51
|
Bejoy J, Qian ES, Woodard LE. Tissue Culture Models of AKI: From Tubule Cells to Human Kidney Organoids. J Am Soc Nephrol 2022; 33:487-501. [PMID: 35031569 PMCID: PMC8975068 DOI: 10.1681/asn.2021050693] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
AKI affects approximately 13.3 million people around the world each year, causing CKD and/or mortality. The mammalian kidney cannot generate new nephrons after postnatal renal damage and regenerative therapies for AKI are not available. Human kidney tissue culture systems can complement animal models of AKI and/or address some of their limitations. Donor-derived somatic cells, such as renal tubule epithelial cells or cell lines (RPTEC/hTERT, ciPTEC, HK-2, Nki-2, and CIHP-1), have been used for decades to permit drug toxicity screening and studies into potential AKI mechanisms. However, tubule cell lines do not fully recapitulate tubular epithelial cell properties in situ when grown under classic tissue culture conditions. Improving tissue culture models of AKI would increase our understanding of the mechanisms, leading to new therapeutics. Human pluripotent stem cells (hPSCs) can be differentiated into kidney organoids and various renal cell types. Injury to human kidney organoids results in renal cell-type crosstalk and upregulation of kidney injury biomarkers that are difficult to induce in primary tubule cell cultures. However, current protocols produce kidney organoids that are not mature and contain off-target cell types. Promising bioengineering techniques, such as bioprinting and "kidney-on-a-chip" methods, as applied to kidney nephrotoxicity modeling advantages and limitations are discussed. This review explores the mechanisms and detection of AKI in tissue culture, with an emphasis on bioengineered approaches such as human kidney organoid models.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eddie S. Qian
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren E. Woodard
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
52
|
Kongtasai T, Paepe D, Meyer E, Mortier F, Marynissen S, Stammeleer L, Defauw P, Daminet S. Renal biomarkers in cats: A review of the current status in chronic kidney disease. J Vet Intern Med 2022; 36:379-396. [PMID: 35218249 PMCID: PMC8965260 DOI: 10.1111/jvim.16377] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/22/2022] Open
Abstract
Serum creatinine concentration, the classical biomarker of chronic kidney disease (CKD) in cats, has important limitations that decrease its value as a biomarker of early CKD. Recently, serum symmetric dimethylarginine concentration was introduced as a novel glomerular filtration rate biomarker for the early detection of CKD in cats. However, data on its specificity are still limited. The limitations of conventional biomarkers and the desire for early therapeutic intervention in cats with CKD to improve outcomes have prompted the discovery and validation of novel renal biomarkers to detect glomerular or tubular dysfunction. Changes in the serum or urinary concentrations of these biomarkers may indicate early kidney damage or predict the progression of kidney before changes in conventional biomarkers are detectable. This review summarizes current knowledge on renal biomarkers in CKD in cats, a field that has progressed substantially over the last 5 years.
Collapse
Affiliation(s)
- Thirawut Kongtasai
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium.,Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Dominique Paepe
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Femke Mortier
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| | - Sofie Marynissen
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| | - Lisa Stammeleer
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| | - Pieter Defauw
- Lumbry Park Veterinary Specialists, Alton, United Kingdom
| | - Sylvie Daminet
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| |
Collapse
|
53
|
Sánchez-Navarro A, Martínez-Rojas MÁ, Albarrán-Godinez A, Pérez-Villalva R, Auwerx J, de la Cruz A, Noriega LG, Rosetti F, Bobadilla NA. Sirtuin 7 Deficiency Reduces Inflammation and Tubular Damage Induced by an Episode of Acute Kidney Injury. Int J Mol Sci 2022; 23:ijms23052573. [PMID: 35269715 PMCID: PMC8910458 DOI: 10.3390/ijms23052573] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a public health problem worldwide. Sirtuins are a family of seven NAD+-dependent deacylases, Overexpression of Sirtuin 1, 3, and 5 protect against AKI. However, the role of Sirtuin 7 (Sirt7) in AKI is not known. Here, we analyzed how Sirt7 deficient mice (KO-Sirt7) were affected by AKI. As expected, wild-type and Sirt7 heterozygotes mice that underwent renal ischemia/reperfusion (IR) exhibited the characteristic hallmarks of AKI: renal dysfunction, tubular damage, albuminuria, increased oxidative stress, and renal inflammation. In contrast, the KO-Sirt7+IR mice were protected from AKI, exhibiting lesser albuminuria and reduction in urinary biomarkers of tubular damage, despite similar renal dysfunction. The renoprotection in the Sirt7-KO+IR group was associated with reduced kidney weight, minor expression of inflammatory cytokines and less renal infiltration of inflammatory cells. This anti-inflammatory effect was related to diminished p65 expression and in its active phosphorylation, as well as by a reduction in p65 nuclear translocation. Sirt7 deficient mice are protected from AKI, suggesting that this histone deacetylase promotes tubular damage and renal inflammation. Therefore, our findings indicate that Sirt7 inhibitors may be an attractive therapeutic target to reduce NFκB signaling.
Collapse
Affiliation(s)
- Andrea Sánchez-Navarro
- Molecular Physiology Unit, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (A.S.-N.); (M.Á.M.-R.); (A.A.-G.); (R.P.-V.)
- Departments of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico
| | - Miguel Ángel Martínez-Rojas
- Molecular Physiology Unit, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (A.S.-N.); (M.Á.M.-R.); (A.A.-G.); (R.P.-V.)
- Departments of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico
| | - Adrián Albarrán-Godinez
- Molecular Physiology Unit, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (A.S.-N.); (M.Á.M.-R.); (A.A.-G.); (R.P.-V.)
- Departments of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico
| | - Rosalba Pérez-Villalva
- Molecular Physiology Unit, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (A.S.-N.); (M.Á.M.-R.); (A.A.-G.); (R.P.-V.)
- Departments of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology (LISP), Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland;
| | - Abigail de la Cruz
- Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico; (A.d.l.C.); (F.R.)
| | - Lilia G. Noriega
- Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico;
| | - Florencia Rosetti
- Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico; (A.d.l.C.); (F.R.)
| | - Norma A. Bobadilla
- Molecular Physiology Unit, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (A.S.-N.); (M.Á.M.-R.); (A.A.-G.); (R.P.-V.)
- Departments of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico
- Correspondence: ; Tel.: +52-55-5485-2676
| |
Collapse
|
54
|
Soliman MM, Aldhahrani A, Gaber A, Alsanie WF, Mohamed WA, Metwally MMM, Elbadawy M, Shukry M. Ameliorative impacts of chrysin against gibberellic acid-induced liver and kidney damage through the regulation of antioxidants, oxidative stress, inflammatory cytokines, and apoptosis biomarkers. Toxicol Res (Camb) 2022; 11:235-244. [PMID: 35237428 PMCID: PMC8882807 DOI: 10.1093/toxres/tfac003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 02/05/2023] Open
Abstract
Gibberellic acid (GA3), a widely known plant growth regulator, has been mostly used in agriculture. Little is known regarding its toxicity or the impact of its metabolic mechanism on human health. The current study examined the protective impact of chrysin against GA3-induced liver and kidney dysfunctions at biochemical, molecular, and histopathological levels. Forty male albino rats were allocated into 4 groups. The control group received saline; the chrysin group received 50 mg/kg/BW orally daily for 4 weeks; the GA3 group received 55 mg/kg/BW GA3 via daily oral gavage for 4 weeks, and the protective group (chrysin + GA3) was administered both chrysin and GA3 at the same dosage given in chrysin and GA3 groups. Chrysin was administered 1 h earlier than GA3. The GA3 induced liver and kidney injuries as proven by the elevation of hepatic and renal markers with a significant increase in malondialdehyde levels. Furthermore, a decrease of catalase and glutathione was reported in the GA3-administered rats. Pre-administration of chrysin significantly protected the hepatorenal tissue against the deleterious effects of GA3. Chrysin restored the hepatorenal functions and their antioxidant ability to normal levels. Moreover, chrysin modulated the hepatorenal toxic effects of GA3 at the molecular level via the upregulation of the antiapoptotic genes, interleukin-10 (IL-10), hemoxygenase-1, and nuclear factor erythroid 2-related factor 2 expressions; the downregulation of the kidney injury molecule-1 and caspase-3 mRNA expressions; and a decrease in IL-1β and tumor necrosis factor-α secretions. Additionally, the pre-administration of chrysin effectively attenuated the GA3-induced hepatorenal histopathological changes by regulating the immunoexpression of cytochrome P450 2E1 (CYP2E1) and pregnane X receptor, resulting in normal values at the cellular level. In conclusion, chrysin attenuated GA3-induced oxidative hepatorenal injury by inhibiting free-radical production and cytokine expression as well as by modulating the antioxidant, apoptotic, and antiapoptotic activities. Chrysin is a potent hepatorenal protective agent to antagonize oxidative stress induced by GA3.
Collapse
Affiliation(s)
- Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995 Saudi Arabia
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995 Saudi Arabia
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Center of Biomedical Sciences Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Walaa F Alsanie
- Center of Biomedical Sciences Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafaa Abdou Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalioubiya 13736, Egypt
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr Elsheikh, P.O.Box 33516, Egypt
| |
Collapse
|
55
|
Ito S, Manabe E, Dai Y, Ishihara M, Tsujino T. Juzentaihoto improves adenine-induced chronic renal failure in BALB/c mice via suppression of renal fibrosis and inflammation. J Pharmacol Sci 2022; 148:172-178. [PMID: 34924123 DOI: 10.1016/j.jphs.2021.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
Renal inflammation and fibrosis are observed in underlying diseases associated with the pathological progression of chronic kidney disease (CKD). The inhibition of renal inflammation and fibrosis is one method to suppress the progression of CKD. Juzentaihoto (TJ-48), a Kampo medicine, effectively relieves chronic wasting diseases and fatigue and has been reported to decrease inflammation. In this study, we investigated whether TJ-48 has a renal protective effect and its underlying mechanism in mice with adenine-induced CKD. BALB/c mice were divided into four groups for examination: (1) control, (2) dietary restriction, (3) adenine, and (4) adenine + TJ-48. Biochemical and histological analyses, gene expression analysis, and complete blood counts were performed. TJ-48 treatment decreased tubular damage and fibrosis. TJ-48 also decreased creatinine levels exacerbated by adenine, suppressed the mRNA expression of tumor necrosis factor-α, chemokine ligand 2, transforming growth factor-β, and kidney injury molecule-1, and decreased the neutrophil/lymphocyte ratio increased by adenine. TJ-48 exerts a renoprotective effect possibly via the suppression of fibrosis and inflammation.
Collapse
Affiliation(s)
- Satoyasu Ito
- Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
| | - Eri Manabe
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Hyogo, Japan.
| | - Yi Dai
- Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan; Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan; Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, Japan.
| | - Masaharu Ishihara
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Hyogo, Japan.
| | - Takeshi Tsujino
- Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan; Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Hyogo, Japan.
| |
Collapse
|
56
|
Sobolev VE, Sokolova MO, Jenkins RO, Goncharov NV. Nephrotoxic Effects of Paraoxon in Three Rat Models of Acute Intoxication. Int J Mol Sci 2021; 22:13625. [PMID: 34948422 PMCID: PMC8709234 DOI: 10.3390/ijms222413625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
The delayed effects of acute intoxication by organophosphates (OPs) are poorly understood, and the various experimental animal models often do not take into account species characteristics. The principal biochemical feature of rodents is the presence of carboxylesterase in blood plasma, which is a target for OPs and can greatly distort their specific effects. The present study was designed to investigate the nephrotoxic effects of paraoxon (O,O-diethyl O-(4-nitrophenyl) phosphate, POX) using three models of acute poisoning in outbred Wistar rats. In the first model (M1, POX2x group), POX was administered twice at doses 110 µg/kg and 130 µg/kg subcutaneously, with an interval of 1 h. In the second model (M2, CBPOX group), 1 h prior to POX poisoning at a dose of 130 µg/kg subcutaneously, carboxylesterase activity was pre-inhibited by administration of specific inhibitor cresylbenzodioxaphosphorin oxide (CBDP, 3.3 mg/kg intraperitoneally). In the third model (M3), POX was administered subcutaneously just once at doses of LD16 (241 µg/kg), LD50 (250 µg/kg), and LD84 (259 µg/kg). Animal observation and sampling were performed 1, 3, and 7 days after the exposure. Endogenous creatinine clearance (ECC) decreased in 24 h in the POX2x group (p = 0.011). Glucosuria was observed in rats 24 h after exposure to POX in both M1 and M2 models. After 3 days, an increase in urinary excretion of chondroitin sulfate (CS, p = 0.024) and calbindin (p = 0.006) was observed in rats of the CBPOX group. Morphometric analysis revealed a number of differences most significant for rats in the CBPOX group. Furthermore, there was an increase in the area of the renal corpuscles (p = 0.0006), an increase in the diameter of the lumen of the proximal convoluted tubules (PCT, p = 0.0006), and narrowing of the diameter of the distal tubules (p = 0.001). After 7 days, the diameter of the PCT lumen was still increased in the nephrons of the CBPOX group (p = 0.0009). In the M3 model, histopathological and ultrastructural changes in the kidneys were revealed after the exposure to POX at doses of LD50 and LD84. Over a period from 24 h to 3 days, a significant (p = 0.018) expansion of Bowman's capsule was observed in the kidneys of rats of both the LD50 and LD84 groups. In the epithelium of the proximal tubules, stretching of the basal labyrinth, pycnotic nuclei, and desquamation of microvilli on the apical surface were revealed. In the epithelium of the distal tubules, partial swelling and destruction of mitochondria and pycnotic nuclei was observed, and nuclei were displaced towards the apical surface of cells. After 7 days of the exposure to POX, an increase in the thickness of the glomerular basement membrane (GBM) was observed in the LD50 and LD84 groups (p = 0.019 and 0.026, respectively). Moreover, signs of damage to tubular epithelial cells persisted with blockage of the tubule lumen by cellular detritus and local destruction of the surface of apical cells. Comparison of results from the three models demonstrates that the nephrotoxic effects of POX, evaluated at 1 and 3 days, appear regardless of prior inhibition of carboxylesterase activity.
