51
|
Subudhi AW, Fan JL, Evero O, Bourdillon N, Kayser B, Julian CG, Lovering AT, Roach RC. AltitudeOmics: effect of ascent and acclimatization to 5260 m on regional cerebral oxygen delivery. Exp Physiol 2013; 99:772-81. [PMID: 24243839 DOI: 10.1113/expphysiol.2013.075184] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cerebral hypoxaemia associated with rapid ascent to high altitude can be life threatening; yet, with proper acclimatization, cerebral function can be maintained well enough for humans to thrive. We investigated adjustments in global and regional cerebral oxygen delivery (DO2) as 21 healthy volunteers rapidly ascended and acclimatized to 5260 m. Ultrasound indices of cerebral blood flow in internal carotid and vertebral arteries were measured at sea level, upon arrival at 5260 m (ALT1; atmospheric pressure 409 mmHg) and after 16 days of acclimatization (ALT16). Cerebral DO2 was calculated as the product of arterial oxygen content and flow in each respective artery and summed to estimate global cerebral blood flow. Vascular resistances were calculated as the quotient of mean arterial pressure and respective flows. Global cerebral blood flow increased by ∼70% upon arrival at ALT1 (P < 0.001) and returned to sea-level values at ALT16 as a result of changes in cerebral vascular resistance. A reciprocal pattern in arterial oxygen content maintained global cerebral DO2 throughout acclimatization, although DO2 to the posterior cerebral circulation was increased by ∼25% at ALT1 (P = 0.032). We conclude that cerebral DO2 is well maintained upon acute exposure and acclimatization to hypoxia, particularly in the posterior and inferior regions of the brain associated with vital homeostatic functions. This tight regulation of cerebral DO2 was achieved through integrated adjustments in local vascular resistances to alter cerebral perfusion during both acute and chronic exposure to hypoxia.
Collapse
Affiliation(s)
- Andrew W Subudhi
- University of Colorado Denver Anschutz Medical Campus, Department of Emergency Medicine, Altitude Research Center, Aurora, CO, USA University of Colorado Colorado Springs, Department of Biology, Colorado Springs, CO, USA
| | - Jui-Lin Fan
- University of Lausanne, Institute of Sport Sciences, Lausanne, Switzerland University of Geneva, Lemanic Doctoral School of Neuroscience, Geneva, Switzerland
| | - Oghenero Evero
- University of Colorado Denver Anschutz Medical Campus, Department of Emergency Medicine, Altitude Research Center, Aurora, CO, USA
| | - Nicolas Bourdillon
- University of Lausanne, Institute of Sport Sciences, Lausanne, Switzerland
| | - Bengt Kayser
- University of Lausanne, Institute of Sport Sciences, Lausanne, Switzerland
| | - Colleen G Julian
- University of Colorado Denver Anschutz Medical Campus, Department of Emergency Medicine, Altitude Research Center, Aurora, CO, USA
| | - Andrew T Lovering
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| | - Robert C Roach
- University of Colorado Denver Anschutz Medical Campus, Department of Emergency Medicine, Altitude Research Center, Aurora, CO, USA
| |
Collapse
|
52
|
Van Mieghem T, Hodges R, Jaeggi E, Ryan G. Functional echocardiography in the fetus with non-cardiac disease. Prenat Diagn 2013; 34:23-32. [DOI: 10.1002/pd.4254] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/23/2013] [Accepted: 10/07/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Tim Van Mieghem
- Fetal Medicine Unit, Mount Sinai Hospital; University of Toronto; Toronto Canada
| | - Ryan Hodges
- Fetal Medicine Unit, Mount Sinai Hospital; University of Toronto; Toronto Canada
| | - Edgar Jaeggi
- Fetal Cardiac Program, Pediatric Cardiology, Hospital for Sick Children; University of Toronto; Toronto Canada
| | - Greg Ryan
- Fetal Medicine Unit, Mount Sinai Hospital; University of Toronto; Toronto Canada
| |
Collapse
|
53
|
|
54
|
Morales-Roselló J, Hervás-Marín D, Perales-Marín A. Proximity of term labor deepens the fall of Doppler impedance in the fetal cerebral arteries. J Matern Fetal Neonatal Med 2013; 27:283-90. [PMID: 23773086 DOI: 10.3109/14767058.2013.814634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To determine the existence of Doppler changes in the fetal vertebral, middle cerebral and umbilical arteries prior to term labor. METHODS Five hundred and twenty eight Doppler examinations of the vertebral (VA), middle cerebral (MCA) and umbilical (UA) arteries resistance indices (RI) were performed between 37 and 41 weeks gestation. For each artery, values were converted into multiples of the median (MoM) and were divided into four groups according to the interval to labor and compared using Kruskal-Wallis tests. Subsequently, values were plotted in scattergrams and linear regressions and 95% confidence intervals were calculated. Finally, using multivariate analysis and model averaging, the importance and interrelationship of Doppler measurements in the explanation of the interval to labor was evaluated. RESULTS Univariate and multivariate analysis confirmed that, independently of gestational age, fetuses examined close to labor presented more intense Doppler changes in the cerebral arteries with a significant reduction of the VA RI and MCA RI. This reduction was larger in the MCA. No significant changes were detected in the UA. CONCLUSION Before the onset of term labor, the fetal cerebral flow presents an additional reduction of impedance, which is more intense in the MCA system.
