weng Q, Yin H, Pan Y, Tong C, Wang J, Liang G. Inhibition of mitogen-activated protein kinases/nuclear factor κB-dependent inflammation by a novel chalcone protects the kidney from high fat diet-induced injuries in mice. J Pharmacol Exp Ther 2015; 355:235-46. [PMID: 26354992 DOI: 10.1124/jpet.115.226860] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/08/2015] [Indexed: 03/08/2025] Open
Abstract
The prevalence of obesity has increased dramatically worldwide leading to increases in obesity-related complications, such as obesity-related glomerulopathy (ORG). Obesity is a state of chronic, low-grade inflammation, and increased inflammation in the adipose and kidney tissues has been shown to promote the progression of renal damage in obesity. Current therapeutic options for ORG are fairly limited and, as a result, we are seeing increased rates of progression to end-stage renal disease. Chalcones are a class of naturally occurring compounds with various pharmacological properties. 1-(3,4-Dihydroxyphenyl)-3-(2-methoxyphenyl)prop-2-en-1-one (L2H17) is a chalcone that we have previously synthesized and found capable of inhibiting the lipopolysaccharide-induced inflammatory response in macrophages. In this study, we investigated L2H17's effect on obesity-induced renal injury using palmitic acid-induced mouse peritoneal macrophages and high fat diet-fed mice. Our results indicate that L2H17 protects against renal injury through the inhibition of the mitogen-activated protein kinase/nuclear factor κB pathways significantly by decreasing the expression of proinflammatory cytokines and cell adhesion molecules and improving kidney histology and pathology. These findings lead us to believe that L2H17, as an anti-inflammatory agent, can be a potential therapeutic option in treating ORG.
Collapse
Affiliation(s)
- Qilu Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China (Q.F., L.D., L.W., Y.Z., Q.W., H.Y.,Y.P.,C.T., J.W., G.L.); Department of Pharmacy, Affiliated Sixth Hospital, Wenzhou Medical University, Lishui, Zhejiang, China (L.D.); and Diabetes Center and Department of Endocrinology, Affiliated Second Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China (H.Y.)
| | - Liancheng Deng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China (Q.F., L.D., L.W., Y.Z., Q.W., H.Y.,Y.P.,C.T., J.W., G.L.); Department of Pharmacy, Affiliated Sixth Hospital, Wenzhou Medical University, Lishui, Zhejiang, China (L.D.); and Diabetes Center and Department of Endocrinology, Affiliated Second Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China (H.Y.)
| | - Lintao Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China (Q.F., L.D., L.W., Y.Z., Q.W., H.Y.,Y.P.,C.T., J.W., G.L.); Department of Pharmacy, Affiliated Sixth Hospital, Wenzhou Medical University, Lishui, Zhejiang, China (L.D.); and Diabetes Center and Department of Endocrinology, Affiliated Second Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China (H.Y.)
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China (Q.F., L.D., L.W., Y.Z., Q.W., H.Y.,Y.P.,C.T., J.W., G.L.); Department of Pharmacy, Affiliated Sixth Hospital, Wenzhou Medical University, Lishui, Zhejiang, China (L.D.); and Diabetes Center and Department of Endocrinology, Affiliated Second Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China (H.Y.)
| | - Qiaoyou Weng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China (Q.F., L.D., L.W., Y.Z., Q.W., H.Y.,Y.P.,C.T., J.W., G.L.); Department of Pharmacy, Affiliated Sixth Hospital, Wenzhou Medical University, Lishui, Zhejiang, China (L.D.); and Diabetes Center and Department of Endocrinology, Affiliated Second Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China (H.Y.)
| | - Haimin Yin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China (Q.F., L.D., L.W., Y.Z., Q.W., H.Y.,Y.P.,C.T., J.W., G.L.); Department of Pharmacy, Affiliated Sixth Hospital, Wenzhou Medical University, Lishui, Zhejiang, China (L.D.); and Diabetes Center and Department of Endocrinology, Affiliated Second Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China (H.Y.)
| | - Yong Pan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China (Q.F., L.D., L.W., Y.Z., Q.W., H.Y.,Y.P.,C.T., J.W., G.L.); Department of Pharmacy, Affiliated Sixth Hospital, Wenzhou Medical University, Lishui, Zhejiang, China (L.D.); and Diabetes Center and Department of Endocrinology, Affiliated Second Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China (H.Y.)
| | - Chao Tong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China (Q.F., L.D., L.W., Y.Z., Q.W., H.Y.,Y.P.,C.T., J.W., G.L.); Department of Pharmacy, Affiliated Sixth Hospital, Wenzhou Medical University, Lishui, Zhejiang, China (L.D.); and Diabetes Center and Department of Endocrinology, Affiliated Second Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China (H.Y.)
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China (Q.F., L.D., L.W., Y.Z., Q.W., H.Y.,Y.P.,C.T., J.W., G.L.); Department of Pharmacy, Affiliated Sixth Hospital, Wenzhou Medical University, Lishui, Zhejiang, China (L.D.); and Diabetes Center and Department of Endocrinology, Affiliated Second Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China (H.Y.)
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China (Q.F., L.D., L.W., Y.Z., Q.W., H.Y.,Y.P.,C.T., J.W., G.L.); Department of Pharmacy, Affiliated Sixth Hospital, Wenzhou Medical University, Lishui, Zhejiang, China (L.D.); and Diabetes Center and Department of Endocrinology, Affiliated Second Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China (H.Y.)
| |
Collapse
|
54
|
Fang Q, Wang J, Wang L, Zhang Y, Yin H, Li Y, Tong C, Liang G, Zheng C. Attenuation of inflammatory response by a novel chalcone protects kidney and heart from hyperglycemia-induced injuries in type 1 diabetic mice. Toxicol Appl Pharmacol 2015. [PMID: 26206226 DOI: 10.1016/j.taap.2015.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High glucose-induced inflammatory response in diabetic complications plays an important role in disease occurrence and development. With inflammatory cytokines and signaling pathways as important mediators, targeting inflammation may be a new avenue for treating diabetic complications. Chalcones are a class of natural products with various pharmacological activities. Previously, we identified L2H17 as a chalcone with good anti-inflammatory activity, inhibiting LPS-induced inflammatory response in macrophages. In this study, we examined L2H17's effect on hyperglycemia-induced inflammation both in mouse peritoneal macrophages and a streptozotocin-induced T1D mouse model. Our results indicate that L2H17 exhibits a strong inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines and macrophage adhesion via modulation of the MAPK/NF-κB pathway. Furthermore, in vivo oral administration of L2H17 resulted in a significant decrease in the expression of pro-inflammatory cytokines and cell adhesion molecules, contributing to a reduction of key markers for renal and cardiac dysfunction and improvements in fibrosis and pathological changes in both renal and cardiac tissues of diabetic mice. These findings provide the evidence supporting targeting MAPK/NF-κB pathway may be effective therapeutic strategy for diabetic complications, and suggest that L2H17 may be a promising anti-inflammatory agent with potential as a therapeutic agent in the treatment of renal and cardiac diabetic complications.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Biomarkers/blood
- Blood Glucose/metabolism
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Chalcones/pharmacology
- Cytoprotection
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/drug therapy
- Diabetic Cardiomyopathies/immunology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/prevention & control
- Diabetic Nephropathies/blood
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/immunology
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/prevention & control
- Dose-Response Relationship, Drug
- Fibrosis
- Inflammation Mediators/metabolism
- Interleukin-6/metabolism
- Kidney/drug effects
- Kidney/immunology
- Kidney/metabolism
- Kidney/pathology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mitogen-Activated Protein Kinases/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/immunology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- NF-kappa B/metabolism
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Qilu Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Diabetes Center and Department of Endocrinology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lintao Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haimin Yin
- Diabetes Center and Department of Endocrinology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunzhou Li
- Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA
| | - Chao Tong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chao Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Diabetes Center and Department of Endocrinology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
55
|
Xing Y, Ye S, Chen Y, Hu W, Chen Y. Hydrochloride pioglitazone protects diabetic rats against podocyte injury through preserving glomerular podocalyxin expression. ACTA ACUST UNITED AC 2015; 58:630-9. [PMID: 25211446 DOI: 10.1590/0004-2730000003141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 06/04/2014] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We sought to test the effect of different dosages of pioglitazone (PIO) on the glomerular expression of podocalyxin and urinary sediment podocalyxin excretion and to explore the potential renoprotective mechanism. MATERIALS AND METHODS Type 1 diabetes induced with streptozotocin (65 mg/kg) in 36 male Sprague-Dawley rats were randomly allocated to be treated with vehicle or 10, 20, 30 mg/kg/d PIO respectively for 8 weeks. Eight rats were enrolled in the normal control group. RESULTS At 8th week, rats were sacrificed for the observation of kidney injury through electron microscope. Glomerular podocalyxin production including mRNA and protein were determined by RT-PCR and immunohistochemistry respectively. Levels of urinary albumin excretion and urinary sediment podocalyxin, kidney injury index were all significantly increased, whereas expression of glomerular podocalyxin protein and mRNA were decreased significantly in diabetic rats compared to normal control. Dosages-dependent analysis revealed that protective effect of PIO ameliorated the physiopathological changes and reached a peak at dosage of 20 mg/kg/d. CONCLUSION PIO could alleviate diabetic kidney injury in a dose-dependent pattern and the role may be associated with restraining urinary sediment podocalyxin excretion and preserving the glomerular podocalyxin expression.
Collapse
Affiliation(s)
- Yan Xing
- Department of Endocrinology, Anhui Provincial Hospital, Hefei, China
| | - Shandong Ye
- Department of Endocrinology, Anhui Provincial Hospital, Hefei, China
| | - Yumi Chen
- Department of Nephrology, Anhui Provincial Hospital, Hefei, China
| | - Wen Hu
- Department of Pathology, Anhui Provincial Hospital, Hefei, China
| | - Yan Chen
- Endocrinological Laboratory, Anhui Provincial Hospital, Hefei, China
| |
Collapse
|
56
|
Toth-Manikowski S, Atta MG. Diabetic Kidney Disease: Pathophysiology and Therapeutic Targets. J Diabetes Res 2015; 2015:697010. [PMID: 26064987 PMCID: PMC4430644 DOI: 10.1155/2015/697010] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/17/2015] [Indexed: 12/13/2022] Open
Abstract
Diabetes is a worldwide epidemic that has led to a rise in diabetic kidney disease (DKD). Over the past two decades, there has been significant clarification of the various pathways implicated in the pathogenesis of DKD. Nonetheless, very little has changed in the way clinicians manage patients with this disorder. Indeed, treatment is primarily centered on controlling hyperglycemia and hypertension and inhibiting the renin-angiotensin system. The purpose of this review is to describe the current understanding of how the hemodynamic, metabolic, inflammatory, and alternative pathways are all entangled in pathogenesis of DKD and detail the various therapeutic targets that may one day play a role in quelling this epidemic.