Collapse
Affiliation(s)
- Vladislav E. Sobolev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, 194223 St. Petersburg, Russia; (V.E.S.); (M.O.S.)
| | - Margarita O. Sokolova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, 194223 St. Petersburg, Russia; (V.E.S.); (M.O.S.)
| | - Richard O. Jenkins
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, 194223 St. Petersburg, Russia; (V.E.S.); (M.O.S.)
| |
Collapse
|
57
|
Sadeghi H, Kamal A, Ahmadi M, Najafi H, Sharifi Zarchi A, Haddad P, Shayestehpour B, Kamkar L, Salamati M, Geranpayeh L, Lashkari M, Totonchi M. A novel panel of blood-based microRNAs capable of discrimination between benign breast disease and breast cancer at early stages. RNA Biol 2021; 18:747-756. [PMID: 34793290 DOI: 10.1080/15476286.2021.1989218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) as a leading cause of cancer death among women, exhibits a wide range of genetic heterogeneity in affected individuals. Satisfactory management of BC depends on early diagnosis and proper monitoring of patients' response to therapy. In this study, we aimed to assess the relation between the expression patterns of blood-based microRNAs (miRNAs) with demographic characteristics of the patients with BC in an attempt to find novel diagnostic markers for BC with acceptable precision in clinical applications. To this end, we performed comprehensive statistical analysis of the data of the Cancer Genome Atlas (TCGA) database and the blood miRNome dataset (GSE31309). As a result, 21 miRNAs were selected for experimental verification by quantitative RT-PCR on blood samples of 70 BC patients and 60 normal individuals (without any lesions or benign breast diseases). Statistical one-way ANOVA revealed no significant difference in the blood levels of the selected miRNAs in BC patients compared to any lesions or benign breast diseases. However, the multi-marker panel consisting of hsa-miR-106b-5p, -126-3p, -140-3p, -193a-5p, and -10b-5p could detect early-stages of BC with 0.79 sensitivity, 0.86 specificity and 0.82 accuracy. Furthermore, this multi-marker panel showed the potential of detecting benign breast diseases from BC patients with 0.67 sensitivity, 0.80 specificity, and 0.74 accuracy. In conclusion, these data indicate that the present panel might be considered an asset in detecting benign breast disease and BC.
Collapse
Affiliation(s)
- Hanieh Sadeghi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| | - Aryan Kamal
- Department of Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Marzieh Ahmadi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| | - Hadi Najafi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| | - Ali Sharifi Zarchi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Peyman Haddad
- Radiation Oncology Research Center, Iran Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Shayestehpour
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| | - Leila Kamkar
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Masoumeh Salamati
- Department of Reproductive Imaging, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| | - Loabat Geranpayeh
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Lashkari
- Radiation Oncology Research Center, Iran Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Acecr, Tehran, Iran
| |
Collapse
|
58
|
Li Z, Kuppe C, Ziegler S, Cheng M, Kabgani N, Menzel S, Zenke M, Kramann R, Costa IG. Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen. Nat Commun 2021; 12:6386. [PMID: 34737275 PMCID: PMC8568974 DOI: 10.1038/s41467-021-26530-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
A major drawback of single-cell ATAC-seq (scATAC-seq) is its sparsity, i.e., open chromatin regions with no reads due to loss of DNA material during the scATAC-seq protocol. Here, we propose scOpen, a computational method based on regularized non-negative matrix factorization for imputing and quantifying the open chromatin status of regulatory regions from sparse scATAC-seq experiments. We show that scOpen improves crucial downstream analysis steps of scATAC-seq data as clustering, visualization, cis-regulatory DNA interactions, and delineation of regulatory features. We demonstrate the power of scOpen to dissect regulatory changes in the development of fibrosis in the kidney. This identifies a role of Runx1 and target genes by promoting fibroblast to myofibroblast differentiation driving kidney fibrosis.
Collapse
Affiliation(s)
- Zhijian Li
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074, Aachen, Germany
| | - Susanne Ziegler
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Nazanin Kabgani
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Sylvia Menzel
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, 52074, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany.
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3015GD, Rotterdam, The Netherlands.
| | - Ivan G Costa
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, 52074, Aachen, Germany.
| |
Collapse
|
59
|
Białek Ł, Niemczyk M, Czerwińska K, Nowak M, Sadowska A, Borkowski T, Radziszewski P, Dobruch J, Kryst P, Poletajew S. Human kidney injury molecule-1 as a urine biomarker differentiating urothelial and renal cell carcinoma. Cent European J Urol 2021; 74:295-299. [PMID: 34729216 PMCID: PMC8552939 DOI: 10.5173/ceju.2021.0080.2.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction Urine concentration of human kidney injury molecule-1 (KIM-1) is suggested to be increased in patients with renal cell carcinoma (RCC). However, it has never been tested in patients with urothelial tumors, while preoperative differentiation between RCC and upper tract urothelial carcinoma (UTUC) plays an essential role in therapeutic decisions. The aim of the study was to evaluate the role of urinary KIM-1 expression in preoperative differentiation between RCC and urothelial carcinoma (UC). Material and methods Sixty-four participants were enrolled in the study, including 30 patients with RCC and 27 with UC (16 with UTUC and 11 with bladder tumor). Preoperative urinary KIM-1 levels were measured using a commercially available ELISA kit and normalized to urinary creatinine levels. Results The median concentration of urinary KIM-1 normalized to urinary creatinine was lower in patients with RCC compared to UC (1.35 vs 1.86 ng/mg creatinine, p = 0.04). The comparison between RCC and UTUC shows even more significant difference (1.33 vs 2.23 ng/mg creatinine, p = 0.02). Urinary KIM-1 concentration did not correlate with tumor stage nor grade in any of the groups. ROC analysis to identify UC revealed AUC of 0.657 with sensitivity 33.3% and specificity 96.7% at the cut-off value of 3.226 ng/mg creatinine. Among patients with eGFR ≥60 mL/min/1.73 m², ROC analysis to detect UC achieved AUC of 0.727 with sensitivity 69.5% and specificity 70.2%. Conclusions Urine KIM-1 can potentially differentiate UC from RCC. However, a wide range of observed results and limited sensitivity and specificity requires caution in making clinical decisions before confirmatory studies.
Collapse
Affiliation(s)
- Łukasz Białek
- I Department of Urology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Michał Niemczyk
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Czerwińska
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Nowak
- Department of Urology, St. Lucas Hospital, Tarnów, Poland
| | - Anna Sadowska
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Borkowski
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Radziszewski
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Dobruch
- I Department of Urology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Piotr Kryst
- Second Department of Urology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Sławomir Poletajew
- Second Department of Urology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
60
|
McMahon KR, Chui H, Rassekh SR, Schultz KR, Blydt-Hansen TD, Mammen C, Pinsk M, Cuvelier GDE, Carleton BC, Tsuyuki RT, Ross CJ, Devarajan P, Huynh L, Yordanova M, Crépeau-Hubert F, Wang S, Cockovski V, Palijan A, Zappitelli M. Urine Neutrophil Gelatinase-Associated Lipocalin and Kidney Injury Molecule-1 to Detect Pediatric Cisplatin-Associated Acute Kidney Injury. KIDNEY360 2021; 3:37-50. [PMID: 35368557 PMCID: PMC8967607 DOI: 10.34067/kid.0004802021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/29/2021] [Indexed: 01/12/2023]
Abstract
Background Few studies have described associations between the AKI biomarkers urinary neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) with AKI in cisplatin-treated children. We aimed to describe excretion patterns of urine NGAL and KIM-1 and associations with AKI in children receiving cisplatin. Methods Participants (n=159) were enrolled between 2013 and 2017 in a prospective cohort study conducted in 12 Canadian pediatric hospitals. Participants were evaluated at early cisplatin infusions (at first or second cisplatin cycle) and late cisplatin infusions (last or second-to-last cycle). Urine NGAL and KIM-1 were measured (1) pre-cisplatin infusion, (2) post-infusion (morning after), and (3) at hospital discharge at early and late cisplatin infusions. Primary outcome: AKI defined by serum creatinine rise within 10 days post-cisplatin, on the basis of Kidney Disease Improving Global Outcomes guidelines criteria (stage 1 or higher). Results Of 159 children, 156 (median [interquartile range (IQR)] age: 5.8 [2.4-12.0] years; 78 [50%] female) had biomarker data available at early cisplatin infusions and 127 had data at late infusions. Forty six of the 156 (29%) and 22 of the 127 (17%) children developed AKI within 10 days of cisplatin administration after early and late infusions, respectively. Urine NGAL and KIM-1 concentrations were significantly higher in patients with versus without AKI (near hospital discharge of late cisplatin infusion, median [IQR] NGAL levels were 76.1 [10.0-232.7] versus 14.9 [5.4-29.7] ng/mg creatinine; KIM-1 levels were 4415 [2083-9077] versus 1049 [358-3326] pg/mg creatinine; P<0.01). These markers modestly discriminated for AKI (area under receiver operating characteristic curve [AUC-ROC] range: NGAL, 0.56-0.72; KIM-1, 0.48-0.75). Biomarker concentrations were higher and better discriminated for AKI at late cisplatin infusions (AUC-ROC range, 0.54-0.75) versus early infusions (AUC-ROC range, 0.48-0.65). Conclusions Urine NGAL and KIM-1 were modest at discriminating for cisplatin-associated AKI. Further research is needed to determine clinical utility and applicability of these markers and associations with late kidney outcomes.
Collapse
Affiliation(s)
- Kelly R. McMahon
- Division of Nephrology, Department of Pediatrics, Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal Children’s Hospital, Montreal, Quebec, Canada,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Hayton Chui
- Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada,Faculty of Health Sciences, McMaster Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - Shahrad Rod Rassekh
- Division of Hematology/Oncology/Bone Marrow Transplantation, Department of Pediatrics, University of British Columbia, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Kirk R. Schultz
- Division of Hematology/Oncology/Bone Marrow Transplantation, Department of Pediatrics, University of British Columbia, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Tom D. Blydt-Hansen
- Division of Pediatric Nephrology, Department of Pediatrics, University of British Columbia, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Cherry Mammen
- Division of Pediatric Nephrology, Department of Pediatrics, University of British Columbia, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Maury Pinsk
- Department of Pediatrics and Child Health, Section of Pediatric Nephrology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Geoffrey D. E. Cuvelier
- Division of Pediatric Oncology-Hematology-BMT, Department of Pediatrics and Child Health, University of Manitoba, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Bruce C. Carleton
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia and BC Children’s Hospital and Research Institute, Vancouver, British Columbia, Canada
| | - Ross T. Tsuyuki
- EPICORE Centre, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Colin J.D. Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Louis Huynh
- Faculty of Health Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Mariya Yordanova
- Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Quebec, Canada
| | - Frédérik Crépeau-Hubert
- Division of Nephrology, Department of Pediatrics, Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal Children’s Hospital, Montreal, Quebec, Canada
| | - Stella Wang
- Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Vedran Cockovski
- Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Ana Palijan
- Division of Nephrology, Department of Pediatrics, Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal Children’s Hospital, Montreal, Quebec, Canada
| | - Michael Zappitelli
- Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada,Department of Pediatrics, Division of Nephrology, Toronto Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
61
|
Türe E, Yazar A, Akın F, Topcu C, Aydın A, Balasar M, Ataş B. Early kidney injury in immunoglobulin A vasculitis: Role of renal biomarkers. Pediatr Int 2021; 63:1218-1222. [PMID: 33423326 DOI: 10.1111/ped.14600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND We aimed to determine whether urine kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) can be used as early noninvasive biomarkers of kidney injury in immunoglobulin A vasculitis. METHODS Patients who were diagnosed with immunoglobulin A vasculitis were included in the study. Urine samples were collected for determination of urine KIM-1 and NGAL levels. The control group consisted of age-matched healthy children. RESULTS Sixty-one patients who were diagnosed with immunoglobulin A vasculitis were included in the study; 37.7% of these patients were determined to have renal involvement. Median KIM-1 was found to be significantly higher in the patient group (69.59 pg/mL) than the control group (40.84 pg/mL) (P = 0.001). Median NGAL was determined to be statistically significantly higher in the patient group (59.87 ng/mL) compared with the control group (44.87 ng/mL) (P = 0.013). In 23.6% of the patients without renal involvement at admission renal involvement developed within the following 6 months. When median KIM-1 and NGAL at admission of these patients were compared with the control group, they were determined to be statistically significantly higher (P = 0.001, P = 0.003). CONCLUSIONS The fact that our patients with late-term nephropathy had no hematuria and / or proteinuria and that KIM-1 and NGAL levels were determined to be high indicates that these biomarkers might be potentially reliable, noninvasive and early determinants of kidney injury.