Collapse
Affiliation(s)
- José Morales-Roselló
- Servicio de Obstetricia y Ginecología, Hospital Universitario y Politécnico La Fe , Valencia , Spain and
| | | | | |
Collapse
|
55
|
Thorpe RB, Stockman SL, Williams JM, Lincoln TM, Pearce WJ. Hypoxic depression of PKG-mediated inhibition of serotonergic contraction in ovine carotid arteries. Am J Physiol Regul Integr Comp Physiol 2013; 304:R734-43. [PMID: 23447135 DOI: 10.1152/ajpregu.00212.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic hypoxia attenuates soluble guanylate cyclase-induced vasorelaxation in serotonin (5-HT)-contracted ovine carotid arteries. Because protein kinase G (PKG) mediates many effects of soluble guanylate cyclase activation through phosphorylation of multiple kinase targets in vascular smooth muscle, we tested the hypothesis that chronic hypoxia reduces the ability of PKG to phosphorylate its target proteins, which attenuates the ability of PKG to induce vasorelaxation. We also tested the hypothesis that hypoxia attenuates PKG expression and/or activity. Arteries from normoxic and chronically hypoxic (altitude of 3,820 m for 110 days) fetal and adult sheep were denuded of endothelium and equilibrated with 95% O2-5% CO2 in the presence of nitro-l-arginine methyl ester (l-NAME) and N(G)-nitro-l-arginine (l-NNA) to inhibit residual endothelial nitric oxide synthase. Concentration-response relations for 5-HT were determined in the presence of prazosin to minimize activation of α-adrenergic receptors. The PKG activator 8-(p-chlorophenylthio)-guanosine 3',5'-cyclic monophosphate (8-pCTP-cGMP) reduced agonist binding affinity of the 5-HT receptor in a concentration-dependent manner that was attenuated by hypoxia. Expression and activity of PKG-I was not significantly affected by chronic hypoxia in either fetal or adult arteries, although PKG-I abundance was greater in fetal arteries. Pretreatment with the large conductance calcium-sensitive potassium channel (BK) inhibitor iberiotoxin attenuated the vasorelaxation induced by 8-pCPT-cGMP in normoxic but not chronically hypoxic arteries. These results support the hypothesis that hypoxia attenuates the vasorelaxant effects of PKG through suppression of the ability of PKG to activate large conductance calcium-sensitive potassium channels in arterial smooth muscle. The results also reveal that this hypoxic effect is greater in fetal than adult arteries and that chronic maternal hypoxia can profoundly affect fetal vascular function.
Collapse
Affiliation(s)
- Richard B Thorpe
- Divisions of Physiology, Pharmacology, and Biochemistry, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
56
|
Scher MS. Normal and abnormal cerebrovascular development. HANDBOOK OF CLINICAL NEUROLOGY 2013; 112:1021-42. [DOI: 10.1016/b978-0-444-52910-7.00021-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
57
|
Kandasamy Y, Smith R, Wright IMR, Hartley L. Relationship between birth weight and retinal microvasculature in newborn infants. J Perinatol 2012; 32:443-7. [PMID: 21941229 PMCID: PMC3365284 DOI: 10.1038/jp.2011.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The purposes of this study were to determine the normal retinal microvasculature measurements in human infants who are born at term and to determine whether birth weight influences measurements of retinal microvasculature. STUDY DESIGN Retinal arteriole and venule measurements were obtained in a cohort of 24 infants who were born at term. Digital images of both the retinas were obtained using a digital retinal camera after pupillary dilation. RESULT In all, 24 newborn infants born at term (12 females and 12 males) were analyzed in this study. The measured retinal arteriole diameters were from 66.8 to 147.8 μm (mean, 94.2±19.6 μm), and the venule diameters were from 102.0 to 167.8 μm (mean, 135.2±19.1 μm). Seven babies in the sample had low birth weight (LBW), while 17 babies were born with normal weight. Babies with lower birth weights had larger arteriole (113.1±17.9 μm vs 86.4±14.4 μm; P=0.0009) and venule diameters (151.7±14.9 μm vs 128.4±16.9 μm; P=0.0040). CONCLUSION Retinal venules and arterioles in LBW babies are larger compared with those of normal-birth-weight babies. We postulate that the difference observed in our study was due to in utero pathophysiological changes that occurred in the cerebral circulation of growth-restricted fetuses.
Collapse
Affiliation(s)
- Y Kandasamy
- Department of Neonatology, The Townsville Hospital, Douglas, QLD, Australia.
| | - R Smith
- Mother and Babies' Research Unit/University of Newcastle John Hunter Hospital, Hunter Region Mail Centre, Newcastle, NSW, Australia
| | - I M R Wright
- Mother and Babies' Research Unit/University of Newcastle John Hunter Hospital, Hunter Region Mail Centre, Newcastle, NSW, Australia
| | - L Hartley
- Department of Neonatology, The Townsville Hospital, Douglas, QLD, Australia
| |
Collapse
|
58
|
Scher MS. Developmental origins of cerebrovascular disease II: considering gene-environment interactions when developing neuroprotective strategies. J Child Neurol 2012; 27:238-50. [PMID: 22180566 DOI: 10.1177/0883073811417715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The second part of this review of the developmental origins of cerebrovascular disease discusses prenatal gene-environment interactions concerning maternal, placental, and fetal conditions that culminate in specific injuries such as perinatal stroke, as well as complications of intrauterine growth restriction and congenital heart disease. A greater understanding of gene-environment influences on cerebrovascular health and disease in early life will contribute to the successful development of neuroprotective strategies throughout the lifespan.
Collapse
Affiliation(s)
- Mark S Scher
- School of Medicine, Case Western Reserve University, and Division of Pediatric Neurology, Fetal/Neonatal Neurology Program, Rainbow Babies and Children's Hospital, Case Medical Center, University Hospitals of Cleveland, OH, USA.
| |
Collapse
|
59
|
Stolp H, Neuhaus A, Sundramoorthi R, Molnár Z. The Long and the Short of it: Gene and Environment Interactions During Early Cortical Development and Consequences for Long-Term Neurological Disease. Front Psychiatry 2012; 3:50. [PMID: 22701439 PMCID: PMC3372875 DOI: 10.3389/fpsyt.2012.00050] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/01/2012] [Indexed: 01/21/2023] Open
Abstract
Cortical development is a complex amalgamation of proliferation, migration, differentiation, and circuit formation. These processes follow defined timescales and are controlled by a combination of intrinsic and extrinsic factors. It is currently unclear how robust and flexible these processes are and whether the developing brain has the capacity to recover from disruptions. What is clear is that there are a number of cognitive disorders or conditions that are elicited as a result of disrupted cortical development, although it may take a long time for the full pathophysiology of the conditions to be realized clinically. The critical window for the manifestation of a neurodevelopmental disorder is prolonged, and there is the potential for a complex interplay between genes and environment. While there have been extended investigations into the genetic basis of a number of neurological and mental disorders, limited definitive associations have been discovered. Many environmental factors, including inflammation and stress, have been linked to neurodevelopmental disorders, and it may be that a better understanding of the interplay between genes and environment will speed progress in this field. In particular, the development of the brain needs to be considered in the context of the whole materno-fetal unit as the degree of the metabolic, endocrine, or inflammatory responses, for example, will greatly influence the environment in which the brain develops. This review will emphasize the importance of extending neurodevelopmental studies to the contribution of the placenta, vasculature, cerebrospinal fluid, and to maternal and fetal immune response. These combined investigations are more likely to reveal genetic and environmental factors that influence the different stages of neuronal development and potentially lead to the better understanding of the etiology of neurological and mental disorders such as autism, epilepsy, cerebral palsy, and schizophrenia.
