51
|
Mell B, Jala VR, Mathew AV, Byun J, Waghulde H, Zhang Y, Haribabu B, Vijay-Kumar M, Pennathur S, Joe B. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics 2015; 47:187-97. [PMID: 25829393 DOI: 10.1152/physiolgenomics.00136.2014] [Citation(s) in RCA: 305] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/26/2015] [Indexed: 12/20/2022] Open
Abstract
The gut microbiota plays a critical role in maintaining physiological homeostasis. This study was designed to evaluate whether gut microbial composition affects hypertension. 16S rRNA genes obtained from cecal samples of Dahl salt-sensitive (S) and Dahl salt-resistant (R) rats were sequenced. Bacteria of the phylum Bacteroidetes were higher in the S rats compared with the R rats. Furthermore, the family S24-7 of the phylum Bacteroidetes and the family Veillonellaceae of the phylum Firmicutes were higher in the S rats compared with the R rats. Analyses of the various phylogenetic groups of cecal microbiota revealed significant differences between S and R rats. Both strains were maintained on a high-salt diet, administered antibiotics for ablation of microbiota, transplanted with S or R rat cecal contents, and monitored for blood pressure (BP). Systolic BP of the R rats remained unaltered irrespective of S or R rat cecal transplantation. Surprisingly, compared with the S rats given S rat cecal content, systolic BP of the S rats given a single bolus of cecal content from R rats was consistently and significantly elevated during the rest of their life, and they had a shorter lifespan. A lower level of fecal bacteria of the family Veillonellaceae and increased plasma acetate and heptanoate were features associated with the increased BP observed in the S rats given R rat microbiota compared with the S rats given S rat microbiota. These data demonstrate a link between microbial content and BP regulation and, because the S and R rats differ in their genomic composition, provide the necessary basis to further examine the relationship between the host genome and microbiome in the context of BP regulation in the Dahl rats.
Collapse
Affiliation(s)
- Blair Mell
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Venkatakrishna R Jala
- James Graham Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Anna V Mathew
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, Michigan; and
| | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, Michigan; and
| | - Harshal Waghulde
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Youjie Zhang
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bodduluri Haribabu
- James Graham Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences and Medicine, The Pennsylvania State University, University Park, Pennsylvania
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, Michigan; and
| | - Bina Joe
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio;
| |
Collapse
|
52
|
Identification of eQTLs for hepatic Xbp1s and Socs3 gene expression in mice fed a high-fat, high-caloric diet. G3-GENES GENOMES GENETICS 2015; 5:487-96. [PMID: 25617409 PMCID: PMC4390565 DOI: 10.1534/g3.115.016626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent form of human hepatic disease and feeding mice a high-fat, high-caloric (HFHC) diet is a standard model of NAFLD. To better understand the genetic basis of NAFLD, we conducted an expression quantitative trait locus (eQTL) analysis of mice fed a HFHC diet. Two-hundred sixty-five (A/J × C57BL/6J) F2 male mice were fed a HFHC diet for 8 wk. eQTL analysis was utilized to identify genomic regions that regulate hepatic gene expression of Xbp1s and Socs3. We identified two overlapping loci for Xbp1s and Socs3 on Chr 1 (164.0–185.4 Mb and 174.4–190.5 Mb, respectively) and Chr 11 (41.1–73.1 Mb and 44.0–68.6 Mb, respectively), and an additional locus for Socs3 on Chr 12 (109.9–117.4 Mb). C57BL/6J-Chr 11A/J/ NaJ mice fed a HFHC diet manifested the A/J phenotype of increased Xbp1s and Socs3 gene expression (P < 0.05), whereas C57BL/6J-Chr 1A/J/ NaJ mice retained the C57BL/6J phenotype. In addition, we replicated the eQTLs on Chr 1 and Chr 12 (LOD scores ≥3.5) using mice from the BXD murine reference panel challenged with CCl4 to induce chronic liver injury and fibrosis. We have identified overlapping eQTLs for Xbp1 and Socs3 on Chr 1 and Chr 11, and consomic mice confirmed that replacing the C57BL/6J Chr 11 with the A/J Chr 11 resulted in an A/J phenotype for Xbp1 and Socs3 gene expression. Identification of the genes for these eQTLs will lead to a better understanding of the genetic factors responsible for NAFLD and potentially other hepatic diseases.
Collapse
|
53
|
Korbolina EE, Ershov NI, Bryzgalov LO, Kolosova NG. Application of quantitative trait locus mapping and transcriptomics to studies of the senescence-accelerated phenotype in rats. BMC Genomics 2014; 15 Suppl 12:S3. [PMID: 25563673 PMCID: PMC4303943 DOI: 10.1186/1471-2164-15-s12-s3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Etiology of complex disorders, such as cataract and neurodegenerative diseases including age-related macular degeneration (AMD), remains poorly understood due to the paucity of animal models, fully replicating the human disease. Previously, two quantitative trait loci (QTLs) associated with early cataract, AMD-like retinopathy, and some behavioral aberrations in senescence-accelerated OXYS rats were uncovered on chromosome 1 in a cross between OXYS and WAG rats. To confirm the findings, we generated interval-specific congenic strains, WAG/OXYS-1.1 and WAG/OXYS-1.2, carrying OXYS-derived loci of chromosome 1 in the WAG strain. Both congenic strains displayed early cataract and retinopathy but differed clinically from OXYS rats. Here we applied a high-throughput RNA sequencing (RNA-Seq) strategy to facilitate nomination of the candidate genes and functional pathways that may be responsible for these differences and can contribute to the development of the senescence-accelerated phenotype of OXYS rats. Results First, the size and map position of QTL-derived congenic segments were determined by comparative analysis of coding single-nucleotide polymorphisms (SNPs), which were identified for OXYS, WAG, and congenic retinal RNAs after sequencing. The transferred locus was not what we expected in WAG/OXYS-1.1 rats. In rat retina, 15442 genes were expressed. Coherent sets of differentially expressed genes were identified when we compared RNA-Seq retinal profiles of 20-day-old WAG/OXYS-1.1, WAG/OXYS-1.2, and OXYS rats. The genes most different in the average expression level between the congenic strains included those generally associated with the Wnt, integrin, and TGF-β signaling pathways, widely involved in neurodegenerative processes. Several candidate genes (including Arhgap33, Cebpg, Gtf3c1, Snurf, Tnfaip3, Yme1l1, Cbs, Car9 and Fn1) were found to be either polymorphic in the congenic loci or differentially expressed between the strains. These genes may contribute to the development of cataract and retinopathy. Conclusions This study is the first RNA-Seq analysis of the rat retinal transcriptome generated with 40 mln sequencing read depth. The integration of QTL and transcriptomic analyses in our study forms the basis of future research into the relationship between the candidate genes within the congenic regions and specific changes in the retinal transcriptome as possible causal mechanisms that underlie age-associated disorders.
Collapse
|
54
|
Orlov SN, Hamet P. Salt and gene expression: evidence for [Na+]i/[K+]i-mediated signaling pathways. Pflugers Arch 2014; 467:489-98. [PMID: 25479826 DOI: 10.1007/s00424-014-1650-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/27/2014] [Accepted: 11/07/2014] [Indexed: 01/11/2023]
Abstract
Our review focuses on the recent data showing that gene transcription and translation are under the control of signaling pathways triggered by modulation of the intracellular sodium/potassium ratio ([Na+]i/[K+]i). Side-by-side with sensing of osmolality elevation by tonicity enhancer-binding protein (TonEBP, NFAT5), [Na+]i/[K+]i-mediated excitation-transcription coupling may contribute to the transcriptomic changes evoked by high salt consumption. This novel mechanism includes the sensing of heightened Na+ concentration in the plasma, interstitial, and cerebrospinal fluids via augmented Na+ influx in the endothelium, immune system cells, and the subfornical organ, respectively. In these cells, [Na+]i/[K+]i ratio elevation, triggered by augmented Na+ influx, is further potentiated by increased production of endogenous Na+,K+-ATPase inhibitors documented in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sergei N Orlov
- Laboratory of Biological Membranes, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia,
| | | |
Collapse
|
55
|
Characteristics of long non-coding RNAs in the Brown Norway rat and alterations in the Dahl salt-sensitive rat. Sci Rep 2014; 4:7146. [PMID: 25413633 PMCID: PMC4894415 DOI: 10.1038/srep07146] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/31/2014] [Indexed: 12/03/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are potentially important mediators of genomic regulation. lncRNAs, however, remain poorly characterized in the rat model organism widely used in biomedical research. Using poly(A)-independent and strand-specific RNA-seq, we identified 1,500 to 1,800 lncRNAs expressed in each of the following tissues of Brown Norway rats: the renal cortex, renal outer medulla, liver, cardiac left ventricle, adrenal gland, and hypothalamus. Expression and the binding of histone H3K4me3 to promoter regions were confirmed for several lncRNAs. Rat lncRNA expression appeared to be more tissue-specific than mRNA. Rat lncRNAs had 4.5 times fewer exons and 29% shorter transcripts than mRNA. The median cumulative abundance of rat lncRNAs was 53% of that of mRNA. Approximately 28% of the lncRNAs identified in the renal outer medulla appeared to lack a poly(A) tail. Differential expression of 74 lncRNAs was detected in the renal outer medulla between Dahl SS rats, a model of salt-sensitive hypertension, and salt-insensitive, congenic SS.13BN26 rats fed a high-salt diet. Two of the differentially expressed lncRNAs, which were confirmed, were located within the congenic region and contained several sequence variants. The study identified genome-wide characteristics of lncRNAs in the rat model and suggested a role of lncRNAs in hypertension.