Collapse
Affiliation(s)
- Esra Türe
- Department of Pediatric Emergency, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Abdullah Yazar
- Department of Pediatric Emergency, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Fatih Akın
- Department of Pediatric Emergency, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Cemile Topcu
- Department of Medical Biochemistry, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Arif Aydın
- Department of Urology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Balasar
- Department of Urology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Bülent Ataş
- Department of Pediatric Nephrology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
62
|
Forbes JM, McCarthy DA, Kassianos AJ, Baskerville T, Fotheringham AK, Giuliani KTK, Grivei A, Murphy AJ, Flynn MC, Sullivan MA, Chandrashekar P, Whiddett R, Radford KJ, Flemming N, Beard SS, D'Silva N, Nisbet J, Morton A, Teasdale S, Russell A, Isbel N, Jones T, Couper J, Healy H, Harris M, Donaghue K, Johnson DW, Cotterill A, Barrett HL, O'Moore-Sullivan T. T-Cell Expression and Release of Kidney Injury Molecule-1 in Response to Glucose Variations Initiates Kidney Injury in Early Diabetes. Diabetes 2021; 70:1754-1766. [PMID: 34285121 PMCID: PMC8385614 DOI: 10.2337/db20-1081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/09/2021] [Indexed: 11/13/2022]
Abstract
Half of the mortality in diabetes is seen in individuals <50 years of age and commonly predicted by the early onset of diabetic kidney disease (DKD). In type 1 diabetes, increased urinary albumin-to-creatinine ratio (uACR) during adolescence defines this risk, but the pathological factors responsible remain unknown. We postulated that early in diabetes, glucose variations contribute to kidney injury molecule-1 (KIM-1) release from circulating T cells, elevating uACR and DKD risk. DKD risk was assigned in youth with type 1 diabetes (n = 100; 20.0 ± 2.8 years; males/females, 54:46; HbA1c 66.1 [12.3] mmol/mol; diabetes duration 10.7 ± 5.2 years; and BMI 24.5 [5.3] kg/m2) and 10-year historical uACR, HbA1c, and random blood glucose concentrations collected retrospectively. Glucose fluctuations in the absence of diabetes were also compared with streptozotocin diabetes in apolipoprotein E -/- mice. Kidney biopsies were used to examine infiltration of KIM-1-expressing T cells in DKD and compared with other chronic kidney disease. Individuals at high risk for DKD had persistent elevations in uACR defined by area under the curve (AUC; uACRAUC0-10yrs, 29.7 ± 8.8 vs. 4.5 ± 0.5; P < 0.01 vs. low risk) and early kidney dysfunction, including ∼8.3 mL/min/1.73 m2 higher estimated glomerular filtration rates (modified Schwartz equation; Padj < 0.031 vs. low risk) and plasma KIM-1 concentrations (∼15% higher vs. low risk; P < 0.034). High-risk individuals had greater glycemic variability and increased peripheral blood T-cell KIM-1 expression, particularly on CD8+ T cells. These findings were confirmed in a murine model of glycemic variability both in the presence and absence of diabetes. KIM-1+ T cells were also infiltrating kidney biopsies from individuals with DKD. Healthy primary human proximal tubule epithelial cells exposed to plasma from high-risk youth with diabetes showed elevated collagen IV and sodium-glucose cotransporter 2 expression, alleviated with KIM-1 blockade. Taken together, these studies suggest that glycemic variations confer risk for DKD in diabetes via increased CD8+ T-cell production of KIM-1.
Collapse
Affiliation(s)
- Josephine M Forbes
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Domenica A McCarthy
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Andrew J Kassianos
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston, Queensland, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Tracey Baskerville
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
| | - Amelia K Fotheringham
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Kurt T K Giuliani
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston, Queensland, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Anca Grivei
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston, Queensland, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michelle C Flynn
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Mitchell A Sullivan
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Preeti Chandrashekar
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Rani Whiddett
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Kristen J Radford
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Nicole Flemming
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Sam S Beard
- Institute for Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
| | - Neisha D'Silva
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
| | - Janelle Nisbet
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
| | - Adam Morton
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
| | - Stephanie Teasdale
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
| | - Anthony Russell
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Diabetes and Endocrinology, Metro South Health, Brisbane, Queensland, Australia
| | - Nicole Isbel
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Metro South Integrated Nephrology and Transplant Service, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Timothy Jones
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Jennifer Couper
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Helen Healy
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston, Queensland, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Mark Harris
- Children's Health Queensland, South Brisbane, Queensland, Australia
| | - Kim Donaghue
- The Children's Hospital at Westmead and University of Sydney, Sydney, New South Wales, Australia
| | - David W Johnson
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Metro South Integrated Nephrology and Transplant Service, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Andrew Cotterill
- Children's Health Queensland, South Brisbane, Queensland, Australia
| | - Helen L Barrett
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Trisha O'Moore-Sullivan
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
63
|
Zavala-Guevara IP, Ortega-Romero MS, Narváez-Morales J, Jacobo-Estrada TL, Lee WK, Arreola-Mendoza L, Thévenod F, Barbier OC. Increased Endocytosis of Cadmium-Metallothionein through the 24p3 Receptor in an In Vivo Model with Reduced Proximal Tubular Activity. Int J Mol Sci 2021; 22:7262. [PMID: 34298880 PMCID: PMC8303618 DOI: 10.3390/ijms22147262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The proximal tubule (PT) is the major target of cadmium (Cd2+) nephrotoxicity. Current dogma postulates that Cd2+ complexed to metallothionein (MT) (CdMT) is taken up through receptor-mediated endocytosis (RME) via the PT receptor megalin:cubilin, which is the predominant pathway for reuptake of filtered proteins in the kidney. Nevertheless, there is evidence that the distal parts of the nephron are also sensitive to damage induced by Cd2+. In rodent kidneys, another receptor for protein endocytosis, the 24p3 receptor (24p3R), is exclusively expressed in the apical membranes of distal tubules (DT) and collecting ducts (CD). Cell culture studies have demonstrated that RME and toxicity of CdMT and other (metal ion)-protein complexes in DT and CD cells is mediated by 24p3R. In this study, we evaluated the uptake of labeled CdMT complex through 24p3R after acute kidney injury (AKI) induced by gentamicin (GM) administration that disrupts PT function. Subcutaneous administration of GM at 10 mg/kg/day for seven days did not alter the structural and functional integrity of the kidney's filtration barrier. However, because of PT injury, the concentration of the renal biomarker Kim-1 increased. When CdMT complex coupled to FITC was administered intravenously, both uptake of the CdMT complex and 24p3R expression in DT increased and also colocalized after PT injury induced by GM. Although megalin decreased in PT after GM administration, urinary protein excretion was not changed, which suggests that the increased levels of 24p3R in the distal nephron could be acting as a compensatory mechanism for protein uptake. Altogether, these results suggest that PT damage increases the uptake of the CdMT complex through 24p3R in DT (and possibly CD) and compensate for protein losses associated with AKI.
Collapse
Affiliation(s)
- Itzel Pamela Zavala-Guevara
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México CP 07360, Mexico; (I.P.Z.-G.); (M.S.O.-R.); (J.N.-M.)
| | - Manolo Sibael Ortega-Romero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México CP 07360, Mexico; (I.P.Z.-G.); (M.S.O.-R.); (J.N.-M.)
| | - Juana Narváez-Morales
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México CP 07360, Mexico; (I.P.Z.-G.); (M.S.O.-R.); (J.N.-M.)
| | - Tania Libertad Jacobo-Estrada
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, 30 de Junio de 1520 s/n, Col. Barrio la Laguna Ticomán, México CP 07340, Mexico;
| | - Wing-Kee Lee
- Department of Physiology, Pathophysiology and Toxicology and ZBAF (Center for Biomedical Education and Research), Faculty of Health-School of Medicine, Witten/Herdecke University, 58448 Witten, Germany; (W.-K.L.); (F.T.)
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany
| | - Laura Arreola-Mendoza
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, 30 de Junio de 1520 s/n, Col. Barrio la Laguna Ticomán, México CP 07340, Mexico;
| | - Frank Thévenod
- Department of Physiology, Pathophysiology and Toxicology and ZBAF (Center for Biomedical Education and Research), Faculty of Health-School of Medicine, Witten/Herdecke University, 58448 Witten, Germany; (W.-K.L.); (F.T.)
| | - Olivier Christophe Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México CP 07360, Mexico; (I.P.Z.-G.); (M.S.O.-R.); (J.N.-M.)
| |
Collapse
|
64
|
Sánchez‐Navarro A, Martínez‐Rojas MÁ, Caldiño‐Bohn RI, Pérez‐Villalva R, Zambrano E, Castro‐Rodríguez DC, Bobadilla NA. Early triggers of moderately high-fat diet-induced kidney damage. Physiol Rep 2021; 9:e14937. [PMID: 34291592 PMCID: PMC8295594 DOI: 10.14814/phy2.14937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022] Open
Abstract
Most of the obesity murine models inducing renal injury use calorie-enriched foods, where fat represents 60% of the total caloric supply, however, this strategy doubles the standard proportion of fat ingestion in obese patients. Therefore, it is crucial to study the impact of a high-fat intake on kidney physiology that resembles common obesity in humans to understand the trigger mechanisms of the long-term consequences of overweight and obesity. In this study, we analyzed whether chronic feeding with a moderately high fat diet (MHFD) representing 45% of total calories, may induce kidney function and structural injury compared to C57BL/6 mice fed a control diet. After 14 weeks, MHFD induced significant mice obesity. At the functional level, obese mice showed signs of kidney injury characterized by increased albuminuria/creatinine ratio and higher excretion of urinary biomarkers of kidney damage. While, at the structural level, glomerular hypertrophy was observed. Although, we did not detect renal fibrosis, the obese mice exhibited a significant elevation of Tgfb1 mRNA levels. Kidney damage caused by the exposure to MHFD was associated with greater oxidative stress, renal inflammation, higher endoplasmic reticulum (ER)-stress, and disruption of mitochondrial dynamics. In summary, our data demonstrate that obesity induced by a milder fat content diet is enough to establish renal injury, where oxidative stress, inflammation, ER-stress, and mitochondrial damage take relevance, pointing out the importance of opportune interventions to avoid the long-term consequences associated with obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Andrea Sánchez‐Navarro
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Miguel Ángel Martínez‐Rojas
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Rebecca I. Caldiño‐Bohn
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Rosalba Pérez‐Villalva
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Elena Zambrano
- Department of Biology of ReproductionInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Diana C. Castro‐Rodríguez
- Department of Biology of ReproductionInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
- CONACyT‐CátedrasMexico CityMexico
| | - Norma A. Bobadilla
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| |
Collapse
|
65
|
Balas M, Popescu Din IM, Hermenean A, Cinteza LO, Dinischiotu A. Exposure to Iron Oxide Nanoparticles Coated with Phospholipid-Based Polymeric Micelles Induces Renal Transitory Biochemical and Histopathological Changes in Mice. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2605. [PMID: 34067676 PMCID: PMC8156474 DOI: 10.3390/ma14102605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 11/18/2022]
Abstract
The renal toxicity induced by the intravenously injected iron oxide nanoparticles (IONPs) encapsulated in phospholipid-based polymeric micelles was studied in CD1 mice for 2 weeks. Two doses of 5 and 15 mg of Fe/kg bodyweight of NPs or saline solution (control) were tested, and the levels of antioxidant enzyme activities, oxidative stress parameters, and the expressions of kidney fibrosis biomarkers were analyzed. The enzymatic activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase, and glucose-6-phosphate dehydrogenase in the kidney were significantly decreased compared to the control in the first 3 days followed by a recovery up to 14 days. Concomitantly, a significant increase in lipid peroxidation (malondialdehyde) levels and a decrease in protein thiol groups were recorded. Moreover, increases in the expressions of T cell immunoglobulin and mucin domain 1 (TIM-1) and transforming growth factor-β (TGF-β) were observed in mouse tissue samples in the first week, which were more pronounced for the higher dose. The results suggested the role of oxidative stress as a mechanism for induced toxicity in mice kidneys after the IV administration of IONPs encapsulated in phospholipid-based polymeric micelles but also the capacity of the kidneys' defense systems to revert efficiently the biochemical modifications that were moderate and for short duration.
Collapse
Affiliation(s)
- Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (I.M.P.D.)
| | - Ioana Mihaela Popescu Din
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (I.M.P.D.)
| | - Anca Hermenean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 1 Feleacului Street, 310396 Arad, Romania
| | - Ludmila Otilia Cinteza
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd, 030018 Bucharest, Romania;
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (I.M.P.D.)
| |
Collapse
|
66
|
Sałaga-Zaleska K, Pikul P, Kreft E, Herman S, Chyła G, Dąbkowski K, Kuchta A, Lenartowicz M, Jankowski M. Effect of suramin on urinary excretion of diabetes-induced glomerular and tubular injury parameters in rats. Biomed Pharmacother 2021; 139:111683. [PMID: 34243631 DOI: 10.1016/j.biopha.2021.111683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/18/2022] Open
Abstract
Diabetes mellitus causes changes in metabolism of extracellular nucleotides acting through P2 receptors (P2Rs). This affects renal function and may lead to glomerular and tubular disturbances. We measured urinary excretion of nucleotides (ATP, ADP, AMP, UTP, UDP, UMP) in streptozotocin-induced diabetic rats (65 mg/kg, i.p., day 0) and the effects of P2Rs' blockade by suramin (10 mg/kg, i.p., days +7, +14) on glomerular P2×7R expression and urinary excretion of glomerular (albumin, nephrin) and tubular (KIM-1, NGAL) injury markers, electrolytes, and oxidative stress markers (TBARS, 8-OHdG). Concentrations of nucleotides, specific proteins, electrolytes, and oxidative stress markers in 24-h urine samples collected in metabolic cages at days -1, +6 and +20 were measured using ion-paired reversed-phase HPLC, immunoenzymatic and fluorometric methods, and flame photometry, respectively. Expression of KIM-1 and P2×7R was examined by immunohistochemistry or immunoblotting. Diabetes was associated with increased urinary excretion of ATP, ADP, UTP, UDP and glomerular P2×7R expression. Suramin attenuated P2×7R expression but did not affect urinary excretion of nucleotides. Urinary excretion of albumin, nephrin, NGAL, and 8-OHdG were increased in diabetic rats and were not affected by suramin. TBARS was higher in diabetic rats and suramin attenuated the excretion dynamics in this group. KIM-1 excretion was higher in diabetic rats and suramin further increased excretion of KIM-1 in both diabetic and non-diabetic rats. Furthermore, suramin attenuated the diabetes-induced natriuresis and kaliuresis. It is possible that suramin affects both glomerular and tubular functions in diabetic rats.