Collapse
Affiliation(s)
- Helen Stolp
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | | | | | | |
Collapse
|
60
|
Rees S, Harding R, Walker D. The biological basis of injury and neuroprotection in the fetal and neonatal brain. Int J Dev Neurosci 2011; 29:551-63. [PMID: 21527338 PMCID: PMC3168707 DOI: 10.1016/j.ijdevneu.2011.04.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/08/2011] [Indexed: 12/29/2022] Open
Abstract
A compromised intrauterine environment that delivers low levels of oxygen and/or nutrients, or is infected or inflammatory, can result in fetal brain injury, abnormal brain development and in cases of chronic compromise, intrauterine growth restriction. Preterm birth can also be associated with injury to the developing brain and affect the normal trajectory of brain growth. This review will focus on the effects that episodes of perinatal hypoxia (acute, chronic, associated with inflammation or as an antecedent of preterm birth) can have on the developing brain. In animal models of these conditions we have found that relatively brief (acute) periods of fetal hypoxemia can have significant effects on the fetal brain, for example death of susceptible neuronal populations (cerebellum, hippocampus, cortex) and cerebral white matter damage. Chronic placental insufficiency which includes fetal hypoxemia, nutrient restriction and altered endocrine status can result in fetal growth restriction and long-term deficits in neural connectivity in addition to altered postnatal function, for example in the auditory and visual systems. Maternal/fetal inflammation can result in fetal brain damage, particularly but not exclusively in the white matter; injury is more pronounced when associated with fetal hypoxemia. In the baboon, in which the normal trajectory of growth is affected by preterm birth, there is a direct correlation between a higher flux in oxygen saturation and a greater extent of neuropathological damage. Currently, the only established therapy for neonatal encephalopathy in full term neonates is moderate hypothermia although this only offers some protection to moderately but not severely affected brains. There is no accepted therapy for injured preterm brains. Consequently the search for more efficacious treatments continues; we discuss neuroprotective agents (erythropoietin, N-acetyl cysteine, melatonin, creatine, neurosteroids) which we have trialed in appropriate animal models. The possibility of combining hypothermia with such agents or growth factors is now being considered. A deeper understanding of causal pathways in brain injury is essential for the development of efficacious strategies for neuroprotection.
Collapse
Affiliation(s)
- Sandra Rees
- Department of Anatomy and Cell Biology, University of Melbourne, Vic. 3010, Australia.
| | | | | |
Collapse
|
61
|
Nakamura T, Kajimura M, Morikawa T, Hattori K, Ishikawa M, Yukutake Y, Uchiyama SI, Suematsu M. Acute CO2-independent vasodilatation of penetrating and pre-capillary arterioles in mouse cerebral parenchyma upon hypoxia revealed by a thinned-skull window method. Acta Physiol (Oxf) 2011; 203:187-96. [PMID: 21054808 DOI: 10.1111/j.1748-1716.2010.02212.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Investigating spatio-temporal relationship between regional metabolic changes and microvascular responses in hypoxic brain is critical for unravelling local O(2) -sensing mechanisms. However, no reliable method to examine the relationship has been available because of inherent disadvantages associated with use of a conventional cranial window preparation. We aimed to devise a method to solve the problem. METHODS Anaesthetized mice were equipped with either a conventional cranial window with craniotomy or a thinned-skull preparation. Mice were mechanically ventilated to avoid hypercapnia and exposed to systemic isobaric hypoxia for 30 min. Using two-photon laser scanning microscopy, nicotinamide adenine dinucleotide, reduced form (NADH) autofluorescence and diameter changes in penetrating and pre-capillary arterioles within the parenchyma were visualized to examine their temporal alterations. RESULTS With the conventional cranial window preparation, marked vertical displacement of the tissue occurred through oedema within 30 s after inducing hypoxia. With a thinned-skull preparation, however, such hypoxia-induced displacement was diminished, enabling us to examine acute spatio-temporal changes in diameters of penetrating and pre-capillary arterioles and NADH autofluorescence. Vasodilatation of these microvessels was evoked within 1 min after hypoxia, and sustained during the entire observation period despite the absence of hypercapnia. This event coincided with parenchymal NADH elevation, but the onset and peak dilatory responses of the penetrating arterioles preceded the local metabolic response of the parenchyma. CONCLUSION Observation of hypoxia-exposed brain by the thinned-skull preparation combined with two-photon intra-vital microscopy revealed rapid vasodilatory responses in penetrating arterioles preceding parenchymal NADH elevation, suggesting the presence of acute hypoxia-sensing mechanisms involving specific segments of cortical arterioles within the neurovascular unit.
Collapse
Affiliation(s)
- T Nakamura
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Koos BJ. Adenosine A₂a receptors and O₂ sensing in development. Am J Physiol Regul Integr Comp Physiol 2011; 301:R601-22. [PMID: 21677265 DOI: 10.1152/ajpregu.00664.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O₂ sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5'-nucleotidase and the resulting activation of adenosine A(₂A) receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A(₂A) receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A(₂A) receptors mediate hypoxic inhibition of breathing and rapid eye movements. A(₂A) receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A(₂A) receptors play virtually no role in O₂ sensing by the carotid bodies, but brain A(₂A) receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A(₂A) receptors have been implicated in O₂ sensing by carotid glomus cells, while central A(₂A) receptors likely blunt hypoxic hyperventilation. In conclusion, A(₂A) receptors are crucially involved in the transduction mechanisms of O₂ sensing in fetal carotid bodies and brains. Postnatally, central A(₂A) receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O₂ sensing in carotid chemoreceptors, particularly in developing lambs.
Collapse
Affiliation(s)
- Brian J Koos
- Department of Obstetrics and Gynecology; Brain Research Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
63
|
Sugihara M, Morita H, Matsuda M, Umebayashi H, Kajioka S, Ito S, Nishida M, Inoue R, Futatsuki T, Yamazaki J, Mori Y, Inoue R, Ito Y, Abe K, Hirata M. Dual signaling pathways of arterial constriction by extracellular uridine 5'-triphosphate in the rat. J Pharmacol Sci 2011; 115:293-308. [PMID: 21350312 DOI: 10.1254/jphs.10281fp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We investigated actions of uridine 5'-triphosphate (UTP) in rat aorta, cerebral and mesenteric arteries, and their single myocytes. UTP (≥10 µM) elicited an inward-rectifying current strongly reminiscent of activation of P2X(1) receptor, and a similar current was also induced by α,β-methylene adenosine 5'-triphosphate (ATP) (≥100 nM). UTP desensitized α,β-methylene ATP-evoked current, and vice versa. The UTP-activated current was insensitive to G-protein modulators, TRPC3 inhibitors, or TRPC3 antibody, but was sensitive to P2-receptor inhibitors or P2X(1)-receptor antibody. Both UTP (1 mM) and α,β-methylene ATP (10 µM) elicited similar conductance single channel activities. UTP (≥10 µM) provoked a dose-dependent contraction of de-endothelialized aortic ring preparation consisting of phasic and tonic components. Removal of extracellular Ca(2+) or bath-applied 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) (30 µM) or nifedipine (10 µM) completely inhibited the phasic contraction while only partially reducing the tonic one. The tonic contraction was almost completely abolished by additional application of thapsigargin (2 µM). Similar biphasic rises in [Ca(2+)](i) were also evoked by UTP in rat aortic myocytes. In contrast to the low expression of TRPC3, significant expression of P2X(1) receptor was detected in all arteries by RT-PCR and immunoblotting, and its localization was limited to plasma membrane of myocytes as indicated by immunohistochemistry. These results suggest that UTP dually activates P2X(1)-like and P2Y receptors, but not TRPC3.