Collapse
|
56
|
Gopalakrishnan K, Kumarasamy S, Mell B, Joe B. Genome-wide identification of long noncoding RNAs in rat models of cardiovascular and renal disease. Hypertension 2014; 65:200-10. [PMID: 25385761 DOI: 10.1161/hypertensionaha.114.04498] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Long noncoding RNAs (lncRNAs) are an emerging class of genomic regulatory molecules reported in various species. In the rat, which is one of the major mammalian model organisms, discovery of lncRNAs on a genome-wide scale is lagging. Renal lncRNA sequencing and lncRNA transcriptome analysis were conducted in 3 rat strains that are widely used in cardiovascular and renal research: the Dahl salt-sensitive rat, the spontaneously hypertensive rat, and the Dahl salt-resistant rat. Through the RNA sequencing approach, 3273 transcripts were identified as rat lncRNAs. A majority of lncRNAs were without predicted target genes. Differential expression of 273 and 749 lncRNAs was detected between Dahl salt-sensitive versus Dahl salt-resistant and Dahl salt-sensitive versus spontaneously hypertensive rat comparisons, respectively. To couple the observed differential expression of lncRNAs with the status of mRNAs, an mRNA transcriptome analysis was conducted. Several cis mRNA genes were coregulated with lncRNAs. Of these, the protein expression status of 4 target genes, Asb3, Chac2, Pex11b, and Sp5, were differentially expressed between the relevant strain comparisons, thereby suggesting that the differentially expressed lncRNAs associated with these genes are candidate genetic determinants of blood pressure. This study serves as a first-generation catalog of rat lncRNAs and illustrates the prioritization of lncRNAs as candidates for complex polygenic traits.
Collapse
Affiliation(s)
- Kathirvel Gopalakrishnan
- From the Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH
| | - Sivarajan Kumarasamy
- From the Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH
| | - Blair Mell
- From the Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH
| | - Bina Joe
- From the Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH.
| |
Collapse
|
57
|
Ragaeva DS, Brusentsev EY, Amstislavsky SY. Assisted reproductive technologies and arterial hypertension. Russ J Dev Biol 2014; 45:243-256. [DOI: 10.1134/s1062360414050087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
|
58
|
Jiang DS, Li L, Huang L, Gong J, Xia H, Liu X, Wan N, Wei X, Zhu X, Chen Y, Chen X, Zhang XD, Li H. Interferon regulatory factor 1 is required for cardiac remodeling in response to pressure overload. Hypertension 2014; 64:77-86. [PMID: 24732887 DOI: 10.1161/hypertensionaha.114.03229] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/18/2014] [Indexed: 01/12/2023]
Abstract
Interferon regulatory factor 1 (IRF1), a critical member of the IRF family, was previously shown to be associated with the immune system and to be involved in apoptosis and tumor suppression. However, the role of IRF1 in pressure overload-induced cardiac remodeling has remained unclear. Using genetic approaches, we established a central role for the IRF1 transcription factor in the regulation of cardiac remodeling both in vivo and in vitro, and we determined the mechanism underlying this process. The expression level of IRF1 was remarkably altered in both failing human hearts and hypertrophic murine hearts. Transgenic mice with cardiac-specific IRF1 overexpression exacerbated aortic banding-induced cardiac hypertrophy, ventricular dilation, fibrosis, and dysfunction, whereas IRF1-deficient (knockout) mice exhibited a significant reduction in the hypertrophic response. Similar results were observed in a global IRF1-knockout rat model. Mechanistically, the prohypertrophic effects elicited by IRF1 in response to pathological stimuli were associated with the direct activation of inducible nitric oxide synthase (iNOS). Furthermore, we identified 1 IRF1-binding site in the promoter region of the iNOS gene, which was essential for its transcription. To examine the IRF1-iNOS axis in vivo, we generated IRF1-transgenic/iNOS-knockout mice. IRF1 exerted profoundly detrimental effects in these mice; however, these effects were nullified by iNOS ablation. These data suggest the IRF1-iNOS axis as a crucial regulator of cardiac remodeling and that IRF1 could be a potent therapeutic target for cardiac remodeling.
Collapse
Affiliation(s)
- Ding-Sheng Jiang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.W., X.Z.); and Cardiovascular Division, University of Minnesota, Minneapolis (Y.C.)
| | - Liangpeng Li
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.W., X.Z.); and Cardiovascular Division, University of Minnesota, Minneapolis (Y.C.)
| | - Ling Huang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.W., X.Z.); and Cardiovascular Division, University of Minnesota, Minneapolis (Y.C.)
| | - Jun Gong
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.W., X.Z.); and Cardiovascular Division, University of Minnesota, Minneapolis (Y.C.)
| | - Hao Xia
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.W., X.Z.); and Cardiovascular Division, University of Minnesota, Minneapolis (Y.C.)
| | - Xiaoxiong Liu
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.W., X.Z.); and Cardiovascular Division, University of Minnesota, Minneapolis (Y.C.)
| | - Nian Wan
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.W., X.Z.); and Cardiovascular Division, University of Minnesota, Minneapolis (Y.C.)
| | - Xiang Wei
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.W., X.Z.); and Cardiovascular Division, University of Minnesota, Minneapolis (Y.C.)
| | - Xuehai Zhu
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.W., X.Z.); and Cardiovascular Division, University of Minnesota, Minneapolis (Y.C.)
| | - Yingjie Chen
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.W., X.Z.); and Cardiovascular Division, University of Minnesota, Minneapolis (Y.C.)
| | - Xin Chen
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.W., X.Z.); and Cardiovascular Division, University of Minnesota, Minneapolis (Y.C.)
| | - Xiao-Dong Zhang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.W., X.Z.); and Cardiovascular Division, University of Minnesota, Minneapolis (Y.C.)
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.W., X.Z.); and Cardiovascular Division, University of Minnesota, Minneapolis (Y.C.).
| |
Collapse
|
59
|
Redina OE, Smolenskaya SE, Abramova TO, Markel AL. Genetic loci for spleen weight and blood pressure in ISIAH rats with inherited stress-induced arterial hypertension. Mol Biol 2014. [DOI: 10.1134/s0026893314030169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
60
|
Cowley AW, Moreno C, Jacob HJ, Peterson CB, Stingo FC, Ahn KW, Liu P, Vannucci M, Laud PW, Reddy P, Lazar J, Evans L, Yang C, Kurth T, Liang M. Characterization of biological pathways associated with a 1.37 Mbp genomic region protective of hypertension in Dahl S rats. Physiol Genomics 2014; 46:398-410. [PMID: 24714719 DOI: 10.1152/physiolgenomics.00179.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The goal of the present study was to narrow a region of chromosome 13 to only several genes and then apply unbiased statistical approaches to identify molecular networks and biological pathways relevant to blood-pressure salt sensitivity in Dahl salt-sensitive (SS) rats. The analysis of 13 overlapping subcongenic strains identified a 1.37 Mbp region on chromosome 13 that influenced the mean arterial blood pressure by at least 25 mmHg in SS rats fed a high-salt diet. DNA sequencing and analysis filled genomic gaps and provided identification of five genes in this region, Rfwd2, Fam5b, Astn1, Pappa2, and Tnr. A cross-platform normalization of transcriptome data sets obtained from our previously published Affymetrix GeneChip dataset and newly acquired RNA-seq data from renal outer medullary tissue provided 90 observations for each gene. Two Bayesian methods were used to analyze the data: 1) a linear model analysis to assess 243 biological pathways for their likelihood to discriminate blood pressure levels across experimental groups and 2) a Bayesian graphical modeling of pathways to discover genes with potential relationships to the candidate genes in this region. As none of these five genes are known to be involved in hypertension, this unbiased approach has provided useful clues to be experimentally explored. Of these five genes, Rfwd2, the gene most strongly expressed in the renal outer medulla, was notably associated with pathways that can affect blood pressure via renal transcellular Na(+) and K(+) electrochemical gradients and tubular Na(+) transport, mitochondrial TCA cycle and cell energetics, and circadian rhythms.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin;
| | - Carol Moreno
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Howard J Jacob
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Francesco C Stingo
- Department of Biostatistics, MD Anderson Cancer Center, Houston, Texas; and
| | - Kwang Woo Ahn
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pengyuan Liu
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Purushottam W Laud
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Prajwal Reddy
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jozef Lazar
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Louise Evans
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Theresa Kurth
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
61
|
He X, Liu Y, Usa K, Tian Z, Cowley AW, Liang M. Ultrastructure of mitochondria and the endoplasmic reticulum in renal tubules of Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2014; 306:F1190-7. [PMID: 24694587 DOI: 10.1152/ajprenal.00073.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metabolic and functional abnormalities in the kidney precede or coincide with the initiation of overt hypertension in the Dahl salt-sensitive (SS) rat. However, renal histological injury in SS rats is mild before the development of overt hypertension. We performed electron microscopy analysis in 7-wk-old SS rats and salt-insensitive consomic SS.13(BN) rats and Sprague-Dawley (SD) rats fed a 4% NaCl diet for 7 days. Long mitochondria (>2 μm) accounted for a significantly smaller fraction of mitochondria in medullary thick ascending limbs in SS rats (4% ± 1%) than in SS.13(BN) rats (8% ± 1%, P < 0.05 vs. SS rats) and SD rats (9% ± 1%, P < 0.01 vs. SS rats), consistent with previous findings of mitochondrial functional insufficiency in the medulla of SS rats. Long mitochondria in proximal tubules, however, were more abundant in SS rats than in SS.13(BN) and SD rats. The width of the endoplasmic reticulum, an index of endoplasmic reticulum stress, was significantly greater in medullary thick ascending limbs of SS rats (107 ± 1 nm) than in SS.13(BN) rats (95 ± 2 nm, P < 0.001 vs. SS rats) and SD rats (74 ± 3 nm, P < 0.01 vs. SS or SS.13(BN) rats). The tubules examined were indistinguishable between rat strains under light microscopy. These data indicate that ultrastructural abnormalities occur in the medullary thick ascending limbs of SS rats before the development of histological injury in renal tubules, providing a potential structural basis contributing to the subsequent development of overt hypertension.