Collapse
Affiliation(s)
- Stephanie Toth-Manikowski
- Division of Nephrology, Johns Hopkins University, 1830 E. Monument Street, Suite 416, Baltimore, MD 21287, USA
| | - Mohamed G. Atta
- Division of Nephrology, Johns Hopkins University, 1830 E. Monument Street, Suite 416, Baltimore, MD 21287, USA
| |
Collapse
|
57
|
El-Sahar AE, Safar MM, Zaki HF, Attia AS, Ain-Shoka AA. Sitagliptin attenuates transient cerebral ischemia/reperfusion injury in diabetic rats: Implication of the oxidative–inflammatory–apoptotic pathway. Life Sci 2015; 126:81-6. [DOI: 10.1016/j.lfs.2015.01.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 12/04/2014] [Accepted: 01/21/2015] [Indexed: 01/09/2023]
|
58
|
Wang Y, Nie M, Lu Y, Wang R, Li J, Yang B, Xia M, Zhang H, Li X. Fucoidan exerts protective effects against diabetic nephropathy related to spontaneous diabetes through the NF-κB signaling pathway in vivo and in vitro. Int J Mol Med 2015; 35:1067-73. [PMID: 25672488 DOI: 10.3892/ijmm.2015.2095] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/30/2015] [Indexed: 11/05/2022] Open
Abstract
Fucoidan, an extract of the seaweed, Fucus vesiculosus, has been widely investigated for its antioxidant effects. However, to date and to the best of our knowledge, pathological studies on the effects of fucoidan against diabetic nephropathy (DN) related to spontaneous diabetes have not been carried out. DN is one of the most serious microvascular complications of diabetes. Therefore, in the present study, the effects of fucoidan against DN related to spontaneous diabetes were investigated in vitro and in vivo. Goto-Kakizaki (GK) rats were allowed free access to standard rat food with or without fucoidan for 13 weeks, and Wistar rats were used as controls. Fucoidan did not show any cytotoxicity on glomerular mesangial cells (GMCs) which were separated from rat kidneys. Fasting blood glucose levels were measured using a blood glucose meter, blood urea nitrogen (BUN) and serum creatinine (Cr) levels were measured using an automatic biochemistry analyzer and urine protein levels were measured using an ELISA kit. Collagen Ⅳ levels in the renal cortex were measured using an ELISA kit, and the expression levels of transforming growth factor-β1 (TGF-β1) and fibronectin (FN) in the renal cortex and GMCs, and nuclear factor-κB (NF-κB) in GMCs were determined by western blot analysis. Fasting blood glucose, BUN, serum Cr, urine protein and collagen Ⅳ levels, and the expression of TGF-β1 and FN, as well as NF-κB p65 nuclear translocation all significantly increased in the GK rats compared with the control Wistar rats. The increase in the fasting blood glucose, BUN, serum Cr, urine protein and collagen Ⅳ levels in the renal cortex was reversed in the GK rats which were orally administered fucoidan. The oral administration of fucoidan also decreased the expression of TGF-β1 and FN in the renal cortex and GMCs, as well as the nuclear translocation of NF-κB p65 in the GMCs. Taken together, the data from our in vitro and in vivo experiments indicate that fucoidan attenuates hyperglycemia and prevents or impedes the development of DN related to spontaneous diabetes by attenuating the activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Minghao Nie
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Yanhong Lu
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Rui Wang
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Jin Li
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Bin Yang
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Mingyang Xia
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Haiyang Zhang
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Xiurong Li
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| |
Collapse
|
59
|
Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1339-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
60
|
Abstract
Diabetic nephropathy is a significant cause of chronic kidney disease and end-stage renal failure globally. Much research has been conducted in both basic science and clinical therapeutics, which has enhanced understanding of the pathophysiology of diabetic nephropathy and expanded the potential therapies available. This review will examine the current concepts of diabetic nephropathy management in the context of some of the basic science and pathophysiology aspects relevant to the approaches taken in novel, investigative treatment strategies.
Collapse
Affiliation(s)
- Andy Kh Lim
- Department of Nephrology, Monash Medical Center, Monash Health, Clayton, VIC, Australia ; Department of General Medicine, Dandenong Hospital, Monash Health, Clayton, VIC, Australia ; Department of Medicine, Monash University, Clayton, VIC, Australia
| |
Collapse
|
61
|
Oxidative stress mediates the conversion of endothelial cells into myofibroblasts via a TGF-β1 and TGF-β2-dependent pathway. J Transl Med 2014; 94:1068-82. [PMID: 25068653 DOI: 10.1038/labinvest.2014.100] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 12/31/2022] Open
Abstract
During the pathogenesis of systemic inflammation, reactive oxygen species (ROS) circulate in the bloodstream and interact with endothelial cells (ECs), increasing intracellular oxidative stress. Although endothelial dysfunction is crucial in the pathogenesis of systemic inflammation, little is known about the effects of oxidative stress on endothelial dysfunction. Oxidative stress induces several functions, including cellular transformation. A singular process of cell conversion is tendothelial-to-mesenchymal transition, in which ECs become myofibroblasts, thus losing their endothelial properties and gaining fibrotic behavior. However, the participation of oxidative stress as an inductor of conversion of ECs into myofibroblasts is not known. Thus, we studied the role played by oxidative stress in this conversion and investigated the underlying mechanism. Our results show that oxidative stress induces conversion of ECs into myofibroblasts through decreasing the levels of endothelial markers and increasing those of fibrotic and ECM proteins. The underlying mechanism depends on the ALK5/Smad3/NF-κB pathway. Oxidative stress induces the expression and secretion of TGF-β1 and TGF-β2 and p38 MAPK phosphorylation. Downregulation of TGF-β1 and TGF-β2 by siRNA technology abolished the H2O2-induced conversion. To our knowledge, this is the first report showing that oxidative stress is able to induce conversion of ECs into myofibroblasts via TGF-β secretion, emerging as a source for oxidative stress-based vascular dysfunction. Thus, oxidative stress emerges as a decisive factor in inducing conversion of ECs into myofibroblasts through a TGF-β-dependent mechanism, changing the ECs protein expression profile, and converting normal ECs into pathological ones. This information will be useful in designing new and improved therapeutic strategies against oxidative stress-mediated systemic inflammatory diseases.
Collapse
|
62
|
Bao XH, Xu J, Chen Y, Yang CL, Ye SD. Alleviation of podocyte injury: the possible pathway implicated in anti-inflammation of alpha-lipoic acid in type 2 diabetics. Aging Clin Exp Res 2014; 26:483-9. [PMID: 24659493 DOI: 10.1007/s40520-014-0207-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/24/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND AIMS The objective of this study is to observe the effect of alpha-lipoic acid (ALA) on Pod injury by anti-inflammation and explore its possible renal protective mechanism. METHODS A total of 36 cases with type 2 diabetes with microalbuminuria and fasting plasma glucose (FPG) levels less than 9 mmol/L and glycated hemoglobin A1c (HbA1c) ≤9.0 % were recruited to be treated with ALA (600 mg, daily) for 6 months (group DA). Another 30 healthy individuals were chosen as normal controls (group NC). The levels of serum creatinine (Cr), FPG, and HbA1c were detected; blood pressure was recorded; and early morning urine samples (corrected for urinary Cr) were collected for the examination of urinary monocyte chemoattractant protein-1 (MCP-1), transforming growth factor-β1 (TGF-β1), podocalyxin (PCX), nephrin, albumin and Cr in group NC and group DA at the baseline and the sixth month. RESULTS The excretions of urinary MCP-1, TGF-β1, PCX, nephrin and albumin to Cr ratio (abbreviated as UMCR, UTCR, UPCR, UNCR and UACR respectively) were significantly increased in group DA compared with group NC (all P < 0.01), and after 6-month treatment, all indexes mentioned above decreased markedly (P < 0.05), while FPG and HbA1c had no obvious changes. Additionally, there was a positive correlation between UMCR, UTCR with UPCR, UNCR and UACR, respectively (all P < 0.01). CONCLUSIONS Anti-inflammation of ALA in vivo and local kidney is implicated in the protection of glomerular Pod injury in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Xi-He Bao
- Department of Endocrinology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | | | | | | | | |
Collapse
|
63
|
Yeh WJ, Yang HY, Chen JR. Soy β-conglycinin retards progression of diabetic nephropathy via modulating the insulin sensitivity and angiotensin-converting enzyme activity in rats fed with high salt diet. Food Funct 2014; 5:2898-904. [DOI: 10.1039/c4fo00379a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
64
|
García-García PM, Getino-Melián MA, Domínguez-Pimentel V, Navarro-González JF. Inflammation in diabetic kidney disease. World J Diabetes 2014; 5:431-443. [PMID: 25126391 PMCID: PMC4127580 DOI: 10.4239/wjd.v5.i4.431] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/24/2014] [Accepted: 06/11/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus entails significant health problems worldwide. The pathogenesis of diabetes is multifactorial, resulting from interactions of both genetic and environmental factors that trigger a complex network of pathophysiological events, with metabolic and hemodynamic alterations. In this context, inflammation has emerged as a key pathophysiology mechanism. New pathogenic pathways will provide targets for prevention or future treatments. This review will focus on the implications of inflammation in diabetes mellitus, with special attention to inflammatory cytokines.
