51
|
Enright HA, Lam D, Sebastian A, Sales AP, Cadena J, Hum NR, Osburn JJ, Peters SKG, Petkus B, Soscia DA, Kulp KS, Loots GG, Wheeler EK, Fischer NO. Functional and transcriptional characterization of complex neuronal co-cultures. Sci Rep 2020; 10:11007. [PMID: 32620908 PMCID: PMC7335084 DOI: 10.1038/s41598-020-67691-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/08/2020] [Indexed: 12/03/2022] Open
Abstract
Brain-on-a-chip systems are designed to simulate brain activity using traditional in vitro cell culture on an engineered platform. It is a noninvasive tool to screen new drugs, evaluate toxicants, and elucidate disease mechanisms. However, successful recapitulation of brain function on these systems is dependent on the complexity of the cell culture. In this study, we increased cellular complexity of traditional (simple) neuronal cultures by co-culturing with astrocytes and oligodendrocyte precursor cells (complex culture). We evaluated and compared neuronal activity (e.g., network formation and maturation), cellular composition in long-term culture, and the transcriptome of the two cultures. Compared to simple cultures, neurons from complex co-cultures exhibited earlier synapse and network development and maturation, which was supported by localized synaptophysin expression, up-regulation of genes involved in mature neuronal processes, and synchronized neural network activity. Also, mature oligodendrocytes and reactive astrocytes were only detected in complex cultures upon transcriptomic analysis of age-matched cultures. Functionally, the GABA antagonist bicuculline had a greater influence on bursting activity in complex versus simple cultures. Collectively, the cellular complexity of brain-on-a-chip systems intrinsically develops cell type-specific phenotypes relevant to the brain while accelerating the maturation of neuronal networks, important features underdeveloped in traditional cultures.
Collapse
Affiliation(s)
- Heather A Enright
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Doris Lam
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Ana Paula Sales
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jose Cadena
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Nicholas R Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.,University of California, Merced, School of Natural Sciences, Merced, CA, USA
| | - Joanne J Osburn
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Sandra K G Peters
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Bryan Petkus
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - David A Soscia
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kristen S Kulp
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Gabriela G Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.,University of California, Merced, School of Natural Sciences, Merced, CA, USA
| | - Elizabeth K Wheeler
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Nicholas O Fischer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| |
Collapse
|
52
|
Azizipour N, Avazpour R, Rosenzweig DH, Sawan M, Ajji A. Evolution of Biochip Technology: A Review from Lab-on-a-Chip to Organ-on-a-Chip. MICROMACHINES 2020; 11:E599. [PMID: 32570945 PMCID: PMC7345732 DOI: 10.3390/mi11060599] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
Abstract
Following the advancements in microfluidics and lab-on-a-chip (LOC) technologies, a novel biomedical application for microfluidic based devices has emerged in recent years and microengineered cell culture platforms have been created. These micro-devices, known as organ-on-a-chip (OOC) platforms mimic the in vivo like microenvironment of living organs and offer more physiologically relevant in vitro models of human organs. Consequently, the concept of OOC has gained great attention from researchers in the field worldwide to offer powerful tools for biomedical researches including disease modeling, drug development, etc. This review highlights the background of biochip development. Herein, we focus on applications of LOC devices as a versatile tool for POC applications. We also review current progress in OOC platforms towards body-on-a-chip, and we provide concluding remarks and future perspectives for OOC platforms for POC applications.
Collapse
Affiliation(s)
- Neda Azizipour
- Institut de Génie Biomédical, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada;
| | - Rahi Avazpour
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada;
| | - Derek H. Rosenzweig
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada;
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Montreal, QC H3H 2R9, Canada
| | - Mohamad Sawan
- Polystim Neurotech Laboratory, Electrical Engineering Department, Polytechnique Montreal, QC H3T 1J4, Canada
- CenBRAIN Laboratory, School of Engineering, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| | - Abdellah Ajji
- Institut de Génie Biomédical, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada;
- NSERC-Industry Chair, CREPEC, Chemical Engineering Department, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada
| |
Collapse
|
53
|
Nichols K, Koppes R, Koppes A. Recent advancements in microphysiological systems for neural development and disease. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2020.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
54
|
Liu X, Zhong S, Yan L, Zhao H, Wang Y, Hu Y, Jia Y. Correlations Among mRNA Expression Levels of ATP7A, Serum Ceruloplasmin Levels, and Neuronal Metabolism in Unmedicated Major Depressive Disorder. Int J Neuropsychopharmacol 2020; 23:642-652. [PMID: 32427278 PMCID: PMC7727471 DOI: 10.1093/ijnp/pyaa038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/08/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies have found that elevated copper levels induce oxidation, which correlates with the occurrence of major depressive disorder (MDD). However, the mechanism of abnormal cerebral metabolism of MDD patients remains ambiguous. The main function of the enzyme ATPase copper-transporting alpha (ATP7A) is to transport copper across the membrane to retain copper homeostasis, which is closely associated with the onset of mental disorders and cognitive impairment. However, less is known regarding the association of ATP7A expression in MDD patients. METHODS A total of 31 MDD patients and 21 healthy controls were recruited in the present study. Proton magnetic resonance spectroscopy was used to assess the concentration levels of N-acetylaspartate, choline (Cho), and creatine (Cr) in brain regions of interest, including prefrontal white matter (PWM), anterior cingulate cortex (ACC), thalamus, lentiform nucleus, and cerebellum. The mRNA expression levels of ATP7A were measured using polymerase chain reaction (SYBR Green method). The correlations between mRNA expression levels of ATP7A and/or ceruloplasmin levels and neuronal biochemical metabolite ratio in the brain regions of interest were evaluated. RESULTS The decline in the mRNA expression levels of ATP7A and the increase in ceruloplasmin levels exhibited a significant correlation in MDD patients. In addition, negative correlations were noted between the decline in mRNA expression levels of ATP7A and the increased Cho/Cr ratios of the left PWM, right PWM, and right ACC in MDD patients. A positive correlation between elevated ceruloplasmin levels and increased Cho/Cr ratio of the left PWM was noted in MDD patients. CONCLUSIONS The findings suggested that the decline in the mRNA expression levels of ATP7A and the elevated ceruloplasmin levels induced oxidation that led to the disturbance of neuronal metabolism in the brain, which played important roles in the pathophysiology of MDD. The decline in the mRNA expression levels of ATP7A and the elevated ceruloplasmin levels affected neuronal membrane metabolic impairment in the left PWM, right PWM, and right ACC of MDD patients.