Collapse
Affiliation(s)
- Xiaofeng He
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China; and
| | - Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kristie Usa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin;
| |
Collapse
|
62
|
Mehrotra A, Joe B, de la Serna IL. SWI/SNF chromatin remodeling enzymes are associated with cardiac hypertrophy in a genetic rat model of hypertension. J Cell Physiol 2014; 228:2337-42. [PMID: 23702776 DOI: 10.1002/jcp.24404] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 01/03/2023]
Abstract
Pathological cardiac hypertrophy is characterized by a sustained increase in cardiomyocyte size and re-activation of the fetal cardiac gene program. Previous studies implicated SWI/SNF chromatin remodeling enzymes as regulators of the fetal cardiac gene program in surgical models of cardiac hypertrophy. Although hypertension is a common risk factor for developing cardiac hypertrophy, there has not yet been any investigation into the role of SWI/SNF enzymes in cardiac hypertrophy using genetic models of hypertension. In this study, we tested the hypothesis that components of the SWI/SNF complex are activated and recruited to promoters that regulate the fetal cardiac gene program in hearts that become hypertrophic as a result of salt induced hypertension. Utilizing the Dahl salt-sensitive (S) rat model, we found that the protein levels of several SWI/SNF subunits required for heart development, Brg1, Baf180, and Baf60c, are elevated in hypertrophic hearts from S rats fed a high salt diet compared with normotensive hearts from Dahl salt-resistant (R) rats fed the same diet. Furthermore, we detected significantly higher levels of SWI/SNF subunit enrichment as well as evidence of more accessible chromatin structure on two fetal cardiac gene promoters in hearts from S rats compared with R rats. Our data implicate SWI/SNF chromatin remodeling enzymes as regulators of gene expression in cardiac hypertrophy resulting from salt induced hypertension. Thus we provide novel insights into the epigenetic mechanisms by which salt induced hypertension leads to cardiac hypertrophy.
Collapse
Affiliation(s)
- Aanchal Mehrotra
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | | | |
Collapse
|
63
|
Liu Y, Liu P, Yang C, Cowley AW, Liang M. Base-resolution maps of 5-methylcytosine and 5-hydroxymethylcytosine in Dahl S rats: effect of salt and genomic sequence. Hypertension 2014; 63:827-38. [PMID: 24420542 DOI: 10.1161/hypertensionaha.113.02637] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Analysis of 5-hydroxymethylcytosine (5hmC) at single-base resolution has been largely limited to studies of stem cells or developmental stages. Given the potential importance of epigenetic events in hypertension, we have analyzed 5hmC and 5-methylcytosine (5mC) at single-base resolution in the renal outer medulla of the Dahl salt-sensitive rat and examined the effect of disease-relevant genetic or environmental alterations on 5hmC and 5mC patterns. Of CpG sites that fell within CpG islands, 11% and 1% contained significant 5mC and 5hmC, respectively. 5mC levels were substantially higher for genes with lower mRNA abundance and showed a prominent nadir around the transcription start site. In contrast, 5hmC levels were higher in genes with higher expression. Substitution of a 12.9-Mbp region of chromosome 13, which attenuates the hypertensive and renal injury phenotypes in salt-sensitive rats, or exposure to a high-salt diet, which accelerates the disease phenotypes, was associated with differential 5mC or 5hmC in several hundred CpG islands. Nearly 80% of the CpG islands that were differentially methylated in response to salt and associated with differential mRNA abundance were intragenic CpG islands. The substituted genomic segment had significant cis effects on mRNA abundance but not on DNA methylation. The study established base-resolution maps of 5mC and 5hmC in an in vivo model of disease and revealed several characteristics of 5mC and 5hmC important for understanding the role of epigenetic modifications in the regulation of organ systems function and complex diseases.
Collapse
Affiliation(s)
- Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226. or
| | | | | | | | | |
Collapse
|
64
|
Collett JA, Hart AK, Patterson E, Kretzer J, Osborn JL. Renal angiotensin II type 1 receptor expression and associated hypertension in rats with minimal SHR nuclear genome. Physiol Rep 2013; 1:e00104. [PMID: 24303176 PMCID: PMC3841040 DOI: 10.1002/phy2.104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/06/2013] [Accepted: 09/03/2013] [Indexed: 01/23/2023] Open
Abstract
Angiotensin II (AII) has been linked as a causal factor in several experimental models of hypertension (HT) including Okamoto spontaneously hypertensive rats (SHR). The transmission and expression of AII type 1 receptors (AT1r) in SHR and the development of genetic HT remain unknown. It is hypothesized that tissue-specific expression of renin–angiotensin system (RAS) genes derived from SHR are linked to HT in offspring of SHR crossed with Brown Norway (BN) rats. Hypertensive female progeny of BN/SHR matings was backcrossed with founder BN males to generate the F1 and five backcross generations (BN/SHR-mtSHR). Progeny were phenotyped according to normotension (NT: systolic arterial pressure [SAP] ≤ 124 mmHg), borderline hypertension (BHT: 124 ≤ SAP < 145 mmHg), and HT (SAP ≥ 145 mmHg). Six generations produced more HT (n = 88; 46%) than NT (n = 21; 11%) offspring. The mRNA expression of the RAS was evaluated in NT (n = 20) and HT (n = 20) BN/SHR-mtSHR across several generations. Quantitative real-time polymerase chain reaction analysis of kidney tissue showed increased expression of AII, type 1 receptors (Agtr1a) (∼2.5-fold) in HT versus NT rats, while other members of both the renal and systemic RAS pathway were not different. Western blot analysis from kidney homogenates showed that AT1r protein levels were higher (P < 0.05) in backcross generation 3 (BC3) HT versus NT rats. Evaluation of SAP as a function of AT1r expression by linear regression indicated positive correlation (P < 0.05) in kidney of BC3 BN/SHR-mtSHR rats. Thus, elevated kidney AT1r expression may be involved in the development of HT in BN/SHR-mtSHR rats.
Collapse
Affiliation(s)
- Jason A Collett
- Department of Biology, University of Kentucky Lexington, Kentucky
| | | | | | | | | |
Collapse
|
65
|
Grabowski K, Koplin G, Aliu B, Schulte L, Schulz A, Kreutz R. Mapping and confirmation of a major left ventricular mass QTL on rat chromosome 1 by contrasting SHRSP and F344 rats. Physiol Genomics 2013; 45:827-33. [PMID: 23901062 DOI: 10.1152/physiolgenomics.00067.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
An abnormal increase in left ventricular (LV) mass, i.e., LV hypertrophy (LVH), represents an important target organ damage in arterial hypertension and has been associated with poor clinical outcome. Genetic factors are contributing to variation in LV mass in addition to blood pressure and other factors such as dietary salt intake. We set out to map quantitative trait loci (QTL) for LV mass by comparing the spontaneously hypertensive stroke-prone (SHRSP) rat with LVH and normotensive Fischer rats (F344) with contrasting low LV mass. To this end we performed a genome-wide QTL mapping analysis in 232 F2 animals derived from SHRSP and F344 exposed to high-salt (4% in chow) intake for 8 wk. We mapped one major QTL for LV mass on rat chromosome 1 (RNO1) that demonstrated strong linkage (peak logarithm of odds score 8.4) to relative LV weight (RLVW) and accounted for ∼19% of the variance of this phenotype in F2 rats. We therefore generated a consomic SHRSP-1(F344) strain in which RNO1 from F344 was introgressed into the SHRSP background. Consomic and SHRSP animals showed similar blood pressures during conventional intra-arterial measurements, while RLVW was already significantly lower (-17.7%, P<0.05) in SHRSP-1(F344) in response to a normal-salt diet; a similar significant reduction of LV mass was also observed in consomic rats after high-salt intake (P<0.05 vs. SHRSP). Thus, a major QTL on RNO1 was confirmed with significant impact on LV mass in the hypertensive background of SHRSP.
Collapse
Affiliation(s)
- Katja Grabowski
- Department of Clinical Pharmacology and Toxicology, CharitéCentrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
66
|
Atanur S, Diaz A, Maratou K, Sarkis A, Rotival M, Game L, Tschannen M, Kaisaki P, Otto G, Ma M, Keane T, Hummel O, Saar K, Chen W, Guryev V, Gopalakrishnan K, Garrett M, Joe B, Citterio L, Bianchi G, McBride M, Dominiczak A, Adams D, Serikawa T, Flicek P, Cuppen E, Hubner N, Petretto E, Gauguier D, Kwitek A, Jacob H, Aitman T. Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell 2013; 154:691-703. [PMID: 23890820 PMCID: PMC3732391 DOI: 10.1016/j.cell.2013.06.040] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/30/2013] [Accepted: 06/21/2013] [Indexed: 12/24/2022]
Abstract
Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models.
Collapse
Affiliation(s)
- Santosh S. Atanur
- Physiological Genomic and Medicine Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Ana Garcia Diaz
- Physiological Genomic and Medicine Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Klio Maratou
- Physiological Genomic and Medicine Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Allison Sarkis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Maxime Rotival
- Integrative Genomics and Medicine Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Laurence Game
- Genomics Core Laboratory, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Michael R. Tschannen
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pamela J. Kaisaki
- The Welcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Georg W. Otto
- The Welcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Man Chun John Ma
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Thomas M. Keane
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Oliver Hummel
- Max Delbruck Center for Molecular Medicine, Berlin 13092, Germany
| | - Kathrin Saar
- Max Delbruck Center for Molecular Medicine, Berlin 13092, Germany
| | - Wei Chen
- Max Delbruck Center for Molecular Medicine, Berlin 13092, Germany
| | - Victor Guryev
- Hubrecht Institute KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
- European Research Institute for the Biology of Ageing, University Medical Center, 9700 AD Groningen, the Netherlands
| | - Kathirvel Gopalakrishnan
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43606-3390, USA
| | - Michael R. Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bina Joe
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43606-3390, USA
| | - Lorena Citterio
- San Raffaele Scientific Institute, OU Nephrology, University Vita Salute San Raffaele, Chair of Nephrology, 58, 20132 Milan, Italy
| | - Giuseppe Bianchi
- San Raffaele Scientific Institute, OU Nephrology, University Vita Salute San Raffaele, Chair of Nephrology, 58, 20132 Milan, Italy
| | - Martin McBride
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anna Dominiczak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - David J. Adams
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Tadao Serikawa
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Edwin Cuppen
- Hubrecht Institute KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
| | - Norbert Hubner
- Max Delbruck Center for Molecular Medicine, Berlin 13092, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin 13092, Germany
| | - Enrico Petretto
- Integrative Genomics and Medicine Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Dominique Gauguier
- The Welcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- INSERM UMR-S872, Cordeliers Research Centre, 75006 Paris, France
| | - Anne Kwitek
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Howard Jacob
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Timothy J. Aitman
- Physiological Genomic and Medicine Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| |
Collapse
|
67
|
Amstislavsky SY, Igonina TN, Rozhkova IN, Brusentsev EY, Rogovaya AA, Ragaeva DS, Naprimerov VA, Litvinova EA, Plyusnina IF, Markel AL. Rederivation by embryo transfer in strains of laboratory mice and rats. RUSSIAN JOURNAL OF GENETICS: APPLIED RESEARCH 2013; 3:305-315. [DOI: 10.1134/s2079059713040023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
|
68
|
Zicha J, Dobešová Z, Vokurková M, Rauchová H, Hojná S, Kadlecová M, Behuliak M, Vaněčková I, Kuneš J. Age-dependent salt hypertension in Dahl rats: fifty years of research. Physiol Res 2013; 61:S35-S87. [PMID: 22827876 DOI: 10.33549/physiolres.932363] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension - salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of renin-angiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the salt-sensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake. On the contrary, moderate salt hypertension in adult Dahl rats is attenuated by superoxide scavenging or endothelin-A receptor blockade which do not affect salt hypertension development in young animals.