Collapse
|
65
|
Ellagic acid, an NF-κB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chem Biol Interact 2014; 219:64-75. [DOI: 10.1016/j.cbi.2014.05.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/13/2014] [Accepted: 05/18/2014] [Indexed: 12/18/2022]
|
66
|
Xie C, Jingjing W, Li X, Zeng F, Ma L, Li C, Wei Z, Peng A, Chen L. Protective effect of SKLB010 against d-galactosamine/lipopolysaccharide-induced acute liver failure via nuclear factor-κB signaling pathway in macrophages. Int Immunopharmacol 2014; 21:261-8. [DOI: 10.1016/j.intimp.2014.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/10/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
|
67
|
Nasrallah R, Hassouneh R, Hébert RL. Chronic kidney disease: targeting prostaglandin E2 receptors. Am J Physiol Renal Physiol 2014; 307:F243-50. [PMID: 24966087 DOI: 10.1152/ajprenal.00224.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease is a leading cause of morbidity and mortality in the world. A better understanding of disease mechanisms has been gained in recent years, but the current management strategies are ineffective at preventing disease progression. A widespread focus of research is placed on elucidating the specific processes implicated to find more effective therapeutic options. PGE2, acting on its four EP receptors, regulates many renal disease processes; thus EP receptors could prove to be important targets for kidney disease intervention strategies. This review summarizes the major pathogenic mechanisms contributing to initiation and progression of chronic kidney disease, emphasizing the role of hyperglycemia, hypertension, inflammation, and oxidative stress. We have long recognized the multifaceted role of PGs in both the initiation and progression of chronic kidney disease, yet studies are only now seriously contemplating specific EP receptors as targets for therapy. Given the plethora of renal complications attributed to PG involvement in the kidney, this review highlights these pathogenic events and emphasizes the PGE2 receptor targets as options available to complement current therapeutic strategies.
Collapse
Affiliation(s)
- Rania Nasrallah
- Department of Cellular and Molecular Medicine, and Kidney Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ramzi Hassouneh
- Department of Cellular and Molecular Medicine, and Kidney Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard L Hébert
- Department of Cellular and Molecular Medicine, and Kidney Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
68
|
Shikata K, Makino H. Microinflammation in the pathogenesis of diabetic nephropathy. J Diabetes Investig 2014; 4:142-9. [PMID: 24843643 PMCID: PMC4019266 DOI: 10.1111/jdi.12050] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 12/19/2022] Open
Abstract
Diabetic nephropathy is the leading cause of end‐stage renal failure in developed countries. Furthermore, diabetic nephropathy is related to the risk of cardiovascular diseases and an increase in mortality of diabetic patients. Several factors are involved in the development of nephropathy, including glomerular hyperfiltration, oxidative stress, accumulation of advanced glycation end‐products, activation of protein kinase C, acceleration of the polyol pathway and over‐expression of transforming growth factor‐β. Recently, accumulated data have emphasized the critical roles of chronic low‐grade inflammation, ‘microinflammation’, in the pathogenesis of diabetic nephropathy, suggesting that microinflammation is a common mechanism in the development of diabetic vascular complications. Expression of cell adhesion molecules, chemokines and pro‐inflammatory cytokines are increased in the renal tissues of diabetic patients and animals. Deficiency of pro‐inflammatory molecules results in amelioration of renal injuries after induction of diabetes in mice. Plasma and urinary levels of cytokines, chemokines and cell adhesion molecules, are elevated and correlated with albuminuria. Several kinds of drugs that have anti‐inflammatory actions as their pleiotropic effects showed renoprotective effects on diabetic animals. Modulation of the inflammatory process prevents renal insufficiency in diabetic animal models, suggesting that microinflammation is one of the promising therapeutic targets for diabetic nephropathy, as well as for cardiovascular diseases.
Collapse
Affiliation(s)
- Kenichi Shikata
- Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan ; Department of Medicine and Clinical Science Okayama University Graduate School of Medicine Dentistry, and Pharmaceutical Science Okayama Japan
| | - Hirofumi Makino
- Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan ; Department of Medicine and Clinical Science Okayama University Graduate School of Medicine Dentistry, and Pharmaceutical Science Okayama Japan
| |
Collapse
|
69
|
Terami N, Ogawa D, Tachibana H, Hatanaka T, Wada J, Nakatsuka A, Eguchi J, Horiguchi CS, Nishii N, Yamada H, Takei K, Makino H. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One 2014; 9:e100777. [PMID: 24960177 PMCID: PMC4069074 DOI: 10.1371/journal.pone.0100777] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/29/2014] [Indexed: 12/13/2022] Open
Abstract
Inhibition of sodium glucose cotransporter 2 (SGLT2) has been reported as a new therapeutic strategy for treating diabetes. However, the effect of SGLT2 inhibitors on the kidney is unknown. In addition, whether SGLT2 inhibitors have an anti-inflammatory or antioxidative stress effect is still unclear. In this study, to resolve these issues, we evaluated the effects of the SGLT2 inhibitor, dapagliflozin, using a mouse model of type 2 diabetes and cultured proximal tubular epithelial (mProx24) cells. Male db/db mice were administered 0.1 or 1.0 mg/kg of dapagliflozin for 12 weeks. Body weight, blood pressure, blood glucose, hemoglobin A1c, albuminuria and creatinine clearance were measured. Mesangial matrix accumulation and interstitial fibrosis in the kidney and pancreatic β-cell mass were evaluated by histological analysis. Furthermore, gene expression of inflammatory mediators, such as osteopontin, monocyte chemoattractant protein-1 and transforming growth factor-β, was evaluated by quantitative reverse transcriptase-PCR. In addition, oxidative stress was evaluated by dihydroethidium and NADPH oxidase 4 staining. Administration of 0.1 or 1.0 mg/kg of dapagliflozin ameliorated hyperglycemia, β-cell damage and albuminuria in db/db mice. Serum creatinine, creatinine clearance and blood pressure were not affected by administration of dapagliflozin, but glomerular mesangial expansion and interstitial fibrosis were suppressed in a dose-dependent manner. Dapagliflozin treatment markedly decreased macrophage infiltration and the gene expression of inflammation and oxidative stress in the kidney of db/db mice. Moreover, dapagliflozin suppressed the high-glucose-induced gene expression of inflammatory cytokines and oxidative stress in cultured mProx24 cells. These data suggest that dapagliflozin ameliorates diabetic nephropathy by improving hyperglycemia along with inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Naoto Terami
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Ogawa
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Diabetic Nephropathy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Hiromi Tachibana
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Hatanaka
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jun Wada
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsuko Nakatsuka
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jun Eguchi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chikage Sato Horiguchi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naoko Nishii
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Yamada
- Department of Neurochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kohji Takei
- Department of Neurochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Makino
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
70
|
Verschuren L, Wielinga PY, Kelder T, Radonjic M, Salic K, Kleemann R, van Ommen B, Kooistra T. A systems biology approach to understand the pathophysiological mechanisms of cardiac pathological hypertrophy associated with rosiglitazone. BMC Med Genomics 2014; 7:35. [PMID: 24938300 PMCID: PMC4072889 DOI: 10.1186/1755-8794-7-35] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/16/2014] [Indexed: 01/01/2023] Open
Abstract
Background Cardiac pathological hypertrophy is associated with a significantly increased risk of coronary heart disease and has been observed in diabetic patients treated with rosiglitazone whereas most published studies do not suggest a similar increase in risk of cardiovascular events in pioglitazone-treated diabetic subjects. This study sought to understand the pathophysiological and molecular mechanisms underlying the disparate cardiovascular effects of rosiglitazone and pioglitazone and yield knowledge as to the causative nature of rosiglitazone-associated cardiac hypertrophy. Methods We used a high-fat diet-induced pre-diabetic mouse model to allow bioinformatics analysis of the transcriptome of the heart of mice treated with rosiglitazone or pioglitazone. Results Our data show that rosiglitazone and pioglitazone both markedly improved systemic markers for glucose homeostasis, fasting plasma glucose and insulin, and the urinary excretion of albumin. Only rosiglitazone, but not pioglitazone, tended to increase atherosclerosis and induced pathological cardiac hypertrophy, based on a significant increase in heart weight and increased expression of the validated markers, ANP and BNP. Functional enrichment analysis of the rosiglitazone-specific cardiac gene expression suggests that a shift in cardiac energy metabolism, in particular decreased fatty acid oxidation toward increased glucose utilization as indicated by down regulation of relevant PPARα and PGC1α target genes. This underlies the rosiglitazone-associated pathological hypertrophic cardiac phenotype in the current study. Conclusion Application of a systems biology approach uncovered a shift in energy metabolism by rosiglitazone that may impact cardiac pathological hypertrophy.
Collapse
Affiliation(s)
- Lars Verschuren
- TNO, Department Microbiology and Systems Biology, P,O, Box 360, 3704 AJ Zeist, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Lanaspa MA, Ishimoto T, Cicerchi C, Tamura Y, Roncal-Jimenez CA, Chen W, Tanabe K, Andres-Hernando A, Orlicky DJ, Finol E, Inaba S, Li N, Rivard CJ, Kosugi T, Sanchez-Lozada LG, Petrash JM, Sautin YY, Ejaz AA, Kitagawa W, Garcia GE, Bonthron DT, Asipu A, Diggle CP, Rodriguez-Iturbe B, Nakagawa T, Johnson RJ. Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy. J Am Soc Nephrol 2014; 25:2526-38. [PMID: 24876114 DOI: 10.1681/asn.2013080901] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Diabetes is associated with activation of the polyol pathway, in which glucose is converted to sorbitol by aldose reductase. Previous studies focused on the role of sorbitol in mediating diabetic complications. However, in the proximal tubule, sorbitol can be converted to fructose, which is then metabolized largely by fructokinase, also known as ketohexokinase, leading to ATP depletion, proinflammatory cytokine expression, and oxidative stress. We and others recently identified a potential deleterious role of dietary fructose in the generation of tubulointerstitial injury and the acceleration of CKD. In this study, we investigated the potential role of endogenous fructose production, as opposed to dietary fructose, and its metabolism through fructokinase in the development of diabetic nephropathy. Wild-type mice with streptozotocin-induced diabetes developed proteinuria, reduced GFR, and renal glomerular and proximal tubular injury. Increased renal expression of aldose reductase; elevated levels of renal sorbitol, fructose, and uric acid; and low levels of ATP confirmed activation of the fructokinase pathway. Furthermore, renal expression of inflammatory cytokines with macrophage infiltration was prominent. In contrast, diabetic fructokinase-deficient mice demonstrated significantly less proteinuria, renal dysfunction, renal injury, and inflammation. These studies identify fructokinase as a novel mediator of diabetic nephropathy and document a novel role for endogenous fructose production, or fructoneogenesis, in driving renal disease.