Collapse
Affiliation(s)
- Megumi Sugihara
- Special Patient Oral Care Unit, Kyushu University Hospital, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Esteban FJ, Padilla N, Sanz-Cortés M, de Miras JR, Bargalló N, Villoslada P, Gratacós E. Fractal-dimension analysis detects cerebral changes in preterm infants with and without intrauterine growth restriction. Neuroimage 2010; 53:1225-32. [DOI: 10.1016/j.neuroimage.2010.07.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/21/2010] [Accepted: 07/06/2010] [Indexed: 11/16/2022] Open
|
65
|
Van Mieghem T, Sandaite I, Michielsen K, Gucciardo L, Done E, Dekoninck P, Claus F, Deprest J. Fetal cerebral blood flow velocities in congenital diaphragmatic hernia. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2010; 36:452-7. [PMID: 20521239 DOI: 10.1002/uog.7703] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
OBJECTIVES Left ventricular cardiac output is decreased in fetuses with congenital diaphragmatic hernia (CDH). Our aim was to assess whether this alters cerebral perfusion or growth in utero. METHODS Fetal head circumference, biparietal diameter, lung-to-head ratio and middle cerebral artery (MCA) Doppler flow patterns were assessed by ultrasonography in 103 fetuses with prenatally diagnosed CDH. Total fetal lung volume and cerebral volume were measured using magnetic resonance imaging. Values were transformed to gestational age-independent scores (multiples of the median (MoM)) and compared with controls. Subanalyses were made according to whether the CDH was left- (n = 86) or right-sided (n = 17) and to whether it was isolated (n = 86) or associated with other anomalies (n = 17). RESULTS MCA flow velocity was significantly lower in fetuses with CDH than in healthy fetuses (0.79 ± 0.19 MoM; P < 0.0001) but MCA pulsatility index was unchanged (0.99 ± 0.25 MoM; P = 0.79). Cranial biometry and cerebral volume in CDH fetuses fell in the normal range. Gestational age-adjusted lung area was correlated with MCA peak systolic velocity, which was in turn correlated with brain volume. CONCLUSIONS Fetal cerebral blood flow velocities are decreased in CDH yet cranial and cerebral growth are conserved. Further work will be needed to address whether part of the neurologic impairment observed in long-term survivors of CDH finds its origin in the prenatal period.
Collapse
Affiliation(s)
- T Van Mieghem
- Division of Woman and Child, Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Wang L, Cai R, Lv G, Huang Z, Wang Z. Hypoxia during pregnancy in rats leads to the changes of the cerebral white matter in adult offspring. Biochem Biophys Res Commun 2010; 396:445-50. [PMID: 20417619 DOI: 10.1016/j.bbrc.2010.04.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
Abstract
The aim of the present study is to evaluate the effect of reduced fetal oxygen supply on cerebral white matter in the adult offspring and further assess its susceptibility to postnatal hypoxia and high-fat diet. Based on a 3 x 2 full factorial design consisting of three factors of maternal hypoxia, postnatal high-fat diet, and postnatal hypoxia, the ultrastructure of myelin, axon and capillaries were observed, and the expression of myelin basic protein (MBP), neurofilament-H+L(NF-H+L), and glial fibrillary acidic protein (GFAP) was analyzed in periventricular white matter of 16-month-old offspring. Demyelination, injured axon and damaged microvasculars were observed in maternal hypoxia offspring. The main effect of maternal hypoxia lead to decreased expression of MBP or NF-H+L, and increased expression of GFAP (all P<0.05). Moreover, there was positive three-way interaction among maternal hypoxia, high-fat diet and postnatal hypoxia on MBP, NF-H+L or GFAP expression (all P<0.05). In summary, our results indicated that maternal hypoxia during pregnancy in rats lead to changes of periventricular white matter in adult offspring, including demyelination, damaged axon and proliferated astroglia. This effect was amplified by high-fat diet and postnatal hypoxia.
Collapse
Affiliation(s)
- Lingxing Wang
- Department of Neurology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | | | | | | | | |
Collapse
|
67
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
68
|
Tong W, Chen W, Ostrowski RP, Ma Q, Souvenir R, Zhang L, Zhang JH, Tang J. Maternal hypoxia increases the activity of MMPs and decreases the expression of TIMPs in the brain of neonatal rats. Dev Neurobiol 2010; 70:182-94. [PMID: 20017119 DOI: 10.1002/dneu.20770] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A recent study has shown that increased activity of matrix metalloproteinases-2 and metalloproteinases-9 (MMP-2 and MMP-9) has detrimental effect on the brain after neonatal hypoxia. The present study determined the effect of maternal hypoxia on neuronal survivability and the activity of MMP-2 and MMP-9, as well as the expression of tissue inhibitors of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2) in the brain of neonatal rats. Pregnant rats were exposed to 10.5% oxygen for 6 days from the gestation day 15 to day 21. Pups were sacrificed at day 0, 4, 7, 14, and 21 after birth. Body weight and brain weight of the pups were measured at each time point. The activity of MMP-2 and MMP-9 and the protein abundance of TIMP-1 and TIMP-2 were determined by zymography and Western blotting, respectively. The tissue distribution of MMPs was examined by immunofluorescence staining. The neuronal death was detected by Nissl staining. Maternal hypoxia caused significant decreases in body and brain size, increased activity of MMP-2 at day 0, and increased MMP-9 at day 0 and 4. The increased activity of the MMPs was accompanied by an overall tendency towards a reduced expression of TIMPs at all ages with the significance observed for TIMPs at day 0, 4, and 7. Immunofluorescence analysis showed an increased expression of MMP-2, MMP-9 in the hippocampus at day 0 and 4. Nissl staining revealed significant cell death in the hippocampus at day 0, 4, and 7. Functional tests showed worse neurobehavioral outcomes in the hypoxic animals.