Collapse
Affiliation(s)
- J Zicha
- Centre for Cardiovascular Research, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Chauvet C, Crespo K, Ménard A, Roy J, Deng AY. Modularization and epistatic hierarchy determine homeostatic actions of multiple blood pressure quantitative trait loci. Hum Mol Genet 2013; 22:4451-9. [DOI: 10.1093/hmg/ddt294] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
70
|
Sips PY, Buys ES. Genetic modification of hypertension by sGCα1. Trends Cardiovasc Med 2013; 23:312-8. [PMID: 23755896 DOI: 10.1016/j.tcm.2013.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/30/2013] [Accepted: 05/01/2013] [Indexed: 02/06/2023]
Abstract
Hypertension is an important modifiable risk factor for coronary heart disease, congestive heart failure, stroke, end-stage renal disease, and peripheral vascular disease, but many of the molecular mechanisms and genetic factors underlying the development of the most common forms of human hypertension remain to be defined. Abundant evidence suggests that nitric oxide (NO) and one of its primary targets, the cyclic guanosine monophosphate (cGMP)-generating enzyme soluble guanylate cyclase (sGC), have a critical role in regulating blood pressure. The availability of murine models of hypertension and the revolution in human genetics research (e.g., genome-wide association studies [GWAS]), resulting in the identification of dozens of genetic loci that affect normal variation in blood pressure and susceptibility to hypertension, provide a unique opportunity to dissect the mechanisms by which NO-cGMP signaling regulates blood pressure and to gain important insights into the pathogenesis of hypertension. In this review, we will give an overview of the current knowledge relating to the role of sGC in the regulation of blood pressure, discussing data obtained from genetically modified mouse models as well as from human genetic studies.
Collapse
Affiliation(s)
- Patrick Y Sips
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Thier 511B, Boston, MA 02114
| | | |
Collapse
|
71
|
Flister MJ, Hoffman MJ, Reddy P, Jacob HJ, Moreno C. Congenic mapping and sequence analysis of the Renin locus. Hypertension 2013; 61:850-6. [PMID: 23460292 DOI: 10.1161/hypertensionaha.111.01008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Renin was the first blood pressure (BP) quantitative trait locus mapped by linkage analysis in the rat. Subsequent BP linkage and congenic studies capturing different portions of the renin region have returned conflicting results, suggesting that multiple interdependent BP loci may be residing in the chromosome 13 BP quantitative trait locus that includes Renin. We used SS-13(BN) congenic strains to map 2 BP loci in the Renin region (chr13: 45.2-49.0 Mb). We identified a 1.1-Mb protective Brown Norway region around Renin (chr13: 46.1-47.2 Mb) that significantly decreased BP by 32 mm Hg. The Renin protective BP locus was offset by an adjacent hypertensive locus (chr13: 47.2-49.0 Mb) that significantly increased BP by 29 mm Hg. Sequence analysis of the protective and hypertensive BP loci revealed 1433 and 2063 variants between Dahl salt-sensitive/Mcwi and Brown Norway rats, respectively. To further reduce the list of candidate variants, we regenotyped an overlapping SS-13(SR) congenic strain (S/renrr) with a previously reported BP phenotype. Sequence comparison among Dahl salt-sensitive, Dahl R, and Brown Norway reduced the number of candidate variants in the 2 BP loci by 42% for further study. Combined with previous studies, these data suggest that at least 4 BP loci reside within the 30-cM chromosome 13 BP quantitative trait locus that includes Renin.
Collapse
Affiliation(s)
- Michael J Flister
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
72
|
Redina OE, Smolenskaya SE, Maslova LN, Markel AL. The Genetic Control of Blood Pressure and Body Composition in Rats with Stress-Sensitive Hypertension. Clin Exp Hypertens 2013; 35:484-95. [DOI: 10.3109/10641963.2012.758274] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
73
|
Kumarasamy S, Gopalakrishnan K, Abdul-Majeed S, Partow-Navid R, Farms P, Joe B. Construction of two novel reciprocal conplastic rat strains and characterization of cardiac mitochondria. Am J Physiol Heart Circ Physiol 2012; 304:H22-32. [PMID: 23125210 DOI: 10.1152/ajpheart.00534.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Because of the lack of appropriate animal models, the potentially causal contributions of inherited mitochondrial genomic factors to complex traits are less well studied compared with inherited nuclear genomic factors. We previously detected variations between the mitochondrial DNA (mtDNA) of the Dahl salt-sensitive (S) rat and the spontaneously hypertensive rat (SHR). Specifically, multiple variations were detected in mitochondrial genes coding for subunits of proteins essential for electron transport, in mitochondrial reactive oxygen species production, and within the D-loop region. To evaluate the effects of these mtDNA variations in the absence of the corresponding nuclear genomic factors as confounding variables, novel reciprocal strains of S and SHR were constructed and characterized. When compared with that of the S rat, the heart tissue from the S.SHR(mt) conplastic strain wherein the mtDNA of the S rat was substituted with that of the SHR had a significant increase in mtDNA copy number and decrease in mitochondrial reactive oxygen species production. A corresponding increase in aerobic treadmill running capacity and a significant increase in survival that was not related to changes in blood pressure were observed in the S.SHR(mt) rats compared with the S rat. The reciprocal SHR.S(mt) rats did not differ from the SHR in any phenotype tested, suggesting lower penetrance of the S mtDNA on the nuclear genomic background of the SHR. These novel conplastic strains serve as invaluable tools to further dissect the relationship between heart function, aerobic fitness, cardiovascular disease progression, and mortality.
Collapse
Affiliation(s)
- Sivarajan Kumarasamy
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology qaand Pharmacology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614-2598, USA
| | | | | | | | | | | |
Collapse
|
74
|
Gonik M, Frank E, Keßler MS, Czamara D, Bunck M, Yen YC, Pütz B, Holsboer F, Bettecken T, Landgraf R, Müller-Myhsok B, Touma C, Czibere L. The endocrine stress response is linked to one specific locus on chromosome 3 in a mouse model based on extremes in trait anxiety. BMC Genomics 2012; 13:579. [PMID: 23114097 PMCID: PMC3557225 DOI: 10.1186/1471-2164-13-579] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/29/2012] [Indexed: 12/17/2022] Open
Abstract
Background The hypothalamic-pituitary-adrenal (HPA) axis is essential to control physiological stress responses in mammals. Its dysfunction is related to several mental disorders, including anxiety and depression. The aim of this study was to identify genetic loci underlying the endocrine regulation of the HPA axis. Method High (HAB) and low (LAB) anxiety-related behaviour mice were established by selective inbreeding of outbred CD-1 mice to model extremes in trait anxiety. Additionally, HAB vs. LAB mice exhibit comorbid characteristics including a differential corticosterone response upon stress exposure. We crossbred HAB and LAB lines to create F1 and F2 offspring. To identify the contribution of the endocrine phenotypes to the total phenotypic variance, we examined multiple behavioural paradigms together with corticosterone secretion-based phenotypes in F2 mice by principal component analysis. Further, to pinpoint the genomic loci of the quantitative trait of the HPA axis stress response, we conducted genome-wide multipoint oligogenic linkage analyses based on Bayesian Markov chain Monte Carlo approach as well as parametric linkage in three-generation pedigrees, followed by a two-dimensional scan for epistasis and association analysis in freely segregating F2 mice using 267 single-nucleotide polymorphisms (SNPs), which were identified to consistently differ between HAB and LAB mice as genetic markers. Results HPA axis reactivity measurements and behavioural phenotypes were represented by independent principal components and demonstrated no correlation. Based on this finding, we identified one single quantitative trait locus (QTL) on chromosome 3 showing a very strong evidence for linkage (2ln (L-score) > 10, LOD > 23) and significant association (lowest Bonferroni adjusted p < 10-28) to the neuroendocrine stress response. The location of the linkage peak was estimated at 42.3 cM (95% confidence interval: 41.3 - 43.3 cM) and was shown to be in epistasis (p-adjusted < 0.004) with the locus at 35.3 cM on the same chromosome. The QTL harbours genes involved in steroid synthesis and cardiovascular effects. Conclusion The very prominent effect on stress-induced corticosterone secretion of the genomic locus on chromosome 3 and its involvement in epistasis highlights the critical role of this specific locus in the regulation of the HPA axis.