Collapse
Affiliation(s)
- Miguel A Lanaspa
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado;
| | - Takuji Ishimoto
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado
| | - Christina Cicerchi
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado
| | - Yoshifuru Tamura
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado
| | - Carlos A Roncal-Jimenez
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado
| | - Wei Chen
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado
| | - Katsuyuki Tanabe
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado
| | - Ana Andres-Hernando
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado
| | - David J Orlicky
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado
| | - Esteban Finol
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado; Venezuelan Scientific Research Institute and University Hospital of Zulia, Maracaibo, Venezuela
| | - Shinichiro Inaba
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado
| | - Nanxing Li
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado
| | - Christopher J Rivard
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado
| | - Tomoki Kosugi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Laura G Sanchez-Lozada
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado; Laboratory of Renal Physiopathology and Department of Nephrology, INC Ignacio Chavez, Mexico City, Mexico
| | - J Mark Petrash
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado
| | | | - A Ahsan Ejaz
- Division of Nephrology, Hypertension, and Transplantation, University of Florida, Gainesville, Florida
| | - Wataru Kitagawa
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado
| | - Gabriela E Garcia
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado
| | - David T Bonthron
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, United Kingdom; and
| | - Aruna Asipu
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, United Kingdom; and
| | - Christine P Diggle
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, United Kingdom; and
| | | | - Takahiko Nakagawa
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado; TMK Project, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Richard J Johnson
- The Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, Colorado
| |
Collapse
|
72
|
She S, Liu W, Li T, Hong Y. Effects of puerarin in STZ-induced diabetic rats by oxidative stress and the TGF-β1/Smad2 pathway. Food Funct 2014; 5:944-50. [PMID: 24595557 DOI: 10.1039/c3fo60565e] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present study aimed to investigate the effects of pueraria on streptozotocine (STZ)-induced renal damage and its possible mechanisms. Wistar rats were randomly divided into five groups: the normal control group, diabetes untreated model group, two dosages (140 and 200 mg per kg bw per day) of puerarin treatment groups and a positive control group. Rats were studied 30 days after the STZ treatment, and the diabetes untreated model group presented significantly higher kidney index, blood glucose, triglyceride (TG), total cholesterol (TC), malondialdehyde (MDA), interferon-γ (IFN-γ), and IFN-γ/IL-4 levels, lower body weight, fasting blood insulin (FPI), IL-4, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and nitric oxide (NO) levels and worse renal function (higher blood urea nitrogen (BUN), serum creatinine (SCr), urine protein (UP) levels and glomerular extracellular matrix (relative area)) compared with the normal control group (p < 0.05). Furthermore, RT-FQ-PCR and western blot analyses showed that TGF-β1, Smad2, CTGF and FN protein and mRNA expression was significantly increased in the diabetes untreated model group compared with the normal control group. In contrast, the puerarin treatment dose-dependently significantly decreased the kidney index, blood glucose, TG, TC, MDA, IFN-γ, and IFN-γ/IL-4 levels, increased the body weight, FPI, IL-4, SOD, CAT, GSH-Px and NO levels and improved the renal function (lower BUN, SCr, UP levels and glomerular extracellular matrix (relative area)) in puerarin treatment groups (p < 0.05). In addition, the mRNA and protein expression of TGF-β1, Smad2, CTGF and FN was downregulated. It can be concluded that puerarin exerted its anti-diabetic effect on the STZ-treated rats through the inhibition of the TGF-β1/Smad2 pathway.
Collapse
Affiliation(s)
- ShaoYi She
- Department of Urology, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | | | | | | |
Collapse
|
73
|
Kim YS, Jung DH, Sohn E, Lee YM, Kim CS, Kim JS. Extract of Cassiae semen attenuates diabetic nephropathy via inhibition of advanced glycation end products accumulation in streptozotocin-induced diabetic rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:734-739. [PMID: 24374123 DOI: 10.1016/j.phymed.2013.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/11/2013] [Accepted: 11/28/2013] [Indexed: 06/03/2023]
Abstract
Chronic hyperglycemia leads to the formation of advanced glycation end products (AGEs), which accelerates the development of diabetic complications. Previous studies have shown that extract of Cassiae semen (CS), the seed of Cassia tora, has inhibitory activity on AGEs formation in vitro and reduces transforming growth factor-beta1 (TGF-β1) and extracellular matrix protein expression via inhibition of AGEs-mediated signaling in glomerular mesangial cells. In this study, to examine the preventive effects of CS extract on the development of diabetic nephropathy in vivo, streptozotocin (STZ)-injected diabetic rats were orally administered CS extract (200 mg/kg body weight/day) for 12 weeks. Serum glucose, triglycerides, and total cholesterol in diabetic rats were significantly higher compared to control rats. CS or aminoguanidine (AG) treatment significantly reduced these factors. Proteinuria and creatinine clearance were also significantly decreased in the CS-treated group compared with the untreated diabetic group. The CS-treated group had significantly inhibited COX-2 mRNA and protein, which mediates the symptoms of inflammation in the renal cortex of diabetic rats. Furthermore, histopathological studies of kidney tissue showed that in diabetic rats, AGEs, the receptor for AGEs, TGF-β1, and collagen IV were suppressed by CS treatment. Our data suggest that oral treatment of CS can inhibit the development of diabetic nephropathy via inhibition of AGEs accumulation in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Young Sook Kim
- Korean Medicine-Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Dong Ho Jung
- Korean Medicine-Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Eunjin Sohn
- Korean Medicine-Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Yun Mi Lee
- Korean Medicine-Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Chan-Sik Kim
- Korean Medicine-Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Jin Sook Kim
- Korean Medicine-Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea.
| |
Collapse
|
74
|
High glucose induces CCL20 in proximal tubular cells via activation of the KCa3.1 channel. PLoS One 2014; 9:e95173. [PMID: 24733189 PMCID: PMC3986377 DOI: 10.1371/journal.pone.0095173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/24/2014] [Indexed: 02/05/2023] Open
Abstract
Background Inflammation plays a key role in the development and progression of diabetic nephropathy (DN). KCa3.1, a calcium activated potassium channel protein, is associated with vascular inflammation, atherogenesis, and proliferation of endothelial cells, macrophages, and fibroblasts. We have previously demonstrated that the KCa3.1 channel is activated by TGF-β1 and blockade of KCa3.1 ameliorates renal fibrotic responses in DN through inhibition of the TGF-β1 pathway. The present study aimed to identify the role of KCa3.1 in the inflammatory responses inherent in DN. Methods Human proximal tubular cells (HK2 cells) were exposed to high glucose (HG) in the presence or absence of the KCa3.1 inhibitor TRAM34 for 6 days. The proinflammatory cytokine chemokine (C-C motif) ligand 20 (CCL20) expression was examined by real-time PCR and enzyme-linked immunosorbent assay (ELISA). The activity of nuclear factor-κB (NF-κB) was measured by nuclear extraction and electrophoretic mobility shift assay (EMSA). In vivo, the expression of CCL20, the activity of NF-κB and macrophage infiltration (CD68 positive cells) were examined by real-time PCR and/or immunohistochemistry staining in kidneys from diabetic or KCa3.1-/- mice, and in eNOS-/- diabetic mice treated with the KCa3.1 channel inhibitor TRAM34. Results In vitro data showed that TRAM34 inhibited CCL20 expression and NF-κB activation induced by HG in HK2 cells. Both mRNA and protein levels of CCL20 significantly decreased in kidneys of diabetic KCa3.1-/- mice compared to diabetic wild type mice. Similarly, TRAM34 reduced CCL20 expression and NF-κB activation in diabetic eNOS-/- mice compared to diabetic controls. Blocking the KCa3.1 channel in both animal models led to a reduction in phosphorylated NF-κB. Conclusions Overexpression of CCL20 in human proximal tubular cells is inhibited by blockade of KCa3.1 under diabetic conditions through inhibition of the NF-κB pathway.
Collapse
|
75
|
Marques C, Mega C, Gonçalves A, Rodrigues-Santos P, Teixeira-Lemos E, Teixeira F, Fontes-Ribeiro C, Reis F, Fernandes R. Sitagliptin prevents inflammation and apoptotic cell death in the kidney of type 2 diabetic animals. Mediators Inflamm 2014; 2014:538737. [PMID: 24817793 PMCID: PMC4000968 DOI: 10.1155/2014/538737] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/06/2014] [Accepted: 03/06/2014] [Indexed: 02/08/2023] Open
Abstract
This study aimed to evaluate the efficacy of sitagliptin, a dipeptidyl peptidase IV (DPP-IV) inhibitor, in preventing the deleterious effects of diabetes on the kidney in an animal model of type 2 diabetes mellitus; the Zucker diabetic fatty (ZDF) rat: 20-week-old rats were treated with sitagliptin (10 mg/kg bw/day) during 6 weeks. Glycaemia and blood HbA1c levels were monitored, as well as kidney function and lesions. Kidney mRNA and/or protein content/distribution of DPP-IV, GLP-1, GLP-1R, TNF-α, IL-1β, BAX, Bcl-2, and Bid were evaluated by RT-PCR and/or western blotting/immunohistochemistry. Sitagliptin treatment improved glycaemic control, as reflected by the significantly reduced levels of glycaemia and HbA1c (by about 22.5% and 1.2%, resp.) and ameliorated tubulointerstitial and glomerular lesions. Sitagliptin prevented the diabetes-induced increase in DPP-IV levels and the decrease in GLP-1 levels in kidney. Sitagliptin increased colocalization of GLP-1 and GLP-1R in the diabetic kidney. Sitagliptin also decreased IL-1β and TNF-α levels, as well as, prevented the increase of BAX/Bcl-2 ratio, Bid protein levels, and TUNEL-positive cells which indicates protective effects against inflammation and proapoptotic state in the kidney of diabetic rats, respectively. In conclusion, sitagliptin might have a major role in preventing diabetic nephropathy evolution due to anti-inflammatory and antiapoptotic properties.