Collapse
Affiliation(s)
- Wenni Tong
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California 92350, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
McElhinney DB, Benson CB, Brown DW, Wilkins-Haug LE, Marshall AC, Zaccagnini L, Tworetzky W. Cerebral blood flow characteristics and biometry in fetuses undergoing prenatal intervention for aortic stenosis with evolving hypoplastic left heart syndrome. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:29-37. [PMID: 19931971 PMCID: PMC4230573 DOI: 10.1016/j.ultrasmedbio.2009.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/29/2009] [Accepted: 07/29/2009] [Indexed: 05/28/2023]
Abstract
Children with hypoplastic left heart syndrome (HLHS) are at risk for neurodevelopmental dysfunction; prenatal factors may play a role in this predilection. Cerebral blood flow profiles are abnormal in fetuses with HLHS, raising the possibility that cerebral hemodynamics in utero may be related to neurodevelopmental abnormalities. Prenatal aortic valvuloplasty for fetal aortic stenosis with evolving HLHS is technically feasible and improves left heart hemodynamics. This study aimed to assess the effects of prenatal intervention on cerebral blood flow profiles and head circumference in fetuses with evolving HLHS. Seventy fetuses underwent prenatal aortic valvuloplasty for evolving HLHS (median 23 weeks gestation). Among 46 fetuses that had successful valvuloplasty and available data, middle cerebral artery (MCA) pulsatility (PI) and resistive (RI) indices were abnormal (Z-scores -1.7+/-1.1 and -2.2+/-1.4, p<0.001). Early post-valvuloplasty (n=33) and at late gestation follow-up (n=28), MCA PI and RI Z-scores remained low with no difference from pre- or early postintervention. Fetal head circumference was normal, as were umbilical artery PI and RI Z-scores. Cerebral blood flow characteristics are abnormal in mid-gestation fetuses with evolving HLHS, suggesting low cerebral vascular impedance. The mechanisms and significance of these abnormalities are unknown. Prenatal aortic valvuloplasty did not have a major impact on these indices. (E-mail: doff.mcelhinney@cardio.chboston.org).
Collapse
Affiliation(s)
- Doff B McElhinney
- Department of Cardiology, Children's Hospital Boston, and Pediatrics, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
70
|
Effects of Magnesium Sulfate on Preterm Fetal Cerebral Blood Flow Using Doppler Analysis. Obstet Gynecol 2010; 115:21-25. [DOI: 10.1097/aog.0b013e3181c4f7c1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
71
|
Abstract
The inaccessibility of the human fetal brain to studies of perfusion and metabolism has impeded progress in the understanding of the normal and abnormal systems of oxygen substrate supply and demand. Consequently, current understanding is based on studies in fetal animals or in the premature infant (ex utero fetus), neither of which is ideal. Despite promising developments in fetal magnetic resonance imaging (MRI) and Doppler ultrasound, major advances in fetal neurodiagnostics will be required before rational and truly informed brainoriented care of the fetus becomes feasible.
Collapse
|
72
|
Jellyman JK, Gardner DS, McGarrigle HH, Fowden AL, Giussani DA. Antenatal glucocorticoid therapy increases glucose delivery to cerebral circulations during acute hypoxemia in fetal sheep during late gestation. Am J Obstet Gynecol 2009; 201:82.e1-8. [PMID: 19371860 DOI: 10.1016/j.ajog.2009.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 11/25/2008] [Accepted: 01/13/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine the effects of 2 maternal injections with dexamethasone on the calculated oxygen and glucose deliveries to fetal cerebral and peripheral circulations during acute hypoxemia in sheep. STUDY DESIGN Beginning at 124 days, ewes received 2 intramuscular injections of either dexamethasone (2 x 12 mg, n = 10) or saline solution (2 x 2 mL, n = 12) 24 hours apart. Hypoxemia (1 hour) was induced 32 hours after the first injection (H1) and 3 days after the second (H2). RESULTS In saline solution-treated fetuses, glucose delivery was unchanged or increased in femoral and carotid circulations, respectively, during H1 and H2. In dexamethasone-treated fetuses, the increase in glucose delivery to the head tended to be greater during H1 and was significantly enhanced in dexamethasone- vs saline solution-treated fetuses during H2. CONCLUSION Two maternal injections with dexamethasone significantly enhanced glucose delivery to the head during acute hypoxemia in the ovine fetus.
Collapse
Affiliation(s)
- Juanita K Jellyman
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
73
|
Stubbs D, DeProto J, Nie K, Englund C, Mahmud I, Hevner R, Molnár Z. Neurovascular congruence during cerebral cortical development. ACTA ACUST UNITED AC 2009; 19 Suppl 1:i32-41. [PMID: 19386634 DOI: 10.1093/cercor/bhp040] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
There is evidence for interaction between the developing circulatory and nervous systems. Blood vessels provide a supporting niche in regions of adult neurogenesis. Here we present a systematic analysis of vascular development in the embryonic murine cortex and demonstrate that dividing cells, including Tbr2-positive intermediate progenitor cells, are closer to the vasculature than expected from a random distribution. To examine whether neurites of the newly generated embryonic neurons find blood vessels as an attractive and permissive substrate, we overlayed green fluorescent protein (GFP)-labeled dissociated cortical progenitors on embryonic organotypic cortical slice cultures with labeled vasculature. Our observations of neurites extending toward and along labeled blood vessels support the notion of vascular-neuronal interactions. The altered cortical layering had no obvious effect on the vascular patterns within the cortical plate (CP) in shaking rat Kawasaki (SRK) and the reeler mutant mouse at the ages studied (E19 and P3). It appears that similarly to other neurogenic regions in the adult, the embryonic "vascular niche" might influence neural progenitor cells during telencephalic neurogenesis, neuronal migration, and neurite extension, but the laminar phenotype of cell classes within the CP has limited influence on the developing vasculature.