Collapse
Affiliation(s)
- Mariya Gonik
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Huang BS, White RA, Leenen FHH. Possible role of brain salt-inducible kinase 1 in responses to central sodium in Dahl rats. Am J Physiol Regul Integr Comp Physiol 2012; 303:R236-45. [DOI: 10.1152/ajpregu.00381.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Dahl salt-sensitive (S) rats, Na+ entry into the cerebrospinal fluid (CSF) and sympathoexcitatory and pressor responses to CSF Na+ are enhanced. Salt-inducible kinase 1 (SIK1) increases Na+/K+-ATPase activity in kidney cells. We tested the possible role of SIK1 in regulation of CSF [Na+] and responses to Na+ in the brain. SIK1 protein and activity were lower in hypothalamic tissue of Dahl S (SS/Mcw) compared with salt-resistant SS.BN13 rats. Intracerebroventricular infusion of the protein kinase inhibitor staurosporine at 25 ng/day, to inhibit SIK1 further increased mean arterial pressure (MAP) and HR but did not affect the increase in CSF [Na+] or hypothalamic aldosterone in Dahl S on a high-salt diet. Intracerebroventricular infusion of Na+-rich artificial CSF caused significantly larger increases in renal sympathetic nerve activity, MAP, and HR in Dahl S vs. SS.BN13 or Wistar rats on a normal-salt diet. Intracerebroventricular injection of 5 ng staurosporine enhanced these responses, but the enhancement in Dahl S rats was only one-third that in SS.BN13 and Wistar rats. Staurosporine had no effect on MAP and HR responses to intracerebroventricular ANG II or carbachol, whereas the specific protein kinase C inhibitor GF109203X inhibited pressor responses to intracerebroventricular Na+-rich artificial CSF or ANG II. These results suggest that the SIK1-Na+/K+-ATPase network in neurons acts to attenuate sympathoexcitatory and pressor responses to increases in brain [Na+]. The lower hypothalamic SIK1 activity and smaller effect of staurosporine in Dahl S rats suggest that impaired activation of neuronal SIK1 by Na+ may contribute to their enhanced central responses to sodium.
Collapse
Affiliation(s)
- Bing S. Huang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Roselyn A. White
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Frans H. H. Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
76
|
Affiliation(s)
- Bina Joe
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences Toledo, OH (B.J., J.I.S.) ; Department of Physiology/Pharmacology, University of Toledo College of Medicine and Life Sciences Toledo, OH (B.J., J.I.S.)
| | | |
Collapse
|
77
|
Friese RS, Ye C, Nievergelt CM, Schork AJ, Mahapatra NR, Rao F, Napolitan PS, Waalen J, Ehret GB, Munroe PB, Schmid-Schönbein GW, Eskin E, O'Connor DT. Integrated computational and experimental analysis of the neuroendocrine transcriptome in genetic hypertension identifies novel control points for the cardiometabolic syndrome. ACTA ACUST UNITED AC 2012; 5:430-40. [PMID: 22670052 DOI: 10.1161/circgenetics.111.962415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Essential hypertension, a common complex disease, displays substantial genetic influence. Contemporary methods to dissect the genetic basis of complex diseases such as the genomewide association study are powerful, yet a large gap exists between the fraction of population trait variance explained by such associations and total disease heritability. METHODS AND RESULTS We developed a novel, integrative method (combining animal models, transcriptomics, bioinformatics, molecular biology, and trait-extreme phenotypes) to identify candidate genes for essential hypertension and the metabolic syndrome. We first undertook transcriptome profiling on adrenal glands from blood pressure extreme mouse strains: the hypertensive BPH (blood pressure high) and hypotensive BPL (blood pressure low). Microarray data clustering revealed a striking pattern of global underexpression of intermediary metabolism transcripts in BPH. The MITRA algorithm identified a conserved motif in the transcriptional regulatory regions of the underexpressed metabolic genes, and we then hypothesized that regulation through this motif contributed to the global underexpression. Luciferase reporter assays demonstrated transcriptional activity of the motif through transcription factors HOXA3, SRY, and YY1. We finally hypothesized that genetic variation at HOXA3, SRY, and YY1 might predict blood pressure and other metabolic syndrome traits in humans. Tagging variants for each locus were associated with blood pressure in a human population blood pressure extreme sample with the most extensive associations for YY1 tagging single nucleotide polymorphism rs11625658 on systolic blood pressure, diastolic blood pressure, body mass index, and fasting glucose. Meta-analysis extended the YY1 results into 2 additional large population samples with significant effects preserved on diastolic blood pressure, body mass index, and fasting glucose. CONCLUSIONS The results outline an innovative, systematic approach to the genetic pathogenesis of complex cardiovascular disease traits and point to transcription factor YY1 as a potential candidate gene involved in essential hypertension and the cardiometabolic syndrome.
Collapse
Affiliation(s)
- Ryan S Friese
- Department of Bioengineering, University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0838, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Korbolina EE, Kozhevnikova OS, Stefanova NA, Kolosova NG. Quantitative trait loci on chromosome 1 for cataract and AMD-like retinopathy in senescence-accelerated OXYS rats. Aging (Albany NY) 2012; 4:49-59. [PMID: 22300709 PMCID: PMC3292905 DOI: 10.18632/aging.100427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Age-related macular degeneration (AMD) and cataract are common age-related diseases in humans. Previously we showed that senescence-accelerated OXYS rats develop retinopathy and cataract, which are comparable to human AMD and senile cataract. Here we focused on the identification of quantitative trait loci (QTLs), which affect early-onset cataract and retinopathy in OXYS rats, using F2 hybrids bred by a reciprocal cross (OXYS×WAG and WAG×OXYS). Chromosome 1 showed significant associations between retinopathy and loci in the regions of markers D1Rat30 and D1Rat219 (QTL1) as well as D1Rat219 and D1Rat81 (QTL2); and between early cataract development with the locus in the region of the markers D1Rat219 and D1Rat81 (QTL2). To determine the effects of these QTLs, we generated two congenic strains by transferring chromosome 1 regions from OXYS into WAG background. Both congenic strains (named WAG/OXYS-1.1 and WAG/OXYS-1.2, respectively) display early cataract and retinopathy development. Thus, we confirmed that genes located in the analyzed regions of chromosome 1 are associated with the development of these diseases in OXYS rats.
Collapse
Affiliation(s)
- Elena E Korbolina
- Institute of Cytology and Genetics SB RAS, 630090, Novosibirsk, Russia
| | | | | | | |
Collapse
|
79
|
Schulz A, Kreutz R. Mapping genetic determinants of kidney damage in rat models. Hypertens Res 2012; 35:675-94. [DOI: 10.1038/hr.2012.77] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
80
|
Buys ES, Raher MJ, Kirby A, Shahid M, Mohd S, Baron DM, Hayton SR, Tainsh LT, Sips PY, Rauwerdink KM, Yan Q, Tainsh RET, Shakartzi HR, Stevens C, Decaluwé K, Rodrigues-Machado MDG, Malhotra R, Van de Voorde J, Wang T, Brouckaert P, Daly MJ, Bloch KD. Genetic modifiers of hypertension in soluble guanylate cyclase α1-deficient mice. J Clin Invest 2012; 122:2316-25. [PMID: 22565307 DOI: 10.1172/jci60119] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 03/21/2012] [Indexed: 01/09/2023] Open
Abstract
Nitric oxide (NO) plays an essential role in regulating hypertension and blood flow by inducing relaxation of vascular smooth muscle. Male mice deficient in a NO receptor component, the α1 subunit of soluble guanylate cyclase (sGCα1), are prone to hypertension in some, but not all, mouse strains, suggesting that additional genetic factors contribute to the onset of hypertension. Using linkage analyses, we discovered a quantitative trait locus (QTL) on chromosome 1 that was linked to mean arterial pressure (MAP) in the context of sGCα1 deficiency. This region is syntenic with previously identified blood pressure-related QTLs in the human and rat genome and contains the genes coding for renin. Hypertension was associated with increased activity of the renin-angiotensin-aldosterone system (RAAS). Further, we found that RAAS inhibition normalized MAP and improved endothelium-dependent vasorelaxation in sGCα1-deficient mice. These data identify the RAAS as a blood pressure-modifying mechanism in a setting of impaired NO/cGMP signaling.
Collapse
Affiliation(s)
- Emmanuel S Buys
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Salt-inducible kinase 1 influences Na(+),K(+)-ATPase activity in vascular smooth muscle cells and associates with variations in blood pressure. J Hypertens 2012; 29:2395-403. [PMID: 22045124 DOI: 10.1097/hjh.0b013e32834d3d55] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Essential hypertension is a complex condition whose cause involves the interaction of multiple genetic and environmental factors such as salt intake. Salt-inducible kinase 1 (SIK1) is a sucrose-nonfermenting-like kinase isoform that belongs to the AMPK (5' adenosine monophosphate-activated protein kinase) family. SIK1 activity is increased by high salt intake and plays an essential role in regulating the plasma membrane Na(+),K(+)-ATPase. The objective of this study was to examine whether SIK1 is present in vascular smooth muscle cells (VSMCs) and endothelial cells, whether it affects VSMC Na(+),K(+)-ATPase activity and whether human SIK1 (hSIK1) represents a potential candidate for blood pressure regulation. METHODS Localization of SIK1 was performed using immunohistochemistry, mRNA and western blot. Functional assays (Na(+),K(+)-ATPase activity) were performed in VSMCs derived from rat aorta. Genotype-phenotype association studies were performed in three Swedish and one Japanese population-based cohorts. RESULTS SIK1 was localized in human VSMCs and endothelial cells, as well as a cell line derived from rat aorta. A nonsynonymous single nucleotide polymorphism in the hSIK1 gene exon 3 (C→T, rs3746951) results in the amino acid change (15)Gly→Ser in the SIK1 protein. SIK1-(15)Ser was found to increase plasma membrane Na(+),K(+)-ATPase activity in cultured VSMC line from rat aorta. Genotype-phenotype association studies in three Swedish and one Japanese population-based cohorts suggested that T allele (coding for (15)Ser) was associated with lower blood pressure (P = 0.005 for SBP and P = 0.002 for DBP) and with a decrease in left ventricular mass (P = 0.048). CONCLUSION The hSIK1 appears to be of potential relevance within VSMC function and blood pressure regulation.