Collapse
Affiliation(s)
- Catarina Marques
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Cristina Mega
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- ESAV, Technologies and Health Study Center, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
- Educational Technologies and Health Study Center, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Andreia Gonçalves
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Institute of Immunology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Immunology and Oncology Laboratory, CNC, 3004-517 Coimbra, Portugal
| | - Edite Teixeira-Lemos
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- ESAV, Technologies and Health Study Center, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Frederico Teixeira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carlos Fontes-Ribeiro
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Rosa Fernandes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Center of Ophthalmology and Vision Sciences, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
76
|
Ochodnicky P, Mesarosova L, Cernecka H, Klimas J, Krenek P, Goris M, van Dokkum RPE, Henning RH, Kyselovic J. Pioglitazone, a PPARγ agonist, provides comparable protection to angiotensin converting enzyme inhibitor ramipril against adriamycin nephropathy in rat. Eur J Pharmacol 2014; 730:51-60. [PMID: 24582928 DOI: 10.1016/j.ejphar.2014.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/26/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) agonists have been shown to ameliorate diabetic nephropathy, but much less are known about their effects in non-diabetic nephropathies. In the present study, metabolic parameters, blood pressure, aortic endothelial function along with molecular and structural markers of glomerular and tubulointerstitial renal damage, were studied in a rat model of normotensive nephropathy induced by adriamycin and treated with PPARγ agonist pioglitazone (12mg/kg, po), angiotensin converting enzyme (ACE) inhibitor ramipril (1mg/kg, po) or their combination. Pioglitazone had no effect on systolic blood pressure, marginally reduced glycemia and improved aortic endothelium-dependent relaxation. In the kidney, pioglitazone prevented the development of proteinuria and focal glomerulosclerosis to the similar extent as blood-pressure lowering ramipril. Renoprotection provided by either treatment was associated with a reduction in the cortical expression of profibrotic plasminogen activator inhibitor-1 and microvascular damage-inducing endothelin-1, and a limitation of interstitial macrophage influx. Treatment with PPARγ agonist, as well as ACE inhibitor comparably affected renal expression of the renin-angiotensin system (RAS) components, normalizing increased renal expression of ACE and enhancing the expression of Mas receptor. Interestingly, combined pioglitazone and ramipril treatment did not provide any additional renoprotection. These results demonstrate that in a nondiabetic renal disease, such as adriamycin-induced nephropathy, PPARγ agonist pioglitazone provides renoprotection to a similar extent as an ACE inhibitor by interfering with the expression of local RAS components and attenuating related profibrotic and inflammatory mechanisms. The combination of the both agents, however, does not lead to any additional renal benefit.
Collapse
Affiliation(s)
- Peter Ochodnicky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic.
| | - Lucia Mesarosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Hana Cernecka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Maaike Goris
- Department of Clinical Pharmacology, University Medical Center Groningen (UMCG) and Groningen Institute for Drug Exploration (GUIDE), University of Groningen, The Netherlands
| | - Richard P E van Dokkum
- Department of Clinical Pharmacology, University Medical Center Groningen (UMCG) and Groningen Institute for Drug Exploration (GUIDE), University of Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacology, University Medical Center Groningen (UMCG) and Groningen Institute for Drug Exploration (GUIDE), University of Groningen, The Netherlands
| | - Jan Kyselovic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| |
Collapse
|
77
|
Rosiglitazone increases cerebral klotho expression to reverse baroreflex in type 1-like diabetic rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:309151. [PMID: 24683546 PMCID: PMC3943406 DOI: 10.1155/2014/309151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/07/2014] [Indexed: 11/23/2022]
Abstract
Reduced baroreflex sensitivity (BRS) is widely observed in diabetic human and animals. Rosiglitazone is one of the clinically used thiazolidinediones (TZD) known as PPARγ agonist. Additionally, the klotho protein produced from choroid plexus in the central nervous system is regulated by PPARγ. In an attempt to develop the new therapeutic strategy, we treated streptozotocin-induced diabetic rats (STZ) with rosiglitazone (STZ + TZD) orally at 10 mg/kg for 7 days. Also, STZ rats were subjected to intracerebroventricular (ICV) infusion of recombinant klotho at a dose of 3 μg/2.5 μL via syringe pump (8 μg/hr) daily for 7 days. The BRS and heart rate variability were then estimated under challenge with a depressor dose of sodium nitroprusside (50 μg/kg) or a pressor dose of phenylephrine (8 μg/kg) through an intravenous injection. Lower expression of klotho in medulla oblongata of diabetic rats was identified. Cerebral infusion of recombinant klotho or oral administration of rosiglitazone reversed BRS in diabetic rats. In conclusion, recovery of the decreased klotho in brain induced by rosiglitazone may restore the impaired BRS in diabetic rats. Thus, rosiglitazone is useful to reverse the reduced BRS through increasing cerebral klotho in diabetic disorders.
Collapse
|
78
|
Ibrahim MA, El-Sheikh AAK, Khalaf HM, Abdelrahman AM. Protective effect of peroxisome proliferator activator receptor (PPAR)-α and -γ ligands against methotrexate-induced nephrotoxicity. Immunopharmacol Immunotoxicol 2014; 36:130-7. [PMID: 24521009 DOI: 10.3109/08923973.2014.884135] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CONTEXT The anticancer drug methotrexate (MTX) may cause multi-organ toxicities, including nephrotoxicity. OBJECTIVE To investigate effects of peroxisome proliferator activator receptor (PPAR)-α and -γ agonists; fenofibrate (FEN) and pioglitazone (PIO), in MTX-induced nephrotoxicity in rats. METHODS Rats were given FEN or PIO (150 or 5 mg/kg/day, respectively) orally for 15 days. MTX was injected as a single dose of 20 mg/kg, i.p. at day 11 of experiment, with or without either PPAR agonists. RESULTS MTX induced renal toxicity, assessed by increase in serum urea and creatinine as well as histopathological alterations. MTX caused renal oxidative/nitrosative stress, indicated by decrease in GSH and catalase with increase in malondialdehyde and nitric oxide (NOx) levels. In addition, MTX increased renal level of the pro-inflammatory cytokine; tumor necrosis factor (TNF)-α and up-regulated the expression of both the inflammatory and apoptotic markers; NF-κB and caspase 3. Pre-administration of FEN or PIO to MTX-treated rats improved renal function and reversed oxidative/nitrosative parameters. Interestingly, pre-administration of PIO, but not FEN, decreased renal TNF-α level and NF-κB expression compared to MTX alone. Furthermore, PIO had more significant effect than FEN on reversing MTX-induced renal caspase 3 expression. DISCUSSION Both FEN and PIO conferred protection against MTX-induced nephrotoxicity through comparable amelioration of oxidative/nitrosative stress. FEN lacked any effect on TNF-α/NF-κB, which was reflected on its less improvement on renal histopathology and apoptosis. CONCLUSION At indicated dosage, PPAR-γ ligand; PIO shows better improvement of MTX-induced nephrotoxicity compared to PPAR-α ligand; FEN due to differential effect on TNF-α/NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Mohamed A Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University , Minia , Egypt
| | | | | | | |
Collapse
|
79
|
Abstract
Several studies have demonstrated that chronic and low-grade inflammation is closely linked to type 2 diabetes mellitus. The associated mechanisms are related to synthesis and release of proinflammatory and anti-inflammatory cytokines, mainly by the adipose tissue. Moreover, there are evidences that cytokines and adhesion molecules are important for development of diabetic nephropathy. Among the cytokines associated with inflammatory responses in type 2 diabetes mellitus, the transforming growth factor-β (TGF-β) has been recognized as a central player in the diabetic nephropathy being involved in the development of glomerulosclerosis and interstitial fibrosis, as observed in the course of end-stage renal disease. Although TGF-β1 is classically an anti-inflammatory immune mediator it has been shown that in the presence of IL-6, which increases before the onset of T2D, TGF-β1 favors the differentiation of T helper 17 (Th17) cells that are activated in many pro-inflammatory conditions. Since TGF-β1 mRNA and consequently serum TGF-β1 levels are under genetic control, this review aims to discuss the relationship of TGF-β1 levels and polymorphisms in the development of nephropathy in type 2 diabetes mellitus.
Collapse
|
80
|
Xu F, Wang Y, Cui W, Yuan H, Sun J, Wu M, Guo Q, Kong L, Wu H, Miao L. Resveratrol Prevention of Diabetic Nephropathy Is Associated with the Suppression of Renal Inflammation and Mesangial Cell Proliferation: Possible Roles of Akt/NF-κB Pathway. Int J Endocrinol 2014; 2014:289327. [PMID: 24672545 PMCID: PMC3941586 DOI: 10.1155/2014/289327] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 12/15/2013] [Accepted: 12/19/2013] [Indexed: 11/23/2022] Open
Abstract
The present study was to investigate the protection of resveratrol (RSV) in diabetes associated with kidney inflammation and cell proliferation. Rat mesangial cell and streptozotocin-induced type 1 diabetes mouse model were used. In vitro, RSV attenuated high glucose-induced plasminogen activator inhibitor (PAI-1) expression and mesangial cell proliferation, as well as Akt and nuclear factor-kappa B (NF- κ B) activation. The similar results were recaptured in the experiment with Akt inhibitors. In vivo, mice were divided into three groups: control group, diabetes mellitus (DM) group, and RSV-treated DM group. Compared with control group, the kidney weight to body weight ratio and albumin to creatinine ratio were increased in DM group, but not in RSV-treated DM group. Furthermore, the increased expression of PAI-1 and intercellular adhesion molecule-1 in diabetic renal cortex were also reduced by RSV administration. Besides, the kidney p-Akt/Akt ratio and NF- κ B were significantly increased in DM group; however, these changes were reversed in RSV-treated DM group. Additionally, immunohistochemistry results indicated that RSV treatment reduced the density of proliferating cell nuclear antigen-positive cells significantly in glomeruli of diabetic mice. These results suggest that RSV prevents diabetes-induced renal inflammation and mesangial cell proliferation possibly through Akt/NF- κ B pathway inhibition.