Collapse
Affiliation(s)
- Daniel Stubbs
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
74
|
Fan JM, Chen XQ, Jin H, Du JZ. Gestational hypoxia alone or combined with restraint sensitizes the hypothalamic–pituitary–adrenal axis and induces anxiety-like behavior in adult male rat offspring. Neuroscience 2009; 159:1363-73. [DOI: 10.1016/j.neuroscience.2009.02.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/02/2009] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
|
75
|
Feng SYS, Phillips DJ, Stockx EM, Yu VYH, Walker AM. Endotoxin has acute and chronic effects on the cerebral circulation of fetal sheep. Am J Physiol Regul Integr Comp Physiol 2009; 296:R640-50. [DOI: 10.1152/ajpregu.00087.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We studied the impact of endotoxemia on cerebral blood flow (CBF), cerebral vascular resistance (CVR), and cerebral oxygen transport (O2 transport) in fetal sheep. We hypothesized that endotoxemia impairs CBF regulation and O2 transport, exposing the brain to hypoxic-ischemic injury. Responses to lipopolysaccharide (LPS; 1 μg/kg iv on 3 consecutive days, n = 9) or normal saline ( n = 5) were studied. Of LPS-treated fetuses, five survived and four died; in surviving fetuses, transient cerebral vasoconstriction at 0.5 h (ΔCVR approximately +50%) was followed by vasodilatation maximal at 5–6 h (ΔCVR approximately −50%) when CBF had increased (approximately +60%) despite reduced ABP (approximately −20%). Decreased CVR and increased CBF persisted 24 h post-LPS and the two subsequent LPS infusions. Cerebral O2 transport was sustained, although arterial O2 saturation was reduced ( P < 0.05). Histological evidence of neuronal injury was found in all surviving LPS-treated fetuses; one experienced grade IV intracranial hemorrhage. Bradykinin-induced cerebral vasodilatation (ΔCVR approximately −20%, P < 0.05) was abolished after LPS. Fetuses that died post-LPS ( n = 4) differed from survivors in three respects: CVR did not fall, CBF did not rise, and O2 transport fell progressively. In conclusion, endotoxin disrupts the cerebral circulation in two phases: 1) acute vasoconstriction (1 h) and 2) prolonged vasodilatation despite impaired endothelial dilatation (24 h). In surviving fetuses, LPS causes brain injury despite cerebral O2 transport being maintained by elevated cerebral perfusion; thus sustained O2 transport does not prevent brain injury in endotoxemia. In contrast, cerebral hypoperfusion and reduced O2 transport occur in fetuses destined to die, emphasizing the importance of sustaining O2 transport for survival.
Collapse
|
76
|
Zhang Z, Xu F, Zhang C, Liang X. Activation of opioid micro-receptors in medullary raphe depresses sighs. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1528-37. [PMID: 19244586 DOI: 10.1152/ajpregu.90748.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sighs, a well-known phenomenon in mammals, are substantially augmented by hypoxia and hypercapnia. Because (d-Ala(2),N-Me-Phe(4),Gly-ol)-enkephalin (DAMGO), a mu-receptor agonist, injected intravenously and locally in the caudal medullary raphe region (cMRR) decreased the ventilatory response to hypoxia and hypercapnia, we hypothesized that these treatments could inhibit sigh responses to these chemical stimuli. The number and amplitude of sighs were recorded during three levels of isocapnic hypoxia (15%, 10%, and 5% O(2) for 1.5 min) or hypercapnia (3%, 7%, and 10% CO(2) for 4 min) to test the dependence of sigh responses on the intensity of chemical drive in anesthetized and spontaneously breathing rats. The role of mu-receptors in modulating sigh responses to 10% O(2) or 7% CO(2) was subsequently evaluated by comparing the sighs before and after 1) intravenous administration of DAMGO (100 microg/kg), 2) microinjection of DAMGO (35 ng/100 nl) into the cMRR, and 3) intravenous administration of DAMGO after microinjection of d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP, 100 ng/100 nl), a micro-receptor antagonist, into the cMRR. Hypoxia and hypercapnia increased the number, but not amplitude, of sighs in a concentration-dependent manner, and the responses to hypoxia were significantly greater than those to hypercapnia. Systemic and local injection of DAMGO into the cMRR predominantly decreased the number of sighs, while microinjection into the rostral and middle MRR had no or limited effects. Microinjecting CTAP into the cMRR significantly diminished the systemic DAMGO-induced reduction of the number of sighs in response to hypoxia, but not to hypercapnia. Thus we conclude that hypoxia and hypercapnia elevate the number of sighs in a concentration-dependent manner in anesthetized rats, and this response is significantly depressed by activating systemic mu-receptors, especially those within the cMRR.
Collapse
Affiliation(s)
- Zhenxiong Zhang
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA
| | | | | | | |
Collapse
|
77
|
Torres-Farfan C, Valenzuela FJ, Mondaca M, Valenzuela GJ, Krause B, Herrera EA, Riquelme R, Llanos AJ, Seron-Ferre M. Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin on fetal cerebral artery, brown adipose tissue and adrenal gland. J Physiol 2008; 586:4017-27. [PMID: 18599539 DOI: 10.1113/jphysiol.2008.154351] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although the fetal pineal gland does not secrete melatonin, the fetus is exposed to melatonin of maternal origin. In the non-human primate fetus, melatonin acts as a trophic hormone for the adrenal gland, stimulating growth while restraining cortisol production. This latter physiological activity led us to hypothesize that melatonin may influence some fetal functions critical for neonatal adaptation to extrauterine life. To test this hypothesis we explored (i) the presence of G-protein-coupled melatonin binding sites and (ii) the direct modulatory effects of melatonin on noradrenaline (norepinephrine)-induced middle cerebral artery (MCA) contraction, brown adipose tissue (BAT) lypolysis and ACTH-induced adrenal cortisol production in fetal sheep. We found that melatonin directly inhibits the response to noradrenaline in the MCA and BAT, and also inhibits the response to ACTH in the adrenal gland. Melatonin inhibition was reversed by the melatonin antagonist luzindole only in the fetal adrenal. MCA, BAT and adrenal tissue displayed specific high-affinity melatonin binding sites coupled to G-protein (K(d) values: MCA 64 +/- 1 pm, BAT 98.44 +/- 2.12 pm and adrenal 4.123 +/- 3.22 pm). Melatonin binding was displaced by luzindole only in the adrenal gland, supporting the idea that action in the MCA and BAT is mediated by different melatonin receptors. These direct inhibitory responses to melatonin support a role for melatonin in fetal physiology, which we propose prevents major contraction of cerebral vessels, restrains cortisol release and restricts BAT lypolysis during fetal life.