Collapse
Affiliation(s)
- K Sałaga-Zaleska
- Department of Clinical Chemistry, Medical University of Gdansk, Dębinki 7, 80-210, Poland
| | - P Pikul
- Clinical Laboratory University Clinical Center in Gdansk, 80-211 Gdańsk, Poland
| | - E Kreft
- Department of Clinical Chemistry, Medical University of Gdansk, Dębinki 7, 80-210, Poland
| | - S Herman
- Laboratory of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - G Chyła
- Department of Clinical Chemistry, Medical University of Gdansk, Dębinki 7, 80-210, Poland
| | - K Dąbkowski
- Department of Clinical Chemistry, Medical University of Gdansk, Dębinki 7, 80-210, Poland
| | - A Kuchta
- Department of Clinical Chemistry, Medical University of Gdansk, Dębinki 7, 80-210, Poland
| | - M Lenartowicz
- Laboratory of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - M Jankowski
- Department of Clinical Chemistry, Medical University of Gdansk, Dębinki 7, 80-210, Poland.
| |
Collapse
|
67
|
Nieskens TTG, Magnusson O, Andersson P, Söderberg M, Persson M, Sjögren AK. Nephrotoxic antisense oligonucleotide SPC5001 induces kidney injury biomarkers in a proximal tubule-on-a-chip. Arch Toxicol 2021; 95:2123-2136. [PMID: 33961089 DOI: 10.1007/s00204-021-03062-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 01/02/2023]
Abstract
Antisense oligonucleotides (ASOs) are a promising therapeutic modality. However, failure to predict acute kidney injury induced by SPC5001 ASO observed in a clinical trial suggests the need for additional preclinical models to complement the preceding animal toxicity studies. To explore the utility of in vitro systems in this space, we evaluated the induction of nephrotoxicity and kidney injury biomarkers by SPC5001 in human renal proximal tubule epithelial cells (HRPTEC), cultured in 2D, and in a recently developed kidney proximal tubule-on-a-chip. 2D HRPTEC cultures were exposed to the nephrotoxic ASO SPC5001 or the safe control ASO 556089 (0.16-40 µM) for up to 72 h, targeting PCSK9 and MALAT1, respectively. Both ASOs induced a concentration-dependent downregulation of their respective mRNA targets but cytotoxicity (determined by LDH activity) was not observed at any concentration. Next, chip-cultured HRPTEC were exposed to SPC5001 (0.5 and 5 µM) and 556089 (1 and 10 µM) for 48 h to confirm downregulation of their respective target transcripts, with 74.1 ± 5.2% for SPC5001 (5 µM) and 79.4 ± 0.8% for 556089 (10 µM). During extended exposure for up to 20 consecutive days, only SPC5001 induced cytotoxicity (at the higher concentration; 5 µM), as evaluated by LDH in the perfusate medium. Moreover, perfusate levels of biomarkers KIM-1, NGAL, clusterin, osteopontin and VEGF increased 2.5 ± 0.2-fold, 3.9 ± 0.9-fold, 2.3 ± 0.6-fold, 3.9 ± 1.7-fold and 1.9 ± 0.4-fold respectively, in response to SPC5001, generating distinct time-dependent profiles. In conclusion, target downregulation, cytotoxicity and kidney injury biomarkers were induced by the clinically nephrotoxic ASO SPC5001, demonstrating the translational potential of this kidney on-a-chip.
Collapse
Affiliation(s)
- Tom T G Nieskens
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 43150, Mölndal, Sweden
| | - Otto Magnusson
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 43150, Mölndal, Sweden
| | - Patrik Andersson
- R&I Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Söderberg
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 43150, Mölndal, Sweden
| | - Mikael Persson
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 43150, Mölndal, Sweden
| | - Anna-Karin Sjögren
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 43150, Mölndal, Sweden.
| |
Collapse
|
68
|
Tan S, Zeng Y, Kuang S, Li J. Serum Human Epididymis Protein 4 is a Potential Biomarker for Early Chronic Kidney Disease in an Obese Population. Diabetes Metab Syndr Obes 2021; 14:1601-1608. [PMID: 33889001 PMCID: PMC8057804 DOI: 10.2147/dmso.s300940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND At present, it is difficult to clinically diagnose early chronic kidney disease (CKD). As a novel biomarker of malignancies in the female reproductive tract, the human epididymis protein 4 (HE4) has been reported to be significantly expressed in CKD patients. AIM We sought to assess whether HE4 can be used as a potential biomarker of early-stage CKD. METHODS The association between serum HE4 levels and CKD was analyzed in a retrospective study. A cohort of 506 patients with diabetic nephropathy who were hospitalized at Weihai Central Hospital, China, from January 2016 to November 2019 were included. RESULTS Serum HE4 levels were increased with increasing stage of CKD and significantly elevated in patients with CKD3-5 than CKD1-2 (P<0.001). In multivariate linear regression analyses, HE4 levels were strongly correlated with the estimated glomerular filtration rate (eGFR) in CKD patients (Model 2, P<0.001). HE4 (area under the curve; AUC=0.934) had better diagnostic value than serum creatinine (SCr; AUC=0.770) and blood urea nitrogen (BUN; AUC=0.647) for patients with early-stage CKD (CKD1-2). Additionally, HE4 levels increased with increasing glomerular lesion (GL) and renal interstitial fibrosis (IF)/tubular atrophy (TA) scores in 51 CKD patients (P<0.001). CONCLUSION Serum HE4 levels can be positively associated with the severity of CKD and are a very valuable clinical biomarker for predicting early-stage CKD.
Collapse
Affiliation(s)
- Shubo Tan
- Department of Urology, Second Affiliated Hospital of the University of South China, Hengyang City, 421000, People’s Republic of China
| | - Yongmao Zeng
- Department of Urology, Second Affiliated Hospital of the University of South China, Hengyang City, 421000, People’s Republic of China
| | - Shiliang Kuang
- Department of Urology, Second Affiliated Hospital of the University of South China, Hengyang City, 421000, People’s Republic of China
| | - Jianjun Li
- Department of Urology, Second Affiliated Hospital of the University of South China, Hengyang City, 421000, People’s Republic of China
| |
Collapse
|
69
|
Aztatzi-Aguilar OG, Pardo-Osorio GA, Uribe-Ramírez M, Narváez-Morales J, De Vizcaya-Ruiz A, Barbier OC. Acute kidney damage by PM 2.5 exposure in a rat model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103587. [PMID: 33460805 DOI: 10.1016/j.etap.2021.103587] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
PM2.5 exposure is associated with a glomerular filtration rate (GFR) reduction, and renal tissue damage. The goal of this study was demonstrate the acute effect of PM2.5 on the kidney. Male rats were acutely exposed to PM2.5 or filtered air. Blood pressure was mesure and early kidney biomarkers were evaluated in serum and urine samples, and also IL-1β, IL-6 and TNFα were determined. Oxidative biomarkers, angiotensin/bradykinin-related proteins, KIM-1, IL-6 and histology were determined. Blood pressure, GFR, and early kidney damage biomarkers increase together with oxidative biomarkers and angiotensin/bradykinin endocrine-related proteins increased after exposure to PM2.5. Urinary IL-6 increased after exposure to PM2.5, whereas in kidney cortex decreased. Histological changes were observed and accompanied by the induction of KIM-1. Acute exposure to PM2.5 not decline kidney function. However, it can induce early kidney damage biomarkers, oxidative stress, inflammation and angiotensin mediators, which perhabs culminates in a lose of renal function.
Collapse
Affiliation(s)
- Octavio Gamaliel Aztatzi-Aguilar
- Departamento de Investigación en Inmunología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias, Calz. de Tlalpan 4502, Belisario Domínguez Secc 16, C.P. 14080, Ciudad de México, CDMX, Mexico.
| | - Gabriela Andrea Pardo-Osorio
- Universidad del Valle de México, Av. Observatorio 400. Col. 16 de Septiembre, C.P. 11810, Ciudad de México, CDMX, Mexico.
| | - Marisela Uribe-Ramírez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col San Pedro Zacatenco, C.P. 07360, Ciudad de México, CDMX, Mexico.
| | - Juana Narváez-Morales
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col San Pedro Zacatenco, C.P. 07360, Ciudad de México, CDMX, Mexico.
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col San Pedro Zacatenco, C.P. 07360, Ciudad de México, CDMX, Mexico.
| | - Olivier Christophe Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col San Pedro Zacatenco, C.P. 07360, Ciudad de México, CDMX, Mexico.
| |
Collapse
|
70
|
Jing L, Chen W, Guo L, Zhao L, Liang C, Chen J, Wang C. Acute kidney injury after lung transplantation: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:717. [PMID: 33987415 PMCID: PMC8106087 DOI: 10.21037/atm-20-7644] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acute kidney injury (AKI) is a commonly recognized complication after lung transplantation (LT) and is related to increased mortality and morbidity. With the improvement of survival after LT and the increasing number of lung transplant recipients, the detrimental impact of current management on renal function has become increasingly apparent. Multifarious risk factors in the perioperative setting contribute to the development of AKI, including the preoperative status and complications of the recipient, complex perioperative problems especially hemodynamic fluctuation, and exposure to nephrotoxic agents, mainly calcineurin inhibitors (CNIs) and antimicrobial drugs. Identification and minimization of the effects of these risk factors can relieve AKI severity and incidence in high-risk patients. Close monitoring of urine output and serum creatinine (sCr) levels and of specific biomarkers may promote early recognition of AKI and rapid nephrology intervention to improve outcomes. This review summarizes advances in the epidemiology, diagnostic criteria, biological markers of AKI, and further recommends appropriate treatment strategies for the long-term management of AKI related manifestations in lung transplant recipients. Future work will need to focus on developing more accurate measures of renal function and identifying patients before the occurrence of early renal damage. Combining renal protection strategies with the use of new biomarkers to develop early kidney risk identification and protection protocols is a promising idea that requires further investigation.
Collapse
Affiliation(s)
- Lei Jing
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Lung Transplantation, Centre of Lung Transplantation, Centre of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
| | - Wenhui Chen
- Department of Lung Transplantation, Centre of Lung Transplantation, Centre of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
| | - Lijuan Guo
- Department of Lung Transplantation, Centre of Lung Transplantation, Centre of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
| | - Li Zhao
- Department of Lung Transplantation, Centre of Lung Transplantation, Centre of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
| | - Chaoyang Liang
- Department of Lung Transplantation, Centre of Lung Transplantation, Centre of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
| | - Jingyu Chen
- Department of Lung Transplantation, Centre of Lung Transplantation, Centre of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
| | - Chen Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Lung Transplantation, Centre of Lung Transplantation, Centre of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
| |
Collapse
|
71
|
Chou LF, Chen TW, Yang HY, Tian YC, Chang MY, Hung CC, Hsu SH, Tsai CY, Ko YC, Yang CW. Transcriptomic signatures of exacerbated progression in leptospirosis subclinical chronic kidney disease with secondary nephrotoxic injury. Am J Physiol Renal Physiol 2021; 320:F1001-F1018. [PMID: 33779314 DOI: 10.1152/ajprenal.00640.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
High-incidence regions of leptospirosis caused by Leptospira spp. coincide with chronic kidney disease. This study investigated whether asymptomatic leptospirosis is an emerging culprit that predisposes to progressive chronic kidney disease when superimposed on secondary nephrotoxic injury. Kidney histology/function and whole transcriptomic profiles were evaluated for Leptospira-infected C57/BL6 mice with adenine-induced kidney injury. The extent of tubulointerstitial kidney lesions and expression of inflammation/fibrosis genes in infected mice with low-dose (0.1%) adenine, particularly in high-dose (0.2%) adenine-fed superimposed on Leptospira-infected mice, were significantly increased compared with mice following infection or adenine diet alone, and the findings are consistent with renal transcriptome analysis. Pathway enrichment findings showed that integrin-β- and fibronectin-encoding genes had distinct expression within the integrin-linked kinase-signaling pathway, which were upregulated in 0.2% adenine-fed Leptospira-infected mice but not in 0.2% adenine-fed mice, indicating that background subclinical Leptospiral infection indeed enhanced subsequent secondary nephrotoxic kidney injury and potential pathogenic molecules associated with secondary nephrotoxic leptospirosis. Comparative analysis of gene expression patterns with unilateral ureteric obstruction-induced mouse renal fibrosis and patients with chronic kidney disease showed that differentially expressed orthologous genes such as hemoglobin-α2, PDZ-binding kinase, and DNA topoisomerase II-α were identified in infected mice fed with low-dose and high-dose adenine, respectively, revealing differentially expressed signatures identical to those found in the datasets and may serve as markers of aggravated kidney progression. This study indicates that background subclinical leptospirosis, when subjected to various degrees of subsequent secondary nephrotoxic injury, may predispose to exacerbated fibrosis, mimicking the pathophysiological process of progressive chronic kidney disease.NEW & NOTEWORTHY Leptospira-infected mice followed by secondary nephrotoxic injury exacerbated immune/inflammatory responses and renal fibrosis. Comparison with the murine model revealed candidates involved in the progression of renal fibrosis in chronic kidney disease (CKD). Comparative transcriptome study suggests that secondary nephrotoxic injury in Leptospira-infected mice recapitulates the gene expression signatures found in CKD patients. This study indicates that secondary nephrotoxic injury may exacerbate CKD in chronic Leptospira infection implicating in the progression of CKD of unknown etiology.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yang Chang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shen-Hsing Hsu
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chung-Ying Tsai
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yi-Ching Ko
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
72
|
Dias CS, Paz LN, Solcà MS, Portela RWD, Bittencourt MV, Pinna MH. Kidney Injury Molecule-1 in the detection of early kidney injury in dogs with leptospirosis. Comp Immunol Microbiol Infect Dis 2021; 76:101637. [PMID: 33706047 DOI: 10.1016/j.cimid.2021.101637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/26/2022]
Abstract
Renal damage, a common feature in canine leptospirosis, ranges from a subclinical affection to kidney dysfunction and death. Chances of recovery can be improved by early intervention. However, traditional biomarkers (serum urea and creatinine) have limited relevance for precocity. Kidney Injury Molecule-1 (KIM-1) is a transmembrane protein upregulated in early stages of tubular injury. This study evaluated the use of urinary KIM-1 to detect early renal injury in naturally occurring canine leptospirosis. This exploratory research included 30 dogs divided into two groups: (1) dogs with leptospirosis (n = 25) and (2) healthy dogs (n = 5). Leptospira sp. infection was diagnosed through urine PCR and/or direct bacteriologic culture and/or serology (single MAT titters ≥800). Additionally, stage of infection was further characterized in acute and subacute phases based on the onset of clinical symptoms from 3 to 7 days. Urinary KIM-1 (uKIM-1) concentrations were measured in both groups with a commercial canine ELISA kit. uKIM-1 levels were statistically different (P < 0.01) between the studied groups, especially in non-azotemic dogs (P = 0.0042). The biomarker showed 88 % sensibility to diagnosis of kidney injury at> 1.49 ng/mL cut-off. Urine KIM-1 was negatively correlated with urine specific gravity (USG) but accompanied histopathological evidence of renal degeneration, necrosis and regeneration processes, extending information on kidney health. Measurement of KIM-1 in the urine of canine patients was able to detect naturally occurring acute and subacute leptospirosis accompanied by tubular injury in early non-azotemic infections.