Collapse
Affiliation(s)
- Feng Xu
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Yuehui Wang
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Hang Yuan
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Jing Sun
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Man Wu
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Qiaoyan Guo
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Lili Kong
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Hao Wu
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Lining Miao
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- *Lining Miao:
| |
Collapse
|
81
|
Renoprotective effect of ramulus mori polysaccharides on renal injury in STZ-diabetic mice. Int J Biol Macromol 2013; 62:720-5. [DOI: 10.1016/j.ijbiomac.2013.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/20/2013] [Accepted: 09/19/2013] [Indexed: 11/17/2022]
|
82
|
August P, Hardison RM, Hage FG, Marroquin OC, McGill JB, Rosenberg Y, Steffes M, Wall BM, Molitch M. Change in albuminuria and eGFR following insulin sensitization therapy versus insulin provision therapy in the BARI 2D study. Clin J Am Soc Nephrol 2013; 9:64-71. [PMID: 24178969 DOI: 10.2215/cjn.12281211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVES In the Bypass Angioplasty Revascularization Investigation 2 Diabetes randomized trial, glycemic control with insulin-sensitization therapy was compared with insulin-provision therapy in patients with type 2 diabetes and coronary artery disease. This study examined differences in albumin excretion and renal function in the insulin-sensitization group versus the insulin-provision group over 5 years. DESIGN, SETTING, PARTICIPANTS & MEASUREMENTS In total, 1799 patients with measurements of creatinine and urine albumin/creatinine ratio at baseline and at least two follow-up visits were included. Management of BP, lipids, and lifestyle counseling was uniform. Progression of albuminuria was defined as doubling of baseline albumin/creatinine ratio to at least 100 mg/g or worsening of albumin/creatinine ratio status on two or more visits. Worsening renal function was defined as >25% decline in estimated GFR and annualized decline of >3 ml/min per 1.73 m(2) per year. RESULTS By 6 months and thereafter, the mean glycated hemoglobin levels were lower in the insulin-sensitization group compared with the insulin-provision group (P<0.002 for each time point; absolute difference=0.4%). Albumin/creatinine ratio increased over time in the insulin-sensitization group (P value for trend<0.001) and was stable in the insulin-provision group. Risk for progression of albumin/creatinine ratio was higher in the insulin-sensitization group compared with the insulin-provision group (odds ratio, 1.59; 95% confidence interval, 1.25 to 2.02; P=0.02). Over 5 years, albumin/creatinine ratio increased from 11.5 (interquartile range=5.0-46.7) to 15.7 mg/g (interquartile range=6.2-55.4) in the insulin-sensitization group (P<0.001) and from 12.1 (interquartile range=5.3-41.3) to 12.4 mg/g (interquartile range=5.8-50.6) in the insulin-provision group (P=0.21). Estimated GFR declined from 75.0±20.6 to 66.3±22.6 ml/min per 1.73 m(2) in the insulin-sensitization group (P<0.001) and from 76.1±29.5 to 66.8±22.1 ml/min per 1.73 m(2) in the insulin-provision group (P<0.001). CONCLUSION Over 5 years, despite lower glycated hemoglobin levels, the insulin-sensitization treatment group had greater progression of albumin/creatinine ratio compared with the insulin-provision treatment group. Decline in estimated GFR was similar.
Collapse
Affiliation(s)
- Phyllis August
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Zhao W, Berthier CC, Lewis EE, McCune WJ, Kretzler M, Kaplan MJ. The peroxisome-proliferator activated receptor-γ agonist pioglitazone modulates aberrant T cell responses in systemic lupus erythematosus. Clin Immunol 2013; 149:119-32. [PMID: 23962407 PMCID: PMC4184099 DOI: 10.1016/j.clim.2013.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 12/17/2022]
Abstract
PPAR-γ agonists can suppress autoimmune responses and renal inflammation in murine lupus but the mechanisms implicated in this process remain unclear. We tested the effect of the PPAR-γ agonist pioglitazone in human lupus and control PBMCs with regard to gene regulation and various functional assays. By Affymetrix microarray analysis, several T cell-related pathways were significantly highlighted in pathway analysis in lupus PBMCs. Transcriptional network analysis showed IFN-γ as an important regulatory node, with pioglitazone treatment inducing transcriptional repression of various genes implicated in T cell responses. Confirmation of these suppressive effects was observed specifically in purified CD4+ T cells. Pioglitazone downregulated lupus CD4+ T cell effector proliferation and activation, while it significantly increased proliferation and function of lupus T regulatory cells. We conclude that PPAR-γ agonists selectively modulate CD4+ T cell function in SLE supporting the concept that pioglitazone and related,-agents should be explored as potential therapies in this disease.
Collapse
Affiliation(s)
- Wenpu Zhao
- Division of Rheumatology, Department of Internal Medicine
| | | | - Emily E. Lewis
- Division of Rheumatology, Department of Internal Medicine
| | | | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine
- Department of Computational Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | | |
Collapse
|
84
|
Korrapati MC, Howell LH, Shaner BE, Megyesi JK, Siskind LJ, Schnellmann RG. Suramin: a potential therapy for diabetic nephropathy. PLoS One 2013; 8:e73655. [PMID: 24040012 PMCID: PMC3767615 DOI: 10.1371/journal.pone.0073655] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/20/2013] [Indexed: 01/06/2023] Open
Abstract
Objective To determine whether delayed administration of a single dose of suramin, a drug that has been used extensively in humans to treat trypanosomiasis, attenuates renal injury in a leptin receptor deficient C57BLKS/J db/db type 2 diabetic nephropathy (T2DN) mouse model. Research Design and Methods Groups of female non-diabetic (control) db/m and diabetic db/db mice of 8 and 16 weeks of age, respectively, were treated with suramin (10 mg/kg) or saline i.v. All animals were euthanized one week later. Measurements in mice 1 week following treatment included the following: body weight; blood glucose; urinary protein excretion; pathological lesions in glomeruli and proximal tubules; changes in protein expression of pro-inflammatory transcription factor nuclear factor κB (NF-κB) and intracellular adhesion molecule-1 (ICAM-1), profibrotic transforming growth factor-β1 (TGF-β1), phospho-SMAD-3 and alpha-smooth muscle actin (α-SMA); and immunohistochemical analysis of leukocyte infiltration and collagen 1A2 (COL1A2) deposition. Results Immunoblot analysis revealed increased NF-κB, ICAM-1, TGF-β1, phospho-SMAD-3, and α-SMA proteins in both 9 and 17 week db/db mice as compared to db/m control mice. Immunohistochemical analysis revealed moderate leukocyte infiltration and collagen 1A2 (COL1A2) deposition in 9 week db/db mice that was increased in the 17 week db/db mice. Importantly, suramin significantly decreased expression of all these markers in 9 week db/db mice and partially decreased in 17 week db/db mice without altering body weight, blood glucose or urinary protein excretion. There was no difference in creatinine clearance between 9 week db/m and db/db mice ± suramin. Importantly, in the 17 week db/db mice suramin intervention reversed the impaired creatinine clearance and overt histological damage. Conclusions Delayed administration of a single dose of suramin in a model of T2DN attenuated inflammation and fibrosis as well as improved renal function, supporting the use of suramin in T2DN.
Collapse
Affiliation(s)
- Midhun C. Korrapati
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Lauren H. Howell
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Brooke E. Shaner
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Judit K. Megyesi
- Department of Internal Medicine, College of Medicine, Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Leah J. Siskind
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, United States of America
- * E-mail:
| | - Rick G. Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, United States of America
| |
Collapse
|
85
|
Effect of mononuclear cells versus pioglitazone on streptozotocin-induced diabetic nephropathy in rats. Pharmacol Rep 2013; 64:1223-33. [PMID: 23238478 DOI: 10.1016/s1734-1140(12)70918-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 06/20/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND Diabetic nephropathy is a serious diabetic complication that leads to end stage renal disease. Cell therapies with human embryonic and specific adult stem cells have emerged as an alternative management for various diseases. METHODS To test this hypothesis, the present study was conducted to compare effect of MNCs treatment (iv injection once in the tail vein for diabetic rats in a dose of 150 x 10(6) MNCs cells/rat) versus pioglitazone (10 mg/kg, for eight weeks) on improving the renal structure and function changes and reducing laminin deposition associated with STZ-induced diabetic nephropathy in rats. RESULTS Treatment with pioglitazone orMNCs, demonstrated a significant improvement in the STZ-induced renal functional and structural changes in comparison with diabetic control group. Additionally, our histopathological and immunohistochemical studies confirm these results. Meanwhile, MNCs treated group exhibited more improvement in all studied parameters as compared to pioglitazone treated group. CONCLUSION These data indicate that MNCs treatment was superior to pioglitazone in controlling hyperglycemia, improving the renal structure and function changes and reducing renal laminin expression associated with STZ-induced diabetic nephropathy in rats.
Collapse
|
86
|
Liang YJ, Jian JH, Chen CY, Hsu CY, Shih CY, Leu JG. L-165,041, troglitazone and their combination treatment to attenuate high glucose-induced receptor for advanced glycation end products (RAGE) expression. Eur J Pharmacol 2013; 715:33-8. [PMID: 23831394 DOI: 10.1016/j.ejphar.2013.06.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 06/06/2013] [Accepted: 06/21/2013] [Indexed: 01/14/2023]
Abstract
Diabetic nephropathy is the leading cause of end-stage renal disease in the most developed countries of the world. Hyperglycemia-induced advanced glycation end products (AGEs) and receptor for AGEs (RAGE) production, pro-inflammatory cytokine secretion, and oxidative stress activation play major roles in kidney cell injury and apoptosis. Peroxisome proliferator-activated receptor-gamma (PPARγ) agonists are used clinically as insulin sensitizers. This study evaluated the renoprotective effect of PPARγ (troglitazone) and PPARδ (L-165,041) agonists on human embryonic kidney 293 (HEK) and mesangial cells. Troglitazone (10 μM) and L-165,041 (1 μM) significantly inhibited high glucose (25mM)-induced interleukin-6 and TNF-α production, RAGE expression and NF-κB translocation in HEK cells. Furthermore, Troglitazone (10 μM) and L-165,041(1 μM) significantly increased SOD expression and attenuated apoptosis in HEK and mesangial cells. The inhibitory effect between 1 μM L-165,041 and 10 μM troglitazone showed no difference. Furthermore L-165,041 and troglitazone together did not increase the effects. These results provide important information for future application of PPAR agonists in diabetic nephropathy treatment.