Collapse
Affiliation(s)
- Xuanjun Liu
- Department of Neurology, First Affiliated Hospital of Jinan University, Guangzhou, China,Correspondence: Yanbin Jia, PhD, 613 West Huangpu Avenue Tianhe District, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China ()
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lan Yan
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Hui Zhao
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yilei Hu
- Jinan University, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
55
|
Mijanović O, Branković A, Borovjagin AV, Butnaru DV, Bezrukov EA, Sukhanov RB, Shpichka A, Timashev P, Ulasov I. Battling Neurodegenerative Diseases with Adeno-Associated Virus-Based Approaches. Viruses 2020; 12:E460. [PMID: 32325732 PMCID: PMC7232215 DOI: 10.3390/v12040460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are most commonly found in adults and remain essentially incurable. Gene therapy using AAV vectors is a rapidly-growing field of experimental medicine that holds promise for the treatment of NDDs. To date, the delivery of a therapeutic gene into target cells via AAV represents a major obstacle in the field. Ideally, transgenes should be delivered into the target cells specifically and efficiently, while promiscuous or off-target gene delivery should be minimized to avoid toxicity. In the pursuit of an ideal vehicle for NDD gene therapy, a broad variety of vector systems have been explored. Here we specifically outline the advantages of adeno-associated virus (AAV)-based vector systems for NDD therapy application. In contrast to many reviews on NDDs that can be found in the literature, this review is rather focused on AAV vector selection and their preclinical testing in experimental and preclinical NDD models. Preclinical and in vitro data reveal the strong potential of AAV for NDD-related diagnostics and therapeutic strategies.
Collapse
Affiliation(s)
- Olja Mijanović
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| | - Ana Branković
- Department of Forensics, University of Criminal Investigation and Police Studies, Belgrade 11000, Serbia;
| | - Anton V. Borovjagin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Denis V. Butnaru
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.V.B.); (A.S.); (P.T.)
| | - Evgeny A. Bezrukov
- Institute for Uronephrology and Reproductive Health, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (E.A.B.); (R.B.S.)
| | - Roman B. Sukhanov
- Institute for Uronephrology and Reproductive Health, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (E.A.B.); (R.B.S.)
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.V.B.); (A.S.); (P.T.)
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.V.B.); (A.S.); (P.T.)
- Institute of Photonic Technologies, Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk, Moscow 142190, Russia
- Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, Moscow 119991, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| |
Collapse
|
56
|
Soscia DA, Lam D, Tooker AC, Enright HA, Triplett M, Karande P, Peters SKG, Sales AP, Wheeler EK, Fischer NO. A flexible 3-dimensional microelectrode array for in vitro brain models. LAB ON A CHIP 2020; 20:901-911. [PMID: 31976505 DOI: 10.1039/c9lc01148j] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Three-dimensional (3D) in vitro models have become increasingly popular as systems to study cell-cell and cell-ECM interactions dependent on the spatial, mechanical, and chemical cues within the environment of the tissue, which is limited in traditional two-dimensional (2D) models. Although electrophysiological recordings of neuronal action potentials through 2D microelectrode arrays (MEAs) are a common and trusted method of evaluating neuronal function, network communication, and response to chemicals and biologicals, there are currently limited options for measuring electrophysiological activity from many locations simultaneously throughout a 3D network of neurons in vitro. Here, we have developed a thin-film, 3D flexible microelectrode array (3DMEA) that non-invasively interrogates a 3D culture of neurons and can accommodate 256 channels of recording or stimulation. Importantly, the 3DMEA is straightforward to fabricate and integrates with standard commercially available electrophysiology hardware. Polyimide probe arrays were microfabricated on glass substrates and mechanically actuated to collectively lift the arrays into a vertical position, relying solely on plastic deformation of their base hinge regions to maintain vertical alignment. Human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes were entrapped in a collagen-based hydrogel and seeded onto the 3DMEA, enabling growth of suspended cells in the matrix and the formation and maturation of a neural network around the 3DMEA probes. The 3DMEA supported the growth of functional neurons in 3D with action potential spike and burst activity recorded over 45 days in vitro. This platform is an important step in facilitating noninvasive electrophysiological characterization of 3D networks of electroactive cells in vitro.