Collapse
|
82
|
Zhu Q, Wang Z, Xia M, Li PL, Zhang F, Li N. Overexpression of HIF-1α transgene in the renal medulla attenuated salt sensitive hypertension in Dahl S rats. Biochim Biophys Acta Mol Basis Dis 2012; 1822:936-41. [PMID: 22349312 DOI: 10.1016/j.bbadis.2012.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/05/2012] [Accepted: 02/06/2012] [Indexed: 12/13/2022]
Abstract
Hypoxia inducible factor (HIF)-1α-mediated gene activation in the renal medulla in response to high salt intake plays an important role in the control of salt sensitivity of blood pressure. High salt-induced activation of HIF-1α in the renal medulla is blunted in Dahl S rats. The present study determined whether the impairment of the renal medullary HIF-1α pathway was responsible for salt sensitive hypertension in Dahl S rats. Renal medullary HIF-1α levels were induced by either transfection of HIF-1α expression plasmid or chronic infusion of CoCl₂ into the renal medulla, which was accompanied by increased expressions of anti-hypertensive genes, cyclooxygenase-2 and heme oxygenase-1. Overexpression of HIF-1α transgenes in the renal medulla enhanced the pressure natriuresis, promoted the sodium excretion and reduced sodium retention after salt overload. As a result, hypertension induced by 2-week high salt was significantly attenuated in rats treated with HIF-1α plasmid or CoCl₂. These results suggest that an abnormal HIF-1α in the renal medulla may represent a novel mechanism mediating salt-sensitive hypertension in Dahl S rats and that induction of HIF-1α levels in the renal medulla could be a therapeutic approach for the treatment of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richnond VA 23298, USA
| | | | | | | | | | | |
Collapse
|
83
|
Klemcke HG, Joe B, Rose R, Ryan KL. Life or death? A physiogenomic approach to understand individual variation in responses to hemorrhagic shock. Curr Genomics 2011; 12:428-42. [PMID: 22379396 PMCID: PMC3178911 DOI: 10.2174/138920211797248574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/29/2011] [Accepted: 07/06/2011] [Indexed: 11/22/2022] Open
Abstract
Severe hemorrhage due to trauma is a major cause of death throughout the world. It has often been observed that some victims are able to withstand hemorrhage better than others. For decades investigators have attempted to identify physiological mechanisms that distinguish survivors from nonsurvivors for the purpose of providing more informed therapies. As an alternative approach to address this issue, we have initiated a research program to identify genes and genetic mechanisms that contribute to this phenotype of survival time after controlled hemorrhage. From physiogenomic studies using inbred rat strains, we have demonstrated that this phenotype is a heritable quantitative trait, and is therefore a complex trait regulated by multiple genes. Our work continues to identify quantitative trait loci as well as potential epigenetic mechanisms that might influence survival time after severe hemorrhage. Our ultimate goal is to improve survival to traumatic hemorrhage and attendant shock via regulation of genetic mechanisms and to provide knowledge that will lead to genetically-informed personalized treatments.
Collapse
Affiliation(s)
- Harold G Klemcke
- U.S. Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
| | - Bina Joe
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Rajiv Rose
- U.S. Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
| | - Kathy L Ryan
- U.S. Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
84
|
Kumarasamy S, Gopalakrishnan K, Toland EJ, Yerga-Woolwine S, Farms P, Morgan EE, Joe B. Refined mapping of blood pressure quantitative trait loci using congenic strains developed from two genetically hypertensive rat models. Hypertens Res 2011; 34:1263-70. [PMID: 21814219 DOI: 10.1038/hr.2011.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Previously linkage and substitution mapping were conducted between the Dahl Salt-sensitive (S) rat and the Spontaneously Hypertensive Rat (SHR) to address the hypothesis that genetic contributions to blood pressure (BP) in two genetically hypertensive rat strains are different. Among the BP quantitative trait loci (QTLs) detected, two are located on chromosome 9 within large genomic segments. The goal of the current study was to develop new iterations of congenic substrains, to further resolve both of these BP QTLs on chromosome 9 as independent congenic segments. A total of 10 new congenic substrains were developed and characterized. The newly developed congenic substrains S.SHR(9)x8Ax11A and S.SHR(9)x10Ax1, with introgressed segments of 2.05 and 6.14 Mb, represented the shortest genomic segments. Both of these congenic substrains, S.SHR(9)x8Ax11A and S.SHR(9)x10Ax1 lowered BP of the S rat by 56 mm Hg (P<0.001) and 15 mm Hg (P<0.039), respectively. The BP measurements were corroborated by radiotelemetry. Urinary protein excretion was significantly lowered by SHR alleles within S.SHR(9)x10Ax1 but not by S.SHR(9)x8Ax11A. The shorter of the two congenic segments, 2.05 Mb was further characterized and found to contain a single differentially expressed protein-coding gene, Tomoregulin-2 (Tmeff2). The protein expression of Tmeff2 was higher in the S rat compared with S.SHR(9)x8Ax11A, which also had lower cardiac hypertrophy as measured by echocardiography. Tmeff2 is known to be upregulated in patients from multiple cohorts with cardiac hypertrophy. Taken together, Tmeff2 can be prioritized as a candidate gene for hypertension and associated cardiac hypertrophy in both rats and in humans.
Collapse
Affiliation(s)
- Sivarajan Kumarasamy
- Physiological Genomics Laboratory, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Wei Z, Biswas N, Wang L, Courel M, Zhang K, Soler-Jover A, Taupenot L, O'Connor DT. A common genetic variant in the 3'-UTR of vacuolar H+-ATPase ATP6V0A1 creates a micro-RNA motif to alter chromogranin A processing and hypertension risk. CIRCULATION. CARDIOVASCULAR GENETICS 2011; 4:381-9. [PMID: 21558123 PMCID: PMC3319682 DOI: 10.1161/circgenetics.111.959767] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The catecholamine release-inhibitor catestatin and its precursor chromogranin A (CHGA) may constitute "intermediate phenotypes" in the analysis of genetic risk for cardiovascular disease such as hypertension. Previously, the vacuolar H(+)-ATPase subunit gene ATP6V0A1 was found within the confidence interval for linkage with catestatin secretion in a genome-wide study, and its 3'-UTR polymorphism T+3246C (rs938671) was associated with both catestatin processing from CHGA and population blood pressure. We explored the molecular mechanism of this effect by experiments with transfected chimeric photoproteins in chromaffin cells. METHODS AND RESULTS Placing the ATP6V0A1 3'-UTR downstream of a luciferase reporter, we found that the C (variant) allele decreased overall gene expression. The 3'-UTR effect was verified by coupled in vitro transcription/translation of the entire/intact human ATP6V0A1 mRNA. Chromaffin granule pH, monitored by fluorescence of CHGA/EGFP chimera during vesicular H(+)-ATPase inhibition by bafilomycin A1, was more easily perturbed during coexpression of the ATP6V0A1 3'-UTR C-allele than the T-allele. After bafilomycin A1 treatment, the ratio of CHGA precursor to its catestatin fragments in PC12 cells was substantially diminished, though the qualitative composition of such fragments was not affected (on immunoblot or matrix-assisted laser desorption ionization (MALDI) mass spectrometry). Bafilomycin A1 treatment also decreased exocytotic secretion from the regulated pathway, monitored by a CHGA chimera tagged with embryonic alkaline phosphatase. 3'-UTR T+3246C created a binding motif for micro-RNA hsa-miR-637; cotransfection of hsa-miR-637 precursor or antagomir/inhibitor oligonucleotides yielded the predicted changes in expression of luciferase reporter/ATP6V0A1-3'-UTR plasmids varying at T+3246C. CONCLUSIONS The results suggest a series of events whereby ATP6V0A1 3'-UTR variant T+3246C functioned: ATP6V0A1 expression probably was affected through differential micro-RNA effects, altering vacuolar pH and consequently CHGA processing and exocytotic secretion.
Collapse
Affiliation(s)
- Zhiyun Wei
- Departments of Medicine and Pharmacology, Institute for Genomic Medicine, University of California at San Diego, the VA San Diego Healthcare System, La Jolla, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
In genetic studies, many interesting traits, including growth curves and skeletal shape, have temporal or spatial structure. They are better treated as curves or function-valued traits. Identification of genetic loci contributing to such traits is facilitated by specialized methods that explicitly address the function-valued nature of the data. Current methods for mapping function-valued traits are mostly likelihood-based, requiring specification of the distribution and error structure. However, such specification is difficult or impractical in many scenarios. We propose a general functional regression approach based on estimating equations that is robust to misspecification of the covariance structure. Estimation is based on a two-step least-squares algorithm, which is fast and applicable even when the number of time points exceeds the number of samples. It is also flexible due to a general linear functional model; changing the number of covariates does not necessitate a new set of formulas and programs. In addition, many meaningful extensions are straightforward. For example, we can accommodate incomplete genotype data, and the algorithm can be trivially parallelized. The framework is an attractive alternative to likelihood-based methods when the covariance structure of the data is not known. It provides a good compromise between model simplicity, statistical efficiency, and computational speed. We illustrate our method and its advantages using circadian mouse behavioral data.
Collapse
|
87
|
Aitman TJ, Boone C, Churchill GA, Hengartner MO, Mackay TFC, Stemple DL. The future of model organisms in human disease research. Nat Rev Genet 2011; 12:575-82. [PMID: 21765459 DOI: 10.1038/nrg3047] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Model organisms have played a huge part in the history of studies of human genetic disease, both in identifying disease genes and characterizing their normal and abnormal functions. But is the importance of model organisms diminishing? The direct discovery of disease genes and variants in humans has been revolutionized, first by genome-wide association studies and now by whole-genome sequencing. Not only is it now much easier to directly identify potential disease genes in humans, but the genetic architecture that is being revealed in many cases is hard to replicate in model organisms. Furthermore, disease modelling can be done with increasing effectiveness using human cells. Where does this leave non-human models of disease?
Collapse
Affiliation(s)
- Timothy J Aitman
- Medical Research Council Clinical Sciences Centre, Imperial College, London, UK.
| | | | | | | | | | | |
Collapse
|
88
|
Zhang L, Yu K, Robert KW, DeBolt KM, Hong N, Tao JQ, Fukuda M, Fisher AB, Huang S. Rab38 targets to lamellar bodies and normalizes their sizes in lung alveolar type II epithelial cells. Am J Physiol Lung Cell Mol Physiol 2011; 301:L461-77. [PMID: 21764986 DOI: 10.1152/ajplung.00056.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rab38 is a rat Hermansky-Pudlak syndrome gene that plays an important role in surfactant homeostasis in alveolar type II (ATII) pneumocytes. We examined Rab38 function in regulating lamellar body (LB) morphology in ATII cells. Quantitative electron microscopy revealed that LBs in ATII cells were ∼77% larger in Rab38-null fawn-hooded hypertension (FHH) than control Sprague-Dawley (SD) rats. Rab38 protein expression was restricted in lung epithelial cells but was not found in primary endothelial cells. In SD ATII cells, Rab38 protein level gradually declined during 5 days in culture. Importantly, endogenous Rab38 was present in LB fractions purified from SD rat lungs, and transiently expressed enhanced green fluorescent protein (EGFP)-tagged Rab38 labeled only the limiting membranes of a subpopulation (∼30%) of LBs in cultured ATII cells. This selective targeting was abolished by point mutations to EGFP-Rab38 and was not shared by Rab7 and Rab4b, which also function in the ATII cells. Using confocal microscopy, we established a method for quantitative evaluation of the enlarged LB phenotype temporally preserved in cultured FHH ATII cells. A direct causal relationship was established when the enlarged LB phenotype was reserved and then rescued by transiently reexpressed EGFP-Rab38 in cultured FHH ATII cells. This rescuing effect was associated with dynamic EGFP-Rab38 targeting to and on LB limiting membranes. We conclude that Rab38 plays an indispensible role in maintaining LB morphology and surfactant homeostasis in ATII pneumocytes.