Collapse
Affiliation(s)
- Yao-Jen Liang
- Department and Institute of Life Science, Fu-Jen Catholic University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
87
|
Kim JE, Lee MH, Nam DH, Song HK, Kang YS, Lee JE, Kim HW, Cha JJ, Hyun YY, Han SY, Han KH, Han JY, Cha DR. Celastrol, an NF-κB inhibitor, improves insulin resistance and attenuates renal injury in db/db mice. PLoS One 2013; 8:e62068. [PMID: 23637966 PMCID: PMC3637455 DOI: 10.1371/journal.pone.0062068] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/18/2013] [Indexed: 12/12/2022] Open
Abstract
The NF-κB pathway plays an important role in chronic inflammatory and autoimmune diseases. Recently, NF-κB has also been suggested as an important mechanism linking obesity, inflammation, and metabolic disorders. However, there is no current evidence regarding the mechanism of action of NF-κB inhibition in insulin resistance and diabetic nephropathy in type 2 diabetic animal models. We investigated the effects of the NF-κB inhibitor celastrol in db/db mice. The treatment with celastrol for 2 months significantly lowered fasting plasma glucose (FPG), HbA1C and homeostasis model assessment index (HOMA-IR) levels. Celastrol also exhibited significant decreases in body weight, kidney/body weight and adiposity. Celastrol reduced insulin resistance and lipid abnormalities and led to higher plasma adiponectin levels. Celastrol treatment also significantly mitigated lipid accumulation and oxidative stress in organs including the kidney, liver and adipose tissue. The treated group also exhibited significantly lower creatinine levels and urinary albumin excretion was markedly reduced. Celastrol treatment significantly lowered mesangial expansion and suppressed type IV collagen, PAI-1 and TGFβ1 expressions in renal tissues. Celastrol also improved abnormal lipid metabolism, oxidative stress and proinflammatory cytokine activity in the kidney. In cultured podocytes, celastrol treatment abolished saturated fatty acid-induced proinflammatory cytokine synthesis. Taken together, celastrol treatment not only improved insulin resistance, glycemic control and oxidative stress, but also improved renal functional and structural changes through both metabolic and anti-inflammatory effects in the kidney. These results suggest that targeted therapy for NF-κB may be a useful new therapeutic approach for the management of type II diabetes and diabetic nephropathy.
Collapse
Affiliation(s)
- Jung Eun Kim
- Department of Internal Medicine, Division of Nephrology, Korea University, Ansan City, Kyungki-Do, Korea
| | - Mi Hwa Lee
- Department of Internal Medicine, Division of Nephrology, Korea University, Ansan City, Kyungki-Do, Korea
| | - Deok Hwa Nam
- Department of Internal Medicine, Division of Nephrology, Korea University, Ansan City, Kyungki-Do, Korea
| | - Hye Kyoung Song
- Department of Internal Medicine, Division of Nephrology, Korea University, Ansan City, Kyungki-Do, Korea
| | - Young Sun Kang
- Department of Internal Medicine, Division of Nephrology, Korea University, Ansan City, Kyungki-Do, Korea
| | - Ji Eun Lee
- Department of Internal Medicine, Division of Nephrology, Wonkwang University, Gunpo City, Kyungki-Do, Korea
| | - Hyun Wook Kim
- Department of Internal Medicine, Division of Nephrology, Wonkwang University, Gunpo City, Kyungki-Do, Korea
| | - Jin Joo Cha
- Department of Internal Medicine, Division of Nephrology, Korea University, Ansan City, Kyungki-Do, Korea
| | - Young Youl Hyun
- Department of Internal Medicine, Division of Nephrology, Sungkyunkwan University, Seoul, Korea
| | - Sang Youb Han
- Department of Internal Medicine, Division of Nephrology, Inje University, Goyang City, Kyungki-Do, Korea
| | - Kum Hyun Han
- Department of Internal Medicine, Division of Nephrology, Inje University, Goyang City, Kyungki-Do, Korea
| | - Jee Young Han
- Department of Pathology, Inha University, Incheon City, Kyungki-Do, Korea
| | - Dae Ryong Cha
- Department of Internal Medicine, Division of Nephrology, Korea University, Ansan City, Kyungki-Do, Korea
| |
Collapse
|
88
|
Asakura J, Hasegawa H, Takayanagi K, Shimazu T, Suge R, Shimizu T, Iwashita T, Tayama Y, Matsuda A, Kanozawa K, Araki N, Mitarai T. Renoprotective effect of pioglitazone by the prevention of glomerular hyperfiltration through the possible restoration of altered macula densa signaling in rats with type 2 diabetic nephropathy. Nephron Clin Pract 2013; 122:83-94. [PMID: 23548923 DOI: 10.1159/000348661] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 02/03/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIMS Pioglitazone (PGZ), one of the thiazolidinediones, has been known to show renoprotective effects. In this study, we focused on the effect of PGZ on glomerular hyperfiltration (GHF), resultant glomerular injury and altered macula densa signaling as a cause of sustained GHF through modified tubuloglomerular feedback in rats with diabetic nephropathy. METHODS Kidneys from 24-week-old male OLETF rats and LET rats, nondiabetic controls, were used for the experiment. PGZ was administered (10 mg/kg/day, p.o.) for 2 weeks from 22 to 24 weeks of age in some of the OLETF rats (OLETF+PGZ). RESULTS Parameters relating GHF, kidney weight, creatinine clearance, urine albumin/creatinine ratio and glomerular surface were all increased in OLETF rats and partially restored in OLETF+PGZ rats. Expressions of desmin and TGF-β were also increased in OLETF rats and restored in OLETF+PGZ rats. The changes in TGF-β expression were confirmed to be independent of podocyte number. Finally, the immunoreactivity of neuronal nitric oxide synthase (nNOS) and cyclooxygenase 2 (COX-2) in the macula densa was assessed for the evaluation of macula densa signaling. Altered intensities of nNOS and COX-2 in OLETF rats were restored in OLETF+PGZ rats, which agreed with the gene expression analysis (nNOS: 100.2 ± 2.9% in LET, 64.2 ± 2.7% in OLETF, 87.4 ± 12.1% in OLETF+PGZ; COX-2: 100.8 ± 7.4% in LET, 249.2 ± 19.4% in OLETF, 179.9 ± 13.5% in OLETF+PGZ; n = 5) and the semiquantitative analysis of nNOS/COX-2-positive cells. CONCLUSION PGZ effectively attenuated the GHF and hyperfiltration-associated glomerular injury in diabetic nephropathy. The restoration of altered macula densa signaling might be involved in the renoprotective effect of PGZ.
Collapse
Affiliation(s)
- Juko Asakura
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Sun YM, Su Y, Li J, Wang LF. Recent advances in understanding the biochemical and molecular mechanism of diabetic nephropathy. Biochem Biophys Res Commun 2013; 433:359-61. [PMID: 23541575 DOI: 10.1016/j.bbrc.2013.02.120] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/26/2013] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is a chronic disease characterized by proteinuria, glomerular hypertrophy, decreased glomerular filtration and renal fibrosis with loss of renal function. DN is the leading cause of end-stage renal disease, accounting for millions of deaths worldwide. Hyperglycemia is the driving force for the development of diabetic nephropathy. The exact cause of diabetic nephropathy is unknown, but various postulated mechanisms are: hyperglycemia (causing hyperfiltration and renal injury), advanced glycosylation products, activation of cytokines. In this review article, we have discussed a number of diabetes-induced metabolites such as glucose, advanced glycation end products, protein kinase C and oxidative stress and other related factors that are implicated in the pathophysiology of the DN. An understanding of the biochemical and molecular changes especially early in the DN may lead to new and effective therapies towards prevention and amelioration of DN.
Collapse
Affiliation(s)
- Yan-Ming Sun
- Department of Cardiac Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | | | | | | |
Collapse
|
90
|
Yan Z, Ni Y, Wang P, Chen J, He H, Sun J, Cao T, Chen J, Zhao Z, Luo Z, Chen L, Liu D, Zhu Z. Peroxisome proliferator-activated receptor delta protects against obesity-related glomerulopathy through the P38 MAPK pathway. Obesity (Silver Spring) 2013; 21:538-45. [PMID: 23592661 DOI: 10.1002/oby.20103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 08/23/2012] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity is a prominent component of metabolic syndrome and a major risk factor for renal disease. The aim of this study was to explore the effect of cross-talk between peroxisome proliferator-activated receptor (PPAR)δ and p38 mitogen-activated protein kinase (p38 MAPK) on obesity-related glomerulopathy. DESIGN AND METHODS Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet for 32 weeks. Glomerular mesangial cells HBZY-1 and mature differentiation 3T3-L1 cells were cocultured and were transfected with PPARδ-expressing vectors or treated with agonist or inhibitor of PPARδ or p38 MAPK. RESULTS Rats on a high-fat diet showed typical characteristics of metabolic syndrome including obesity, dyslipidemia, insulin resistance, and hypertension. Rats on a high-fat diet also had significant glomerular hypertrophy and extracellular matrix accumulation, which were accompanied by increased p38 MAPK phosphorylation and decreased PPARδ expression in the kidney tissue. The roles of p38 MAPK and PPARδ in a coculture system of mesangial cells and mature differentiation 3T3-L1 cells were further explored. PPARδ suppression promoted laminin and type IV collagen secretion through p38 MAPK phosphorylation in mesangial cells, whereas PPARδ overexpression or PPARδ agonist attenuated phosphorylation of p38 MAPK and laminin and type IV collagen secretion. CONCLUSIONS The characteristics of obesity-related glomerulopathy, which might be partly caused by PPARδ suppression-induced p38 MAPK activation and laminin and type IV collagen secretion was demonstrated.
Collapse
Affiliation(s)
- Zhencheng Yan
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Chongqing Hypertension Institut, Chongqing 400042, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Arora MK, Singh UK. Molecular mechanisms in the pathogenesis of diabetic nephropathy: an update. Vascul Pharmacol 2013; 58:259-71. [PMID: 23313806 DOI: 10.1016/j.vph.2013.01.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 01/04/2013] [Accepted: 01/04/2013] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is known to trigger retinopathy, neuropathy and nephropathy. Diabetic nephropathy, a long-term major microvascular complication of uncontrolled hyperglycemia, affects a large population worldwide. Recent findings suggest that numerous pathways are activated during the course of diabetes mellitus and that these pathways individually or collectively play a role in the induction and progression of diabetic nephropathy. However, clinical strategies targeting these pathways to manage diabetic nephropathy remain unsatisfactory, as the number of diabetic patients with nephropathy is increasing yearly. To develop ground-breaking therapeutic options to prevent the development and progression of diabetic nephropathy, a comprehensive understanding of the molecular mechanisms involved in the pathogenesis of the disease is mandatory. Therefore, the purpose of this paper is to discuss the underlying mechanisms and downstream pathways involved in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Mandeep Kumar Arora
- Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut 250005, Uttar Pradesh, India.
| | | |
Collapse
|
92
|
Abstract
The most problematic issue in clinical nephrology is the relentless and progressive increase in patients with ESRD (end-stage renal disease) worldwide. The impact of diabetic nephropathy on the increasing population with CKD (chronic kidney disease) and ESRD is enormous. Three major pathways showing abnormality of intracellular metabolism have been identified in the development of diabetic nephropathy: (i) the activation of polyol and PKC (protein kinase C) pathways; (ii) the formation of advanced glycation end-products; and (iii) intraglomerular hypertension induced by glomerular hyperfiltration. Upstream of these three major pathways, hyperglycaemia is the major driving force of the progression to ESRD from diabetic nephropathy. Downstream of the three pathways, microinflammation and subsequent extracellular matrix expansion are common pathways for the progression of diabetic nephropathy. In recent years, many researchers have been convinced that the inflammation pathways play central roles in the progression of diabetic nephropathy, and the identification of new inflammatory molecules may link to the development of new therapeutic strategies. Various molecules related to the inflammation pathways in diabetic nephropathy include transcription factors, pro-inflammatory cytokines, chemokines, adhesion molecules, Toll-like receptors, adipokines and nuclear receptors, which are candidates for the new molecular targets for the treatment of diabetic nephropathy. Understanding of these molecular pathways of inflammation would translate into the development of anti-inflammation therapeutic strategies.