Collapse
Affiliation(s)
- David A Soscia
- Engineering Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA
| | - Doris Lam
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA.
| | - Angela C Tooker
- Engineering Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA
| | - Heather A Enright
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA.
| | - Michael Triplett
- Engineering Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA
| | - Piyush Karande
- Engineering Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA
| | - Sandra K G Peters
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA.
| | - Ana Paula Sales
- Engineering Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA
| | - Elizabeth K Wheeler
- Engineering Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA
| | - Nicholas O Fischer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA.
| |
Collapse
|
57
|
Lobov SA, Mikhaylov AN, Shamshin M, Makarov VA, Kazantsev VB. Spatial Properties of STDP in a Self-Learning Spiking Neural Network Enable Controlling a Mobile Robot. Front Neurosci 2020; 14:88. [PMID: 32174804 PMCID: PMC7054464 DOI: 10.3389/fnins.2020.00088] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
Development of spiking neural networks (SNNs) controlling mobile robots is one of the modern challenges in computational neuroscience and artificial intelligence. Such networks, being replicas of biological ones, are expected to have a higher computational potential than traditional artificial neural networks (ANNs). The critical problem is in the design of robust learning algorithms aimed at building a “living computer” based on SNNs. Here, we propose a simple SNN equipped with a Hebbian rule in the form of spike-timing-dependent plasticity (STDP). The SNN implements associative learning by exploiting the spatial properties of STDP. We show that a LEGO robot controlled by the SNN can exhibit classical and operant conditioning. Competition of spike-conducting pathways in the SNN plays a fundamental role in establishing associations of neural connections. It replaces the irrelevant associations by new ones in response to a change in stimuli. Thus, the robot gets the ability to relearn when the environment changes. The proposed SNN and the stimulation protocol can be further enhanced and tested in developing neuronal cultures, and also admit the use of memristive devices for hardware implementation.
Collapse
Affiliation(s)
- Sergey A Lobov
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Alexey N Mikhaylov
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maxim Shamshin
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Valeri A Makarov
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Instituto de Matemática Interdisciplinar, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid, Spain
| | - Victor B Kazantsev
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| |
Collapse
|
58
|
Miccoli B, Braeken D, Li YCE. Brain-on-a-chip Devices for Drug Screening and Disease Modeling Applications. Curr Pharm Des 2019; 24:5419-5436. [PMID: 30806304 DOI: 10.2174/1381612825666190220161254] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/12/2019] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders are related to the progressive functional loss of the brain, often connected to emotional and physical disability and, ultimately, to death. These disorders, strongly connected to the aging process, are becoming increasingly more relevant due to the increase of life expectancy. Current pharmaceutical treatments poorly tackle these diseases, mainly acting only on their symptomology. One of the main reasons of this is the current drug development process, which is not only expensive and time-consuming but, also, still strongly relies on animal models at the preclinical stage. Organ-on-a-chip platforms have the potential to strongly impact and improve the drug screening process by recreating in vitro the functionality of human organs. Patient-derived neurons from different regions of the brain can be directly grown and differentiated on a brain-on-a-chip device where the disease development, progression and pharmacological treatments can be studied and monitored in real time. The model reliability is strongly improved by using human-derived cells, more relevant than animal models for pharmacological screening and disease monitoring. The selected cells will be then capable of proliferating and organizing themselves in the in vivo environment thanks to the device architecture, materials selection and bio-chemical functionalization. In this review, we start by presenting the fundamental strategies adopted for brain-on-a-chip devices fabrication including e.g., photolithography, micromachining and 3D printing technology. Then, we discuss the state-of-theart of brain-on-a-chip platforms including their role in the study of the functional architecture of the brain e.g., blood-brain barrier, or of the most diffuse neurodegenerative diseases like Alzheimer's and Parkinson's. At last, the current limitations and future perspectives of this approach for the development of new drugs and neurodegenerative diseases modeling will be discussed.
Collapse
Affiliation(s)
- Beatrice Miccoli
- Imec, Department of Life Sciences and Imaging, 3001 Heverlee, Belgium.,Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Dries Braeken
- Imec, Department of Life Sciences and Imaging, 3001 Heverlee, Belgium
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung City, Taiwan
| |
Collapse
|
59
|
Wan H, Gu C, Gan Y, Wei X, Zhu K, Hu N, Wang P. Sensor-free and Sensor-based Heart-on-a-chip Platform: A Review of Design and Applications. Curr Pharm Des 2019; 24:5375-5385. [PMID: 30734671 DOI: 10.2174/1381612825666190207170004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/02/2019] [Indexed: 01/09/2023]
Abstract
Drug efficacy and toxicity are key factors of drug development. Conventional 2D cell models or animal models have their limitations for the efficacy or toxicity assessment in preclinical assays, which induce the failure of candidate drugs or withdrawal of approved drugs. Human organs-on-chips (OOCs) emerged to present human-specific properties based on their 3D bioinspired structures and functions in the recent decade. In this review, the basic definition and superiority of OOCs will be introduced. Moreover, a specific OOC, heart-on-achip (HOC) will be focused. We introduce HOC modeling in the sensor-free and sensor-based way and illustrate the advantages of sensor-based HOC in detail by taking examples of recent studies. We provide a new perspective on the integration of HOC technology and biosensing to develop a new sensor-based HOC platform.