Collapse
Affiliation(s)
- C S Dias
- Bacterial Disease Laboratory, Federal University of Bahia, 500 Adhemar de Barros Av., Salvador, BA 40170-110, Brazil
| | - L N Paz
- Bacterial Disease Laboratory, Federal University of Bahia, 500 Adhemar de Barros Av., Salvador, BA 40170-110, Brazil
| | - M S Solcà
- Department of Preventive Veterinary Medicine and Animal Production of the School of Veterinary Medicine and Zootechny, Federal University of Bahia, 500 Adhemar de Barros Av., Salvador, BA 40170-110, Brazil
| | - R W D Portela
- Laboratory of Immunology and Molecular Biology, Health Science Institute, Federal University of Bahia, Reitor Miguel Calmon Av., Salvador, BA 40140-100, Brazil
| | - M V Bittencourt
- Bacterial Disease Laboratory, Federal University of Bahia, 500 Adhemar de Barros Av., Salvador, BA 40170-110, Brazil
| | - M H Pinna
- Bacterial Disease Laboratory, Federal University of Bahia, 500 Adhemar de Barros Av., Salvador, BA 40170-110, Brazil.
| |
Collapse
|
73
|
Kwon TJ, Jang E, Lee DS, Haque ME, Park RW, Lee B, Lee SB, Kim D, Jeon YH, Kim KS, Kim SK. Development of a Noninvasive KIM-1-Based Live-Imaging Technique in the Context of a Drug-Induced Kidney-Injury Mouse Model. ACS APPLIED BIO MATERIALS 2021; 4:1508-1514. [DOI: 10.1021/acsabm.0c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tae-Jun Kwon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Korea
| | - Eunseo Jang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Korea
| | - Da-Sol Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Korea
| | - Md. Enamul Haque
- Department of Biochemistry and Cell Biology, BK21 Plus KNU Biomedical Convergence Program, CMRI, School of Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, BK21 Plus KNU Biomedical Convergence Program, CMRI, School of Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, BK21 Plus KNU Biomedical Convergence Program, CMRI, School of Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Sang Bong Lee
- Korea Institute of Medical Microrobotics (KIMIRo), Gwangju 61011, Korea
| | - Dongkyu Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Korea
| | - Yong-Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Korea
| | - Kil-Soo Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Korea
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Sang Kyoon Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Korea
| |
Collapse
|
74
|
Abstract
Cardiorenal syndrome (CRS) describes a specific acute and chronic clinical picture in which the heart or the kidney are primarily dysfunctioning and secondarily affect each other. CRS is divided into five classes: acute and chronic CRS, acute and chronic renocardiac syndromes, and secondary dysfunction of heart and kidneys. This article specifically details the classification and the epidemiology, some risk factors, and the pathophysiology of CRS. Some emerging aspects of CRS are also discussed, such as CRS in patients with end-stage heart failure, with mechanical ventricular assistance, and after heart transplantation. Finally, some aspects of pediatric CRS are detailed.
Collapse
Affiliation(s)
- Zaccaria Ricci
- Department of Cardiology and Cardiac Surgery, Pediatric Cardiac Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, P.zza S.Onofrio 4, Rome 00165, Italy; Department of Health Science, University of Florence, Florence, Italy.
| | - Stefano Romagnoli
- Department of Health Science, University of Florence, Florence, Italy; Department of Anesthesiology and Intensive Care, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla, 3, Florence 50139, Italy. https://twitter.com/StefanoRomagno9
| | - Claudio Ronco
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy; Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Via Rodolfi 37, Vicenza 36100, Italy. https://twitter.com/croncoIRRIV
| |
Collapse
|
75
|
Fu R, Tajima S, Shigematsu T, Zhang M, Tsuchimoto A, Egashira N, Ieiri I, Masuda S. Establishment of an experimental rat model of tacrolimus-induced kidney injury accompanied by interstitial fibrosis. Toxicol Lett 2021; 341:43-50. [PMID: 33516819 DOI: 10.1016/j.toxlet.2021.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/26/2022]
Abstract
Nephrotoxicity is the major adverse reaction to tacrolimus; however, the underlying mechanisms remain to be fully elucidated. Although several tacrolimus-induced nephrotoxicity animal models have been reported, most renal injury rat models contain factors other than tacrolimus. Here, we report the development of a new nephrotoxicity with interstitial fibrosis rat model induced by tacrolimus administration. Thirty Wistar rats were randomly divided into four groups: sham-operated (Sham), vehicle-treated ischemia reperfusion (I/R) injury (IRI), tacrolimus treated (TAC) and tacrolimus treated I/R injury (TAC + IRI). Rats subjected to IR injury and treated with tacrolimus for 2 weeks showed higher serum creatinine (Scr), blood urea nitrogen (BUN), serum magnesium (Mg) and serum potassium (K), indicating decreased renal function. In addition, tacrolimus treatment combined with IR injury increased histological injury (tubular vacuolation, glomerulosclerosis and interstitial fibrosis), as well as α-smooth muscle actin (α-SMA), transforming growth factor-β (TGF-β), and kidney injury molecule-1 (KIM-1) expression in the renal cortex. In summary, we have developed a tacrolimus-induced kidney injury rat model with interstitial fibrosis within 2 weeks by creating conditions mimicking renal transplantation via tacrolimus administration following ischemia-reperfusion.
Collapse
Affiliation(s)
- Rao Fu
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan
| | | | - Tomohiro Shigematsu
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan; Department of Pharmacy, Kyushu University Hospital, Japan
| | - Mengyu Zhang
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan
| | - Akihiro Tsuchimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Nobuaki Egashira
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan; Department of Pharmacy, Kyushu University Hospital, Japan
| | - Ichiro Ieiri
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan; Department of Pharmacy, Kyushu University Hospital, Japan
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Japan; Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, International University of Health and Welfare, Japan
| |
Collapse
|
76
|
Unal ET, Ozer EA, Kahramaner Z, Erdemir A, Cosar H, Sutcuoglu S. Value of urinary kidney injury molecule-1 levels in predicting acute kidney injury in very low birth weight preterm infants. J Int Med Res 2020; 48:300060520977442. [PMID: 33372811 PMCID: PMC7783886 DOI: 10.1177/0300060520977442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective This study aimed to evaluate the significance of urinary kidney injury
molecule-1 (uKIM-1) levels in predicting acute kidney injury (AKI) and
mortality in very low birth weight (VLBW) preterm infants. Methods This prospective, observational cohort study was conducted on 39 VLBW preterm
infants. Serum creatinine (SCr) and uKIM-1 levels were measured in the first
24 and 48 to 72 hours of life. The estimated glomerular filtration rate
(eGFR) was calculated. Levels of uKIM-1 were measured with an enzyme-linked
immunosorbent assay. Results Among 39 VLBW infants, 9 (23%) developed AKI. The mortality rate was 17.9%
(n = 7 neonates). There was no significant difference in SCr levels, uKIM-1
levels, or the eGFR obtained in the first 24 hours in the AKI group compared
with controls. However, significant differences were found in SCr and uKIM-1
levels, and the eGFR rate at 48 to 72 hours between the groups. Levels of
uKIM-1 were significantly higher in non-survivors than in survivors in the
first 24 and 48 to 72 hours of life. Conclusion The level of uKIM-1 can be used as a simple noninvasive diagnostic method for
predicting AKI and mortality, especially within 48 to 72 hours of life. Clinical trial registration: We do not have a clinical trial
registration ID. In Turkey, clinical trial registration is not required for
non-drug, noninvasive, clinical studies.
Collapse
Affiliation(s)
- Ebru Turkoglu Unal
- Department of Neonatology, Sisli Etfal Training and Research Hospital, Istanbul, Turkey
| | - Esra Arun Ozer
- Department of Pediatrics, Tinaztepe University Faculty of Medicine, Izmir, Turkey
| | - Zelal Kahramaner
- Department of Neonatology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Aydin Erdemir
- Department of Neonatology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Hese Cosar
- Department of Neonatology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Sumer Sutcuoglu
- Department of Neonatology, Tepecik Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
77
|
Franco-Acevedo A, Echavarria R, Moreno-Carranza B, Ortiz CI, Garcia D, Gonzalez-Gonzalez R, Bitzer-Quintero OK, Portilla-De Buen E, Melo Z. Opioid Preconditioning Modulates Repair Responses to Prevent Renal Ischemia-Reperfusion Injury. Pharmaceuticals (Basel) 2020; 13:ph13110387. [PMID: 33202532 PMCID: PMC7696679 DOI: 10.3390/ph13110387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/15/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Progression to renal damage by ischemia-reperfusion injury (IRI) is the result of the dysregulation of various tissue damage repair mechanisms. Anesthetic preconditioning with opioids has been shown to be beneficial in myocardial IRI models. Our main objective was to analyze the influence of pharmacological preconditioning with opioids in renal function and expression of molecules involved in tissue repair and angiogenesis. Experimental protocol includes male rats with 45 min ischemia occluding the left renal hilum followed by 24 h of reperfusion with or without 60 min preconditioning with morphine/fentanyl. We analyzed serum creatinine and renal KIM-1 expression. We measured circulating and intrarenal VEGF. Immunohistochemistry for HIF-1 and Cathepsin D (CTD) and real-time PCR for angiogenic genes HIF-1α, VEGF, VEGF Receptor 2 (VEGF-R2), CTD, CD31 and IL-6 were performed. These molecules are considered important effectors of tissue repair responses mediated by the development of new blood vessels. We observed a decrease in acute renal injury mediated by pharmacological preconditioning with opioids. Renal function in opioid preconditioning groups was like in the sham control group. Both anesthetics modulated the expression of HIF-1, VEGF, VEGF-R2 and CD31. Preconditioning negatively regulated CTD. Opioid preconditioning decreased injury through modulation of angiogenic molecule expression. These are factors to consider when establishing strategies in pathophysiological and surgical processes.
Collapse
Affiliation(s)
| | - Raquel Echavarria
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico;
| | | | - Cesar-Ivan Ortiz
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico; (C.-I.O.); (D.G.); (R.G.-G.); (O.-K.B.-Q.); (E.P.-D.B.)
| | - David Garcia
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico; (C.-I.O.); (D.G.); (R.G.-G.); (O.-K.B.-Q.); (E.P.-D.B.)
| | - Ricardo Gonzalez-Gonzalez
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico; (C.-I.O.); (D.G.); (R.G.-G.); (O.-K.B.-Q.); (E.P.-D.B.)
| | - Oscar-Kurt Bitzer-Quintero
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico; (C.-I.O.); (D.G.); (R.G.-G.); (O.-K.B.-Q.); (E.P.-D.B.)
| | - Eliseo Portilla-De Buen
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico; (C.-I.O.); (D.G.); (R.G.-G.); (O.-K.B.-Q.); (E.P.-D.B.)
| | - Zesergio Melo
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico;
- Correspondence: ; Tel.: +52-33-3617-7385
| |
Collapse
|
78
|
Adedeji AO, Gu YZ, Pourmohamad T, Kanerva J, Chen Y, Atabakhsh E, Tackett MR, Chen F, Bhatt B, Gury T, Dorchies O, Sonee M, Morgan M, Burkey J, Gautier JC, McDuffie JE. The Utility of Novel Urinary Biomarkers in Mice for Drug Development Studies. Int J Toxicol 2020; 40:15-25. [PMID: 33161787 DOI: 10.1177/1091581820970498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Novel urinary protein biomarkers have recently been identified and qualified in rats for the early detection of renal injury in drug development studies. However, there are few reports on the utility of these renal biomarkers in mice, another important and widely used preclinical animal species for drug development studies. The purpose of this study was to assess the value of these recently qualified biomarkers for the early detection of drug-induced kidney injury (DIKI) in different strains of mice using multiple assay panels. To this end, we evaluated biomarker response to kidney injury induced by several nephrotoxic agents including amphotericin B, compound X, and compound Y. Several of the biomarkers were shown to be sensitive to DIKI in mice. When measured, urinary albumin and neutrophil gelatinase-associated lipocalin were highly sensitive to renal tubular injury, regardless of the assay platforms, mouse strain, and nephrotoxic agents. Depending on the type of renal tubular injury, kidney injury molecule-1 was also highly sensitive, regardless of the assay platforms and mouse strain. Osteopontin and cystatin C were modestly to highly sensitive to renal tubular injury, but the assay type and/or the mouse strain should be considered before using these biomarkers. Calbindin D28 was highly sensitive to injury to the distal nephron in mice. To our knowledge, this is the first report that demonstrates the utility of novel urinary biomarkers evaluated across multiple assay platforms and nephrotoxicants in different mice strains with DIKI. These results will help drug developers make informed decisions when selecting urinary biomarkers for monitoring DIKI in mice for toxicology studies.