Collapse
Affiliation(s)
- Linghui Zhang
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104-6068, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Klemcke HG, Joe B, Calderon ML, Rose R, Oh T, Aden J, Ryan KL. Genetic influences on survival time after severe hemorrhage in inbred rat strains. Physiol Genomics 2011; 43:758-65. [PMID: 21487033 DOI: 10.1152/physiolgenomics.00245.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To find a genetic basis for differential ability to survive severe hemorrhage, we previously showed eightfold differences in survival times among inbred rat strains. We assumed that rat strains had similar normalized blood volumes (NBV; ml/100 g body wt). As NBV might vary among strains and constitute one genetic variable affecting survival time to hemorrhage, in experiment 1 of the current studies we first measured total blood volumes and calculated NBV in specific inbred rat strains (Brown Norway/Medical College of Wisconsin, BN; Dark Agouti, DA; Fawn Hooded Hypertensive, FHH; Lewis, LEW; and Dahl Salt-Sensitive, SS) previously found to be divergent in survival time. NBV differed by 20% (P < 0.01; BN > SS > FHH = LEW = DA) and had a heritability (h(2)) of 0.56. Hence, differential survival times in our previously published study might reflect strain-dependent differences in NBV. Then studies were conducted wherein rats were catheterized and, ∼24 h later, 47% of their blood volume was removed; these rats were observed for a maximum of 4 h. In experiment 2, blood volumes were measured the day prior to hemorrhage. Percent survival and survival time did not differ among strains. To obviate possible confounding effects of blood volume determination, in experiment 3 the average NBV for each strain was used to determine hemorrhage volumes. Percent survival (P < 0.01) and survival times (P < 0.001) were different with DA demonstrating the best (62.5%, 190 ± 29 min) and BN the worst (0%, 52 ± 5 min) survival responses. These data indicate that both blood volume and survival time after hemorrhage in rats are heritable quantitative traits, and continue to suggest that genetic assessment of these phenotypes might lead to novel therapeutics to improve survival to hemorrhage.
Collapse
Affiliation(s)
- Harold G Klemcke
- U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas.
| | | | | | | | | | | | | |
Collapse
|
90
|
Ely D, Boehme S, Dunphy G, Hart M, Chiarappa F, Miller B, Martins AS, Turner M, Milsted A. The Sry3 Y chromosome locus elevates blood pressure and renin-angiotensin system indexes. GENDER MEDICINE 2011; 8:126-38. [PMID: 21536231 PMCID: PMC3087190 DOI: 10.1016/j.genm.2010.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/09/2010] [Accepted: 11/14/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND Sex-determining region Y (Sry) is a transcription factor. Our research group has shown that there are multiple copies of Sry in Wistar-Kyoto (WKY) and spontaneous hypertensive (SHR) rats, and that they have novel functions separate from testes determination. OBJECTIVE We hypothesized that exogenously delivered Sry3 to the normotensive WKY male kidney would activate the renin-angiotensin system (RAS) and raise blood pressure (BP), based on previous in vitro studies. METHODS Sry3 or control vector was electroporated to the left kidney of male WKY rats and the following measurements were taken: BP by telemetry, renin-angiotensin measures by radioimmunoassay, plasma and tissue catecholamines by HPLC with electrochemical detection, sodium by flame photometry, and inulin by ELISA. RESULTS Sry3 increased BP 10 to 20 mm Hg compared with controls (P < 0.01) and produced a significant 40% decrease in urine sodium compared with controls (P < 0.05). Sry3 increased renal angiotensin II and plasma renin activity by >100% compared with controls (P < 0.01 and P < 0.05, respectively). CONCLUSION The findings presented here confirm and extend the argument for Sry3 as one of the genes responsible for the SHR hypertensive Y chromosome phenotype and are consistent with increased tissue RAS activity due to Sry3 and increased sodium reabsorption.
Collapse
Affiliation(s)
- Daniel Ely
- Department of Biology, University of Akron, Akron, Ohio 44325-3908, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Grussenmeyer T, Meili-Butz S, Roth V, Dieterle T, Brink M, Winkler B, Matt P, Carrel TP, Eckstein FS, Lefkovits I, Grapow MTR. Proteome analysis in cardiovascular pathophysiology using Dahl rat model. J Proteomics 2011; 74:672-82. [PMID: 21338724 DOI: 10.1016/j.jprot.2011.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 02/03/2011] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
Abstract
Dahl salt-sensitive (DS) and salt-resistant (DR) inbred rat strains represent a well established animal model for cardiovascular research. Upon prolonged administration of high-salt-containing diet, DS rats develop systemic hypertension, and as a consequence they develop left ventricular hypertrophy, followed by heart failure. The aim of this work was to explore whether this animal model is suitable to identify biomarkers that characterize defined stages of cardiac pathophysiological conditions. The work had to be performed in two stages: in the first part proteomic differences that are attributable to the two separate rat lines (DS and DR) had to be established, and in the second part the process of development of heart failure due to feeding the rats with high-salt-containing diet has to be monitored. This work describes the results of the first stage, with the outcome of protein expression profiles of left ventricular tissues of DS and DR rats kept under low salt diet. Substantial extent of quantitative and qualitative expression differences between both strains of Dahl rats in heart tissue was detected. Using Principal Component Analysis, Linear Discriminant Analysis and other statistical means we have established sets of differentially expressed proteins, candidates for further molecular analysis of the heart failure mechanisms.
Collapse
Affiliation(s)
- Thomas Grussenmeyer
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Delles C, McBride MW, Graham D, Padmanabhan S, Dominiczak AF. Genetics of hypertension: from experimental animals to humans. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:1299-308. [PMID: 20035862 PMCID: PMC2977068 DOI: 10.1016/j.bbadis.2009.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 12/15/2009] [Indexed: 12/17/2022]
Abstract
Essential hypertension affects 20 to 30% of the population worldwide and contributes significantly to cardiovascular mortality and morbidity. Heridability of blood pressure is around 15 to 40% but there are also substantial environmental factors affecting blood pressure variability. It is assumed that blood pressure is under the control of a large number of genes each of which has only relatively mild effects. It has therefore been difficult to discover the genes that contribute to blood pressure variation using traditional approaches including candidate gene studies and linkage studies. Animal models of hypertension, particularly in the rat, have led to the discovery of quantitative trait loci harbouring one or several hypertension related genes, but translation of these findings into human essential hypertension remains challenging. Recent development of genotyping technology made large scale genome-wide association studies possible. This approach and the study of monogenic forms of hypertension has led to the discovery of novel and robust candidate genes for human essential hypertension, many of which require functional analysis in experimental models.
Collapse
Affiliation(s)
| | | | | | | | - Anna F. Dominiczak
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, University of Glasgow, UK
| |
Collapse
|
93
|
Kunert MP, Dwinell MR, Lombard JH. Vascular responses in aortic rings of a consomic rat panel derived from the Fawn Hooded Hypertensive strain. Physiol Genomics 2010; 42A:244-58. [PMID: 20841496 DOI: 10.1152/physiolgenomics.00124.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The present experiments, utilizing the high-throughput vascular protocol of PhysGen (Program for Genomic Applications) characterized the responses of aortic rings to vasoconstrictor (phenylephrine) and vasodilator (acetylcholine, sodium nitroprusside, and reduced tissue bath Po(2)) stimuli in consomic rat strains derived from a cross between the Fawn Hooded Hypertensive rat (FHH/EurMcwi) and the Brown Norway normotensive (BN/NHsdMcwi) rat. The effects of substituting individual BN chromosomes into the FHH genetic background were determined in animals that were maintained on a low-salt (0.4% NaCl) diet or switched to a high-salt (4% NaCl) diet for 3 wk. Sex-specific differences were evaluated in male and female consomic rats on similar dietary salt intake. Multiple chromosomes affected various vascular reactivity phenotypes in the FHH × BN consomic panel, and substantial salt-dependent changes in vascular reactivity and sex-specific differences in aortic reactivity were observed in individual consomic strains. However, compared with earlier studies of consomic rats derived from a cross between the BN rat and the Dahl salt-sensitive (SS) rat, only 3-7% of the vascular phenotypes were affected in a similar manner by substituting specific BN chromosomeschromosomes into the FHH genetic background versus the SS genetic background. The findings of the present study stress the potential value of consomic rat panels in gaining insight into genetic factors influencing vascular reactivity and suggest that the chromosomes that appear to be involved in the determination of aortic ring reactivity in different rodent models of hypertension are highly strain- and sex specific.