Collapse
Affiliation(s)
- Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Chenlei Gu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Ying Gan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinwei Wei
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Ning Hu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
60
|
Beyrent E, Gomez G. Oxidative stress differentially induces tau dissociation from neuronal microtubules in neurites of neurons cultured from different regions of the embryonic Gallus domesticus brain. J Neurosci Res 2019; 98:734-747. [PMID: 31621106 DOI: 10.1002/jnr.24541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022]
Abstract
Abnormal phosphorylation of microtubule-associated proteins such as tau has been shown to play a role in neurodegenerative disorders. It is hypothesized that oxidative stress-induced aggregates of hyperphosphorylated tau could lead to the microtubule network degradation commonly associated with neurodegeneration. We investigated whether oxidative stress induced tau hyperphosphorylation and focused on neurite degradation using cultured neurons isolated from the embryonic chick brain as a model system. Cells were isolated from the cerebrum, cerebellum, and tectum of 14-day-old chicks, grown separately in culture, and treated with tert-Butyl hydroperoxide (to simulate oxidative stress) for 48 hr. Relative expression and localization of tau or phospho-tau and β-tubulin III in neurites were determined using quantitative immunocytochemistry and confocal microscopy. In untreated cells, tau was tightly colocalized with β-tubulin III. Increasing levels of oxidative stress induced an increase in overall tau expression in neurites of cerebral and tectal but not the cerebellar neurons, coupled with a decrease in phospho-tau expression in tectal but not the cerebral or cerebellar neurons. In addition, oxidative stress induced the degeneration of the distal ends of the neurites and redistribution of phospho-tau toward the neuronal soma in the cerebral but not the tectal and cerebellar neurons. These results suggest that oxidative stress induces changes in tau protein that precede cytoskeletal degradation and neurite retraction. Additionally, there is a differential susceptibility of neuronal subpopulations to oxidative stress, which may offer potential avenues for investigation of the cellular mechanisms underlying the differential manifestations of neurodegenerative disorders in different regions of the brain.
Collapse
Affiliation(s)
- Erika Beyrent
- Biology Department, University of Scranton, Scranton, PA, USA
| | - George Gomez
- Biology Department, University of Scranton, Scranton, PA, USA
| |
Collapse
|
61
|
Bubnys A, Kandel H, Kao LM, Pfaff D, Tabansky I. Hindbrain V2a Neurons Pattern Rhythmic Activity of Motor Neurons in a Reticulospinal Coculture. Front Neurosci 2019; 13:1077. [PMID: 31680817 PMCID: PMC6811747 DOI: 10.3389/fnins.2019.01077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022] Open
Abstract
As the capacity to isolate distinct neuronal cell types has advanced over the past several decades, new two- and three-dimensional in vitro models of the interactions between different brain regions have expanded our understanding of human neurobiology and the origins of disease. These cultures develop distinctive patterns of activity, but the extent that these patterns are determined by the molecular identity of individual cell types versus the specific pattern of network connectivity is unclear. To address the question of how individual cell types interact in vitro, we developed a simplified culture using two excitatory neuronal subtypes known to participate in the in vivo reticulospinal circuit: HB9+ spinal motor neurons and Chx10+ hindbrain V2a neurons. Here, we report the emergence of cell type-specific patterns of activity in culture; on their own, Chx10+ neurons developed regular, synchronized bursts of activity that recruited neurons across the entire culture, whereas HB9+ neuron activity consisted of an irregular pattern. When these two subtypes were cocultured, HB9+ neurons developed synchronized network bursts that were precisely correlated with Chx10+ neuron activity, thereby recreating an aspect of Chx10+ neurons' role in driving motor activity. These bursts were dependent on AMPA receptors. Our results demonstrate that the molecular classification of the neurons comprising in vitro networks is a crucial determinant of their activity. It is therefore possible to improve both the reproducibility and the applicability of in vitro neurobiological and disease models by carefully controlling the constituent mixtures of neuronal subtypes.
Collapse
Affiliation(s)
- Adele Bubnys
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Hagar Kandel
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Lee Ming Kao
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Donald Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Inna Tabansky
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
- Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
62
|
Bang S, Jeong S, Choi N, Kim HN. Brain-on-a-chip: A history of development and future perspective. BIOMICROFLUIDICS 2019; 13:051301. [PMID: 31616534 PMCID: PMC6783295 DOI: 10.1063/1.5120555] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/25/2019] [Indexed: 05/04/2023]
Abstract
Since the advent of organ-on-a-chip, many researchers have tried to mimic the physiology of human tissue on an engineered platform. In the case of brain tissue, structural connections and cell-cell interactions are important factors for brain function. The recent development of brain-on-a-chip is an effort to mimic those structural and functional aspects of brain tissue within a miniaturized engineered platform. From this perspective, we provide an overview of trace of brain-on-a-chip development, especially in terms of complexity and high-content/high-throughput screening capabilities, and future perspectives on more in vivo-like brain-on-a-chip development.
Collapse
Affiliation(s)
- Seokyoung Bang
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | | | - Nakwon Choi
- Authors to whom correspondence should be addressed:, Telephone: +82-2-958-5617 and , Telephone: +82-2-958-6742
| | - Hong Nam Kim
- Authors to whom correspondence should be addressed:, Telephone: +82-2-958-5617 and , Telephone: +82-2-958-6742
| |
Collapse
|
63
|
Ndyabawe K, Kisaalita WS. Engineering microsystems to recapitulate brain physiology on a chip. Drug Discov Today 2019; 24:1725-1730. [PMID: 31226433 DOI: 10.1016/j.drudis.2019.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/17/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
The structural and functional organization of the human brain consists of 52 regions with distinct cellular organization. In vitro models for normal and pathological states using isolated brain-region-specific 3D engineered tissues fail to recapitulate information integration and/or transfer that arises from connectivity among neuroanatomical structures. Therefore, development of brain-on-a-chip microsystems must shift to multiple region neuron network designs to be relevant in brain functionality and deficit modeling. However, in vitro formation of multiregional networks on microdevices presents several challenges that we illustrate using a few neurological disorders; and we offer guidance, depending on objectives (HTS, disease modeling, etc.) for rational design of microfluidic systems and better emulation of in vivo conditions.