Collapse
Affiliation(s)
- Adeyemi O Adedeji
- 7412Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| | - Yi-Zhong Gu
- 331129Merck & Co., Inc., West Point, PA, USA
| | - Tony Pourmohamad
- 7412Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| | - Justin Kanerva
- 241854Janssen Research & Development, LLC, San Diego, CA, USA
| | - Yafei Chen
- 241854Janssen Research & Development, LLC, San Diego, CA, USA
| | | | | | - Feifei Chen
- 331129Merck & Co., Inc., West Point, PA, USA
| | | | | | | | - Manisha Sonee
- 241854Janssen Research & Development, LLC, Spring House, PA, USA
| | | | | | | | | |
Collapse
|
79
|
Lu A, Pallero MA, Owusu BY, Borovjagin AV, Lei W, Sanders PW, Murphy-Ullrich JE. Calreticulin is important for the development of renal fibrosis and dysfunction in diabetic nephropathy. Matrix Biol Plus 2020; 8:100034. [PMID: 33543033 PMCID: PMC7852315 DOI: 10.1016/j.mbplus.2020.100034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Previously, our lab showed that the endoplasmic reticulum (ER) and calcium regulatory protein, calreticulin (CRT), is important for collagen transcription, secretion, and assembly into the extracellular matrix (ECM) and that ER CRT is critical for TGF-β stimulation of type I collagen transcription through stimulation of ER calcium release and NFAT activation. Diabetes is the leading cause of end stage renal disease. TGF-β is a key factor in the pathogenesis of diabetic nephropathy. However, the role of calreticulin (Calr) in fibrosis of diabetic nephropathy has not been investigated. In current work, we used both in vitro and in vivo approaches to assess the role of ER CRT in TGF-β and glucose stimulated ECM production by renal tubule cells and in diabetic mice. Knockdown of CALR by siRNA in a human proximal tubular cell line (HK-2) showed reduced induction of soluble collagen when stimulated by TGF-β or high glucose as compared to control cells, as well as a reduction in fibronectin and collagen IV transcript levels. CRT protein is increased in kidneys of mice made diabetic with streptozotocin and subjected to uninephrectomy to accelerate renal tubular injury as compared to controls. We used renal-targeted ultrasound delivery of Cre-recombinase plasmid to knockdown specifically CRT expression in the remaining kidney of uninephrectomized Calr fl/fl mice with streptozotocin-induced diabetes. This approach reduced CRT expression in the kidney, primarily in the tubular epithelium, by 30-55%, which persisted over the course of the studies. Renal function as measured by the urinary albumin/creatinine ratio was improved in the mice with knockdown of CRT as compared to diabetic mice injected with saline or subjected to ultrasound and injected with control GFP plasmid. PAS staining of kidneys and immunohistochemical analyses of collagen types I and IV show reduced glomerular and tubulointerstitial fibrosis. Renal sections from diabetic mice with CRT knockdown showed reduced nuclear NFAT in renal tubules and treatment of diabetic mice with 11R-VIVIT, an NFAT inhibitor, reduced proteinuria and renal fibrosis. These studies identify ER CRT as an important regulator of TGF-β stimulated ECM production in the diabetic kidney, potentially through regulation of NFAT-dependent ECM transcription.
Collapse
Key Words
- 4-PBA, 4-phenylbutyrate
- CRT, calreticulin
- Calreticulin
- Collagen
- Diabetic nephropathy
- ECM, extracellular matrix
- EMT, epithelial to mesenchymal transition
- ER, endoplasmic reticulum
- Fibrosis
- GRP78, glucose related protein 78
- MB/US, microbubble/ultrasound
- NFAT
- NFAT, nuclear factor of activated T cells
- PAS, Periodic Acid-Schiff
- STZ, streptozotocin
- TGF-β, transforming growth factor-β
- UPR, unfolded protein response
Collapse
Affiliation(s)
- Ailing Lu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Manuel A. Pallero
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Benjamin Y. Owusu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Anton V. Borovjagin
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Weiqi Lei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Paul W. Sanders
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
- Department of Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| | | |
Collapse
|
80
|
Sandelius Å, Basak J, Hölttä M, Sultana S, Hyberg G, Wilson A, Andersson P, Söderberg M. Urinary Kidney Biomarker Panel Detects Preclinical Antisense Oligonucleotide-Induced Tubular Toxicity. Toxicol Pathol 2020; 48:981-993. [PMID: 33084520 DOI: 10.1177/0192623320964391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sensitive kidney safety assessment is important for successful drug development in both preclinical and clinical stages. The Food and Drug Administration recently qualified a composite measure of 6 urine creatinine-normalized biomarkers, such as clusterin, cystatin C, kidney injury molecule 1 (KIM-1), N-acetyl-β-d-glucosaminidase, neutrophil gelatinase-associated lipocalin (NGAL), and osteopontin, for monitoring kidney toxicity in early clinical trials. The qualification was based on small molecule drugs in humans, and the full panel has not been assessed in other species or for other drug modalities. This study evaluated the effects on these biomarkers for a constrained ethyl antisense oligonucleotide (tool ASO) with demonstrated kidney toxicity in mice compared to a control ASO of the same chemistry. Dosing 50 mg/kg of the tool ASO resulted in mild proximal tubular pathology and elevations in KIM-1, clusterin, NGAL, and cystatin C. A lower dose resulted in milder histopathology and lower biomarker increases. Unexpectedly, the control ASO induced mild elevations in KIM-1, NGAL, and cystatin C, despite the lack of pathology. Both KIM-1 and clusterin were most closely associated with kidney pathology and increased with the severity of injury. Altogether, our data suggest that a biomarker panel is a sensitive tool for the detection of preclinical ASO-induced kidney pathology.
Collapse
Affiliation(s)
- Åsa Sandelius
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, 128698AstraZeneca R&D, Gothenburg, Sweden
| | - Jayati Basak
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, 128698AstraZeneca R&D, Gothenburg, Sweden
| | - Mikko Hölttä
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, 128698AstraZeneca R&D, Gothenburg, Sweden
| | - Stefan Sultana
- Patient Safety Center of Excellence, Chief Medical Office, BioPharmaceuticals 468087R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gina Hyberg
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, 128698R&D, AstraZeneca, Gothenburg, Sweden
| | - Amanda Wilson
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, 128698AstraZeneca R&D, Gothenburg, Sweden
| | - Patrik Andersson
- Respiratory and Immunology Safety, Clinical Pharmacology and Safety Sciences, 128698R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Söderberg
- Cardiovascular, Renal and Metabolism Safety, Clinical Pharmacology and Safety Sciences, 128698R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
81
|
Khan TH, Ganaie MA, Alharthy KM, Madkhali H, Jan BL, Sheikh IA. Naringenin prevents doxorubicin-induced toxicity in kidney tissues by regulating the oxidative and inflammatory insult in Wistar rats. Arch Physiol Biochem 2020; 126:300-307. [PMID: 30406686 DOI: 10.1080/13813455.2018.1529799] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study is undertaken to investigate the effects of naringenin on doxorubicin- (Dox) induced nephrotoxicity in Wistar rats. Dox 10 mg/kg body weight was administered intraperitoneally once and naringenin 50 and 100 mg/kg body weight was administered orally daily for 21 d. Dox-induced oxidative stress lead to steep elevation in blood urea nitrogen (BUN), creatinine, lactate dehydrogenase (LDH), and kidney injury molecule-1 (KIM-1), compared to control, treatment with naringenin preserved kidney functions. With Dox treatment significant decrease in antioxidant enzymes with increase in malondialdehyde (MDA) compared to control was observed. Naringenin treatment reversed these values compared to Dox in kidney tissue. Dox treatment showed increased tissue nitric oxide levels naringenin treatment decreased nitric oxide (NO) in kidney tissue. Furthermore, Dox-induced inflammatory burst as indicated by up-regulation of nuclear factor-κB (NF-κB), tumour necrosis factor-α (TNF-α) tissue levels and prostaglandin-E2 (PGE-2). All such events were normalised back to normal by naringenin treatment.
Collapse
Affiliation(s)
- Tajdar Husain Khan
- Department of Pharmacology, College of Pharmacy, Prince Sattan Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Majid Ahmad Ganaie
- Department of Pharmacology, College of Pharmacy, Prince Sattan Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Khalid Mofleh Alharthy
- Department of Pharmacology, College of Pharmacy, Prince Sattan Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hassan Madkhali
- Department of Pharmacology, College of Pharmacy, Prince Sattan Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ishfaq Ahmad Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
82
|
Gupta S, Nicassio L, Junquera GY, Jackson AR, Fuchs M, McLeod D, Alpert S, Jayanthi VR, DaJusta D, McHugh KM, Becknell B, Ching CB. Impact of successful pediatric ureteropelvic junction obstruction surgery on urinary HIP/PAP and BD-1 levels. J Pediatr Urol 2020; 16:592.e1-592.e7. [PMID: 32278658 PMCID: PMC7529730 DOI: 10.1016/j.jpurol.2020.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION In the pediatric patient whose ureteropelvic junction obstruction (UPJO) is not always symptomatic, imaging is the most common means of detecting surgical success. There is interest, however, in other means of post-operative monitoring. A panel of antimicrobial peptides (AMPs) has been previously found to be elevated in UPJO, but the impact of surgical correction on these AMPs is unknown. OBJECTIVE To determine if elevated levels of candidate urinary AMP biomarkers of urinary tract obstruction decrease following UPJO repair. STUDY DESIGN Pediatric patients undergoing surgical correction of an UPJO were recruited for participation. Bladder urine from uninfected consenting/assenting patients was collected immediately prior to surgery and then at least 6 months afterward. Based on prior studies demonstrating significant elevation of beta defensin 1 (BD-1), hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP), cathelicidin (LL-37), and neutrophil gelatinase-associated lipocalin (NGAL) in patients with UPJO versus control patients, we performed enzyme-linked immunosorbent assays on these four AMPs to compare their expression before and after surgical intervention. If found to significantly decrease, AMP levels were compared to healthy controls. AMP levels were normalized to urine creatinine. Results were analyzed with paired t test or Wilcoxon test using Graphpad software. Correlation was calculated using Pearson or Spearman correlation. A p-value of <0.05 was considered significant. RESULTS 13 UPJO patients were included in this study; 9 were male (69%). Age at surgery was a median of 4.3 years (average 6.1, range 0.4-18.4 years). Follow-up urine samples were collected a median of 27.4 months after surgery (average 27.4; range 7.8-45.3 months). All 13 patients had clinical improvement and/or signs of improved hydronephrosis on post-operative imaging. HIP/PAP and BD-1 significantly decreased in post-surgical samples compared to pre-surgical samples (p = 0.02 and 0.01, respectively); NGAL and LL-37 did not significantly change. Overall, HIP/PAP decreased in 12 patients (92%) and BD-1 decreased in 11 patients (85%). BD-1 levels after successful repair were not different from healthy controls (p = 0.06). DISCUSSION Urinary biomarkers of obstruction should detect significant obstructive pathology as well as reflect its resolution. This would enable their use in post-operative monitoring and augment current methods of determining successful surgical outcome through imaging. CONCLUSIONS The AMPs HIP/PAP and BD-1 are significantly elevated in UPJO but then significantly decrease after pyeloplasty, with BD-1 returning to healthy control levels. As a result, these AMPs could serve as markers of successful surgical intervention.
Collapse
Affiliation(s)
- Sudipti Gupta
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA; Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Lauren Nicassio
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Guillermo Yepes Junquera
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ashley R Jackson
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Molly Fuchs
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daryl McLeod
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Seth Alpert
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Venkata R Jayanthi
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel DaJusta
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kirk M McHugh
- Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Becknell
- Division of Pediatric Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Christina B Ching
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA; Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
83
|
Kohl K, Herzog E, Dickneite G, Pestel S. Evaluation of urinary biomarkers for early detection of acute kidney injury in a rat nephropathy model. J Pharmacol Toxicol Methods 2020; 105:106901. [DOI: 10.1016/j.vascn.2020.106901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
|
84
|
Okamoto K, Saito Y, Narumi K, Furugen A, Iseki K, Kobayashi M. Comparison of the nephroprotective effects of non-steroidal anti-inflammatory drugs on cisplatin-induced nephrotoxicity in vitro and in vivo. Eur J Pharmacol 2020; 884:173339. [PMID: 32726655 DOI: 10.1016/j.ejphar.2020.173339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Cisplatin (CDDP) is an anticancer drug, often used in the treatment of several types of cancers. CDDP-induced nephrotoxicity (CIN) is one of the most severe adverse events associated with the use of CDDP. It has been suggested that the co-administration of non-steroidal anti-inflammatory drugs (NSAIDs) is a risk factor for CIN. However, the specific NSAIDs that affect CIN and the precise mechanisms underlying this interaction remain unclear. Hence, we aimed to evaluate the effect of NSAIDs on CDDP-induced cytotoxicity in vitro and confirmed the results in vivo. Using the epithelioid clone of the normal rat kidney cells (NRK-52E cells), we assessed the effects of 17 NSAIDs on CDDP-induced cytotoxicity all at once using the MTT assay. Furthermore, we evaluated two NSAIDs, which significantly attenuated or enhanced CDDP-induced cytotoxicity, in vivo. Wistar rats were treated with CDDP (5 mg/kg, i.p., day 1) and NSAIDs (p.o., day 1-4), and the kidneys were excised on day 5. Our results demonstrated that several NSAIDs attenuated, while others enhanced CDDP-induced cytotoxicity. Celecoxib significantly attenuated and flurbiprofen markedly enhanced cell dysfunction by CDDP. These results were reproduced in vivo as celecoxib decreased and flurbiprofen increased the expression of kidney injury molecule 1 (Kim-1) mRNA, a sensitive kidney injury marker, compared to the CDDP group. Moreover, celecoxib increased the antioxidant and autophagy markers quantified by qPCR in vitro and prevented a decrease in body weight induced by CDDP in vivo. In conclusion, we revealed that celecoxib significantly attenuated CIN in vitro and in vivo.