Collapse
Affiliation(s)
- Claudia Torres-Farfan
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Effects of binge alcohol exposure in the second trimester on intracerebral arteriolar function in third trimester fetal sheep. Brain Res 2008; 1226:111-5. [PMID: 18640664 DOI: 10.1016/j.brainres.2008.05.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 05/15/2008] [Accepted: 05/30/2008] [Indexed: 11/20/2022]
Abstract
Fetal alcohol syndrome is a leading cause of mental retardation, but mechanisms of alcohol-associated brain damage remain elusive. Chronic alcohol exposure attenuates fetal and neonatal hypoxic cerebral vasodilation in sheep. We therefore hypothesized that alcohol could alter development of cerebrovascular responses to adenosine, a putative mediator of hypoxic cerebral vasodilation. The objective of this study was to examine the effect of earlier fetal alcohol exposure on later reactivity to adenosine in fetal sheep cerebral arterioles. Penetrating intracerebral arterioles were harvested from the brains of third trimester fetal sheep previously exposed in the second trimester to maternal alcohol "binges" (1.5 g/kg IV over 90 min, 5 days/week for 4 weeks) or same-volume saline infusions. Arterioles were cannulated with a micropipette system and luminally pressurized. Fetal alcohol exposure did not affect spontaneous myogenic tone, but enhanced the dilator response of penetrating arterioles to extraluminal acidosis (pH 6.8). Alcohol exposure also resulted in an increase in maximal vessel response to CGS-21680, an adenosine A2A receptor agonist, but did not alter the concentration-dependent response curves to adenosine. Our results suggest that earlier alcohol exposure does not impair the subsequent responsiveness of fetal cerebral arterioles to vasodilator agents. Thus, alteration in cerebral vascular response to hypoxia in fetal sheep may not be attributed to changes in vascular reactivity to adenosine.
Collapse
|
79
|
Shiraishi M, Takizawa Y, Ide S, Obonai T, Goto YI, Itoh M. Brainstem monoamine pathology of neonatal hypoxic-ischemic brain damage: a model of acute stage of neonatal asphyxia. Brain Res 2008; 1213:120-6. [PMID: 18455708 DOI: 10.1016/j.brainres.2008.03.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 03/21/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the most severe perinatal diseases and leads to high mortality and sometimes severe neurological sequelae. At the acute stage of HIE, it is thought to be the damage of catecholaminergic system in the brainstem. And then, HIE reflects mental development throughout the norepinephrine and serotonin systems, which mainly originates in the brainstem. Therefore, we studied both systems in the brainstem of neonatal HIE model rats with tyrosine hydroxylase (TH) and tryptophan hydroxylase (TpH) immunohistochemistry and a high-performance liquid column (HPLC) to measure norepinephrine and serotonin and their metabolism. As a result, the TH-positive and TpH-positive cell numbers significantly decreased 2 days after hypoxic-ischemic (HI) insult (n=10). However, 7 days after insult (n=10), the TH-positive and TpH-positive cell numbers had recovered in most regions. HPLC demonstrated a significant difference in the norepinephrine concentration 2 days after HI insult, but not in the other monoamines.
Collapse
Affiliation(s)
- Mika Shiraishi
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | | | | | | | | | | |
Collapse
|
80
|
Picklesimer AH, Oepkes D, Moise KJ, Kush ML, Weiner CP, Harman CR, Baschat AA. Determinants of the middle cerebral artery peak systolic velocity in the human fetus. Am J Obstet Gynecol 2007; 197:526.e1-4. [PMID: 17980196 DOI: 10.1016/j.ajog.2007.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/30/2007] [Accepted: 04/05/2007] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The purpose of this study was to identify physiologic determinants of the peak systolic blood flow velocity (PSV) of the middle cerebral artery (MCA) in the human fetus. STUDY DESIGN MCA PSV was measured with pulsed wave Doppler ultrasound in human fetuses who underwent cordocentesis. Hemoglobin, hematocrit, and blood gas values were analyzed from umbilical venous blood, and the data were normalized for gestational age. Total oxygen content of fetal venous blood was calculated from oxygen saturation, hemoglobin value, and pO2. Correlation and logistic regression analyses were performed to identify primary physiologic determinants of MCA PSV. RESULTS In 136 fetuses who underwent cordocentesis (predominantly for alloimmune disease), hematocrit, hemoglobin, and blood oxygen content correlated significantly with the MCA PSV (P < .01). Logistic regression modeling demonstrated that fetal hemoglobin content (odds ratio, 7.1; 95% CI, 3.71-13.7) and pCO2, but not pO2 or fetal blood oxygen content, accounted for increases in MCA PSV. CONCLUSION Under physiologic circumstances, fetal hemoglobin, and not fetal oxygenation, primarily determines the middle cerebral artery peak systolic velocity.
Collapse
Affiliation(s)
- Amy H Picklesimer
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
81
|
Padilla-Gomes NF, Enríquez G, Acosta-Rojas R, Perapoch J, Hernandez-Andrade E, Gratacos E. Prevalence of neonatal ultrasound brain lesions in premature infants with and without intrauterine growth restriction. Acta Paediatr 2007; 96:1582-7. [PMID: 17888056 DOI: 10.1111/j.1651-2227.2007.00496.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To compare the prevalence of transient periventricular echodensities (TPE), periventricular leukomalacia (PVL) and haemorrhagic brain lesions (HBL) in singleton intrauterine growth-restricted (IUGR) infants and in those appropriate for gestational age (AGA). METHODS Thirty-five IUGR and 35 AGA singleton infants born between 24- and 34-week gestational age were studied. The presence of TPE, PVL and HBL was assessed with ultrasound (US) at day 3 (US-I), 2 weeks (US-II) after delivery and at term-equivalent age (US-III). RESULTS IUGR neonates had an increased prevalence of TPE at US-I (18/35 vs. 8/35, p= 0.02) and an increased prevalence of PVL at US-II (8/32 vs. 1/31, p = 0.03) and US-III (8/29 vs. 1/29, p = 0.02). No significant differences in the prevalence of HBL were found between the two groups. CONCLUSIONS IUGR is associated with an increased prevalence of white matter damage on US brain scans in preterm neonates.
Collapse
Affiliation(s)
- Nelly F Padilla-Gomes
- Hospital Clínic-IDIBAPS, Obstetrics Department-ICGON, University of Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
82
|
An adverse intrauterine environment: implications for injury and altered development of the brain. Int J Dev Neurosci 2007; 26:3-11. [PMID: 17981423 DOI: 10.1016/j.ijdevneu.2007.08.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/30/2007] [Accepted: 08/30/2007] [Indexed: 11/24/2022] Open
Abstract
Abnormal development of the brain during fetal life is now thought to contribute to the aetiology of many functional and behavioural disorders that manifest throughout life. Many factors are likely to underlie such abnormal development including genetic makeup and an adverse intrauterine environment. This review will focus on prenatal hypoxic-ischemic injury and inflammatory/infective insults. A range of experimental models have been used to characterise lesions formed in response to these insults and to determine mechanisms of damage resulting from such events. Relatively brief periods of fetal hypoxia result in neuronal death (cerebellum, hippocampus, and cerebral cortex), white matter damage and reduced growth of neural processes. These effects are more profound at mid than late gestation. Chronic mild placental insufficiency can result in fetal growth restriction and deficits in neural connectivity and myelination. Exposure of the preterm fetus to inflammatory agents causes brain damage particularly in the white matter and this is exacerbated by hypoxia. These studies show that the timing, severity and nature of specific insults are critical in determining the pattern of injury and thus the extent to which neurological function will be affected postnatally. Defining the causes, patterns and mechanisms of brain injury is crucial if we are to develop rational neuroprotective strategies to reduce the burden of altered brain growth and poor functional and behavioural outcomes.