Collapse
Affiliation(s)
- Kenneth Ndyabawe
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA 30602, USA
| | - William S Kisaalita
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
64
|
Oddo A, Peng B, Tong Z, Wei Y, Tong WY, Thissen H, Voelcker NH. Advances in Microfluidic Blood-Brain Barrier (BBB) Models. Trends Biotechnol 2019; 37:1295-1314. [PMID: 31130308 DOI: 10.1016/j.tibtech.2019.04.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022]
Abstract
Therapeutic options for neurological disorders currently remain limited. The intrinsic complexity of the brain architecture prevents potential therapeutics from reaching their cerebral target, thus limiting their efficacy. Recent advances in microfluidic technology and organ-on-chip systems have enabled the development of a new generation of in vitro platforms that can recapitulate complex in vivo microenvironments and physiological responses. In this context, microfluidic-based in vitro models of the blood-brain barrier (BBB) are of particular interest as they provide an innovative approach for conducting research related to the brain, including modeling of neurodegenerative diseases and high-throughput drug screening. Here, we present the most recent advances in BBB-on-chip devices and examine validation steps that will strengthen their future applications.
Collapse
Affiliation(s)
- Arianna Oddo
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bo Peng
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia.
| | - Ziqiu Tong
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yingkai Wei
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Wing Yin Tong
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Nicolas Hans Voelcker
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia; Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
65
|
Sharf T, Hansma PK, Hari MA, Kosik KS. Non-contact monitoring of extra-cellular field potentials with a multi-electrode array. LAB ON A CHIP 2019; 19:1448-1457. [PMID: 30887972 DOI: 10.1039/c8lc00984h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Developing tools to enable non-invasive, high-throughput electrophysiology measurements of large functional-networks of electrogenic cells used as in vitro disease models for the heart and brain remains an outstanding challenge for preclinical drug discovery, where failures are costly and can prove to be fatal during clinical trials. Here we demonstrate, for the first time, that it is possible to perform non-contact monitoring of extra-cellular field potentials with a multi-electrode array (MEA). To do this preliminary demonstration we built a prototype with a custom mechanical stage to micro-position cells grown on conventional glass coverslips over the recording surface of a MEA sensor. The prototype can monitor extra-cellular fields generated by multi-cellular networks in a non-contact configuration, enabling a single MEA sensor to probe different cultures in succession, without fouling or degrading its sensitive electronic surface. This first demonstration with easy to culture cardiomyocyte cells and a prototype device points to the exciting possibility for instrument development leading to more efficient and cost-effective drug screening paradigms for cardiovascular and neurological diseases.
Collapse
Affiliation(s)
- Tal Sharf
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | | | |
Collapse
|
66
|
Lam D, Enright HA, Cadena J, Peters SKG, Sales AP, Osburn JJ, Soscia DA, Kulp KS, Wheeler EK, Fischer NO. Tissue-specific extracellular matrix accelerates the formation of neural networks and communities in a neuron-glia co-culture on a multi-electrode array. Sci Rep 2019; 9:4159. [PMID: 30858401 PMCID: PMC6411890 DOI: 10.1038/s41598-019-40128-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/08/2019] [Indexed: 11/17/2022] Open
Abstract
The brain’s extracellular matrix (ECM) is a macromolecular network composed of glycosaminoglycans, proteoglycans, glycoproteins, and fibrous proteins. In vitro studies often use purified ECM proteins for cell culture coatings, however these may not represent the molecular complexity and heterogeneity of the brain’s ECM. To address this, we compared neural network activity (over 30 days in vitro) from primary neurons co-cultured with glia grown on ECM coatings from decellularized brain tissue (bECM) or MaxGel, a non-tissue-specific ECM. Cells were grown on a multi-electrode array (MEA) to enable noninvasive long-term interrogation of neuronal networks. In general, the presence of ECM accelerated the formation of networks without affecting the inherent network properties. However, specific features of network activity were dependent on the type of ECM: bECM enhanced network activity over a greater region of the MEA whereas MaxGel increased network burst rate associated with robust synaptophysin expression. These differences in network activity were not attributable to cellular composition, glial proliferation, or astrocyte phenotypes, which remained constant across experimental conditions. Collectively, the addition of ECM to neuronal cultures represents a reliable method to accelerate the development of mature neuronal networks, providing a means to enhance throughput for routine evaluation of neurotoxins and novel therapeutics.