Collapse
Affiliation(s)
- Mary Pat Kunert
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | | | |
Collapse
|
94
|
Redina OE, Smolenskaya SE, Markel AL. Dopamine level in the medulla oblongata is under the control of chromosome 8 locus in ISIAH rats. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2010; 431:100-2. [PMID: 20506844 DOI: 10.1134/s0012496610020080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- O E Redina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent'eva 10, Novosibirsk 630090, Russia
| | | | | |
Collapse
|
95
|
Schulz A, Schütten S, Schulte L, Kossmehl P, Nyengaard JR, Vetter R, Huber M, Kreutz R. Genetic locus on MWF rat chromosome 6 affects kidney damage in response to L-NAME treatment in spontaneously hypertensive rats. Physiol Genomics 2010; 42:126-33. [PMID: 20388842 DOI: 10.1152/physiolgenomics.00036.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A major quantitative trait locus (QTL) on rat chromosome (RNO)6 was linked to albuminuria in Munich Wistar Frömter rats (MWF). We tested whether transfer of MWF RNO6 into the background of albuminuria-resistant spontaneously hypertensive rats (SHR) induces albuminuria in consomic SHR-6(MWF) animals. Male MWF, SHR, and SHR-6(MWF) were sham operated and treated between 6 and 24 wk of age with normal water (Sham) or with water containing 20 mg/l N(G)-nitro-L-arginine methyl ester (L-NAME) or unilaterally nephrectomized (Nx). Compared with SHR albuminuria was not increased in SHR-6(MWF) in both Sham and Nx groups. All animals survived the observation period in Sham and Nx groups, while premature mortality occurred from 12-14 wk on in L-NAME-treated SHR and SHR-6(MWF) compared with MWF L-NAME animals, in which survival was not affected (P < 0.005, respectively). Subsequent further analysis of L-NAME-treated animals at 12 wk of age showed significantly increased arterial blood pressures in both SHR and SHR-6(MWF) compared with control (P < 0.05), with higher levels in SHR compared with consomics (P < 0.05). However, L-NAME-treated consomic animals demonstrated increased albuminuria compared with SHR (12.7 +/- 3.5 vs. 0.8 +/- 0.2 mg/24 h; P < 0.05) and an induction of tubulointerstitial structural injury and expression of neutrophil gelatinase-associated lipocalin mRNA (P < 0.05 vs. other strains). Our study demonstrates that isolation of the RNO6 albuminuria QTL from the MWF background and transfer into SHR fails to induce an albuminuria phenotype during normal conditions or after nephron reduction. Moreover, our data indicate that genes on RNO6 contribute to the development of L-NAME-induced renal damage in the SHR strain.
Collapse
Affiliation(s)
- Angela Schulz
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Bugenhagen SM, Cowley AW, Beard DA. Identifying physiological origins of baroreflex dysfunction in salt-sensitive hypertension in the Dahl SS rat. Physiol Genomics 2010; 42:23-41. [PMID: 20354102 DOI: 10.1152/physiolgenomics.00027.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Salt-sensitive hypertension is known to be associated with dysfunction of the baroreflex control system in the Dahl salt-sensitive (SS) rat. However, neither the physiological mechanisms nor the genomic regions underlying the baroreflex dysfunction seen in this rat model are definitively known. Here, we have adopted a mathematical modeling approach to investigate the physiological and genetic origins of baroreflex dysfunction in the Dahl SS rat. We have developed a computational model of the overall baroreflex heart rate control system based on known physiological mechanisms to analyze telemetry-based blood pressure and heart rate data from two genetic strains of rat, the SS and consomic SS.13(BN), on low- and high-salt diets. With this approach, physiological parameters are estimated, unmeasured physiological variables related to the baroreflex control system are predicted, and differences in these quantities between the two strains of rat on low- and high-salt diets are detected. Specific findings include: a significant selective impairment in sympathetic gain with high-salt diet in SS rats and a protection from this impairment in SS.13(BN) rats, elevated sympathetic and parasympathetic offsets with high-salt diet in both strains, and an elevated sympathetic tone with high-salt diet in SS but not SS.13(BN) rats. In conclusion, we have associated several important physiological parameters of the baroreflex control system with chromosome 13 and have begun to identify possible physiological mechanisms underlying baroreflex impairment and hypertension in the Dahl SS rat that may be further explored in future experimental and modeling-based investigation.
Collapse
Affiliation(s)
- Scott M Bugenhagen
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
97
|
Jaitovich A, Bertorello AM. Intracellular sodium sensing: SIK1 network, hormone action and high blood pressure. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1140-9. [PMID: 20347966 DOI: 10.1016/j.bbadis.2010.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/12/2010] [Accepted: 03/20/2010] [Indexed: 01/11/2023]
Abstract
Sodium is the main determinant of body fluid distribution. Sodium accumulation causes water retention and, often, high blood pressure. At the cellular level, the concentration and active transport of sodium is handled by the enzyme Na(+),K(+)-ATPase, whose appearance enabled evolving primitive cells to cope with osmotic stress and contributed to the complexity of mammalian organisms. Na(+),K(+)-ATPase is a platform at the hub of many cellular signaling pathways related to sensing intracellular sodium and dealing with its detrimental excess. One of these pathways relies on an intracellular sodium-sensor network with the salt-inducible kinase 1 (SIK1) at its core. When intracellular sodium levels rise, and after the activation of calcium-related signals, this network activates the Na(+),K(+)-ATPase and expel the excess of sodium from the cytosol. The SIK1 network also mediates sodium-independent signals that modulate the activity of the Na(+),K(+)-ATPase, like dopamine and angiotensin, which are relevant per se in the development of high blood pressure. Animal models of high blood pressure, with identified mutations in components of multiple pathways, also have alterations in the SIK1 network. The introduction of some of these mutants into normal cells causes changes in SIK1 activity as well. Some cellular processes related to the metabolic syndrome, such as insulin effects on the kidney and other tissues, also appear to involve the SIK1. Therefore, it is likely that this protein, by modulating active sodium transport and numerous hormonal responses, represents a "crossroad" in the development and adaptation to high blood pressure and associated diseases.
Collapse
Affiliation(s)
- Ariel Jaitovich
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital-Solna, 171 76 Stockholm, Sweden.
| | | |
Collapse
|
98
|
Zakaria T, Qin Z, Maurice RL. Optical-flow-based B-mode elastography: application in the hypertensive rat carotid. IEEE TRANSACTIONS ON MEDICAL IMAGING 2010; 29:570-578. [PMID: 20129856 DOI: 10.1109/tmi.2009.2038694] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Background-Ultrasound elastography is now used worldwide in tissue characterization. The primary premises of elastography are that speckle kinematics reproduces underlying tissue kinematics and that tissue motion can be inferred from speckle tracking. This implicitly assumes that speckle pattern is a material property that can be tracked with respect to time and space. It is then convenient to express the motion of such a material property in terms of total derivative, also known as optical flow (OF) equations. Aims-The present paper introduces a new iterative OF-based elastography (OFBE) method devoted to B-mode data. The first OFBE iteration computes axial and lateral displacement fields. Such displacement fields are used for data rigid registration, prior to the second OFBE iteration which computes the 2-D strain tensor. Methods-The OFBE method was validated in the common carotid artery of rat hypertension models. The effect of aging on carotid stiffness was investigated in female recombinant inbred rats (RI-17, (n=2)) in the first experiment. The outcomes of low/high-salt diets were examined in young male Dahl salt-sensitive rats (SS, n=6; SM12, n=6; SM9, n=6) in the second experiment. Results-Good concordance was observed between left and right carotid axial strain measurements with 11.4% relative error, whereas 4.6% relative error occurred between diastolic and systolic axial strain measurements. Old (80 and 85 weeks) RI-17 carotids were determined to be twice as stiff with 5.70 +/- 0.97% (strain+/-std) as young carotids (30 and 34 weeks) with 13.26 +/- 2.73%, p < 0.001. Carotid axial strain measurement also indicated that salt diets had a significant impact on SS (p=0.008) and SM12 (p < 0.001) but not on SM9 (p=0.881) rats.
Collapse
Affiliation(s)
- Toufik Zakaria
- Laboratory of Biorheology and Medical Ultrasonics, Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H3C 3P8, Canada.
| | | | | |
Collapse
|
99
|
Abstract
Genetic mapping and positional cloning of genetically complex traits in the laboratory rat (Rattus norvegicus) has recently led to the identification of various susceptibility genes in different rat models. Rat genetics has benefited from revolutionary advances in molecular biology, genetics, genomics and informatics and provide an unparalleled resource for molecular genetic investigation of mammalian physiopathology and its underlying complex genetic architecture. In this review, we will consider different strategies that are being used in the successful positional cloning of rat complex trait genes in the context of recent progress in rodent and human genetics.
Collapse
|
100
|
Viel EC, Lemarié CA, Benkirane K, Paradis P, Schiffrin EL. Immune regulation and vascular inflammation in genetic hypertension. Am J Physiol Heart Circ Physiol 2009; 298:H938-44. [PMID: 20044442 DOI: 10.1152/ajpheart.00707.2009] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Immune cells have been implicated in the pathogenesis of hypertension. We hypothesized that under the influence of chromosome (chr)2, T lymphocytes contribute to vascular inflammation in genetic salt-sensitive hypertension. Normotensive (Brown Norway), hypertensive (Dahl salt-sensitive), and consomic rats (SSBN2; in which chr2 has been transferred from Brown Norway to Dahl rats) were studied. Systolic blood pressure, measured by tail cuff, and aortic preproendothelin mRNA, measured by quantitative RT-PCR, were elevated in Dahl rats compared with Brown Norway rats and were reduced in SSBN2 rats compared with Dahl rats (P < 0.01). Compared with Brown Norway rats, Dahl rats exhibited increased inflammatory markers and mediators such as nuclear translocation of the aortic p65 subunit of NF-kappaB as well as VCAM-1, ICAM-1, chemokine (C-C motif) receptor 5, and CD4 mRNA, all of which were reduced in SSBN2 rats. Aortic CD8 mRNA was equally increased in Dahl and SSBN2 rats relative to Brown Norway rats. CD4(+) T cell infiltration in the aorta of SSBN2 rats was reduced compared with Dahl rats, whereas the aortic protein expression of Foxp3b and immunosuppressors transforming growth factor (TGF)-beta(1) and IL-10, the three markers associated with the regulatory T cell lineage, were enhanced in SSBN2 rats. Activation in vitro of T cells demonstrated that CD4(+)CD25(+) and CD8(+)CD25(+) cells (Tregs) produce IL-10 in SSBN2 rats. Thus, increased vascular inflammatory responses and hypertension in a genetic salt-sensitive hypertensive rodent model are reduced by transfer of chr2 from a normotensive strain, and this is associated with enhanced levels of immunosuppressive mediators.
Collapse
Affiliation(s)
- Emilie C Viel
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|