Collapse
|
93
|
Konttinen YT, Kaivosoja E, Stegaev V, Wagner HD, Levón J, Tiainen VM, Mackiewicz Z. Extracellular Matrix and Tissue Regeneration. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
94
|
Mahmoud MF, El Shazly SM. Pioglitazone protects against cisplatin induced nephrotoxicity in rats and potentiates its anticancer activity against human renal adenocarcinoma cell lines. Food Chem Toxicol 2013; 51:114-22. [DOI: 10.1016/j.fct.2012.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/29/2012] [Accepted: 09/10/2012] [Indexed: 11/30/2022]
|
95
|
Abstract
The innate immune system is a prewired set of cellular and humoral components that has developed to sense perturbations in normal physiology and trigger responses to restore the system back to baseline. It is now understood that many of these components can also sense the physiologic changes that occur with obesity and be activated. While the exact reasons for this chronic immune response to obesity are unclear, there is strong evidence to suggest that innate inflammatory systems link obesity and disease. Based on this, anti-inflammatory therapies for diseases like type 2 diabetes and metabolic syndrome may form the core of future treatment plans. This review will highlight the components involved in the innate immune response and discuss the evidence that they contribute to the pathogenesis of obesity-associated diseases.
Collapse
Affiliation(s)
- Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
96
|
Korrapati MC, Shaner BE, Neely BA, Alge JL, Arthur JM, Schnellmann RG. Diabetes-induced renal injury in rats is attenuated by suramin. J Pharmacol Exp Ther 2012; 343:34-43. [PMID: 22736507 PMCID: PMC3464039 DOI: 10.1124/jpet.112.196964] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/25/2012] [Indexed: 01/06/2023] Open
Abstract
Progression of hyperglycemia-induced renal injury is a contributing factor for diabetic nephropathy (DN)-induced end-stage renal disease (ESRD), and development of novel therapeutic strategies that act early to prevent progression of DN and ESRD are important. We examined the efficacy and mechanism(s) of suramin on hyperglycemia-induced renal injury before development of overt histological damage. Two groups of male Sprague-Dawley rats received streptozotocin (STZ) and one group received saline. Three weeks later, one STZ group received suramin (10 mg/kg). All animals were euthanized 1 week later (4 weeks). Although there was a decrease in creatinine clearance between control and STZ ± suramin rats, there was no difference in creatinine clearance between STZ rats ± suramin intervention. Liquid chromatography-tandem mass spectroscopy-based analysis revealed increases in urinary proteins that are early indicators of DN (e.g., cystatin C, clusterin, cathepsin B, retinol binding protein 4, and peroxiredoxin-1) in the STZ group, which were blocked by suramin. Endothelial intracellular adhesion molecule-1 (ICAM-1) activation, leukocyte infiltration, and inflammation; transforming growth factor-β1 (TGF-β1) signaling; TGF-β1/SMAD-3-activated fibrogenic markers fibronectin-1, α-smooth muscle actin, and collagen 1A2; activation of proinflammatory and profibrotic transcription factors nuclear factor-κB (NF-κB) and signal transducer and activator of transcription factor-3 (STAT-3), respectively, were all increased in STZ rats and suramin blocked these changes. In conclusion, delayed administration of suramin attenuated 1) urinary markers of DN, 2) inflammation by blocking NF-κB activation and ICAM-1-mediated leukocyte infiltration, and 3) fibrosis by blocking STAT-3 and TGF-β1/SMAD-3 signaling. These results support the potential use of suramin in DN.
Collapse
Affiliation(s)
- Midhun C Korrapati
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
97
|
Kang MK, Li J, Kim JL, Gong JH, Kwak SN, Park JHY, Lee JY, Lim SS, Kang YH. Purple corn anthocyanins inhibit diabetes-associated glomerular monocyte activation and macrophage infiltration. Am J Physiol Renal Physiol 2012; 303:F1060-9. [PMID: 22791342 DOI: 10.1152/ajprenal.00106.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the major diabetic complications and the leading cause of end-stage renal disease. In early DN, renal injury and macrophage accumulation take place in the pathological environment of glomerular vessels adjacent to renal mesangial cells expressing proinflammatory mediators. Purple corn utilized as a daily food is rich in anthocyanins exerting disease-preventive activities as a functional food. This study elucidated whether anthocyanin-rich purple corn extract (PCA) could suppress monocyte activation and macrophage infiltration. In the in vitro study, human endothelial cells and THP-1 monocytes were cultured in conditioned media of human mesangial cells exposed to 33 mM glucose (HG-HRMC). PCA decreased the HG-HRMC-conditioned, media-induced expression of endothelial vascular cell adhesion molecule-1, E-selectin, and monocyte integrins-β1 and -β2 through blocking the mesangial Tyk2 pathway. In the in vivo animal study, db/db mice were treated with 10 mg/kg PCA daily for 8 wk. PCA attenuated CXCR2 induction and the activation of Tyk2 and STAT1/3 in db/db mice. Periodic acid-Schiff staining showed that PCA alleviated mesangial expansion-elicited renal injury in diabetic kidneys. In glomeruli, PCA attenuated the induction of intracellular cell adhesion molecule-1 and CD11b. PCA diminished monocyte chemoattractant protein-1 expression and macrophage inflammatory protein 2 transcription in the diabetic kidney, inhibiting the induction of the macrophage markers CD68 and F4/80. These results demonstrate that PCA antagonized the infiltration and accumulation of macrophages in diabetic kidneys through disturbing the mesangial IL-8-Tyk-STAT signaling pathway. Therefore, PCA may be a potential renoprotective agent treating diabetes-associated glomerulosclerosis.
Collapse
Affiliation(s)
- Min-Kyung Kang
- Dept. of Food and Nutrition, Hallym Univ., Chuncheon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Sen S, Chen S, Wu Y, Feng B, Lui EK, Chakrabarti S. Preventive effects of North American Ginseng (Panax quinquefolius
) on Diabetic Retinopathy and Cardiomyopathy. Phytother Res 2012; 27:290-8. [DOI: 10.1002/ptr.4719] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/27/2012] [Accepted: 04/13/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Subhrojit Sen
- Dept. of Pathology; University of Western Ontario; London Canada
- Ontario Ginseng Innovation and Research Consortium; University of Western Ontario; London Canada
| | - Shali Chen
- Dept. of Pathology; University of Western Ontario; London Canada
| | - Yuexiu Wu
- Dept. of Pathology; University of Western Ontario; London Canada
| | - Biao Feng
- Dept. of Pathology; University of Western Ontario; London Canada
| | - Edmund K Lui
- Dept. of Physiology & Pharmacology; University of Western Ontario; London Canada
- Ontario Ginseng Innovation and Research Consortium; University of Western Ontario; London Canada
| | - Subrata Chakrabarti
- Dept. of Pathology; University of Western Ontario; London Canada
- Ontario Ginseng Innovation and Research Consortium; University of Western Ontario; London Canada
| |
Collapse
|
99
|
Sen S, Chen S, Feng B, Wu Y, Lui E, Chakrabarti S. Preventive effects of North American ginseng (Panax quinquefolium) on diabetic nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:494-505. [PMID: 22326549 DOI: 10.1016/j.phymed.2012.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PURPOSE Ginseng has been used as an herbal medicine and nutritional supplement in East Asia for thousands of years and gained popularity in the west because of its various pharmacological properties. Panax ginseng (Asian ginseng) and Panax quinquefolium (North American ginseng) both are reported to possess antihyperglycemic properties. The aim of the present study is to evaluate the preventive effects of North American ginseng on diabetic nephropathy (DN) and the underlying mechanisms of such effects. METHODS Models of both type 1 (C57BL/6 mice with STZ-induced diabetes) and type 2 diabetes (db/db mice) and age- and sex-matched controls were examined. Alcoholic ginseng root (200mg/kgbodywt, daily oral gavage) extract was administered to the diabetic mice (type 1 and type 2) for two or four months in order to evaluate its effects on DN. RESULTS Dysmetabolic state in the diabetic mice was significantly improved by ginseng treatment. In the kidneys of diabetic animals, ginseng significantly prevented oxidative stress and reduced the NF-κB (p65) levels. Diabetes-induced up-regulations of ECM proteins and vasoactive factors in the kidneys were significantly diminished by ginseng administration. Furthermore, albuminuria and mesangial expansion in the diabetic mice were prevented by ginseng therapy. CONCLUSION North American ginseng has preventive effects on DN and it works through a combination of mechanisms such as antihyperglycemic and antioxidant activities.
Collapse
Affiliation(s)
- Subhrojit Sen
- Department of Pathology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
100
|
PPARγ as a therapeutic target in diabetic nephropathy and other renal diseases. Curr Opin Nephrol Hypertens 2012; 21:97-105. [PMID: 22143250 DOI: 10.1097/mnh.0b013e32834de526] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear transcription factor that regulates many important physiological processes including glucose and lipid metabolism, energy homeostasis, cell proliferation, inflammation, immunity and reproduction. The current review aims to summarize and discuss recent findings evaluating the protective effects of PPARγ against kidney diseases with a focus on diabetic nephropathy. We will also delineate the potential underlying mechanisms. RECENT FINDINGS PPARγ plays important roles in renal physiology and pathophysiology. Agonists of PPARγ exert protective effects against various kidney diseases including diabetic nephropathy, ischemic renal injury, IgA nephropathy, chemotherapy-associated kidney damage, polycystic kidney diseases and age-related kidney diseases via both systemic and renal actions. SUMMARY PPARγ agonists are effective in delaying and even preventing the progression of many renal diseases, especially diabetic nephropathy. PPARγ may represent a promising target for the treatment of renal diseases.
Collapse
|