Collapse
Affiliation(s)
- Doris Lam
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Heather A Enright
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jose Cadena
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Sandra K G Peters
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Ana Paula Sales
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Joanne J Osburn
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - David A Soscia
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kristen S Kulp
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Elizabeth K Wheeler
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Nicholas O Fischer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| |
Collapse
|
67
|
Stem cell-based retina models. Adv Drug Deliv Rev 2019; 140:33-50. [PMID: 29777757 DOI: 10.1016/j.addr.2018.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/16/2018] [Accepted: 05/12/2018] [Indexed: 12/23/2022]
Abstract
From the early days of cell biological research, the eye-especially the retina-has evoked broad interest among scientists. The retina has since been thoroughly investigated and numerous models have been exploited to shed light on its development, morphology, and function. Apart from various animal models and human clinical and anatomical research, stem cell-based models of animal and human cells of origin have entered the field, especially during the last decade. Despite the observation that the retina of different species comprises endogenous stem cells, most stem cell-related research in the human retina is now based on pluripotent stem cell models. Herein, systems of two-dimensional (2D) cultures and co-cultures of distinctly differentiated retinal subtypes revealed a variety of cellular aspects but have in many aspects been replaced by three-dimensional (3D) structures-the so-called retinal organoids. These organoids not only contain all major retinal cell subtypes compared to the physiological situation, but also show a distinct layering in close proximity to the in vivo morphology. Nevertheless, all these models have inherent advantages and disadvantages, which are expounded and summarized in this review. Finally, we discuss current application aspects of stem cell-based retina models and the specific promises they hold for the future.
Collapse
|
68
|
Ren T, Grosshäuser B, Sridhar K, Nieland TJF, Tocchio A, Schepers U, Demirci U. 3-D geometry and irregular connectivity dictate neuronal firing in frequency domain and synchronization. Biomaterials 2019; 197:171-181. [PMID: 30660993 DOI: 10.1016/j.biomaterials.2019.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 01/18/2023]
Abstract
The replication of the complex structure and three dimensional (3-D) interconnectivity of neurons in the brain is a great challenge. A few 3-D neuronal patterning approaches have been developed to mimic the cell distribution in the brain but none have demonstrated the relationship between 3-D neuron patterning and network connectivity. Here, we used photolithographic crosslinking to fabricate in vitro 3-D neuronal structures with distinct sizes, shapes or interconnectivities, i.e., milli-blocks, micro-stripes, separated micro-blocks and connected micro-blocks, which have spatial confinement from "Z" dimension to "XYZ" dimension. During a 4-week culture period, the 3-D neuronal system has shown high cell viability, axonal, dendritic, synaptic growth and neural network activity of cortical neurons. We further studied the calcium oscillation of neurons in different 3-D patterns and used signal processing both in Fast Fourier Transform (FFT) and time domain (TD) to model the fluorescent signal variation. We observed that the firing frequency decreased as the spatial confinement in 3-D system increased. Besides, the neuronal synchronization significantly decreased by irregularly connecting micro-blocks, indicating that network connectivity can be adjusted by changing the linking conditions of 3-D gels. Earlier works showed the importance of 3-D culture over 2-D in terms of cell growth. Here, we showed that not only 3-D geometry over 2-D culture matters, but also the spatial organization of cells in 3-D dictates the neuronal firing frequency and synchronicity.
Collapse
Affiliation(s)
- Tanchen Ren
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bianka Grosshäuser
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA; Institute of Toxicology and Gentics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz, Eggenstein-Leopoldshafen, 76344, Germany
| | - Kaushik Sridhar
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Thomas J F Nieland
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Alessandro Tocchio
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Ute Schepers
- Institute of Toxicology and Gentics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz, Eggenstein-Leopoldshafen, 76344, Germany
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
69
|
Sosa-Hernández JE, Villalba-RodrĂguez AM, Romero-Castillo KD, Aguilar-Aguila-IsaĂas MA, GarcĂa-Reyes IE, Hernández-Antonio A, Ahmed I, Sharma A, Parra-SaldĂvar R, Iqbal HMN. Organs-on-a-Chip Module: A Review from the Development and Applications Perspective. MICROMACHINES 2018; 9:536. [PMID: 30424469 PMCID: PMC6215144 DOI: 10.3390/mi9100536] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 02/05/2023]
Abstract
In recent years, ever-increasing scientific knowledge and modern high-tech advancements in micro- and nano-scales fabrication technologies have impacted significantly on various scientific fields. A micro-level approach so-called "microfluidic technology" has rapidly evolved as a powerful tool for numerous applications with special reference to bioengineering and biomedical engineering research. Therefore, a transformative effect has been felt, for instance, in biological sample handling, analyte sensing cell-based assay, tissue engineering, molecular diagnostics, and drug screening, etc. Besides such huge multi-functional potentialities, microfluidic technology also offers the opportunity to mimic different organs to address the complexity of animal-based testing models effectively. The combination of fluid physics along with three-dimensional (3-D) cell compartmentalization has sustained popularity as organ-on-a-chip. In this context, simple humanoid model systems which are important for a wide range of research fields rely on the development of a microfluidic system. The basic idea is to provide an artificial testing subject that resembles the human body in every aspect. For instance, drug testing in the pharma industry is crucial to assure proper function. Development of microfluidic-based technology bridges the gap between in vitro and in vivo models offering new approaches to research in medicine, biology, and pharmacology, among others. This is also because microfluidic-based 3-D niche has enormous potential to accommodate cells/tissues to create a physiologically relevant environment, thus, bridge/fill in the gap between extensively studied animal models and human-based clinical trials. This review highlights principles, fabrication techniques, and recent progress of organs-on-chip research. Herein, we also point out some opportunities for microfluidic technology in the future research which is still infancy to accurately design, address and mimic the in vivo niche.