Collapse
|
83
|
Llanos AJ, Riquelme RA, Herrera EA, Ebensperger G, Krause B, Reyes RV, Sanhueza EM, Pulgar VM, Behn C, Cabello G, Parer JT, Giussani DA, Blanco CE, Hanson MA. Evolving in thin air—Lessons from the llama fetus in the altiplano. Respir Physiol Neurobiol 2007; 158:298-306. [PMID: 17588504 DOI: 10.1016/j.resp.2007.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/24/2007] [Accepted: 04/26/2007] [Indexed: 11/22/2022]
Abstract
Compared with lowland species, fetal life for mammalian species whose mothers live in high altitude is demanding. For instance, fetal llamas have to cope with the low fetal arterial PO2 of all species, but also the likely superimposition of hypoxia as a result of the decreased oxygen environment in which the mother lives in the Andean altiplano. When subjected to acute hypoxia the llama fetus responds with an intense peripheral vasoconstriction mediated by alpha-adrenergic mechanisms plus high plasma concentrations of catecholamines and neuropeptide Y (NPY). Endothelial factors such as NO and endothelin-1 also play a role in the regulation of local blood flows. Unlike fetuses of lowland species such as the sheep, the llama fetus shows a profound cerebral hypometabolic response to hypoxia, decreasing cerebral oxygen consumption, Na-K-ATPase activity and temperature, and resulting in an absence of seizures and apoptosis in neural cells. These strategies may have evolved to prevent hypoxic injury to the brain or other organs in the face of the persistent hypobaric hypoxia of life in the Andean altiplano.
Collapse
Affiliation(s)
- Aníbal J Llanos
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Fu J, Olofsson P. Intracerebral regional distribution of blood flow in response to uterine contractions in growth-restricted human fetuses. Early Hum Dev 2007; 83:607-12. [PMID: 17329044 DOI: 10.1016/j.earlhumdev.2007.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/11/2007] [Accepted: 01/12/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To explore middle cerebral artery (MCA) and anterior cerebral artery (ACA) blood flow responses to superimposed acute hypoxemia in growth-restricted fetuses with and without established brain-sparing flow during basal conditions. MATERIAL AND METHODS 47 term fetuses suspected of growth restriction were exposed to an oxytocin challenge test with simultaneous cardiotocography and Doppler velocimetry in the umbilical artery, MCA and ACA. The MCA-to-ACA pulsatility index (PI) ratio was calculated during basal conditions, contractions and relaxations. Basal brain-sparing flow was defined as an MCA-to-umbilical artery PI ratio of<1.08, de novo brain-sparing flow in the MCA as an MCA PI decrease with> or =1 standard deviation during uterine contractions or relaxations compared with basal measurements, and de novo brain-sparing flow in the ACA as an ACA PI decrease with > or =1 standard deviation. Non-parametric statistical tests were used with P<0.05 considered significant. RESULTS MCA and ACA PI were both significantly lower in the brain-sparing flow group (N=8) during basal conditions (P< or =0.01). During the oxytocin challenge test, MCA and ACA PI both decreased in the non-brain-sparing flow group (N=39) (P< or =0.02) but not in the brain-sparing flow group (P> or =0.4). The MCA-to-ACA PI ratio remained unchanged in both groups. de novo brain-sparing flow calculations revealed no preferential flow to any cerebral artery. CONCLUSION Cerebral circulatory responses to acute hypoxemia are synchronized in the middle and anterior cerebral arteries without any preferential regional flow distribution.
Collapse
Affiliation(s)
- Jing Fu
- Department of Obstetrics and Gynecology, Malmö University Hospital, Lund University, S-205 02 Malmö, Sweden
| | | |
Collapse
|
85
|
Sandoval RJ, Injeti ER, Williams JM, Georthoffer WT, Pearce WJ. Myogenic contractility is more dependent on myofilament calcium sensitization in term fetal than adult ovine cerebral arteries. Am J Physiol Heart Circ Physiol 2007; 293:H548-56. [PMID: 17384133 DOI: 10.1152/ajpheart.00134.2007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Regulation of cytosolic calcium and myofilament calcium sensitivity varies considerably with postnatal age in cerebral arteries. Because these mechanisms also govern myogenic tone, the present study used graded stretch to examine the hypothesis that myogenic tone is less dependent on calcium influx and more dependent on myofilament calcium sensitization in term fetal compared with adult cerebral arteries. Term fetal and adult posterior communicating cerebral arteries exhibited similar myogenic responses, with peak tensions averaging 24 and 26% of maximum contractile force produced in any given tissue in response to an isotonic Krebs buffer containing 122 mM K+ (Kmax) at optimum stretch ratios (working diameter/unstressed diameter) of 2.19 and 2.23, respectively. Graded stretch increased cytosolic Ca2+ concentration at stretch ratios >2.0 in adult arteries, but increased Ca2+ concentration only at stretch ratios >2.3 in fetal arteries. In permeabilized arteries, myogenic tone peaked at a stretch ratio of 2.1 in both fetal and adult arteries. The fetal %Kmax values at peak myogenic tone were not significantly different at either pCa 7.0 (23%) or pCa 5.5 (25%) but were significantly less at pCa 8.0 (8.4 ± 2.3%). Conversely, adult %Kmax values at peak myogenic tone were significantly less at both pCa 8.0 (10.4 ± 1.8%) and pCa 7.0 (16%) than at pCa 5.5 (27%). The maximal extents of stretch-induced increases in myosin light chain phosphorylation in intact fetal (20%) and adult (17%) arteries were similar. The data demonstrate that the cerebrovascular myogenic response is highly conserved during postnatal maturation but is mediated differently in fetal and adult cerebral arteries.
Collapse
Affiliation(s)
- Renan J Sandoval
- Department of Physiology and Pharmacology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | | | | | | | |
Collapse
|