Collapse
Affiliation(s)
- Keisuke Okamoto
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoshitaka Saito
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
85
|
Jin J, Gong J, Zhao L, Li Y, Wang Y, He Q. iTRAQ-based comparative proteomics analysis reveals specific urinary biomarkers for various kidney diseases. Biomark Med 2020; 14:839-854. [PMID: 32856461 DOI: 10.2217/bmm-2019-0556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Proteome studies for multiple renal diseases is bare. Methodology & results: Using isobaric tags for relative and absolute quantitation labeling, many differentially expressed proteins (DEPs) were identified in acute kidney injury (AKI), AKI + chronic kidney disease (CKD), diabetic CKD and nondiabetic CKD with or without IgA nephropathy (IgAN). Comparative analysis indicated that 34, 35, 17, 91 and 14 unique DEPs were found in AKI, AKI + CKD, CKD, diabetic CKD and nondiabetic CKD. Compared with nondiabetic CKD with IgAN, 47 unique DEPs were found in that without IgAN. Serum amyloid A1 (SAA1) and hepatocyte growth factor activator were unregulated in AKI and nondiabetic CKD without IgAN, respectively. Regenerating islet-derived protein 3-α (Reg3A) upregulation is associated with AKI and AKI + CKD patients. Conclusion: This research contributes to urinary biomarker discovery from multiple renal diseases.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| | - Jianguang Gong
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| | - Li Zhao
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| | - Yiwen Li
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| | - Yunguang Wang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| |
Collapse
|
86
|
Khalil R, Elghadban H, Abdelsalam M, Tawfik M. Kidney injury molecule-1: A potential marker of renal recovery after laparoscopic sleeve gastrectomy. Kidney Res Clin Pract 2020; 39:162-171. [PMID: 32487784 PMCID: PMC7321680 DOI: 10.23876/j.krcp.19.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Background Bariatric surgeries were reported to improve diabetes and hypertension; however, the effect on renal recovery has not been fully explored. The aim of this study was to evaluate the effect of laparoscopic sleeve gastrectomy (LSG) in morbidly obese patients on renal function, degree of albuminuria, and kidney injury molecule-1 (KIM-1) level. Methods This was a prospective observational study conducted at Mansoura University Hospitals from January to June 2017. Forty-four morbidly obese patients (29 females and 15 males) who met the 1991 WHO criteria for obesity surgery were included. Patients underwent surgical LSG for treatment of morbid obesity, and all were followed for 6 months after surgery. Demographic, clinical, and laboratory data were collected and compared before and after surgery. Primary endpoints were the differences of albuminuria, estimated glomerular filtration rate (eGFR) and serum KIM-1 between baseline (pre-surgery) and 6-month post-surgery values. Results Six-month post-surgery data showed significant reduction of body mass index, HbA1c, microalbuminuria, and serum KIM-1, and a significant increase in eGFR (all, P < 0.001). The serum KIM-1 level positively correlated with microalbuminuria and serum creatinine (r = 0.596, P = 0.001 and r = 0.402, P = 0.034, respectively). Postoperative data showed that patients with microalbuminuria had significantly lower eGFR and higher KIM-1 values than those without microalbuminuria (P = 0.003 and 0.049, respectively). Conclusion We showed potential benefits of LSG against obesity-associated kidney damage. This is evidenced by improving eGFR and reducing levels of both KIM-1 and microalbuminuria. The serum level of KIM-1 may be a potential marker for renal recovery after LSG.
Collapse
Affiliation(s)
- Rania Khalil
- Biochemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Hosam Elghadban
- General Surgery Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Moustafa Abdelsalam
- Internal Medicine Department, Mansoura Nephrology and Dialysis Unit, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona Tawfik
- Internal Medicine Department, Mansoura Nephrology and Dialysis Unit, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
87
|
Griffin BR, You Z, Noureddine L, Gitomer B, Perrenoud L, Wang W, Chonchol M, Jalal D. KIM-1 and Kidney Disease Progression in Autosomal Dominant Polycystic Kidney Disease: HALT-PKD Results. Am J Nephrol 2020; 51:473-479. [PMID: 32541154 DOI: 10.1159/000508051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cyst compression of renal tubules plays a role in the progression of autosomal dominant polycystic kidney disease (ADPKD) and may induce expression of kidney injury molecule-1 (KIM-1). Whether urinary KIM-1 indexed for creatinine (uKIM-1/Cr) is a prognostic marker of disease progression in ADPKD is unknown.In this secondary analysis of a prospective cohort study, we sought to determine whether patients with high as opposed to low uKIM-1/CR at baseline had greater rates of eGFR loss and height-adjusted total kidney volume (HtTKV) increase. METHODS Baseline uKIM-1/Cr values were obtained from 754 participants in Halt Progression of Polycystic Kidney Disease (HALT-PKD) studies A (early ADPKD) and B (late ADPKD). The predictor was uKIM-1/Cr, which was dichotomized by a median value of 0.2417 pg/g, and the primary outcomes were measured longitudinally over time. Mixed-effects linear models were used in the analysis to calculate the annual slope of change in eGFR and HtTKV. RESULTS Patients with high uKIM-1/Cr (above the median) had an annual decline in eGFR that was 0.47 mL/min greater than that in those with low uKIM-1/Cr (p = 0.0015) after adjustment for all considered covariates. This association was seen in study B patients alone (0.45 mL/min; p = 0.009), but not in study A patients alone (0.42 mL/min; p = 0.06). High baseline uKIM-1/Cr was associated with higher HtTKV in the baseline cross-sectional analysis compared to low uKIM-1/Cr (p = 0.02), but there was no difference between the groups in the mixed-effects model annual slopes. CONCLUSION Elevated baseline uKIM-1/Cr is associated with a greater decline in eGFR over time. Further research is needed to determine whether uKIM-1/Cr improves risk stratification in patients with ADPKD.
Collapse
Affiliation(s)
- Benjamin R Griffin
- Division of Nephrology and Hypertension, Department of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA,
- Center for Access and Delivery Research and Evaluation (CADRE), Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA,
| | - Zhiying You
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lama Noureddine
- Division of Nephrology and Hypertension, Department of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Berenice Gitomer
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Loni Perrenoud
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Wei Wang
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diana Jalal
- Division of Nephrology and Hypertension, Department of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Center for Access and Delivery Research and Evaluation (CADRE), Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| |
Collapse
|
88
|
D'Amore C, Nuzzo S, Briguori C. Biomarkers of Contrast-Induced Nephropathy:: Which Ones are Clinically Important? Interv Cardiol Clin 2020; 9:335-344. [PMID: 32471674 DOI: 10.1016/j.iccl.2020.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Contrast-induced acute kidney injury (CI-AKI) is a common complication after intravascular injection of iodinated contrast media, and it is associated with a prolonged in-hospital stay and unfavorable outcome. CI-AKI occurs in 5% to 20% among hospitalized patients. Its diagnosis relies on the increase in serum creatinine levels, which is a late biomarker of kidney injury. Novel and early serum and urinary biomarkers have been identified to detect kidney damage before the expected serum creatinine increase.
Collapse
Affiliation(s)
- Carmen D'Amore
- Interventional Cardiology Unit, Mediterranea Cardiocentro, Via Orazio 2, Naples 80121, Italy
| | - Silvia Nuzzo
- IRCCS, SDN, Via Gianturco 113, Naples 80143, Italy
| | - Carlo Briguori
- Interventional Cardiology Unit, Mediterranea Cardiocentro, Via Orazio 2, Naples 80121, Italy.
| |
Collapse
|
89
|
Massoth C, Zarbock A, Meersch M. Risk Stratification for Targeted AKI Prevention After Surgery: Biomarkers and Bundled Interventions. Semin Nephrol 2020; 39:454-461. [PMID: 31514909 DOI: 10.1016/j.semnephrol.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Perioperative acute kidney injury (AKI) is a surgery-associated complication with increasing incidence, not only because of enhanced awareness for the diagnosis, but also as a result of the aging society with a growing number of severe comorbidities undergoing major surgical procedures. The dilemma of AKI as a global health burden lies in the discrepancy between its importance as a significant risk factor for morbidity and mortality, and the unavailability of specific therapies to modify these adverse outcomes. Thus, it is all the more important to focus management on AKI prevention, and when AKI occurs to focus on early recognition and immediate adaption of individualized care. AKI is the result of an inter-relationship between patient susceptibility and determinants of perioperative exposures. Screening for constellations of risk factors along with measurement of novel biomarkers allows for early identification of patients who are susceptible to AKI and to initiate early targeted care. Targeted care involves implementation of a bundle of interventions adapted from a consensus management guideline, and is a strategy with growing evidence of a beneficial effect on patients' short- and long-term outcomes.
Collapse
Affiliation(s)
- Christina Massoth
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Melanie Meersch
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany.
| |
Collapse
|
90
|
Abstract
The current unidimensional paradigm of kidney disease detection is incompatible with the complexity and heterogeneity of renal pathology. The diagnosis of kidney disease has largely focused on glomerular filtration, while assessment of kidney tubular health has notably been absent. Following insult, the kidney tubular cells undergo a cascade of cellular responses that result in the production and accumulation of low-molecular-weight proteins in the urine and systemic circulation. Modern advancements in molecular analysis and proteomics have allowed the identification and quantification of these proteins as biomarkers for assessing and characterizing kidney diseases. In this review, we highlight promising biomarkers of kidney tubular health that have strong underpinnings in the pathophysiology of kidney disease. These biomarkers have been applied to various specific clinical settings from the spectrum of acute to chronic kidney diseases, demonstrating the potential to improve patient care.
Collapse
Affiliation(s)
- William R Zhang
- Kidney Health Research Collaborative, University of California San Francisco School of Medicine, San Francisco, California 94121, USA
| | - Chirag R Parikh
- Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA;
| |
Collapse
|
91
|
Time-dependent changes in kidney injury biomarkers in patients receiving multiple cycles of cisplatin chemotherapy. Toxicol Rep 2020; 7:571-576. [PMID: 32382514 PMCID: PMC7200609 DOI: 10.1016/j.toxrep.2020.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
KIM-1, calbindin, and TFF3 are increased in urine of patients prescribed cisplatin. KIM-1 concentrations remain elevated with subsequent cisplatin treatment cycles. Calbindin concentrations increased only during initial cycles of cisplatin chemotherapy. TFF3 increased similarly on both cycles and returned to baseline in between.
Proteins secreted into urine following tubular injury are being increasingly used as biomarkers of clinical and subclinical nephrotoxicity. In the present study, we sought to characterize the time-dependent urinary excretion of three promising biomarkers, kidney injury molecule-1 (KIM-1), calbindin, and trefoil factor 3 (TFF3), during two different chemotherapy cycles in 27 patients with solid tumors prescribed the anticancer drug cisplatin (≥25 mg/m2). Urinary biomarkers were evaluated at Days 3 and 10 during an initial and a subsequent cycle of cisplatin chemotherapy. Longitudinal analyses compared the mean difference estimations for biomarker concentrations during and across the initial and subsequent cycles of cisplatin treatment. Traditional biomarkers including serum creatinine, estimated glomerular filtration rate, and blood urea nitrogen were unchanged during and across both cycles of cisplatin therapy. In response to the initial cycle, urinary KIM-1 concentrations increased from baseline and remained elevated through a subsequent cycle of cisplatin chemotherapy. By comparison, urinary levels of calbindin were elevated 10 days after the initial cisplatin treatment, but largely unchanged by cisplatin exposure in a subsequent cycle. Early elevations in urinary TFF3 at 3 days after cisplatin administration were observed consistently in both the initial and subsequent cycle of cisplatin treatment. In conclusion, the longitudinal assessment of biomarker performance in the same cohort of oncology patients reveals different patterns of urinary excretion between initial and subsequent cycles of cisplatin-containing chemotherapy. These data add novel cycle-dependent insight to the growing literature addressing the ability of urinary biomarkers to detect subclinical renal injury in patients receiving cisplatin.
Collapse
|
92
|
Kana S, Nachiappa Ganesh R, Surendran D, Kulkarni RG, Bobbili RK, Jeby JO. Urine microscopy and neutrophil-lymphocyte ratio are early predictors of acute kidney injury in patients with urinary tract infection. Asian J Urol 2020; 8:220-226. [PMID: 33996480 PMCID: PMC8099642 DOI: 10.1016/j.ajur.2020.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/16/2019] [Accepted: 11/05/2019] [Indexed: 11/25/2022] Open
Abstract
Objective Urinary tract infection (UTI) is a common cause of morbidity and hospitalisation in the population worldwide. Upper UTI is indolent and causes subclinical acute kidney injury (AKI) resulting in preventable cause of scarring of renal parenchyma. We explored urinary and serum levels of kidney injury molecule-1 (KIM-1), haematological parameters and quantitative urine microscopy parameters to predict kidney injury. Methods Neutrophil–lymphocyte ratio (NLR) is obtained by dividing absolute neutrophil count with absolute lymphocyte count. Quantitative urine sediment microscopy was performed and correlated with clinical, biochemical and haematological findings to predict AKI in patients with UTI. Quantitative ELISA was performed for serum and urine levels of KIM-1. Seventy two adult patients with UTI were enrolled, 45 of whom had AKI while 27 were in the non-AKI group. Results NLR (p=0.005) and renal tubular epithelial cell-granular cast score in quantitative urine microscopy (p=0.008) are strong predictors of AKI in patients with UTI while rest of quantitative urine microscopy parameters and serum and urinary levels of KIM-1 molecule were not found to be useful in prediction of AKI. Conclusion NLR in haemogram is a novel and useful biomarker for predicting AKI in patients with UTI.
Collapse
Affiliation(s)
- Sreerag Kana
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Rajesh Nachiappa Ganesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Deepanjali Surendran
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Rajendra G Kulkarni
- Department of Immunohaematology and Transfusion Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Ravi Kishore Bobbili
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Jose Olickal Jeby
- Department of Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
93
|
Abstract
Drug attrition related to kidney toxicity remains a challenge in drug discovery and development. In vitro models established over the past 2 decades to supplement in vivo studies have improved the throughput capacity of toxicity evaluation, but usually suffer from low predictive value. To achieve a paradigm shift in the prediction of drug-induced kidney toxicity, two aspects are fundamental: increased physiological relevance of the kidney model, and use of appropriate toxicity end points. Recent studies have suggested that increasing the physiological relevance of kidney models can improve their sensitivity to drug-induced damage. Here, we discuss how advanced culture models, including modified cell lines, induced pluripotent stem cells, kidney organoid cultures, and microfluidic devices enhance in vivo similarity. To this end, culture models aim to increase the proximal tubule epithelial phenotype, reconstitute multiple tissue compartments and extracellular matrix, allow exposure to fluid shear stress, and enable interaction between multiple cell types. Applying computation-aided end points and novel biomarkers to advanced culture models will further improve sensitivity and clinical relevance of in vitro drug-induced toxicity prediction. Implemented at the right stage of drug discovery and development and coupled to high-content evaluation techniques, these models have the potential to reduce attrition and aid the selection of candidate drugs with an appropriate safety profile.