Collapse
Affiliation(s)
- Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Angel M Villalba-RodrĂguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Kenya D Romero-Castillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Mauricio A Aguilar-Aguila-IsaĂas
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Isaac E GarcĂa-Reyes
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Arturo Hernández-Antonio
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Ishtiaq Ahmed
- School of Medical Science, Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia.
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Epigmenio Gonzalez 500, Queretaro CP 76130, Mexico.
| | - Roberto Parra-SaldĂvar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| |
Collapse
|
70
|
Rothbauer M, Rosser JM, Zirath H, Ertl P. Tomorrow today: organ-on-a-chip advances towards clinically relevant pharmaceutical and medical in vitro models. Curr Opin Biotechnol 2018; 55:81-86. [PMID: 30189349 DOI: 10.1016/j.copbio.2018.08.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
Organ-on-a-chip technology offers the potential to recapitulate human physiology by keeping human cells in a precisely controlled and artificial tissue-like microenvironment. The current and potential advantages of organs-on-chips over conventional cell cultures systems and animal models have captured the attention of scientists, clinicians and policymakers as well as advocacy groups in the past few years. Recent advances in tissue engineering and stem cell research are also aiding the development of clinically relevant chip-based organ and diseases models with organ level physiology for drug screening, biomedical research and personalized medicine. Here, the latest advances in organ-on-a-chip technology are reviewed and future clinical applications discussed.
Collapse
Affiliation(s)
- Mario Rothbauer
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/163-164, 1060 Vienna, Austria
| | - Julie M Rosser
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/163-164, 1060 Vienna, Austria
| | - Helene Zirath
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/163-164, 1060 Vienna, Austria
| | - Peter Ertl
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/163-164, 1060 Vienna, Austria.
| |
Collapse
|
71
|
Serio A, Patani R. Concise Review: The Cellular Conspiracy of Amyotrophic Lateral Sclerosis. Stem Cells 2018; 36:293-303. [PMID: 29235200 DOI: 10.1002/stem.2758] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is incurable and devastating. A dearth of therapies has galvanized experimental focus onto the cellular and molecular mechanisms that both initiate and subsequently drive motor neuron degeneration. A traditional view of ALS pathogenesis posits that disease-specific injury to a subtype of neurons is mechanistically cell-autonomous. This "neuron-centric" view has biased past research efforts. However, a wealth of accumulating evidence now strongly implicates non-neuronal cells as being major determinants of ALS. Although animal models have proven invaluable in basic neuroscience research, a growing number of studies confirm fundamental interspecies differences between popular model organisms and the human condition. This may in part explain the failure of therapeutic translation from rodent preclinical models. It follows that integration of a human experimental model using patient-specific induced pluripotent stem cells may be necessary to capture the complexity of human neurodegeneration with fidelity. Integration of enriched human neuronal and glial experimental platforms into the existing repertoire of preclinical models might prove transformational for clinical trial outcomes in ALS. Such reductionist and integrated cross-modal approaches allow systematic elucidation of cell-autonomous and non-cell-autonomous mechanisms of disease, which may then provide novel cellular targets for therapeutic intervention. Stem Cells 2018;36:293-303.
Collapse
Affiliation(s)
- Andrea Serio
- Tissue Engineering and Biophotonics Division, Dental Institute, Kings College London, London, United Kingdom
| | - Rickie Patani
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
72
|
Jorfi M, D'Avanzo C, Kim DY, Irimia D. Three-Dimensional Models of the Human Brain Development and Diseases. Adv Healthc Mater 2018; 7:10.1002/adhm.201700723. [PMID: 28845922 PMCID: PMC5762251 DOI: 10.1002/adhm.201700723] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 06/24/2017] [Indexed: 01/07/2023]
Abstract
Deciphering the human brain pathophysiology remains one of the greatest challenges of the 21st century. Neurological disorders represent a significant proportion of diseases burden; however, the complexity of the brain physiology makes it challenging to model its diseases. Simple in vitro models have been very useful for precise measurements in controled conditions. However, existing models are limited in their ability to replicate complex interactions between various cells in the brain. Studying human brain requires sophisticated models to reconstitute the tangled architecture and functions of brain cells. Recently, advances in the development of three-dimensional (3D) brain cell culture models have begun to recapitulate various aspects of the human brain physiology in vitro and replicate basic disease processes of Alzheimer's disease, amyotrophic lateral sclerosis, and microcephaly. In this review, we discuss the progress, advantages, limitations, and future directions of 3D cell culture systems for modeling the human brain development and diseases.
Collapse
Affiliation(s)
- Mehdi Jorfi
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| | - Carla D'Avanzo
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| | - Daniel Irimia
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| |
Collapse
|
73
|
Roach P, Kose Dunn M, Fricker R. Tissue engineered organoids for neural network modelling. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/atroa.2017.03.00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
74
|
Abstract
Angiogenesis plays an important role not only in the growth and regeneration of tissues in humans but also in pathological conditions such as inflammation, degenerative disease and the formation of tumors. Angiogenesis is also vital in thick engineered tissues and constructs, such as those for the heart and bone, as these can face difficulties in successful implantation if they are insufficiently vascularized or unable to connect to the host vasculature. Considerable research has been carried out on angiogenic processes using a variety of approaches. Pathological angiogenesis has been analyzed at the cellular level through investigation of cell migration and interactions, modeling tissue level interactions between engineered blood vessels and whole organs, and elucidating signaling pathways involved in different angiogenic stimuli. Approaches to regenerative angiogenesis in ischemic tissues or wound repair focus on the vascularization of tissues, which can be broadly classified into two categories: scaffolds to direct and facilitate tissue growth and targeted delivery of genes, cells, growth factors or drugs that promote the regeneration. With technological advancement, models have been designed and fabricated to recapitulate the innate microenvironment. Moreover, engineered constructs provide not only a scaffold for tissue ingrowth but a reservoir of agents that can be controllably released for therapeutic purposes. This review summarizes the current approaches for modeling pathological and regenerative angiogenesis in the context of micro-/nanotechnology and seeks to bridge these two seemingly distant aspects of angiogenesis. The ultimate aim is to provide insights and advances from various models in the realm of angiogenesis studies that can be applied to clinical situations.
Collapse
Affiliation(s)
- Li-Jiun Chen
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | | |
Collapse
|
75
|
Soscia D, Belle A, Fischer N, Enright H, Sales A, Osburn J, Benett W, Mukerjee E, Kulp K, Pannu S, Wheeler E. Controlled placement of multiple CNS cell populations to create complex neuronal cultures. PLoS One 2017; 12:e0188146. [PMID: 29161298 PMCID: PMC5697820 DOI: 10.1371/journal.pone.0188146] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/01/2017] [Indexed: 11/24/2022] Open
Abstract
In vitro brain-on-a-chip platforms hold promise in many areas including: drug discovery, evaluating effects of toxicants and pathogens, and disease modelling. A more accurate recapitulation of the intricate organization of the brain in vivo may require a complex in vitro system including organization of multiple neuronal cell types in an anatomically-relevant manner. Most approaches for compartmentalizing or segregating multiple cell types on microfabricated substrates use either permanent physical surface features or chemical surface functionalization. This study describes a removable insert that successfully deposits neurons from different brain areas onto discrete regions of a microelectrode array (MEA) surface, achieving a separation distance of 100 ÎĽm. The regional seeding area on the substrate is significantly smaller than current platforms using comparable placement methods. The non-permanent barrier between cell populations allows the cells to remain localized and attach to the substrate while the insert is in place and interact with neighboring regions after removal. The insert was used to simultaneously seed primary rodent hippocampal and cortical neurons onto MEAs. These cells retained their morphology, viability, and function after seeding through the cell insert through 28 days in vitro (DIV). Co-cultures of the two neuron types developed processes and formed integrated networks between the different MEA regions. Electrophysiological data demonstrated characteristic bursting features and waveform shapes that were consistent for each neuron type in both mono- and co-culture. Additionally, hippocampal cells co-cultured with cortical neurons showed an increase in within-burst firing rate (p = 0.013) and percent spikes in bursts (p = 0.002), changes that imply communication exists between the two cell types in co-culture. The cell seeding insert described in this work is a simple but effective method of separating distinct neuronal populations on microfabricated devices, and offers a unique approach to developing the types of complex in vitro cellular environments required for anatomically-relevant brain-on-a-chip devices.
Collapse
Affiliation(s)
- D. Soscia
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - A. Belle
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - N. Fischer
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - H. Enright
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - A. Sales
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - J. Osburn
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - W. Benett
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - E. Mukerjee
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - K. Kulp
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - S. Pannu
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - E. Wheeler
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| |
Collapse
|
76
|
Bovard D, Iskandar A, Luettich K, Hoeng J, Peitsch MC. Organs-on-a-chip. TOXICOLOGY RESEARCH AND APPLICATION 2017. [DOI: 10.1177/2397847317726351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the last few years, considerable attention has been given to in vitro models in an attempt to reduce the use of animals and to decrease the rate of preclinical failure associated with the development of new drugs. Simple two-dimensional cultures grown in a dish are now frequently replaced by organotypic cultures with three-dimensional (3-D) architecture, which enables interactions between cells, promoting their differentiation and increasing their in vivo likeness. Microengineering now enables the incorporation of small devices into 3-D culture models to reproduce the complex microenvironment of the modeled organ, often referred to as organs-on-a-chip (OoCs). This review describes various OoCs developed to mimic liver, brain, kidney, and lung tissues. Current challenges encountered in attempts to recreate the in vivo environment are described, as well as some examples of OoCs. Finally, attention is given to the ongoing evolution of OoCs with the aim of solving one of the major limitations in that they can only represent a single organ. Multi-organ-on-a-chip (MOC) systems mimic organ interactions observed in the human body and aim to provide the features of compound uptake, metabolism, and excretion, while simultaneously allowing for insights into biological effects. MOCs might therefore represent a new paradigm in drug development, providing a better understanding of dose responses and mechanisms of toxicity, enabling the detection of drug resistance and supporting the evaluation of pharmacokinetic–pharmacodynamics parameters.
Collapse
Affiliation(s)
- David Bovard
- Philip Morris Products SA, Neuchatel, Switzerland
| | | | | | - Julia Hoeng
- Philip Morris Products SA, Neuchatel, Switzerland
| | | |
Collapse
|
77
|
Abstract
Many biomedical research studies use captive animals to model human health and disease. However, a surprising number of studies show that the biological systems of animals living in standard laboratory housing are abnormal. To make animal studies more relevant to human health, research animals should live in the wild or be able to roam free in captive environments that offer a natural range of both positive and negative experiences. Recent technological advances now allow us to study freely roaming animals and we should make use of them.
Collapse
Affiliation(s)
- Garet P Lahvis
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, United States
| |
Collapse
|