Collapse
Affiliation(s)
- Tom T G Nieskens
- CVRMSafety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anna-Karin Sjögren
- CVRMSafety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
94
|
Li L, Wang D, Wang X, Bai R, Wang C, Gao Y, Anastassiades T. N-Butyrylated hyaluronic acid ameliorates gout and hyperuricemia in animal models. PHARMACEUTICAL BIOLOGY 2019; 57:717-728. [PMID: 31622116 PMCID: PMC8871623 DOI: 10.1080/13880209.2019.1672755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Context: Hyaluronic acid (HA) plays critical roles in the structural skeleton, joint lubrication, renal function and cell signaling. We previously showed that partially N-butyrylated, low molecular weight, hyaluronic acid (BHA) exhibited an anti-inflammatory effect in cultured human macrophage, where inflammation was induced either by a TL-4 agonist or the low molecular weight HA itself, in dose-dependent fashion. Objectives: To investigate the anti-inflammatory, antioxidative, and antihyperuricemic effects of BHA using animal models of acute gouty arthritis and hyperuricemia. Materials and methods: The anti-inflammatory effect of articular BHA (10 and 50 μg) injections was evaluated by measuring joint swelling and the serum levels of inflammatory cytokines in a model of acute gouty arthritis induced by intra-articular injection of monosodium urate crystals in Wistar rats (n = 10/group), in comparison to the control group with saline injection. Antioxidative and antihyperuricemic activities were investigated using intraperitoneal injections of oteracil potassium and yeast extract hyperuricemic Balb/C mice, which were treated with intraperitoneal injection of BHA at day 6-8 in the model. Results: In the gouty arthritis rat model, BHA at a higher dosage (50 μg) demonstrated a strong anti-inflammatory effect by reducing the degree of articular swelling and the serum levels of IL-1β, IL-8, IFN-γ, and MCP-1 by 5.56%, 6.55%, 15.58% and 33.18%. In the hyperuricemic mouse model, lower dosage BHA (10 μg) was sufficient to provide antioxidative activities by significantly decreasing the ROS levels in both serum and liver by 14.87% and 8.04%, while improving liver SOD by 12.77%. Intraperitoneal injection of BHA suppressed uric acid production through reducing liver XO activity by 19.78% and decreased the serum uric acid level in hyperuricemic mice by 30.41%. Conclusions: This study demonstrated for the first time that BHA exhibits anti-inflammatory, antioxidative and antihyperuricemic effects in vivo, suggesting a potential therapeutic application of BHA in gouty arthritis and hyperuricemia.
Collapse
Affiliation(s)
- Lanzhou Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Di Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xueju Wang
- Pathology Department of China–Japan Union Hospital, Jilin University, Changchun, China
| | - Ruifeng Bai
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, China
| | - Yin Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- CONTACT Yin Gao School of Life Sciences, Jilin University, Changchun130012, China
| | - Tassos Anastassiades
- Division of Rheumatology, Department of Medicine, Queen’s University, Kingston, Canada
- Tassos Anastassiades Division of Rheumatology, Department of Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
95
|
Jiang Y, Quan J, Chen Y, Liao X, Dai Q, Lu R, Yu Y, Hu G, Li Q, Meng J, Xie Y, Peng Z, Tao L. Fluorofenidone protects against acute kidney injury. FASEB J 2019; 33:14325-14336. [DOI: 10.1096/fj.201901468rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- YuPeng Jiang
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jiao Quan
- Department of Nutriology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yang Chen
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaohua Liao
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qin Dai
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Rong Lu
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yue Yu
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Gaoyun Hu
- Department of Pharmaceutical Chemistry, Xiangya Hospital, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qianbin Li
- Department of Pharmaceutical Chemistry, Xiangya Hospital, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Meng
- Department of Respirology, Xiangya Hospital, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
96
|
Bland SK, Clark ME, Côté O, Bienzle D. A specific immunoassay for detection of feline kidney injury molecule 1. J Feline Med Surg 2019; 21:1069-1079. [PMID: 30461328 PMCID: PMC10814266 DOI: 10.1177/1098612x18812494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of this study was to design and carry out a preliminary evaluation of a urine point-of-care test for kidney injury molecule 1 (KIM-1) in healthy and diseased cats. METHODS Part of the feline KIM-1 gene was amplified, ligated into a plasmid with a signal peptide and monomeric human IgGFc, and transfected into a mammalian cell line. Supernatant was purified and tested for the fusion protein by gel electrophoresis and Western blot. Mice were immunized three times with purified proteins, and hybridomas were generated from splenocytes. Antibodies were tested by ELISA for detection of recombinant KIM-1 and naturally occurring KIM-1 in disease-state urine. Next, a lateral flow assay (LFA) with capture and detection antibodies was constructed, and tested with 34 urine samples from healthy and diseased cats. Antibodies were also tested for reactivity with formalin-fixed paraffin-embedded kidney tissue. RESULTS Three antibodies were assessed. Antibodies detected between 0.4 and 60 ng/ml feline KIM-1 fusion protein in the LFA. Urine samples from healthy cats yielded faint bands in the LFA corresponding to optical density (OD) values of 4.8-8.8. Samples from cats with suspected or confirmed acute kidney injury (AKI) had OD values ranging from 1.6-20.5. Urine KIM-1 varied over multiple days in cats with sepsis or urethral obstruction despite normalizing serum creatinine concentration. In tissue sections, KIM-1 antibodies labeled tubular cells with morphological features of injury. CONCLUSIONS AND RELEVANCE A practical patient-side assay for detection of KIM-1 in feline urine has been developed. Preliminary results show marked though transient increases in cats with sepsis and urethral obstruction-associated AKI, and expression in injured tubules. Although initial data indicating that the LFA is sensitive and specific for KIM-1 in cats with AKI are promising, values associated with different types of injury, urine collection, urine storage and specific gravity need to be investigated.
Collapse
Affiliation(s)
- S Karlyn Bland
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Mary Ellen Clark
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | | - Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
97
|
Mosa IF, Youssef M, Kamel M, Mosa OF, Helmy Y. Synergistic antioxidant capacity of CsNPs and CurNPs against cytotoxicity, genotoxicity and pro-inflammatory mediators induced by hydroxyapatite nanoparticles in male rats. Toxicol Res (Camb) 2019; 8:939-952. [PMID: 32206303 DOI: 10.1039/c9tx00221a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/24/2019] [Indexed: 01/15/2023] Open
Abstract
Due to their dynamic characteristics, hydroxyapatite nanoparticles (HAP-NPs) have been employed numerous times in nanomedicine and in tissue engineering, particularly as diagnostic and therapeutic agents. However, there are outstanding findings from various studies that question whether these NPs are safe when they are used in the human body. Therefore, a more in-depth toxicity assessment should be carried out to give a clear answer regarding the fate of these particles. Here we aim to investigate the possible cytotoxicity, genotoxicity and inflammation induced by HAP-NPs, as well as predict the synergistic antioxidative effect of chitosan nanoparticles (CsNPs) and curcumin nanoparticles (CurNPs) in mitigating this pronounced toxicity. The present study was conducted on eighty Wistar male rats, divided into eight equal groups. The results showed that, at the molecular level, HAP-NPs significantly induced gene expression of tumor suppressor protein p53, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and also Kidney Injury Molecule-1 (KIM-1) and Lipocalin-2 (LCN2). In addition, kidney biochemical parameters (total bilirubin, urea, uric acid and creatinine) increased, but albumin levels decreased in the group treated with HAP-NPs alone. Meanwhile, co-treatment with CsNPs and/or CurNPs with HAP-NPs showed an improvement in the activities of the kidney parameters and reduced inflammation. This study shows that the nephrotoxicity mechanism of HAP-NPs may involve various signaling pathways including alterations in biochemical parameters, gene expression of KIM-1 and LCN2 and disturbing the production of cytokines and p53. Furthermore, these insights showed that the combined effect of both CsNPs and CurNPs was more pronounced than the effect of each one on its own.
Collapse
Affiliation(s)
- Israa F Mosa
- Department of Environmental Studies , Institute of Graduate Studies and Research , Alexandria University , Alexandria , Egypt . ; Tel: +201024680746
| | - Mokhtar Youssef
- Department of Environmental Studies , Institute of Graduate Studies and Research , Alexandria University , Alexandria , Egypt
| | - Maher Kamel
- Department of Biochemistry , Medical Research Institute , Alexandria University , Alexandria , Egypt
| | - Osama F Mosa
- Department of Public health , Health Sciences College at Leith , Umm Al Qura University , Al-Leith , Makkah , Saudi Arabia
| | - Yasser Helmy
- Department of BioMaterials , Institute of Graduate Studies and Research , Alexandria University , Alexandria , Egypt
| |
Collapse
|
98
|
Tajima S, Yamamoto N, Masuda S. Clinical prospects of biomarkers for the early detection and/or prediction of organ injury associated with pharmacotherapy. Biochem Pharmacol 2019; 170:113664. [PMID: 31606409 DOI: 10.1016/j.bcp.2019.113664] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022]
Abstract
Several biomarkers are used to monitor organ damage caused by drug toxicity. Traditional markers of kidney function, such as serum creatinine and blood urea nitrogen are commonly used to estimate glomerular filtration rate. However, these markers have several limitations including poor specificity and sensitivity. A number of serum and urine biomarkers have recently been described to detect kidney damage caused by drugs such as cisplatin, gentamicin, vancomycin, and tacrolimus. Neutrophil gelatinase-associated lipocalin (NGAL), liver-type fatty acid-binding protein (L-FABP), kidney injury molecule-1 (KIM-1), monocyte chemotactic protein-1 (MCP-1), and cystatin C have been identified as biomarkers for early kidney damage. Hy's Law is widely used as to predict a high risk of severe drug-induced liver injury caused by drugs such as acetaminophen. Recent reports have indicated that glutamate dehydrogenase (GLDH), high-mobility group box 1 (HMGB-1), Keratin-18 (k18), MicroRNA-122 and ornithine carbamoyltransferase (OCT) are more sensitive markers of hepatotoxicity compared to the traditional markers including the blood levels of amiotransferases and total bilirubin. Additionally, the rapid development of proteomic technologies in biofluids and tissue provides a new multi-marker panel, leading to the discovery of more sensitive biomarkers. In this review, an update topics of biomarkers for the detection of kidney or liver injury associated with pharmacotherapy.
Collapse
Affiliation(s)
- Soichiro Tajima
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Nanae Yamamoto
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan; Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Pharmacy, International University of Health and Welfare Narita Hospital, Japan; Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, International University of Health and Welfare Narita Hospital, Japan.
| |
Collapse
|
99
|
Renal glycosuria as a novel early sign of colistin-induced kidney damage in mice. Antimicrob Agents Chemother 2019:AAC.01650-19. [PMID: 31591120 PMCID: PMC6879251 DOI: 10.1128/aac.01650-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The polymyxin colistin represents a last-resort antibiotic for multidrug-resistant infections, but its use is limited by the frequent onset of acute drug-induced kidney injury (DIKI). It is essential to closely monitor kidney function prior to and during colistin treatment in order to pinpoint early signs of injury and minimize long-term renal dysfunction. To facilitate this, a mouse model of colistin-induced nephrotoxicity was used to uncover novel early markers of colistin-induced DIKI. The polymyxin colistin represents a last-resort antibiotic for multidrug-resistant infections, but its use is limited by the frequent onset of acute drug-induced kidney injury (DIKI). It is essential to closely monitor kidney function prior to and during colistin treatment in order to pinpoint early signs of injury and minimize long-term renal dysfunction. To facilitate this, a mouse model of colistin-induced nephrotoxicity was used to uncover novel early markers of colistin-induced DIKI. Increased urinary levels of kidney injury molecule-1 (Kim-1) as well as glycosuria were observed in colistin-treated mice, where alterations of established clinical markers of acute kidney injury (serum creatinine and albuminuria) and emerging markers such as cystatin C were inaccurate in flagging renal damage as confirmed by histology. A direct interaction of colistin with renal glucose reabsorption was ruled out by a cis-inhibition assay in mouse brush border membrane vesicles (BBMV). Immunohistochemical examination and protein quantification by Western blotting showed a marked reduction in the protein amount of sodium-glucose transporter 2 (Sglt2), the main kidney glucose transporter, in renal tissue from colistin-treated mice in comparison to that in control animals. Consistently, BBMV isolated from treated mouse kidneys also showed a reduction in ex vivo glucose uptake compared to that in BBMV isolated from control kidneys. These findings support pathology observations of colistin-induced proximal tubule damage at the site of the brush border membrane, where Sglt2 is expressed, and open avenues for the study of glycosuria as a sensitive, specific, and accessible marker of DIKI during colistin therapy.
Collapse
|
100
|
Alkaline Phosphatase Treatment of Acute Kidney Injury in an Infant Piglet Model of Cardiopulmonary Bypass with Deep Hypothermic Circulatory Arrest. Sci Rep 2019; 9:14175. [PMID: 31578351 PMCID: PMC6775126 DOI: 10.1038/s41598-019-50481-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/13/2019] [Indexed: 01/11/2023] Open
Abstract
Acute kidney injury (AKI) is associated with prolonged hospitalization and mortality following infant cardiac surgery, but therapeutic options are limited. Alkaline phosphatase (AP) infusion reduced AKI in phase 2 sepsis trials but has not been evaluated for cardiac surgery-induced AKI. We developed a porcine model of infant cardiopulmonary bypass (CPB) with deep hypothermic circulatory arrest (DHCA) to investigate post-CPB/DHCA AKI, measure serum/renal tissue AP activity with escalating doses of AP infusion, and provide preliminary assessment of AP infusion for prevention of AKI. Infant pigs underwent CPB with DHCA followed by survival for 4 h. Groups were treated with escalating doses of bovine intestinal AP (1, 5, or 25U/kg/hr). Anesthesia controls were mechanically ventilated for 7 h without CPB. CPB/DHCA animals demonstrated histologic and biomarker evidence of AKI as well as decreased serum and renal tissue AP compared to anesthesia controls. Only high dose AP infusion significantly increased serum or renal tissue AP activity. Preliminary efficacy evaluation demonstrated a trend towards decreased AKI in the high dose AP group. The results of this dose-finding study indicate that AP infusion at the dose of 25U/kg/hr corrects serum and tissue AP deficiency and may prevent AKI in this piglet model of infant CPB/DHCA.
Collapse
|